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Abstract

A new method for detecting low dimensional chaos in small sample sets is presented. The
method is applied to financial data on low frequency (annual and monthly) for which few
observations are available.
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1 Introduction

Since the works of Bachelier (1900), the orthodox academic point of view
in finance has been to consider fluctuations in stock prices as random and
unpredictable. In the same way, the theory of real business cycles (Kydland
and Prescott 1982) states that fluctuations in real aggregates are due to
random productivity shocks. Thus, the cornerstone of modern finance: the
informational efficiency hypothesis (Fama 1965) as well as the neoclassical
approach in macroeconomics rely on this mathematical representation. The
concept of deterministic chaos, which implies the generic possibility that
an apparently random phenomenon is actually generated by a deterministic
process, has renewed the debate on randomness of prices dynamics and the
theory of endogenous business cycles (Grandmont 1985).
It has motivated numerous authors for detecting chaos in economic and fi-

nancial time series. The first tools used such as the Lyapunov exponent (Wolf
et al. 1984), which measures sensitive dependence on initial conditions, or the
correlation integral (Grassberger et Procaccia 1983), which measures spatial
correlations in the phase space, were designed for very large data sets and
perform poorly with small samples. Since, researchers have come up with
numerous methods for observing or measuring nonlinear determinism in rel-
atively shorter time series (see Aleksic 1990, Kennel et al. 1992, Wayland et
al. 1993, Cao 1997 and Zbilut et al. 1998). However, here again, those meth-
ods perform poorly with very small sample sets (under 500 observations). By
the fact, almost only long period of time and high frequency data (daily or
weekly) have been analyzed.
The aim of this paper is to present a very simple method for detecting

low dimensional deterministic structure in small sample sets and to apply
it to low frequency (monthly and yearly) financial time series for which few
observations are available.

2 Methodology

2.1 Reconstruction of dynamics by the method of time
delays

Let s(t) (t = 1, ..., N) denotes an observable process generated by an un-
known or unobservable system. Following Brock (1986), s (t) is said to have
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a deterministic explanation if:

F : M −→ M (1)

x(t+ 1) = F (x(t)) ,

where F is an unknown smoth map, and M is a d-dimensional manifold,
and :

h : M −→ IR (2)

s(t) = h (x(t)) ,

where h is an unknown smooth map.
Then, according to Takens theorem (1981), for an adequate choice of

parameters m and τ , there exists a function G such as:

G : IRm
2 −→ IRm

2

(3)

y(t+ τ) = G (y(t)) ,

with y(t) = (s(t), s(t− τ), ..., s(t− (m−1)τ)), m being the embedding dimen-
sion and τ the time delay usually fixed to one.
G is a diffeomorfism to F and is called topologically conjugate to F . That

is G conserves the same properties as F and in particular the continuity prop-
erties of the trajectories in the phase space. Thus, if s (t) is a deterministic
time series, then, for any pair of points (y(i), y(j)), for an adequate choice of
m, there exist arbitrary small α, δ > 0 so that:

if k y (i)− y (j) k< α, then, k G(y (i))−G(y (j)) k< δ, (4)

where ka− bk being the distance (according to a given norm) between the
vectors a and b.
This property means that images of close points are close in the phase

space. This “phase space continuity” is characteristic of deterministic pro-
cesses, it can be used to distinguish random numbers from chaotic dynam-
ics and to make short term prediction of chaotic time series (Farmer and
Sidorowich 1987).
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2.2 A measure of determinism

The measure of determinism presented here relies on the reconstruction
scheme described above. The basic idea is to measure the extent to which
the time series considered verify the property of “phase space continuity”,
by observing the dynamics of nearest neighbors (see Fernandez Rodriguez et
al. 2003 for a recent application of a method based on nearest neighbors to
the prediction of exchange rates). For instance, it is assumed that nearest
neighbors whose images are nearest neighbors satisfy the continuity property
(4). That is, y (i) and y (j) satisfy the continuity property (4) if: they are
nearest neighbors:

y (j) = arg min
s6=i,=m,...,N

{ky (i)− y (s)k} , (5)

and if their images are nearest neighbors:

y (j + 1) = arg min
s6=i+1,=m,...,N

{ky (i+ 1)− y (s)k} . (6)

Indeed for those points:

k y (i)− y (j) k= r (i) and k y (i+ 1)− y (j + 1) k= r (i+ 1) , (7)

where r (s) is the minimum distance between y (s) and another vector in the
phase space.
Thus, if y (i) and y (j) satisfy (5) and (6) it is possible to choose arbitrary

small α and δ for which y (i) and y (j) verify (4).
Numerical experiments show that, for short time series, the proportion of

points satisfying those properties grows with the embedding dimension. So
the measure of determinism D proposed here is defined as follows :

D =
number of pairs of points y (i) and y (j) satisfying (5) and (6)

(N −m+ 1)m (8)

where N is the number of observations and m is the embedding dimension.
The quantity D is calculated for different values of m. For each vector

y(i) (i = m, ..., N), only the first neighbor is considered, that is the vector
y (j) (j 6= i = m, ...N) which minimizes the Eulidean distance like in equa-
tion (5). In a second step, the pairs of nearest neighbors whose images are
nearest neighbors are counted. For deterministic time series, this measure of
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determinism is expected to be significantly different from zero for a value of
m sufficiently large.
Except for special cases like the tent map, doubling map or logistic map

where D = 1/(2m) for large N (all of those applications have symmetric
invariant density on the interval (0,1) and two equally probable pre-images
for each state), it is difficult to derive theoretical values of D. Nevertheless,
for independent and stationary data, the probability that a pair of points
verify accidentally equations (5) and (6) decreases when N grows, so D is
expected to be close to 0 for N sufficiently large.

2.3 Comparative analysis

To illustrate its efficacy for small data sets, the measure of determinism D
was calculated for time series of 150 observations. Data under investigation
are: white noise, colored noise (with a correlation coefficient of 0.95) and
chaotic time series generated by the Logistic map, Hénon map, and Lorenz
and Mackey Glass systems. Results were compared to those obtained by the
method of false nearest neighbors (Kennel et al. 1992).
The false nearest neighbors approach is widely used and is known to be

not strongly dependent of the number of observations. False neighbors are
defined as points apparently lying close together due to projection that are
separated in higher embedding dimensions.
Nearest neighbors y (i) and y (j) are declared false if:

|s (i+ 1)− s (j + 1)|
ky (i)− y (j)k > Rtol (9)

or if:

ky (i)− y (j)k 2 − |s (i+ 1)− s (j + 1)| 2
R2A

> A2tol, (10)

where:

R2A =
1

N

NX
k=1

[s (k)− hsi] 2, hsi is the mean of s (t) . (11)

For a deterministic process, the percentage of false nearest neighbors should
drop to zero or some acceptable small numbers by increasing the embedding
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Table 1: Percentage of false nearest neighbors.

1 2 3 4 5 6
white noise 51.2% 21% 11.2% 13.7% 30.1% 22.1%
colored noise 11% 0% 0% 0% 0% 0%
Hénon 10.1% 2.9% 0% 0% 0% 0%
Logistic 0% 0% 0% 0% 0% 0%
Lorenz 6.9% 0% 0% 0% 0% 0%

Mackey Glass 60% 64% 56% 45% 30% 39%

Table 2: The values of the measure of determinism D.

1 2 3 4 5 6
white noise 0 0.04 0.051 0.046 0.056 0.05
colored noise 0.047 0.094 0.097 0.073 0.067 0.054
Logistic map 0.5 0.248 0.186 0.136 0.11 0.085
Hénon map 0.11 0.265 0.213 0.157 0.137 0.108
Lorenz 0.127 0.289 0.23 0.187 0.156 0.124

Mackey Glass 0 0.06 0.086 0.102 0.142 0.13

dimension. For the following application as in most studies, Rtol is set to 10
and Atol to 2.
Results displayed in Table 1 show that, the method of false neighbors is

unable to discriminate between the Mackey Glass process and white noise.
Moreover, it fails to distinguish colored noise from deterministic process. The
measure of determinism presented here is more effective. Indeed, for chaotic
processes, the quantity D becomes superior to 0.1 for a sufficient high value
of m, while for random numbers, it never exceeds 0.1 (see table 2). In
addition, values obtained for the logistic map are very close to theoretical
values D = 1/(2m). Finally, it should be noticed that the low values of D
obtained for the Mackey Glass system suggest that the method would be
unable to discriminate chaotic processes with higher dimension from random
numbers and particularly from colored noise.
The poor results obtained by the false nearest neighbors approach are

not surprising. Indeed it is well known that temporal correlations in time
series cause difficulties to traditional methods (Theiler 1986). This problem
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can be treated, notably in using the method of surrogate data (Theiler et
al. 1992). Nevertheless, according to numerous authors (see Osborne 1989),
the lack of a sufficient number of observation has the same effect as the pres-
ence of temporal correlation: it produces a spurious dimension estimate of
the dimension and prevents one from distinguishing correctly random num-
bers from chaotic time series. The measure of determinism presented here
overcomes this shortcoming and is specially designed to detect low dimen-
sional chaos in small sample sets. The specific task for which this method is
designed can find many applications in economics.

3 Application to financial time series

The presence of nonlinear determinism in asset prices dynamics is of great
importance in finance since it indicates a certain degree of predictability,
and thus is susceptible to invalidate the informational efficiency hypothesis.
Indeed, numerous authors have studied the possibility of exploiting nonlin-
ear dependencies for the forecast of stock prices fluctuations (Wesner 2001,
Fernandez-Rodriguez et al. 1999, LeBaron 1992). Here again, all those works
have only studied relatively long time series, that is weekly or daily observa-
tions.
The measure of determinism presented in the previous section was cal-

culated for time series of six major stock prices indices. Data series under
investigation are : Dow Jones annual returns from 1896 to 2002 (104 obser-
vations), and monthly returns of the Nasdaq, the S&P500, the Nikkei and
the FT-SE100 indexes over the period [1985:1-2003:5] (220 observations).

Table 3: The values of the measure of determinism D for stock prices indices
data.

1 2 3 4 5 6

Dow Jones yearly 0 0.048 0.078 0.79 0.06 0.055

Nasdaq monthly 0 0.039 0.068 0.039 0.058 0.047

Nikei monthly 0 0.027 0.051 0.054 0.05 0.048

FT-SE 100 monthly 0.005 0.034 0.058 0.053 0.044 0.054

S&P500 monthly 0 0.025 0.052 0.043 0.048 0.056

Results (Table 3) show that in all cases, as for random numbers, the quan-
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tity D does not exceed 0.1. In summary, this application does not provide
evidence of the presence of low dimensional chaos in the dynamics of those
stock price indices. The results are in adequation with the informational
efficiency hypothesis.

4 Conclusion

A quantitative measure of determinism in a time series was proposed. The
main advantage of the method is that it works well for very short time series,
is very simple, requires few computer resources and does not contain subjec-
tive parameters. The method was applied to stock prices indices data on low
frequency.
Although this application has not produced positive results on the pres-

ence of low dimensional chaos in stock prices dynamics, it shows the pos-
sibilities given by the method. Indeed, it could be applied to economic or
financial time series on low frequency or over short periods of time, for which
relatively few observations are available.
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: une application à la dynamique du CAC40”, Journal de la Société
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