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Abstract

In this paper we study an expression for all additive, symmetric and efficient solutions, i.e.,
the set of axioms that traditionally are used to characterize the Shapley value except for the
dummy axiom. Also, we obtain an expression for this kind of solutions by including the self
duality axiom. These expressions allow us to give an alternative formula for the consensus
value, the generalized consensus value and the solidarity solution. Furthermore, we introduce
a new axiom called coalitional independence which replaces the symmetry axiom and use it
to get similar results.
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1 Introduction

Since the seminal axiomatic contribution of Shapley in 1953, the variations of his novel
axioms have played a key role in the literature of transferable-utility cooperative games,
mainly trying to understand different applications. Most variations substitute his original
axioms either by weaker versions or by different axioms that fit certain application. However,
very few papers consider the raw solutions that emerge by taking out one or two of the original
axioms. This paper is one of them; it provides a closed form expression of semivalues without
the dummy axiom. It also proposes a weakening of the symmetry axiom, and provides a
closed form expression of these solutions.

Semivalues without the dummy axiom have applications in problems incompatible with
a subsidy-free scenario. For instance, labor unions require employers to pay some minimum
compensation even if an employee does not work: a waiter receives a minimum salary when
the restaurant is empty; and, in certain countries, workers enjoy unemployment insurance
from the government.

This paper is divided in five parts. In part 2 we give an alternative proof for the general
formula for semivalues without the dummy axiom. In part 3 we replace symmetry by a
coalition independent axiom. In part 4 we relate the previous results with solutions in the
literature. In part 5 we remark the extension of previous formulas to non-additive semivalues.
All proofs are written in the appendix.

2 Solutions without a dummy axiom

By a game we mean a pair (N, v) where N ⊂ N is a finite set of players and v : 2N → R is a
real function such that v(∅) = 0. Let G = GN be the set of games with a fixed set of players
N . We consider N fixed and n = |N |. Let (N, z) be the zero game, i.e., the game defined
by z(T ) = 0 for every T ⊆ N.

Definition 1 By a solution in G we mean a continuous function ϕ : G→ RN . Let V be the
set of solutions in G.

A solution is a rule to divide the common gain or cost among the players in N . The
requirement of continuity, in the definition of a solution, is necessary to obtain all of our
results. Also, it is desirable to have a zero payoff for the zero game because in this case no
coalition generates gain or cost.

In this section, we obtain an expression for all additive, symmetric and efficient solutions:
that is, all the axioms that traditionally characterize the Shapley value except the dummy
axiom. A similar, albeit different expression of linear, symmetric and efficient semivalues
can be found in the appendix of Ruiz et al. (1998) and Hernández et al. (2007).

Proposition 1 The solution ϕ satisfies additivity, symmetry and efficiency axioms if and
only if it is of the form

ϕi(v) =
v(N)

n
+

∑
S3i,S 6=N

(n− s)[βsv(S)− βn−sv(N\S)] (1)
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for some n− 1 real numbers {βs}n−1
s=1 .

Proof of this result, and the ones that follow, are given in the Appendix.
We denote by ϕβ the solution ϕ with parameters {βs}n−1

s=1 when we need to refer to its
parameters. Every additive, symmetric and efficient solution is of the form (1) and for
every set of real numbers {βs}n−1

s=1 in (1) we get a solution that satisfies these three axioms.
Furthermore, notice that for different sets of real numbers {βs}n−1

s=1 we get different solutions,
therefore, the dimension of this (affine) subspace of solutions is n−1. Moreover, the Shapley

value corresponds to the numbers βs = (s−1)!(n−s−1)!
n!

, s = 1, . . . , n− 1.
We may interpret (1) as follows. With respect to an efficient solution, a game v has

the following information: v(N) tells us the total amount to be shared and v(S), S 6= N ,
the amount that coalition S claims for itself. So, we start with the egalitarian solution,
i.e., we give v(N)

n
to each player. We keep going with one transference from N\S to S for

each coalition S 6= N, ∅: Every player in N\S pays sβsv(S) and every player in S receives
(n− s)βsv(S). Notice that we use the same factor βs for coalitions with equal cardinality s.
At the end, player i has an amount ϕi(v) given by (1).

3 Solutions satisfying the coalitional independence ax-

iom

In this section we replace the symmetry axiom in the previous proposition with a new one
that we call coalitional independence axiom. This axiom looks like the fair ranking axiom
of Chun (1989).

Definition 2 We say that the two games (N, v) and (N,w) only differ in S if and only if
v(T ) = w(T ) for every coalition T 6= S.

The coalitional independence axiom requests that the solution changes equally for any
two players in S or any two players in N\S for every two games that only differ in S.

Axiom 1 (Coalitional independence) We say that ϕ satisfies the coalitional indepen-
dence axiom if

ϕi(v)− ϕi(w) = ϕj(v)− ϕj(w)

for every two games (N, v) and (N,w) that only differ in S and i, j ∈ S or i, j ∈ N\S.

Remark 1 Notice that additivity and symmetry imply coalitional independence, but additiv-
ity and coalitional independence do not imply symmetry. Indeed, let ϕ be the solution given
by,

ϕi(v) =
∑
j∈N

jv({j}).

Clearly ϕ satisfies additivity and coalitional independence but not symmetry. Now, suppose
that ϕ is an additive and symmetric solution. Let v,w ∈ G be two games that only differ in

2



S, and take either i, j ∈ S or i, j ∈ N\S. Let θ be the permutation of N that interchanges
i and j. Then θ∗(v − w) = v − w, so, ϕ(v − w) = ϕ(θ∗(v − w)) = θ∗ϕ(v − w).

Therefore, ϕi(v − w) = ϕj(v − w). Hence, ϕ satisfies coalitional independence.

Proposition 2 The solution ϕ satisfies additivity, coalitional independence and efficiency
axioms if and only if it is of the form

ϕi(v) =
v(N)

n
+

∑
S3i,S 6=N

(n− s)[βSv(S)− βN\Sv(N\S)] (2)

for some set of 2n − 2 real numbers {βS}∅6=S N .

We get a similar expression as that of proposition 1, except that now we have one βS for
each non empty coalition S 6= N . Again, every solution that satisfies the additive, symmetry
and efficiency axioms is of the form (2) and for every set of real numbers {βS}∅6=S N we get a
solution that satisfies these axioms. Now, the next corollary includes the self duality axiom
as part of its hypotheses 2. Again, including this axiom roughly halves the dimension of the
space of solutions.

Axiom 2 (Self duality) We say that the solution ϕ is self dual if ϕ(v) = ϕ(v∗) for every
game v ∈ G.

Corollary 1 The solution ϕ satisfies additivity, coalitional independence, efficiency and self
duality axioms if and only if it is of the form

ϕi(v) =
v(N)

n
+

∑
S3i,S 6=N

(n− s)[βSv(S)− βN\Sv(N\S)] (3)

for some set of 2n−1 − 1 real numbers {βS}S⊆N such that βS = βN\S.

We conclude this section with a characterization of the Shapley value, we replace the
symmetry axiom with the coalitional independence axiom.

Proposition 3 The Shapley value is the unique solution that satisfies additivity, coalitional
independence, dummy and efficiency axioms.

4 Some special cases

In this section we briefly see some special solutions of the form (1) that do not satisfy the
dummy axiom (i.e. different from Shapley’s value). A first example is the Equal Surplus
solution:

ϕi(v) = v({i}) +
v(N)−

∑
j∈N v({j})
n
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which we get when we choose β1 = 1
n

and βs = 0 for s 6= 1 in (1). Another self dual solution
with a simple expression is

ϕi(v) =
∑
S3i

v(S)

s
−

∑
S 63i

v(S)

n− s

where βs = 1
s(n−s)

in (1).

4.1 The Consensus Value

The convex linear combination (rather than the linear combination) of two solutions of
the form (1) gives another solution of the same form. Moreover, the parameters of the
new solution are just the convex combination of those of the two original solutions. More
precisely, for any two solutions ϕβ and ϕγ, and a real number θ ∈ [0, 1]:

(1− θ)ϕβ + θϕγ = ϕ(1−θ)β+θγ.

In this sense, Ju et al. (2007) prove that the consensus value is the middle point between the
Equal Surplus solution and the Shapley value. Thus an expression for the consensus value
is:

v(N)

n
+

1

2

[
v({i})−

∑
k 6=i v({k})
n− 1

]
+

1

2

∑
S3i,|S|6=n,n−1,1

(n−s)[(s− 1)!(n− s− 1)!

n!
(v(S)−v(N\S))].

In the same way, we could generate an expression for any generalized consensus value, i.e.,
we would only need to replace β1 = 1−θ

n
+ θ

n(n−1)
and βs = θ(s−1)!(n−s−1)!

n!
for s = 2, .., n − 1,

in (1).

4.2 Solidarity value

Nowak and Radzik (1997) introduce the solidarity value. They define, for any non-empty
coalition T and any game v ∈ G, Av(T ) = 1

t

∑
k∈T [v(T )− v(T\{k})]. Then, they define the

solidarity value for player i as,

ψi(v) =
∑
T3i

(n− t)!(t− 1)!

n!
Av(T ) (4)

They characterized this value with the efficiency, additivity, symmetry and A-null player
axioms, so the solidarity value must be a special case of (1). Indeed, if we expand (4) we

get that the coefficient of v(S), for a coalition T which does not contain i, is (n−s−1)!s!
n!

1
s+1

.
Thus, this coefficient corresponds to sβs in (1), and therefore

βs =
(n− s− 1)!(s− 1)!

(s+ 1)n!
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which gives us an alternative expression for (4):

ψi(v) =
v(N)

n
+

∑
S3i,S 6=N

(n− s)!(s− 1)!

n!

[
v(S)

s+ 1
− v(N\S)

n− s+ 1

]
.

Observe that the solidarity value is not self dual since βs 6= βn−s.

4.3 Least Square Prenucleolus

Lastly, Ruiz et al. (1996) introduce the Least Square Prenucleolus solution,

λi(v) =
v(N)

n
+

1

n2n−2

[∑
S3i

(n− s)v(S)−
∑
S 63i

sv(S)

]

This solution is also of the form (1). The corresponding parameters are βs = 1
n2n−2 .

Remark 2 Current literature does not say much about non-additive semivalues. This paper
does not explore this topic; however, the non-additive and non-dummy semivalues can be
easily characterized by modifying (1). Indeed, replace the constant βi by any function β∗i :
GN → R that is symmetric in G. This function is clearly efficient and symmetric. It will be
additive when β∗i is constant, and by construction the dummy axiom does not hold. Similar
formulas can be given by replacing symmetry by the coalition independence axiom.

5 Appendix

Lemma 1 A solution satisfies the additivity axiom if and only if it is linear.

Before we continue with the proofs, we need to define a game χS for every S ⊆ N ,

χS(T ) =

{
1 if T = S
0 otherwise.

Lemma 2 The solution ϕ satisfies the additivity and symmetry axioms if and only if there
exist real numbers {βs}n

s=1 ∪ {β̃s}n−1
s=1 such that

ϕi(v) =
∑
S3i

βsv(S) +
∑
S 63i

β̃sv(S) for every i ∈ N.

Proof. Let ϕ be an additive and symmetric solution, from Lemma 1, ϕ is linear. Clearly
{χS}S⊂N is a basis for G, and for every game v ∈ G, v =

∑
S⊂N v(S)χS. Set βi

S = φi(χS),
then

ϕi(v) =
∑
S⊆N

v(S)βi
S
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for every i ∈ N . On the other hand, let U, V ⊆ N be such that |U | = |V | , k ∈ U, l ∈ V
and θ a permutation of N such that θ(U) = V and θ(k) = l. Since θ(χU) = χV then
ϕk(χU) = ϕl(χV ) by symmetry. Therefore, βk

U = βl
V if |U | = |V | , k ∈ U, l ∈ V . Similarly,

we can conclude that βk
U = βl

V if |U | = |V | , k 6∈ U, l 6∈ V. Thus

ϕi(v) =
∑
S3i

βsv(S) +
∑
S 63i

β̃sv(S)

for some constants {βs}n
s=1∪{β̃s}n−1

s=1 . The proof in the other direction is straightforward. �
Proof of Proposition 1. By Lemma 2, ϕi(v) =

∑
S3i βsv(S) +

∑
S 63i β̃sv(S) for some

numbers {βs}n
s=1∪{β̃s}n−1

s=1 . Since ϕ is efficient, we have that
∑

i∈N ϕi(χS) = sβs+(n−s)β̃s =

0 for every S  N, and
∑

i∈N ϕi(χN) = nβn = 1. Therefore, β̃s = − s
n−s

βs for s = 1, 2, ..., n−1

and βn = 1
n
. Thus

ϕi(v) =
∑

S3i βsv(S)−
∑

S 63i
s

n−s
βsv(S)

=
∑

S3i βsv(S)−
∑

S3i
n−s

s
βn−sv(N\S)

for some numbers {βs}n−1
s=1 . Now, if we replace qs = βs

n−s
we get

ϕi(v) =
v(N)

n
+

∑
S3i,S 6=N

(n− s)(qsv(S)− qn−sv(N\S)).�

Lemma 3 The solution ϕ satisfies additivity and coalitional independence axioms if and
only if there exist numbers {βS}S⊆N ∪ {β̃S}S N such that

ϕi(v) =
∑
S3i

βSv(S) +
∑
S 63i

β̃Sv(S) for every i ∈ N.

Proof. Note that, for every S, χS and the zero game differ only on S, thus if ϕ is any
linear and coalitional independent solution

ϕi(χS) = ϕj(χS), if i, j ∈ S or if i, j ∈ N \ S.

For every S define βS := ϕi(S) for any i ∈ S; similarly, for every S 6= N , define β̃S := ϕj(S)
for any j /∈ S. Then, for every game v

ϕi(v) = ϕi(
∑

S

v(S)χS) =
∑
S∈i

βSv(S) +
∑
S 63i

β̃Sv(S).

It is straightforward to check the converse. �
Proof of Proposition 2. Keeping the same notation as above, we know that if ϕ is in
addition an efficient solution, then, for every S 6= N

0 = χS(N) =
∑

i

ϕi(χS) = sβS + (n− s)β̃S;
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thus β̃S = − s
n−s

βS, S 6= N . Similarly, βN = 1
n
. Hence,

ϕi(v) =
∑

S3i βSv(S)−
∑

S 63i
s

n−s
βSv(S)

=
∑

S3i βSv(S)−
∑

S3i
n−s

s
βN\Sv(N\S)

Let us take qS = βS

n−s
then

ϕi(v) =
v(N)

n
+

∑
S3i,S 6=N

(n− s)
[
qSv(S)− qN\Sv(N\S)

]
for some numbers {qS}S N . �
Proof of Corollary 1. Assume i ∈ N , then by Proposition 2 there exists a set of numbers
{βS}S N such that

ϕi(v) =
v(N)

n
+

∑
S3i,S 6=N

(n− s)[βSv(S)− βN\Sv(N\S)].

For every S 6= N we define a game ξS as follows

ξS(T ) =

{
0 si T 6= S and T 6= N\S
1 T = S or T = N\S .

Therefore
(n− s)[βN\S − βS] = ϕ(ξ∗S) = ϕ(ξS) = (n− s)[βS − βN\S],

so, βS = βN\S. Thus

ϕi(v) =
v(N)

n
+

∑
S3i,S 6=N

(n− s)βS[v(S)− v(N\S)].

It is easy to show that solutions of this kind satisfy the self duality axiom. �
Proof of proposition 3. We leave to the reader to verify that Shapley’s value satisfies the
coalitional independence axiom.

Now, let ϕ be a solution that satisfies additivity, coalitional independence, dummy and
efficiency axioms. Fix a player i and consider coalitions T ⊂ N \ {i} but T 6= N \ {i}. First
of all, notice that i is a dummy player for χT∪{i} + χT , therefore -using the expression for
coalitional independent solutions from Proposition 3-

0 = ϕi(χT∪{i} + χT ) = (n− t− 1) · βT∪{i} − t · βT .

Thus, βT = n−t−1
t

βT∪{i} for each T  N\{i}.
From this, it follows that the solution is determined by the single number βN\{1}. More-

over, from

0 = ϕ1(χN + χN\{1}) =
1

n
− (n− 1)βN\{1},

we conclude that the solution is unique. Since the Shapley value satisfies these axioms,
ϕ = Sh. �
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