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Abstract

This paper compares the small-sample properties of several asymptotically equivalent tests
for heteroscedasticity in the conditional logit model. While no test outperforms the others in
all of the experiments conducted, the likelihood ratio test and a particular variety of the Wald
test are found to have good properties in moderate samples as well as being relatively
powerful.
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1 Introduction

In most applications of the conditional logit model the error term is assumed
to be homoscedastic. Recently, however, there has been a growing interest
in testing the homoscedasticity assumption in applied work (Hensher et al.,
1999; DeShazo and Fermo, 2002). This is partly due to the well-known re-
sult that heteroscedasticity causes the coe¢ cient estimates in discrete choice
models to be inconsistent (Yatchew and Griliches, 1985), but also re�ects a
behavioural interest in factors in�uencing the variance of the latent variables
in the model (Louviere, 2001; Louviere et al., 2002). This paper compares
the small-sample properties of several asymptotically equivalent tests for het-
eroscedasticity in the conditional logit model using simulated data. While
no test outperforms the others in all of the experiments conducted, the like-
lihood ratio test and a particular variety of the Wald test are found to have
good properties in moderate samples as well as being relatively powerful.
Section 2 presents the heteroscedastic logit model, section 3 describes

the various tests for heteroscedasticity and section 4 presents the simulation
results. Section 5 o¤ers some concluding remarks.

2 The heteroscedastic logit model

I assume a sample of N consumers with the choice of J discrete alternatives.
Let Unj be the utility individual n derives from choosing alternative j. It
is assumed that the utility can be partitioned into a systematic component,
Xnj�, and a random component, "nj:

Unj = Xnj� + "nj (1)

whereXnj is a vector of attributes relating to alternative j and � is a vector of
coe¢ cients re�ecting the desirability of the attributes. The random compo-
nent "nj represents characteristics and attributes unknown to the researcher,
measurement error and/or heterogeneity of tastes in the sample. The proba-
bility that individual n chooses alternative i is the probability that the utility
of choosing i is higher than the utility of choosing any other alternative in
the individual�s choice set:

Pni = P (Xni�+"ni > Xnj�+"nj) = P ("nj�"ni < Xni��Xnj�) 8 j 6= i 2 J
(2)
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Assuming that the random terms are IID extreme value type I distributed
we get the conditional logit model (McFadden, 1974) in which the probability
that alternative i is chosen by respondent n is given by:

Pni =
exp(�Xni�)
JX
j=1

exp(�Xnj�)

(3)

where � is a positive scale parameter which can be shown to be inversely
proportional to the error variance, �2":

� =
�p
6�2"

(4)

Since the scale parameter cannot be identi�ed it is usually normalised to
unity.
The conditional logit model assumes that the error variance is constant

across individuals. This assumption has been called into question in several
recent papers (Hensher et al. 1999; Louviere, 2001; DeShazo and Fermo,
2002; Louviere et al., 2002). Following DeShazo and Fermo (2002) and Hen-
sher et al. (1999) an alternative to the conditional logit model which allows
for unequal variances across individuals is given by:

Pni =
exp(�nXni�)
JX
j=1

exp(�nXnj�)

(5)

where �n is a function of individual characteristics that in�uence the mag-
nitude of the scale parameter and therefore the error variance.1 �n is con-
veniently parametrised as exp(Zn) where Zn is a vector of individual char-
acteristics and  is a vector of parameters re�ecting the in�uence of those
characteristics on the error variance. This model is referred to as the het-
eroscedastic logit model by DeShazo and Fermo and the parametrised het-
eroscedastic multinomial logit model by Hensher et al. Note that when J = 2,
eq. (5) is algebraically equivalent to the heteroscedastic binary logit model

1This formulation can be extended to incorporate heteroscedasticity across alternatives
by introducing a j subsript for �.

2



suggested by Davidson and McKinnon (1984).2 The exp(Zn) parametrisa-
tion has the desirable property that �n is positive for all n as well as ensuring
that the heteroscedastic logit collapses to the conditional logit when  = 0.
A test for  = 0 is therefore a test for the error variance being constant across
respondents.
The parameter vector � = (�0; 0)0 is estimated using maximum likelihood

methods. The log-likelihood function is given by LL =
NP
n=1

JP
j=1

ynj lnPnj,

where ynj = 1 if alternative j is chosen by individual n and zero otherwise.

3 Heteroscedasticity tests

All the usual tests for parameter restrictions in models estimated by max-
imum likelihood - the likelihood ratio, Wald and Lagrange multiplier tests
(see e.g. Greene, 2003) - can be employed to test the null hypothesis of ho-
moscedasticity. The Lagrange multiplier (LM) test has the advantage that
only the restricted (conditional logit) model needs to be estimated, while the
Wald and likelihood ratio (LR) tests require estimation of the unrestricted
(heteroscedastic logit) model. This di¤erence is not of major practical im-
portance, however, since the heteroscedastic logit model is straightforward
to estimate despite being highly non-linear.3

The LM and Wald tests depend on an estimate of the covariance matrix
for the restricted/unrestricted coe¢ cient estimates, respectively. While the
most common approach is to use the inverse of the negative Hessian as an
estimate of the covariance matrix, the use of the robust estimator (White,
1982) is becoming widespread in applied work. It should be noted, however,
that the use of the robust estimator does not remedy the presence of het-
eroscedasticity in conditional logit models since the heteroscedasticity causes
the coe¢ cient estimates to be inconsistent.4 A third alternative is the outer
product of gradients (OPG) estimator, which is a convenient choice for the
LM test from a computational point of view. When the model is correctly

2Davidson and McKinnon specify �n to be an inverse function of exp(Zn) but this
di¤erence is qualitatively unimportant since 1= exp(Zn) = exp(�Zn):

3A sample Stata program for estimating the heteroscedastic logit model is available
from the author upon request.

4This contrasts from the linear case in which the OLS estimates are consistent (but
ine¢ cient) in the presence of heterosceadsticity.
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speci�ed and N !1 the three estimators of the covariance matrix are equal
due to the information identity (Train, 2003).
In total seven alternative heteroscedasticity tests are considered: the

Wald and LM tests based on the three di¤erent covariance estimators and
the LR test. While the tests are asymptotically equivalent they can give
di¤erent results in �nite samples. Since there are no substantial di¤erences
between the tests in terms of ease of computation, small-sample performance
is deemed to be the most important selection criterion.

4 The Simulation study

4.1 The data generating process

The data generation process is the heteroscedastic logit model in eq. (5),
with Xnj and Zn speci�ed to consist of a single variable which is standard
normally distributed over attributes and individuals, respectively. The degree
of heteroscedasticity is re�ected in the true value of , which is speci�ed to
take four values (0, 0.1, 0.25 and 0.5) in the experiments. The true value of
�, which is an important determinant of the explanatory power of the model,
is speci�ed to take three values (0.5, 1 and 1.5). Four sample sizes (100, 250,
500 and 1000) are considered along with three choice set sizes (2, 3 and 5).
The range of values are chosen to be reasonably representative of the sample
and choice set sizes typical of applied work. Combining the parameter values
and sample/ choice set sizes result in 144 sampling experiments, of which
heteroscedasticity is present in 108.

4.2 Simulation results

Firstly the performance of the tests are considered under the null of ho-
moscedasticity ( = 0). The simulated rejection rates of the various tests
for heteroscedasticity at the nominal 5% signi�cance level are reported in
table 1. The results are based on 10.000 trials.5 It can be seen from the
table that nearly all the tests have rejection rates which are insigni�cantly

5In a small number of trials the heteroscedastic logit model did not converge. These
trials were replaced.
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di¤erent6 from the nominal level for N = 1000 and J = 5 for all values of
�. The only exception is the LM test based on the robust covariance matrix
which is signi�cantly oversized for � = 0:5. There is a substantial di¤erence
in the performance of the tests for smaller sample sizes/ choice sets, however.
On the whole the LR test and the LM tests tend to be oversized along with
the Wald test based on the robust covariance matrix, while the remaining
Wald tests tend to be undersized. The extent to which the tests are over-
/undersized vary substantially. While the LM tests based on the Hessian
and robust covariance matrices have rejection rates of about twice and three
times the nominal level in some cases, the LR test is about 40% oversized
and the Wald test based on the Hessian about 25% undersized at worst.
All the tests generally improve in performance as N and J increase. The

in�uence of changes in � is less clear-cut, however. As mentioned previously
the true value of � is an important determinant of the explanatory power of
the model. Table 2 reports the percentage of correctly predicted choices as a
function of � and J . It can be seen from the table that the �t of the model
increases with both � and J , using Pni = 1=J as a benchmark. Since the
explanatory power is almost completely una¤ected by changes in  and N ,
only the results for  = 0 and N = 100 are reported. The performance of the
LR test along with the LM tests based on the Hessian and robust covariance
matrix generally improves when � increases, in contrast to the performance
of the LM test based on the OPG matrix which deteriorates. The e¤ect of
changes in � on the Wald tests is less systematic. On balance these results
suggest that, conditional on J , good predictive power is not necessarily an
indicator of good test performance; the most important determinant is the
sample size, along with the size of the choice set.
The power of the tests is compared in three di¤erent cases:  = 0:1, 0:25

and 0:5, with the degree of heteroscedasticity increasing in . The simulated
rejection rates at the 5% level of signi�cance are reported in tables 3-5. Again
the results are based on 10.000 trials. In all three cases the power of the tests
are similar for N = 1000 and J = 5 for all values of �. As expected the power
of the tests increases substantially with the degree of of heteroscedasticity
present in the data. The true value of � is also found to be an important
determinant of test power; the greater the explanatory power of the model the
greater the power of the tests. Unsurprisingly, the most powerful tests in the

6These tests are based on 95% normal approximation con�dence intervals (Conover,
1999).
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scenarios with smaller sample sizes/ choice sets are the LM tests based on the
Hessian and robust covariance matrices, which were found to be substantially
oversized in these cases. Among the tests with better size properties the LR
test is found to be more powerful than the Wald test based on the Hessian,
although the di¤erence is only notable when the sample/ choice set size is
low, in which case the LR test is oversized and Wald test undersized.
The simulation results for J = 2 can be compared to those reported by

Davidson and MacKinnon (1984). They �nd that for a binary logit model
with relatively good predictive power, the LR test and the LM test based
on the Hessian matrix outperform the LM test based on the OPG matrix.7

This is consistent with the �ndings in the present paper. When the �t of the
model is less good, however, the LM test based on the OPG matrix is found
to perform better than the test based on the Hessian matrix in this study.
To summarize, these results suggest that in moderate samples both the

LR tests and the Wald test based on the Hessian are likely to perform fairly
satisfactory and better than the remaining tests considered here, although
none of them outperforms the other tests in all the experiments. The LR
test is the slightly more conservative choice as it is more powerful but tends
to over-reject the null in small samples, while the Wald test has less power
and rejects the null too infrequently. As expected there is little to separate
between the tests when the sample size/ choice set are both relatively large.8

The simulation results suggest that for N � 1000 and J � 5 the performance
of the tests is almost identical.

5 Concluding remarks

Recently there has been a growing interest in testing the assumption of ho-
moscedasticity in conditional logit models. This paper compares the small-
sample properties of several asymptotically equivalent tests for heteroscedas-
ticity in the conditional logit model using simulated data. While the perfor-
mance of the tests is similar when the sample size and choice set are rela-

7Davison and MacKinnon do not consider any of the Wald tests or the LM test based
on the robust covariance matrix. On the other hand they devise a number of alternative
regression based LM tests which are not considered here. The authors �nd that the latter
tests have worse small-sample properties than the standard Hessian/OPG based LM tests.

8It should also be noted that the results show some evidence that increasing the sample
size can compensate for a small choice set; the performance of the tests is somewhat better
overall for N = 250 and J = 2 than for N = 100 and J = 5 for instance.
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tively large, there is substantial variation in performance for smaller samples/
choice sets. On the whole it is found that the best performing tests are the
likelihood ratio test and the Wald test based on the Hessian matrix.
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Table 1. Simulated rejection rates at the 5% significance level for the null hypothesis of homoscedasticity. Results for γ = 0. 
 

  J=2 J=3 J=5 
  N=100 N=250 N=500 N=1000 N=100 N=250 N=500 N=1000 N=100 N=250 N=500 N=1000 

LR 0.0691 0.0545 0.0539* 0.0519* 0.0600 0.0567 0.0481* 0.0530* 0.0583 0.0516* 0.0510* 0.0502* 
WH 0.0375 0.0438 0.0513* 0.0508* 0.0400 0.0515* 0.0470* 0.0525* 0.0463* 0.0485* 0.0507* 0.0499* 
WOPG 0.0193 0.0405 0.0501* 0.0488* 0.0296 0.0498* 0.0472* 0.0506* 0.0389 0.0496* 0.0538* 0.0511* 
WR 0.0707 0.0553 0.0534* 0.0528* 0.0656 0.0546 0.0492* 0.0532* 0.0676 0.0547 0.0528* 0.0506* 
LMH 0.1044 0.0777 0.0629 0.0567 0.0977 0.0732 0.0564 0.0568 0.0944 0.0639 0.0567 0.0538* 
LMOPG 0.0630 0.0515* 0.0543* 0.0521* 0.0544* 0.0513* 0.0480* 0.0524* 0.0549 0.0513* 0.0486* 0.0489* 

β 
=0

.5
 

LMR 0.1586 0.1109 0.0809 0.0642 0.1479 0.0975 0.0697 0.0636 0.1441 0.0869 0.0706 0.0610 
LR 0.0597 0.0513* 0.0501* 0.0503* 0.0545 0.0546 0.0467* 0.0491* 0.0514* 0.0561 0.0495* 0.0495* 
WH 0.0377 0.0444 0.0467* 0.0480* 0.0403 0.0488* 0.0446 0.0478* 0.0425 0.0520* 0.0478* 0.0490* 
WOPG 0.0250 0.0382 0.0439 0.0462* 0.0326 0.0450 0.0431 0.0477* 0.0359 0.0500* 0.0464* 0.0498* 
WR 0.0630 0.0542* 0.0532* 0.0518* 0.0586 0.0543* 0.0475* 0.0500* 0.0565 0.0556 0.0495* 0.0512* 
LMH 0.0696 0.0537* 0.0522* 0.0509* 0.0618 0.0565 0.0477* 0.0498* 0.0571 0.0573 0.0499* 0.0497* 
LMOPG 0.0747 0.0597 0.0561 0.0527* 0.0641 0.0568 0.0487* 0.0508* 0.0545 0.0561 0.0487* 0.0517* 

β 
=1

 

LMR 0.0749 0.0557 0.0513* 0.0515* 0.0707 0.0596 0.0502* 0.0499* 0.0676 0.0617 0.0521* 0.0523* 
LR 0.0577 0.0497* 0.0528* 0.0465* 0.0559 0.0499* 0.0496* 0.0561 0.0506* 0.0540* 0.0501* 0.0504* 
WH 0.0374 0.0433 0.0502* 0.0453 0.0449 0.0446 0.0475* 0.0550 0.0426 0.0504* 0.0478* 0.0497* 
WOPG 0.0227 0.0354 0.0471* 0.0431 0.0331 0.0412 0.0459* 0.0515* 0.0350 0.0450 0.0472* 0.0496* 
WR 0.0746 0.0588 0.0579 0.0514* 0.0677 0.0576 0.0519* 0.0583 0.0596 0.0573 0.0537* 0.0518* 
LMH 0.0589 0.0489* 0.0528* 0.0460* 0.0561 0.0501* 0.0499* 0.0560 0.0508* 0.0536* 0.0498* 0.0501* 
LMOPG 0.0943 0.0648 0.0626 0.0526* 0.0722 0.0595 0.0521* 0.0593 0.0612 0.0586 0.0543* 0.0514* 

β 
=1

.5
 

LMR 0.0545 0.0470* 0.0520* 0.0449 0.0583 0.0502* 0.0502* 0.0545 0.0553 0.0528* 0.0520* 0.0516* 
Note: the asterisks denote the nominal 0.05 rejection rate being contained by a normal approximation 95% confidence interval.  
LR = likelihood ratio test, WH = Wald test based on Hessian, WOPG = Wald test based on OPG matrix, WR = Wald test  
based on robust covariance matrix, LMH = Lagrange multiplier  test based on Hessian, LMOPG = Lagrange multiplier  test  
based on OPG matrix, LMR = Lagrange multiplier test based on robust covariance matrix. 
 

 
 
 
 
 
 



Table 2. Percentage of correctly predicted choices for γ = 0 and N=100. 
 

 J=2 J=3 J=5 
β=0.5 63.2 47.7 33.1 
β=1 72.5 59.6 46.3 
β=1.5 78.7 68.2 56.7 

 
 



Table 3. Simulated rejection rates at the 5% significance level for the null hypothesis of homoscedasticity. Results for γ = 0.1. 
 

  J=2 J=3 J=5 
  N=100 N=250 N=500 N=1000 N=100 N=250 N=500 N=1000 N=100 N=250 N=500 N=1000 

LR 0.0781 0.0825 0.1119 0.1630 0.0786 0.0942 0.1227 0.2049 0.0794 0.1008 0.1476 0.2569 
WH 0.0448 0.0705 0.1048 0.1597 0.0530 0.0869 0.1218 0.2038 0.0628 0.0962 0.1456 0.2559 
WOPG 0.0234 0.0604 0.0991 0.1567 0.0385 0.0813 0.1198 0.2016 0.0491 0.0908 0.1443 0.2545 
WR 0.0805 0.0843 0.1107 0.1656 0.0810 0.0962 0.1262 0.2082 0.0864 0.1059 0.1514 0.2600 
LMH 0.1155 0.1091 0.1269 0.1730 0.1159 0.1167 0.1373 0.2133 0.1159 0.1195 0.1577 0.2659 
LMOPG 0.0726 0.0791 0.1106 0.1640 0.0728 0.0896 0.1246 0.2052 0.0734 0.0969 0.1450 0.2553 

β 
=0

.5
 

LMR 0.1718 0.1444 0.1461 0.1841 0.1680 0.1466 0.1576 0.2281 0.1683 0.1502 0.1782 0.2781 
LR 0.0820 0.1124 0.1762 0.2901 0.0882 0.1461 0.2438 0.4193 0.1043 0.1872 0.3228 0.5663 
WH 0.0548 0.1001 0.1682 0.2850 0.0715 0.1367 0.2378 0.4161 0.0883 0.1800 0.3174 0.5650 
WOPG 0.0367 0.0872 0.1619 0.2823 0.0570 0.1282 0.2273 0.4117 0.0761 0.1699 0.3134 0.5602 
WR 0.0829 0.1158 0.1762 0.2903 0.0906 0.1477 0.2465 0.4217 0.1079 0.1875 0.3239 0.5667 
LMH 0.0958 0.1178 0.1799 0.2922 0.0977 0.1508 0.2453 0.4205 0.1130 0.1913 0.3257 0.5679 
LMOPG 0.1015 0.1227 0.1821 0.2947 0.0977 0.1506 0.2486 0.4224 0.1064 0.1867 0.3226 0.5661 

β 
=1

 

LMR 0.1021 0.1186 0.1804 0.2917 0.1104 0.1532 0.2476 0.4216 0.1280 0.1983 0.3309 0.5688 
LR 0.0913 0.1236 0.2041 0.3439 0.0992 0.1728 0.2907 0.5116 0.1236 0.2274 0.4133 0.6870 
WH 0.0636 0.1121 0.1962 0.3382 0.0822 0.1619 0.2835 0.5084 0.1079 0.2177 0.4077 0.6847 
WOPG 0.0402 0.0956 0.1824 0.3281 0.0610 0.1486 0.2696 0.4990 0.0894 0.2051 0.3970 0.6771 
WR 0.1021 0.1303 0.2075 0.3477 0.1110 0.1802 0.2982 0.5140 0.1311 0.2338 0.4186 0.6881 
LMH 0.0909 0.1218 0.2036 0.3433 0.1001 0.1717 0.2902 0.5115 0.1229 0.2269 0.4131 0.6864 
LMOPG 0.1286 0.1448 0.2154 0.3507 0.1224 0.1839 0.3011 0.5154 0.1343 0.2332 0.4181 0.6882 

β 
=1

.5
 

LMR 0.0847 0.1175 0.1982 0.3368 0.0980 0.1708 0.2827 0.5088 0.1265 0.2300 0.4102 0.6841 
LR = likelihood ratio test, WH = Wald test based on Hessian, WOPG = Wald test based on OPG matrix, WR = Wald test  
based on robust covariance matrix, LMH = Lagrange multiplier  test based on Hessian, LMOPG = Lagrange multiplier  test  
based on OPG matrix, LMR = Lagrange multiplier test based on robust covariance matrix. 

 
 
 
 
 
 
 
 



Table 4. Simulated rejection rates at the 5% significance level for the null hypothesis of homoscedasticity. Results for γ = 0.25. 
 

  J=2 J=3 J=5 
  N=100 N=250 N=500 N=1000 N=100 N=250 N=500 N=1000 N=100 N=250 N=500 N=1000 

LR 0.1372 0.2375 0.4057 0.6766 0.1616 0.3066 0.5551 0.8292 0.1940 0.3916 0.6562 0.9138 
WH 0.0824 0.2084 0.3954 0.6724 0.1184 0.2919 0.5479 0.8274 0.1581 0.3825 0.6541 0.9137 
WOPG 0.0405 0.1842 0.3830 0.6683 0.0795 0.2718 0.5418 0.8274 0.1259 0.3632 0.6447 0.9153 
WR 0.1393 0.2317 0.4019 0.6725 0.1618 0.3070 0.5496 0.8230 0.1969 0.3915 0.6525 0.9095 
LMH 0.1766 0.2813 0.4338 0.6882 0.2040 0.3442 0.5786 0.8363 0.2397 0.4309 0.6728 0.9171 
LMOPG 0.1304 0.2294 0.4000 0.6721 0.1483 0.3000 0.5460 0.8207 0.1787 0.3748 0.6448 0.9077 

β 
=0

.5
 

LMR 0.2329 0.3262 0.4668 0.7054 0.2659 0.3975 0.6105 0.8498 0.3067 0.4765 0.6989 0.9250 
LR 0.2027 0.4148 0.6895 0.9333 0.2812 0.5901 0.8777 0.9914 0.3832 0.7479 0.9603 0.9999 
WH 0.1456 0.3869 0.6792 0.9320 0.2398 0.5717 0.8739 0.9913 0.3478 0.7377 0.9595 0.9999 
WOPG 0.0988 0.3527 0.6574 0.9252 0.1910 0.5436 0.8641 0.9907 0.3025 0.7196 0.9568 0.9997 
WR 0.1906 0.4146 0.6859 0.9352 0.2810 0.5888 0.8729 0.9908 0.3766 0.7442 0.9584 0.9998 
LMH 0.2250 0.4256 0.6933 0.9336 0.2986 0.5973 0.8792 0.9915 0.3964 0.7521 0.9605 0.9999 
LMOPG 0.2268 0.4288 0.6946 0.9353 0.2920 0.5965 0.8752 0.9910 0.3784 0.7404 0.9600 0.9998 

β 
=1

 

LMR 0.2296 0.4207 0.6871 0.9318 0.3129 0.5950 0.8771 0.9915 0.4122 0.7594 0.9608 0.9998 
LR 0.2329 0.4847 0.7752 0.9709 0.3384 0.6833 0.9333 0.9976 0.4713 0.8517 0.9883 1.0000 
WH 0.1791 0.4576 0.7644 0.9702 0.2970 0.6687 0.9309 0.9975 0.4371 0.8438 0.9879 1.0000 
WOPG 0.1209 0.4056 0.7374 0.9639 0.2333 0.6330 0.9188 0.9975 0.3785 0.8254 0.9855 1.0000 
WR 0.2392 0.4965 0.7775 0.9719 0.3465 0.6875 0.9342 0.9980 0.4766 0.8518 0.9886 1.0000 
LMH 0.2331 0.4822 0.7743 0.9707 0.3370 0.6814 0.9327 0.9975 0.4689 0.8505 0.9884 1.0000 
LMOPG 0.2818 0.5129 0.7853 0.9716 0.3651 0.6948 0.9355 0.9981 0.4834 0.8546 0.9892 1.0000 

β 
=1

.5
 

LMR 0.2167 0.4578 0.7576 0.9659 0.3272 0.6683 0.9266 0.9978 0.4612 0.8437 0.9868 1.0000 
LR = likelihood ratio test, WH = Wald test based on Hessian, WOPG = Wald test based on OPG matrix, WR = Wald test  
based on robust covariance matrix, LMH = Lagrange multiplier  test based on Hessian, LMOPG = Lagrange multiplier  test  
based on OPG matrix, LMR = Lagrange multiplier test based on robust covariance matrix. 

 
 
  
 
 
 
 
 



Table 5. Simulated rejection rates at the 5% significance level for the null hypothesis of homoscedasticity. Results for γ = 0.5. 
 

  J=2 J=3 J=5 
  N=100 N=250 N=500 N=1000 N=100 N=250 N=500 N=1000 N=100 N=250 N=500 N=1000 

LR 0.3468 0.6879 0.9271 0.9983 0.4688 0.8423 0.9871 0.9999 0.5861 0.9355 0.9972 1.0000 
WH 0.2281 0.6468 0.9205 0.9983 0.3783 0.8270 0.9861 0.9999 0.5255 0.9310 0.9973 1.0000 
WOPG 0.1195 0.6050 0.9184 0.9984 0.2778 0.8115 0.9872 0.9999 0.4586 0.9280 0.9977 1.0000 
WR 0.3166 0.6542 0.9165 0.9978 0.4383 0.8176 0.9842 0.9999 0.5560 0.9230 0.9962 1.0000 
LMH 0.3436 0.6944 0.9317 0.9984 0.4676 0.8443 0.9869 0.9999 0.5846 0.9333 0.9972 1.0000 
LMOPG 0.3277 0.6644 0.9159 0.9978 0.4297 0.8147 0.9837 0.9999 0.5355 0.9172 0.9959 1.0000 

β 
=0

.5
 

LMR 0.4062 0.7336 0.9429 0.9987 0.5373 0.8674 0.9900 1.0000 0.6465 0.9457 0.9982 1.0000 
LR 0.5532 0.9124 0.9971 1.0000 0.7406 0.9872 1.0000 1.0000 0.8787 0.9989 1.0000 1.0000 
WH 0.4444 0.8986 0.9969 1.0000 0.6850 0.9857 1.0000 1.0000 0.8552 0.9986 1.0000 1.0000 
WOPG 0.3195 0.8716 0.9952 1.0000 0.6074 0.9809 0.9999 1.0000 0.8152 0.9981 1.0000 1.0000 
WR 0.5089 0.9041 0.9970 1.0000 0.7126 0.9867 1.0000 1.0000 0.8610 0.9984 1.0000 1.0000 
LMH 0.5692 0.9142 0.9972 1.0000 0.7512 0.9876 1.0000 1.0000 0.8825 0.9989 1.0000 1.0000 
LMOPG 0.5766 0.9165 0.9969 1.0000 0.7384 0.9864 1.0000 1.0000 0.8647 0.9984 1.0000 1.0000 

β 
=1

 

LMR 0.5669 0.9087 0.9965 1.0000 0.7544 0.9863 1.0000 1.0000 0.8893 0.9986 1.0000 1.0000 
LR 0.6198 0.9467 0.9992 1.0000 0.8135 0.9945 1.0000 1.0000 0.9339 0.9999 1.0000 1.0000 
WH 0.5313 0.9390 0.9989 1.0000 0.7745 0.9935 1.0000 1.0000 0.9221 0.9999 1.0000 1.0000 
WOPG 0.3873 0.9057 0.9981 1.0000 0.6799 0.9901 1.0000 1.0000 0.8817 0.9998 1.0000 1.0000 
WR 0.6068 0.9496 0.9992 1.0000 0.8044 0.9948 1.0000 1.0000 0.9313 1.0000 1.0000 1.0000 
LMH 0.6178 0.9450 0.9990 1.0000 0.8082 0.9943 1.0000 1.0000 0.9326 0.9999 1.0000 1.0000 
LMOPG 0.6736 0.9545 0.9993 1.0000 0.8290 0.9955 1.0000 1.0000 0.9350 1.0000 1.0000 1.0000 

β 
=1

.5
 

LMR 0.5728 0.9282 0.9985 1.0000 0.7808 0.9923 1.0000 1.0000 0.9252 0.9999 1.0000 1.0000 
LR = likelihood ratio test, WH = Wald test based on Hessian, WOPG = Wald test based on OPG matrix, WR = Wald test  
based on robust covariance matrix, LMH = Lagrange multiplier  test based on Hessian, LMOPG = Lagrange multiplier  test  
based on OPG matrix, LMR = Lagrange multiplier test based on robust covariance matrix. 


