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Abstract 
 

 
Exploring the duality between a return to dollar definition of profit and the 

generalized distance function we establish the relationship between the Laspeyres, Paasche 

and Fisher productivity indexes and their alternative Malmquist indexes counterparts. By 

proceeding this way, we propose a consistent decomposition of these productivity indexes 

into two mutually exclusive components. A technical component represented by the 

Malmquist index and an economical component which can be identified with the 

contribution that allocative criteria make to productivity change. With regard to the Fisher 

index, we indicate how researchers can further decompose the Malmquist technical 

component rendering explicit the sources of productivity change. We also show how the 

proposed model can be implemented by means of Data Envelopment Analysis techniques, 

and illustrate the empirical process with an example data set. 

 

Key Words: Generalized Distance Function, Return to Dollar, Fisher and Malmquist 

Productivity Indexes.  

JEL Classification: C43, C61, D24. 

                                                      
   a Corresponding author. Tel: +34 914972406; fax: +34 914978616; e−mail: jose.zofio@uam.es  
   b Tel: +34 923219606; fax: +34 923219609; e−mail: alpiste@usal.es. 
* We appreciate the contributions of Bert Balk and Luis Orea throughout the development of this manuscript. 
We are also grateful to two anonymous reviewers for their helpful comments that greatly improved the finished 
work. The usual disclaimer applies.    
 



 3

 
1 Introduction  
 
 
 In the last decade a renewed interest in productivity analysis has emerged, placing 

this issue in the front row of academic research programs and statistical offices’ systematic 

operations. However, while academics are mainly focused on issues that put a premium on 

theoretical and estimation issues when producing scientific output, statisticians are mainly 

concerned with simplicity and reliability when releasing regular data and time series. This 

paper contributes to the literature that intends to bridge the gap between these two 

complementary working groups, by extracting from current academic research the 

knowledge that can support and ease the practical implementation of regular productivity 

statistics, which can better inform about the relevant sources of productivity change 

 In its recent Measuring Productivity manual, the Organization for Economic 

Co−operation and Development sets a landmark in applied productivity analysis by 

showing, in a comprehensive way, the existing alternatives to measure the residual that is 

known since Abramovitz (1958) as the “measure of our ignorance” (OECD, 2001). In this 

manual, the OECD clearly advocates for the implementation of non-parametric methods of 

productivity measurement because (i) its primary audience are statistical offices and other 

regular producers of productivity series and (ii) they can be much more easily implemented 

and updated than their econometric counterparts.  As expected, the OECD adopts the 

widely known definition of productivity as a ratio of a volume measure of outputs to a 

volume measure of inputs, which can be extended into a dynamic context by considering 

how this ratio changes in time. The fact that we are dealing with volumes of output and 

inputs implicitly calls for productivity measures that are suited for multiple output-multiple 

input technologies. In this context, the purpose of any productivity analysis is to reduce 

“the measure of our ignorance” as much as possible, thus identifying the relevant sources 

that explain differences in productivity levels among production processes in an industry, as 

well as productivity change.  

Among these sources, the OECD signals out the ability to characterize the 

production technology, productive efficiency −which in turns requires determination of the 

benchmark production processes− and real cost savings −see OECD (2001:8). Here, the 

technology is seen as the “currently known ways of converting resources into outputs 

desired by the economy” (Griliches, 1987); productive efficiency corresponds to the 
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concept introduced by Farrell (1957), i.e. the ability to produce “the maximum amount of 

output that is physically achievable with current technology” (Diewert and Lawrence, 

1999) and, following Harberger (1998), real cost savings may be interpreted as an 

allocative efficiency measure that links all the above technical and efficiency factors with 

an economic measure of performance. In this paper we redefine this author’s economic 

criterion to evaluate economic performance by substituting real cost savings in production 

(an idea linked to cost minimization) with its equivalent Georgescu-Roegen’s (1951) return 

to dollar function, who introduced as economic criterion to evaluate performance the ability 

of producers to attain maximum revenue to cost.    

 All these issues must be taken into account by statistical offices when choosing and 

implementing productivity measures. Because of its simplicity and reliability, standard 

practice in OECD member countries involves the use of non-parametric methods. In fact, 

making use of the existing exact and superlative index numbers literature, statistical offices 

do not normally go beyond calculation of the Fisher (1921) or the Törnqvist (1936) indexes, 

as they satisfy important axiomatic tests and economic properties that strongly justify their 

use in applied analysis −see Diewert (1992). However, how can we unveil what is behind 

these aggregates? How could we decompose these indexes into aggregates that inform us 

about the technology, efficiency and economic performance in a given industry? How can 

we undertake productivity analyses that fulfill the above requirements with regard to the 

identification of the role of technology, efficiency and economic factors in productivity 

differentials and productivity change? 

In this article, we extend the duality theory summarized in Färe and Primont (1995) 

−partially retaken by Färe et al. (2002), to derive the dual return to dollar interpretation of 

the generalized graph distance function recently introduced by Chavas and Cox (1999). 

While these authors rely on the partially oriented output, input or specific hyperbolic 

distance functions when establishing the duality to revenue, cost and return to dollar, we 

make use of the flexible generalized distance function to establish a common framework for 

duality analysis that includes these preceding results as particular cases. Thanks to this 

analytical framework that extends and generalizes many partial contributions dispersedly 

found in the literature, we demonstrate how it is possible to decompose the Laspeyres 

(1871), Paasche (1874) and Fisher indexes into several components which correspond to 

the above mentioned technological, efficiency and economic factors. Specifically, we 

establish the relationship between these indexes and their equivalent Malmquist (1953) 
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productivity indexes when the technology is characterized by the generalized distance 

function and a maximizing return to dollar economic behavior is assumed −an idea firstly 

proposed by Althin et al. (1996) who relied on the input distance function. In this context, 

we also show that the Laspeyres, Paasche, and Fisher indexes can be decomposed into 

technical and economic components if allocative inefficiency is allowed, i.e. using 

Mahler’s inequality it is possible to approximate these index numbers by way of Malmquist 

indexes which are enhanced with a residual term that represents allocative criteria. 

Additionally, in the case of the Fisher index, we turn to the existing Malmquist productivity 

index decomposition literature to further decompose this technological component into 

technical change, technical efficiency change and the contribution that returns to scale 

make to productivity change. This last step provides a comprehensive way to jointly 

analyze efficiency and productivity change, thus connecting into a single framework the 

existing literature on return to dollar index numbers and productivity change 

decompositions. 

The paper proceeds as follows. In the next section we define the generalized graph 

distance function, which completely characterizes the production technology, and discuss 

how it relates to its output, input and hyperbolic counterparts. In section 3 we show the 

duality between the generalized distance function and the return to dollar function, which is 

employed in section 4 to support a consistent interpretation of efficiency and productivity 

measurement. Section 5 extends the analysis to a dynamic context, showing that the 

Laspeyres, Paasche and Fisher indexes are equivalent to alternative Malmquist indexes, 

thus the role of technology and efficiency in productivity change can be identified. Also, in 

this section we show that in the presence of allocative inefficiency, productivity change can 

be consistently decomposed into an additional term which takes into account return to 

dollar economic criteria. In the sixth section we develop the Data Envelopment Analysis 

techniques necessary to calculate the generalized distance function and to implement the 

efficiency and productivity change model in the presence of multiple variables, showing its 

potential in empirical analysis. Section 7 illustrates the model using a simple example data 

set, and section 8 concludes.  
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2 The generalized graph distance function 
 
In this section we characterize the technology by way of the generalized graph distance 

function and show how it relates to its hyperbolic and partially oriented output and input 

counterparts. Let us consider a panel of i = 1,...,I processes observed in t = 1,...,T periods, 

transforming input vectors xi
t = (x1i

t
 ,..., xNi

t) ∈ N
+ℜ  into output vectors yi

t = (y1i
t,..., yMi

t) ∈ 

M
+ℜ . The technology can be represented by the production possibility set:  

 
Tt = {(x, y): x can produce y at time t},        (1) 
 
and we assume the standard axioms found in Färe and Primont (1995). This production 

structure can be expressed in equivalent terms through the input and output correspondences, 

y → Lt(y,Tt) ⊆ N
+ℜ  and x → Pt(x,Tt) ⊆ M

+ℜ , which respectively represent the set of all input 

vectors which yield y and the set of all output vectors obtainable from x. These input and 

output correspondences are inferred from the graph production possibility set (1): Lt(y,Tt) = 

{x: (x, y) ∈Tt}and Pt(x,Tt)={y: (x, y) ∈Tt}, while the graph can be also inferred from the input 

and output correspondences, Tt = {(x, y) ∈ MN+
+ℜ : x ∈ Lt(y,Tt), y ∈ M

+ℜ } = {(x,y) ∈ MN+
+ℜ : y 

∈ Pt(x,Tt), x ∈ N
+ℜ }.  

It is possible to define the generalized distance function in terms of Tt as the 

maximum expansion of the outputs vector and reduction of the inputs vector:  

 

( ) { } MN1
G ,,T)/,(:0min;D ++

αα− ℜ∈ℜ∈∈δδ>δ=α yxyxx,y tt ,                              (2) 

 

where 0 ≤ α ≤ 1 represents the relative weight that the distance function places on outputs 

and inputs when moving toward IsoqTt −a balanced weight is given by α=0.5 as α/(1-α) = 

1. The generalized distance function (2) places a production process on the best practice 

frontier represented by the boundary of the technology −defined as IsoqTt = {(x,y): (x,y) ∈ 

Tt, (ω1-βx, y/ωβ) ∉ Tt, 0<ω<1, 0 ≤ β ≤1}, and can be interpreted as a measure of technical 

efficiency in the sense of Farrell (1957). If the technology satisfies the standard axioms, 

then the generalized distance function verifies the following properties (Chavas and Cox, 

1999: 300): 

 

DG.1 t
GD  (λα-1x, λα y; α) = λ t

GD  (x, y;α), λ > 0, 
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DG.2 t
GD  (x, λy; α) ≤  t

GD  (x, y; α), λ ∈[0,1], 

DG.3 t
GD  (λx, y; α) ≤  t

GD  (x, y; α), λ  ≥ 1. 

 

The generalized distance function is almost homogeneous of degree (α-1), α and 1 in x 

and y, DG.1, and it is non-decreasing in outputs and non-increasing inputs, DG.2 and DG.3. It 

inherits its name from the fact that thanks to the α parameter it encompasses the partially 

oriented output and input distance functions introduced by Shephard (1970), as well as the 

hyperbolic graph distance function introduced by Färe et al. (1985:46). When α=1, the 

generalized distance function equals the output distance function 

( ) =x,yt
OD { }tyx T)/,(:0min ∈φ>φ , MN , ++ ℜ∈ℜ∈ yx , while if α=0 it is equivalent to 

the input distance function, ( ) =x,yt
ID  { }tyx T),/(:0max ∈γ>γ , MN , ++ ℜ∈ℜ∈ yx . Finally, if 

α=0.5 equation (2) becomes the square of the hyperbolic graph distance function: 

( ) { }tt yxx,y T)/,(:0minDH ∈θθ>θ= , MN , ++ ℜ∈ℜ∈ yx 1.  

 

Besides variable returns to scale, the technology may exhibit global increasing, 

decreasing and constant returns to scale. In this latter case, the technology is defined by  

 
tT̂ = {(ψx, ψy): (x,y) ∈ Tt, ψ > 0},                        (3)  

 

while the generalized distance function can be denoted as: 

 

( ) { },T̂)/,(:0min;D̂ 1
G

tt yxx,y ∈δδ>δ=α αα−  MN , ++ ℜ∈ℜ∈ yx .           (4) 

 

Under constant returns to scale (4) places a production process on the benchmark 

frontier represented by tT̂Isoq  = {(x,y): (x,y) ∈ tT̂ , (ω(1-β)x, y/ωβ) ∉ tT̂ , 0<ω<1, 0 ≤ β ≤ 

1}, and can be also interpreted as a measure of productive efficiency in the sense of Farrel 

                                                      
1 Färe and Primont (1995) show that the output and input distance functions completely characterize the 
technology, i.e. tt yxyx T ),(1 ),(DO ∈⇔≤  and tt yxyx T ),(1 ),(DI ∈⇔≥ . For the generalized distance 
function this is also the case −Chavas and Cox (1999:317): tt yxyx T ),(1 );,(DG ∈⇔≤α .  
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(1957) including both technical and scale efficiency criteria −as later discussed in section 4. 

Concerning returns to scale, an additional property is verified:   

 

DG.4 Dt
G(x, y; α) is increasing (decreasing) in α under IRS (DRS) and independent of α 

under CRS for (x,y) ∈ tT . 

 

The production possibility set shown in Figure 1 for N=M=1 reflects all feasible 

output−input combinations given by the state of the technology, as well as the projections 

of process (xi
t,yi

t) on the production frontiers that correspond to the alternative distance 

functions definitions2. Concerning their flexibility, the most restrictive are the partially 

oriented output and input distance functions, which are passive with regard to their 

alternative orientation as either inputs or outputs are held constant. On the other hand, while 

the hyperbolic distance function takes into account both sides of the production process, the 

direction is set to weight equally inputs contraction and outputs expansion −yielding the 

specific path from which it inherits its name. Finally, the generalized distance function 
t
GD (x, y; α) allows the most flexible course toward the production frontier as inputs and 

inputs can be asymmetrically weighted depending on the choice of α, which is exogenously 

determined in the model. In general t
GD (x, y; α)  projects (xi

t,yi
t) to the best practice 

production frontier Isoq T, e.g. in Figure 1 if α were equal to 0.5 the generalized and 

hyperbolic distance functions would be equivalent, and their projection is denoted by 

(xj
t+,yj

t+). But in this particular illustration where α > 0.5, the projection (xj
t*,yj

t*) also 

constitutes the most productive scale size where constant returns to scale hold, and 

therefore it also represents the benchmark production frontier tT̂Isoq  when (xi
t,yi

t) is 

projected by ( )α;D̂G x,yt , i.e. because of the productive optimality of (xj
t*,yj

t*) −both from a 

technical and a scale perspective, t
GD (x, y; α) and ( )α;D̂G x,yt  are equivalent distance 

functions −a formal discussion follows in Section 3.  

                                                      
2 It is interesting to remark the existing relationship between the generalized distance function and its output, 
input and hyperbolic counterparts when the technology exhibits global constant returns to scale. In this case, 
the following equivalencies between the generalized and the output, input and hyperbolic distance functions 
can be proven: ),(D̂G yxt = ),(D̂O yxt = 1

I ),(D̂ −yxt = 2
H ),(D̂ yxt , where ),(D̂O yxt , ),(D̂I yxt  and ),(D̂H yxt  denote 

equivalent distance functions also defined on tT̂ . These alternative distance functions are also illustrated in 
Figure 1, where they are represented by the discontinuous line extensions departing from (xi

t,yi
t). 
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Figure 1: Distance Functions 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
3 Duality 
 

Färe and Primont (1995) summarize the duality theorems that relate the revenue 

function to the output distance function and the cost function to the input distance function. In 

this section we define the return to dollar function and show how it is dual to the generalized 

distance function. Let us denote the output and input price vectors in period t by pt ∈ M
+ℜ  and 

wt ∈ N
+ℜ , and recall the time superscript for outputs and inputs quantities. The return to 

dollar function extensively discussed by Georgescu-Roegen (1951:103) is defined as: 

 
}T),(:/{max),(

,

ttttttt

yx

tt yxxwypwp
tt

∈=ρ ,                              (5)  

 
and satisfies the following properties: 

 

Ρ.1: ρ(pt, wt) is nonnegative, nondecreasing in pt and nonincreasing in w t, 

Ρ.2: (a) ρ(λpt, wt)=λρ(pt, wt), λ > 0;  (b) ρ(pt, λwt)= λ-1ρ(pt, wt), λ > 0; (c) ρ(λpt, λwt)=ρ(pt, wt), 

Ρ.3: ρ(pt, wt) is convex and continuous in p t and w t. 

 

As the return to dollar function is the ratio of revenue to cost, its properties derive from 

those corresponding to these functions, see McFadden (1978). With regard to Ρ.2, it is 

x 

y 

•
(xi

t,yi
t) 

 t
OD (xi

t,yi
t) 

 
t
ID (xi

t,yi
t) 

  t
HD (xi

t,yi
t) 

 Tt  tT̂  

 t
GD (xi

t,yi
t;α) 

 ρ(pt,wt) = ptyj
t* / wtxj

t*  

(xj
t*,yj

t*) 

(xi
t+,yi

t+) 
(xi

t*,yi
t*) 

 •

 •

 •
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homogeneous of degree 1 in pt, −1 in wt and zero in both output and input prices. Just like its 

additive counterpart  π(pt,wt) =  ptyt – wtxt,  (5) represents maximum profit but as a 

multiplicative ratio.  

A relevant issue when exploring the duality between the return to dollar function 

and the generalized distance function comes from the fact that examining the first order 

conditions of the maximizing return to dollar problem (5), the production technology 

exhibits local constant returns to scale at the optimum. In fact, an equivalent way to express 

(5) is ≡ρ ),( tt wp  }T),(:),(C/{max
,

ttttttt

yx
yxywyp

tt
∈ , where =),(C tt yw  

)}T,(L),(:{min ttttttt

x
yyxxw

t
∈ . From the first order conditions: pt C(wt,yt) = pt yt 

ty
∇ C(wt,yt), we observe that cost elasticity εt

C(wt,yt) = 1, which in turn implies that the 

scale elasticity is εt(xt,yt) = 1 and therefore local constant returns to scale prevail3. This 

provides a rationale to develop the duality between the return to dollar function and the 

generalized distance function departing from a constant returns to scale technological 

specification −as in (4). For this purpose, while still allowing for a variable returns to scale 

technology, we show in what follows why it is satisfactory to consider such distance 

function as the dual counterpart to return to dollar profitability.  At this economic level of 

analysis, this takes into account that from return to dollar perspective, the only fraction of 

the true but unknown technology that can be recovered is that characterized by constant 

return to scale4. Alternatively, from a technological perspective, the benchmark output-

input bundle maximizing return to dollar exhibits local constant returns to scale, and 

therefore it is scale efficient constituting a most productive scale size, e.g. in Figure 1 

(xj
t*,yj

t*) constitutes the most productive scale size complying with the constant returns to 

scale condition, and it also maximizes return to dollar, ρ(pt,wt) = ptyj
t* / wtxj

t*. Alternatively, 

a production process that is scale inefficient does not fulfill the local constant returns to 

scale condition, and cannot maximize return to dollar, e.g. (xi
t+,yi

t+).  

                                                      
3 This result connects with Georgescu-Roegen’s (1951) claim identifying the return to dollar function as “…an 
economic criterion on which to base the choice between two linear processes…must be independent of the scale 
of production, whereas ptyt, wtxt, and ptyt-wtxt are not” −his italics and our notation. The choice for a 
profitability performance measure independent of returns to scale is also desirable when relating the 
generalized distance function to productivity indexes, which in principle should satisfy a proportionality 
property −and this, in turn, requires a constant returns to scale technology specification, Balk (2001).   
4 Therefore, the unknown technology can exhibit variable returns to scale, but those loci where the technology 
exhibits those returns are irrelevant or superfluous to the determination of the return to dollar maximizing 
behavior of the production process. This constitutes McFadden’s (1978:22) envelopment technology which is 
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We now demonstrate how the generalized distance function defined on the constant 

returns to scale technology allows us characterize the relevant constant return to scale 

technology that can be recovered from the return to dollar function, and to assess the 

distance between any production process and the most productive scale benchmarks that 

comply with the optimal scale condition and may maximize return to dollar. Here we 

extend the discussion found in Balk (2001) to the generalized distance function case. Let us 

consider the i-th production process (xi
t,yi

t) ∈ Tt and express the production technology in 

terms of the output production possibility set Pt(xi
t, Tt) = {yi: (xi

t,yi
t) ∈ Tt)}, whose isoquant 

subset defines as Isoq Pt(ω1-βx, Tt) = {y: y ∈ Pt(ω1−βx), y/ωβ ∉ Pt (ω1−βx), 0<ω<1, 0≤β≤1}. For 

analytical purposes let us multiply inputs by λ > 0. In this case the vector y/ t
GD (λxi

t,yi
t;α)α is 

technically efficient by belonging to Isoq Pt(λ t
GD (λxi

t,yi
t;α)1-αxi, Tt). Simplifying notation by 

µ=1/ t
GD (λxi

t,yi
t;α)α and ν=λ t

GD (λxi
t,yi

t;α)1−α, it is possible that for some of these technically 

efficient processes, their µ/ν ratio is not the highest one, signaling that their particular 

operating scales do not yield the highest productivity, i.e. as we shall recall later on, they are 

scale inefficient. Therefore, we want to search for the value of λ* that maximizes the ratio  

 

);,(Dmin
1

);,(·Dmin
1

);,(·D
);,(1/Dmaxmax

GG
-1

G

G

αλλ
=

αλλ
=

αλλ
αλ

=
ν
µ

αα

λλ

α

α

λλ t
i

t
i

tt
i

t
i

tt
i

t
i

t

t
i

t
i

t

yxyxyx
yx ,              (6)   

 

where the last equality follows from the almost homogeneity property DG.1. When λ* exists, 

the process (λ*xi
t t

GD (λ*xi
t,yi

t; α)1-α, yi
t/ t

GD (λ*xi
t,yi

t; α)α) represents a most productive scale 

size, i.e. a benchmark optimal scale. Looking at the first-order condition of the optimizing 

problem, we can confirm that scale elasticity is one5 

 

εt(λ*xi
t
 

t
GD (λ*xi

t, yi
t; α)1-α, yi

t/ t
GD (λ*xi

t, yi
t; α)α)) = 1,         (7)  

 

                                                                                                                                                                  
characterized by the generalized distance function defined on constant returns to scale specification. The 
envelopment technology is represented in Figure 1 by  T̂ ⊆ T −and, therefore, Isoq T̂ ⊆ Isoq T. 
5 The local scale elasticity reflects the sensitivity of the generalized distance function with respect to a 
proportional change in outputs and inputs. For the multiple ouput-input case, if the generalized distance 
function is continuously differentiable, the local scale elasticity function at (xt,yt) is given by εt(xt,yt) ≡ 
−( tx∇ Dt

G(xt,yt;α)·xt)/( ty∇ Dt
G(xt,yt;α)·yt).  
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and the technology exhibits local constant returns to scale at the optimal scale process. If 

we recall the global constant returns to scale technology (3) along with the generalized 

distance function definition (2), and denote λα = ψ, then 

 

minλ Dt
G (λαxi

t, λαyi
t; α) = minλ { }tt

i
t
i yx T)/,(:0min 1 ∈δψδψ>δ αα−                  (8)  

           = { }tt
i

t
i yx T̂)/,(:0min 1 ∈δδ>δ αα−  (given definition (3))        

              = ( )α;D̂G
t
i

t
i

t ,yx ,                 

 

and the generalized distance function (2) can be interpreted as the distance separating a 

process’s productivity from that achieved at optimal scale. Equation (8) shows that when the 

generalized distance function defined on a variable returns to scale technology can be 

interpreted in such way −as required by the analytical developments in section 4 where return 

to dollar efficiency is introduced, it is equivalent to its definition on a global constant returns 

to scale technology (4), which is what it is needed when defining the duality between the 

generalized distance function and the return to dollar function, whose maximization requires 

constant returns to scale. Coming back to Figure 1, let us consider once again α = 0.5 

rendering t
GD (xi

t, yi
t; α) = t

HD (xi
t, yi

t)2. In this case, the projection of (xi
t,yi

t) on the best 

practice production frontier represented by Isoq Tt  −(xi
t+,yi

t+), does not constitute the most 

productive scale size and does not satisfy the constant returns to scale condition for return to 

dollar maximization. But following equation (8) we formally show that its projection (xi
t*,yi

t*) 

by way of ( )5.0;yxD̂G
t
i

t
i

t ,  = ( )t
i

t
i

t ,yxD̂H
2 belongs to the envelopment benchmark production 

frontier Isoq tT̂ , which is determined by the relevant locus constituting the most productive 

scale size (xj
t*,yj

t*), and therefore measures the distance to the highest productivity level.  

When ( )α;D̂G
t
i

t
i

t ,yx  = 1 the technically efficient process is also scale efficient by 

producing at optimal scale, belongs to the benchmark frontier represented by tT̂Isoq , and 

constitutes a candidate for return to dollar maximization. In a multiple output−multiple input 

setting several most productive scale sizes may exit. However, not all most productive 

processes maximize return to dollar because the different output and inputs prices constitute 

particular aggregating functions that signal which producer maximizes profitability at the 

prevailing market prices. In this context, even if from a technological perspective several 

processes may produce at the benchmark optimal scale frontiers where local scale elasticity is 
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one and constant returns to scale hold, just those that suit price aggregation will maximize the 

return to dollar function, i.e. they are dual to each other.  

We can then turn to state the duality between the return to dollar function and the 

generalized distance function defined on the constant returns to scale specification of the 

technology (3). We must firstly show that corresponding to every input-output production 

possibility set there is a return to dollar function with properties Ρ.1-Ρ.3. This is equivalent to 

state that the return to dollar function determines an implicit production possibility set that, 

given the optimal scale condition, characterizes by constant returns to scale, i.e. it is possible 

to derive or recover tT̂  from the return to dollar function. This can be summarized in the 

following:  

 

Proposition 1: If the return to dollar function is defined by =ρ ),( tt wp  

}T̂),(:/{max
,

ttttttt

yx
yxxwyp

tt
∈ , then tT̂ = {(xt,yt): ptyt/wtxt ≤ ρ(pt,wt)}, for all pt >0 and wt >0,     

 

which can be conversely expressed by way of   

 

Proposition 2: If tT̂ ={(xt,yt): ptyt/wtxt ≤ ρ(pt,wt), for all pt > 0 and wt > 0}, then 

}.T̂),(:/{max),(
,

ttttttt

yx

tt yxxwypwp
tt

∈=ρ  

 

Propositions (1) and (2), which can be proven along the lines of McFadden (1978:23) 

and Färe and Primont  (1995: 73-74)6, establish the duality between the return to dollar 

function and the relevant technology set. Considering the distance function representation of 

the technology set given in section two, we can extend the analysis to the following duality 

between the return to dollar function and the generalized distance function. Since the 

generalized distance function completely characterizes the technology,  

 

,0,01},);(D̂:/{max),( G
,

>>≤α=ρ ttttttttt

yx

tt wp,yxxwypwp
tt

                     (9)  

                                                      
6 Considering once again the following expression of the return to dollar function: ≡ρ ),( tt wp  

}T̂),(:)(C/{max
,

ttttttt yxywyp
tt yx

∈ , where =),(C tt yw  )}T̂,(L),(:{min tttttt

x
yyxxw

t
∈ , maximizing return to 

dollar is equivalent to minimize cost for the existing output levels, yt, and output prices pt, i.e. revenue value, 
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if and only if  

 

.,1},),(:/{max);(D̂ MN

,
G ++ ℜ∈ℜ∈≤ρ=α tttttttt

wp

ttt yxwpxwyp,yx
tt

                       (10)  

 

 Therefore, if the return to dollar function is derived from the generalized distance 

function by maximizing revenue to cost over all feasible input-output quantity vectors, then 

the generalized distance function can be recovered from the return to dollar function by 

finding the maximum of revenue to cost over all feasible input-output price vectors. 

Equivalently, if we derive the generalized distance function from the return to dollar 

function and then derive this last function from the generalized distance function, the 

resulting derived return to dollar function is the same as the original return to dollar 

function. 

 Finally, it is possible to provide the following definitions of the return to dollar and 

generalized distance function equivalent to (9) and (10):  
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and   
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⎩
⎨
⎧
ρ

=α tt
tt

tttt

wp

ttt yx
wp

xwyp,yx
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                          (12)  

implying that   

 

ρ(pt, wt) ≥ (ptyt/ αα);,(D̂G
ttt yx )/(wtxt· α−α 1

G );,(D̂ ttt yx ) ≥ (ptyt/wtxt) / );,(D̂G αttt yx .          (13)  

 

This last expression, which corresponds to the Mahler inequality in the present 

generalized context, can be modified along the lines introduced by Färe and Grosskopf (2000) 

to represent technical and allocative inefficiency.  

 
 
 
                                                                                                                                                                  
ptyt. Therefore, the exiting duality theorems between the cost function and the input production possibility set 
can be extended to the return to dollar function and the technology set.                        
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4 Efficiency and Productivity Measurement  
 

 The choice of the return to dollar function as an economic criterion to select between 

alternative production processes was already proposed by Georgescu-Roegen (1951:103). 

Therefore, the return to dollar function can be considered as the benchmark against which to 

confront economic performance. In this section we show how to assess such performance in 

terms of technical and allocative efficiency analysis. To achieve this goal, we provide a 

technical efficiency interpretation of the generalized distance function, and enhance it with a 

residual allocative efficiency term that captures the disparity between the return to dollar 

maximizing input and output combination and the efficient projection of any observed 

production process on the benchmark production frontier7.  

 

 Building on Georgescu-Roegen’s idea of comparing processes by way of the return to 

dollar function, it is possible to define the following profit efficiency measure: 

 

RDEt ),,,( tttt wpyx = (pt yt / wt xt) / ρ(pt, wt),                            (14)  

 

which compares actual return to dollar profitability with the maximum return to dollar 

value consistent with the production technology. To accomplish a meaningful 

decomposition of (14) assessing the sources of potential return to dollar inefficiency we 

need to introduce the concepts of technical and scale efficiency.  

On one hand the generalized distance function (2) can be regarded a technical 

efficiency measure as it values how far a process situates from the best practice variable 

returns to scale production frontier Isoq Tt, 

 

TEt );,( αtt yx = );,(DG αttt yx .                            (15)  

 

On the other hand, we have shown in the previous section −equations (6), (7) and 

(8)− that the generalized distance function defined on a global constant returns to scale 

technology measures the relative difference between actual productivity at current scale 

size and the highest one corresponding to the benchmark optimal scale frontier Isoq tT̂ . In 

                                                      
7 Chambers et al. (1998) establish parallel notions to those proposed in this article for efficiency measurement 
making use of directional distance functions, which are dual for the standard additive profit function.  
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fact, the duality between the generalized and the return to dollar functions is based on the 

grounds that this function represents the distance separating any production process from 

the most productive scale sizes, and therefore comply with the necessary local constant 

returns to scale condition that makes them candidates to maximize return to dollar. This 

allows us to interpret the constant returns to scale distance function specification (4) as a 

measure of productive efficiency:  

 

PEt );,( αtt yx  = );,(D̂G αttt yx .                             (16)   

 

Relaying on these definitions, any difference between the variable and constant 

returns to scale generalized distance functions would show that the production process, 

when projected toward the best practice production frontier, does not situate on the relevant 

optimal constant returns to scale loci that would make it scale efficient −and suitable for 

return to dollar maximization. On these grounds it is possible to define a scale efficiency 

measure as the ratio of (4) to (2): 

 

SEt );,( αtt yx = );,(D̂G αttt yx / );,(DG αttt yx                            (17)  

 

Substituting (15) and (17) into (16), productive efficiency can decomposed in a 

technical component capturing the distance between a process and its variable returns to 

scale best practice frontier and a scale component representing how far the technically 

efficient projected process is from the benchmark frontier represented by the most 

productive scale sizes, i.e. PEt = );,(D̂G αttt yx = );,(DG αttt yx · SEt = TEt · SEt. 

It is now possible to take the last step to achieve the decomposition of the distance 

between observed and maximum return to dollar. Coming back to (13) it is possible to 

rearrange this expression in the following way: (pt yt / wt xt) / ρ(pt, wt) ≤ );,(D̂G αttt yx , 

which can be rendered an equality introducing an allocative efficiency term (AEt) 

representing the distance between observed return to dollar at the scale efficient projections 

and maximum return to dollar at the optimal scale size. Proceeding this way, and 

substituting technical and scale efficiency for productive efficiency, we obtain the 

following equality: (pt yt / wt xt) / ρ(pt, wt) = );,(DG αttt yx · SEt · AEt.  Therefore, allocative 

efficiency is given by  
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)(
 );,(D̂)/();,,,(AE G

tt

ttttttt
ttttt

,wp
yxx/wypwpyx

ρ
α

=α .                         (18)  

 

Expressions (14) through (18) allow the decomposition of the overall return to 

dollar efficiency consistent with Farrell’s (1957) proposal, i.e. RDEt = PEt · AEt = TEt · SEt 

· AEt. With regard to some key values of RDEt, it is nonnegative for any feasible 

production process (xt,yt) and, in the event of a process that is return to dollar efficient, then 

it is technical, scale and allocative efficient, equaling one. Also note that through duality, 

when allocative efficiency is assumed, return to dollar efficiency is equivalent to the 

constant returns to scale generalized distance function (4). In Figure 1 (xi
t,yi

t) would be 

technical and scale inefficient with RDEt < 1 if directed to the frontier by way of 

( )5.0;yxD̂G
t
i

t
i

t ,  = ( )t
i

t
i

t ,yxD̂H
2, while its projection to the benchmark production frontier by 

way of the generalized distance function is just technically inefficient.   

 We can now recall the productivity interpretation of the overall return to dollar 

efficiency RDEt. Given the input and output prices in period t, it is possible to assess the 

relative profitability of the i-th process (xi
t,y i

t) relative to the j-th process, which we assume 

maximizes return to dollar and therefore is economically efficient in time t, i.e. (xj
t,y j

t) = 

(xj
t*,y j

t*) and RDEj
t = 1 −as illustrated in Figure 1. In this case it is possible to define the 

following productivity index that allows for a binary comparison between the outputs to 

inputs ratio of process i relative to the optimal process j:  
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where the first and second superscripts in Qt,t correspond to the periods in which the 

aggregating prices and the evaluated processes are considered. Therefore, we conclude that 

the overall return to dollar efficiency measure can be interpreted as a productivity index 

comparing current profitability relative to the return to dollar function.  
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5 Efficiency and Productivity Change Measurement 

 

  Extending the above definitions to a dynamic context allows us to show that the 

usual Laspeyres, Paasche and Fisher productivity indexes can be directly related to specific 

Malmquist productivity indexes, which in turn enables their decomposition according to 

technical and economic criteria. Let us consider price and quantity vectors of inputs and 

outputs relative to a base period t=0 and a comparison period t=1. Defining (19) for both 

periods, and dividing the comparison period index by the base period index, one obtains the 

following return to dollar overall efficiency change index:  
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which compares the revenue to cost ratio of process i relative to the maximizing revenue to 

cost ratio in two consecutive periods. If it is greater than one then process i increases its 

overall return to dollar efficiency. Values less than one indicate worsening efficiency, while 

if it is equal to one then its relative situation with respect to the return to dollar maximizing 

processes has not changed. The interpretation of these values with regard to the technical, 

scale and allocative efficiency is analogous. TEC0,1 represents the change in relative 

technical efficiency or how far is the processs from each period best practice production 

frontier. Following Färe et al. (1994), SEC0,1 shows if the distance between the technically 

efficient projections and the benchmark optimal scale frontier has increased or reduced. 

Finally, AEC0,1 measures the change in allocative efficiency, i.e. once the process is 

projected to the benchmark optimal scale frontier in both periods, it measures how far these 

projections are from the maximizing return to dollar vectors.  

 Once efficiency change has been established, we can deal with productivity change 

by relating the Laspeyres, Paasche and Fisher productivity indexes to their Malmquist 
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counterparts. To attain this goal we firstly need to allow for intertemporal comparisons of 

the return to dollar overall measure. Let us consider the i-th production process observed in 

the comparison period: (xi
1, yi

1), and define its relative overall efficiency with regard to 

maximum return to dollar in the base period. In this case, (19) becomes  
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(21)  

where the mix period generalized distance function for process i defines in an analogous 

way to (2) and (4), i.e. ( )α;D 110
G ii ,yx  = { }0111 T)/,(:0min ∈δδ>δ αα−

ii yx , MN , ++ ℜ∈ℜ∈ yx  

and ( )α;D̂ 110
G ii ,yx  = { }0111 T̂)/,(:0min ∈δδ>δ αα−

ii yx , MN , ++ ℜ∈ℜ∈ yx . The technical term 

T0(xi
1,yi

1) captures how far is the comparison period process from the base period best 

practice production frontier. Analogously, the scale term S0(xi
1, yi

1;α) determines how far is 

its technical projection to best practice in the base period, from the base period benchmark 

optimal scale frontier. Finally, A0(p0,w0,xi
1,yi

1;α) = [(p0 y0 / w1 x1) / );,(D̂ 110
G αyx ]/ ρ(p0, w0) 

denotes the residual allocative term corresponding to the comparison of the return to dollar 

attained by process i once projected on the base period benchmark optimal scale, with 

maximum return to dollar in that same period. Although this term has the formal structure 

of (18), it cannot be consider as measuring allocative efficiency since the comparison 

period process (xi
1, yi

1) is not consistently evaluated against its own period maximum return 

to dollar ρ(p1,w1), but against the base period benchmark ρ(p0,w0). It is likely that, in a 

productivity growth context, the return to dollar value of process i in the comparison period 

given by (21) exceeds the maximum value observed in the base period. In this case the 

relative return to dollar overall efficiency may be greater than one, and since the input and 

output price vectors are those observed in the base period, this result corresponds to the 

presence of higher productivity if );,(D̂ 110
G αii yx > 1 and technological progress if 

);,(D 110
G αii yx > 1 −showing respectively that (xi

1, yi
1) ∉ 0T̂  and (xi

1, yi
1) ∉ 0T . Therefore 

when 1);,(D̂ 110
G >αii yx , then RD0 (xi

1, yi
1) > 1 with A0 (p0,w0,xi

1,yi
1) ≤ 1.  
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We can now proceed to assess how economic performance evolves in time with 

respect to a base period. For the production process i in the base and comparison periods: 

(xi
0, yi

0) and (xi
1, yi

1), this can be achieved by comparing its intertemporal return to dollar 

efficiency measure (21) to its contemporaneous base period efficiency −as defined in (19). 

Proceeding this way we obtain the following relationship between the Laspeyres 

productivity index and the base period Malmquist productivity index: 
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(22) 

 By using the input and output prices as aggregating functions, the Laspeyres index 

yields a value which combines technical and economic criteria, and the duality between the 

return to dollar function and the generalized distance function −summarized in (11) and 

(12)− shows that these criteria can be identified by way of (22). Therefore, the Laspeyres 

index can be consistently decomposed into two mutually exclusive terms represented by a 

“real” component corresponding to the Malmquist productivity index defined on the 

benchmark optimal scale frontier, and an economic component representing the change in 

allocative performance of the evaluated process with respect to the base period. Values of 

the Laspeyres index greater, equal and lower than one respectively reflect productivity 

increases, stagnation or declines between the base and the comparison period. Similar 

reasoning can be applied to the Malmquist index from a technological perspective. With 

regard to the allocative term, values greater than one reflect that when i changes its 

production process from the base to the comparison period, its projection on the base period 

frontier gets closer to the return to dollar maximizing input-output vector −represented by 

process j in our case. If the allocative term is smaller than one, then the opposite takes place 

and the process gets farther away from the return to dollar maximizing vector. If it is equal 

to one, the relative distance of the production process to maximum return to dollar remains 

the same. In this case it is worth noting that if the base and comparison process is return to 

dollar efficient with respect to the base period, the Laspeyres index is equivalent to the base 
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period Malmquist productivity index; i.e. a result that is obtained assuming constant returns 

to scale, return to dollar profitability maximization and allocative efficiency. 

 If instead of using the base period as benchmark for the analysis, one employs the 

comparison period, it is possible to obtain an analogous relationship between the Paasche 

productivity index and its comparison period Malmquist index, which is interpreted in the 

same way as (22). However, as the choice of performing the analysis using the base or the 

comparison period is arbitrary, it is possible to consider the geometric mean of the 

Laspeyres and Paasche productivity indexes. In this case, we can determine the exiting 

relationship between the Fisher index and the geometric mean of the base and comparison 

period Malmquist productivity indexes:  
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(23)  

 

 As its Laspeyres and Paasche counterparts, the Fisher productivity index can be 

consistently decomposed into a technical term represented by the geometric mean of two 

Malmquist productivity indexes and an economic term reflecting the geometric mean of the 

change in allocative performance with respect to each benchmark period. Different 

productivity patterns for the Laspeyres, Paasche and Fisher indexes involving their 

corresponding technological and allocative components are illustrated with an example data 

set in section 7.  

Finally, we can extend the discussion on (23) focusing on the technical part of the 

Fisher index. With regard to the Malmquist productivity index, it is possible to rely on the 

extensive Malmquist decomposition literature initiated by Färe et al. (1994) and continued 

by Ray and Desli (1997) to identify the relevant sources of productivity change. The 

simplest way to decompose the Malmquist productivity index );,,,(M̂ 11001,0 αiiii yxyx  is  
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  (24)  

The first factor in the right hand side of this expresion captures the change in the 

best practice production frontiers evaluated at (xi
0, yi

0) and (xi
1, yi

1), i.e. technical change. 

The second term captures the change in technical efficiency −previously discussed in (28). 

Finally, the third term can be interpreted as the contribution that returns to scale make to 

productivity change −in this we follow the evidence posed by Grifell-Tatjé and Lovell 

(1999), Orea (2002) and Lovell (2003)8. Substituting (24) into (23) yields  
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This expression constitutes the extended decomposition of the Fisher productivity 

index. When interpreting the Fisher index as a change in return to dollar ratios, it can be 

decomposed into a technical component −consisting of technical change, technical 

efficiency change and returns to scale− and an economic component reflecting the 

contribution of allocative criteria to productivity change.  

 

 

6 Empirical Implementation by Means of the Activity Analysis 

 

In this section we illustrate how to undertake the efficiency and productivity 

analyses that lead to the extended decomposition of the Fisher productivity index. In doing 

so we have decided to continue with the activity analysis approach discussed by Georgescu-

Roegen (1951), which can be empirically implemented by means of Data Envelopment 

Analysis, DEA, techniques. This approach to efficiency and productivity measurement 

                                                      
8 Ray and Desli (1997) and Balk (2001) decided to name this last terms scale efficiency change. Nevertheless 
we believe that this description should be reserved to SEC0,1 as defined in (20) since, by comparing own period 
data and technologies, it is consistent with the structure of its counterpart technical efficiency change term 
TEC0,1 −the only Malmquist productivity definition that has remained unchallenged since it was introduced by                               
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approximates the true but unknown technology by means of piecewise linear combinations 

of the observed data, which constitute a multidimensional production frontier −see Cooper, 

Seiford and Tone (2000) for an introduction to DEA within a production theory context. 

The DEA piecewise linear approximation of the technology (1) −including its constant 

returns to scale characterization, is given by    
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where zt is a intensity vector whose values determine the linear combinations of facets 

which define the production frontier.  

Our first program deals with the empirical implementation of the overall return to 

dollar efficiency measure corresponding to (14). Specifically, to calculate this economic 

performance measure for any process (activity) i’ we must solve the following linear 

programming problem: 
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                          (27) 

As shown in section 4, this measure can be decomposed into a technical efficiency 

term represented by the generalized distance function );,(D̂G αttt yx −comprising technical 

efficiency represented by );,(DG αttt yx  and scale efficiency (the ratio of the former to the 

latter)− and a residual allocative efficiency component. Therefore, to accomplish the return 

to dollar efficiency decomposition we need to calculate the generalized distance functions 

                                                                                                                                                                  
Färe et al. (1994).  For a thoughtful discussion of the alternative Malmquist productivity index decomposition 
see  Zofío (2004). 
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for i’. Extending the formulations discussed in Zofío and Lovell (2001) on how to calculate 

hyperbolic distance functions by means of non linear programming techniques, one can 

obtain the generalized function defined on the constant return to scale technology solving 

for 
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while the variable returns to scale generalized distance function );,(DG αyxt can be 

calculated solving for the same problem but adding the convexity constraint ΣI
i=1zt

i =1. 

Finally, the allocative efficiency residual is the result of dividing the solution obtained 

when solving (27) by that of (28).  

 We can now extend the analysis to evaluate productivity change. To do so we must 

modify the DEA techniques to allow for mix-period optimizing programs as the ones 

required to calculate the Laspeyres and Fisher indexes (22) and (23). Starting with the 

overall return to dollar measure of the i’ process in the comparison period with respect to 

the base period (21), it can be calculated solving for 
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which can be easily modified to calculate the equivalent return dollar measure of the same 

process observed in the base period process and using the comparison period as benchmark, 

i.e. )()/ρ( 110
'

10
'

1 ,wpx/wyp ii  −as would be required by the Paasche and Fisher indexes. Also 

the mix-period generalized productive efficiency of process i’ observed in the comparison 

period with respect to the base period technology can be obtained by modifying (21) and 

solving for:   
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while its mix-period counterpart );,(D̂ 0
'

0
'

1
G αii yx  requires to reverse all time superscripts in 

the objective function and the N plus M restrictions. As with (28) to calculate the variable 

returns to scale generalized functions representing mix period technical 

efficiencies );,(D 0
'

0
'

1
G αii yx and );,(D 1

'
1
'

0
G αii yx  it is  necessary  to solve the same problems 

adding ΣI
i=1zt

i =1. 

All these programs allow the empirical implementation of the proposed efficiency 

and productivity change analysis, rendering possible to decompose the familiar Laspeyres, 

Paasche and Fisher indexes into technical and economic components.    

 

 
7 An illustrating example 

 

 To illustrate the efficiency and productivity change model we consider a panel of 

five processes observed in the base and the comparison period. Table 1 presents the 

alternative input-output vectors and their corresponding prices in t = 0 and t = 1. In this 

particular example we have chosen α=0.5 which yields a balanced generalized function that 

proportionally increases outputs and reduces inputs in the same proportion. Notice that 

according to DG.4 a different choice of α would only affect the extended decomposition of 
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the Malmquist productivity indexes (24) but not the Malmquist and allocative indexes 

comprised in the Fisher index (23). 

An examination of the example data set reveals that processes 2 and 3 dominate all 

other processes from a technical perspective in both periods, defining the envelopment 

frontier, −i.e. their technical efficiency scores in the base and the comparison periods are 

equal to one, see Table 2. Nevertheless, from an economic perspective, while the second 

process is return to dollar efficient in the base period, it is the third process the one to 

become return to dollar efficient in the comparison period. This outcome derives from the 

fact that comparing both processes in the first period, the second process produces a larger 

amount of the more expensive output while employing a larger amount of the cheaper 

input, while this situation reverses in the comparison period. As a result, Table 2 shows that 

the third process increases its return to dollar efficiency by 30.7%, while the second process 

endures an efficiency loss of -9% −both coming from allocative efficiency change.  

With regard to the first and the fifth processes, both are productive inefficient in the 

base and the comparison period. They do not define the best practice variable returns to 

scale efficient frontiers and their technical efficiency scores are less than one. Also, as their 

efficient projections on the best practice production frontiers do not constitute benchmark 

optimal scales, their scale efficiency is also lower than one. This defective performance 

yields a high degree of productive inefficiency. Furthermore, once projected to the 

benchmark optimal scale frontier solving technical and scale inefficiencies, their projected 

processes do not belong to the maximizing return to dollar hyperplanes, and therefore they 

are allocative inefficient with associated scores smaller than one. From a return to dollar 

efficiency change perspective, while the first process endures growing return to dollar 

inefficiency by 30.0%, the latter increases its return to dollar efficiency by 82.9%. The 

reason is that the first process gets farther away from the best practice and benchmark 

optimal scale frontiers from the base to the comparison period. It also losses allocative 

inefficiency by showing an input-output mix which also diverges from the return to dollar 

maximizing vector represented by the third process in the comparison period. The opposite 

situation is experienced by the fifth process that gains both technical, scale and allocative 

efficiency by getting closer to the best practice and benchmark optimal scale production 

frontiers, while also getting closer to the input-output mix which maximizes return to dollar 

in the comparison period.  
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Finally, the fourth process illustrates the case of simultaneous scale and allocative 

efficiency. Its values correspond to the following projection of the overall efficient second 

process: (x4
t, y4

t) = (40.5x2
t, y2

t/40.5) and by (11) it is also scale and allocative efficient in the 

base period. That is, once it has been projected to the best practice frontier by an amount 

equal to )5.0;,(D 0
4

0
4

0
G yx = 0.25, which happens to be the benchmark optimal scale 

corresponding to the second process, it also belongs to the maximizing return to dollar 

hyperplane. 

 We now proceed to evaluate productivity change and the alternative Laspeyres, 

Paasche and Fisher decompositions. Table 3 shows how these indexes yield productivity 

gains for all processes but the first one. Focusing on the Fisher index results, the first 

process experiences a productivity decline of -18.6%. The decomposition of this 

productivity loss using equation (23) shows that it mainly comes from a worsening 

technical situation as its Malmquist index shows decreasing productivity by an amount of –

20.1%. On the contrary, this process improves its situation from an allocative perspective, 

which nevertheless barely counterbalances technical productivity loss by 1.9%. We can 

gain insight into the technical productivity loss of -20.1% by means of equation (24). 

Clearly, the main source for this loss is a worsening situation due to the frontier downward 

shift at its output-input scales by 31.9%, followed by a -1.8% technical inefficiency growth. 

Nevertheless, the output and input scale change with regard to the most productive scale 

sizes in both periods brings along increasing returns by an amount of 19,4%, which 

partially compensates the other two sources of productivity decline. The largest 

productivity gain corresponds to the fifth process, which presents a Fisher productivity 

index increase of 82.8%. From a technological perspective, its Malmquist productivity 

index shows a productivity gain up to 68.5%, which is complemented with a better 

allocative performance which results in a productivity increase equivalent to 8.5%. With 

regard to the Malmquist index, this process shows technical progress by 65.5%, while 

enjoying technical efficiency gains by 11.8% but decreasing returns to scale up to -8.9%.  



Table 1. Example Data Set 
 

Process y1
0 y2

0 x1
0 x2

0 
  y1

1 y2
1 x1

1 x2
1 

  

1 7 4 5 3 p1
0 = 3 18 10 14 12 p1

1 = 3 
2 10 8 2 4 p2

0 = 2 36 28 8 10 p2
1 = 5 

3 8 10 4 2 w1
0

 = 2 28 36 10 8 w1
1

 = 3 
4 5 4 4 8 w2

0
 = 1 18 14 16 20 w2

1
 = 4 

5 3 6 7 9   12 20 14 17   
 
 
 

Table 2. Return to Dollar Efficiency (14) and  Return to Dollar Efficiency Change (20). 
 

Process RDE0 PE0 TE0 SE0 AE0 RDE1 PE0 TE1 SE1 AE1 RDEC0,1 PEC0 TEC0,1 SEC0,1 AEC0,1 
1 0.388 0.636 0.682 0.933 0.610 0.271 0.556 0.669 0.830 0.488 0.700 0.873 0.982 0.889 0.801 
2 1.000 1.000 1.000 1.000 1.000 0.910 1.000 1.000 1.000 0.910 0.910 1.000 1.000 1.000 0.910 
3 0.765 1.000 1.000 1.000 0.765 1.000 1.000 1.000 1.000 1.000 1.307 1.000 1.000 1.000 1.307 
4 0.250 0.250 0.250 1.000 1.000 0.228 0.250 0.250 1.000 0.910 0.910 1.000 1.000 1.000 0.910 
5 0.159 0.261 0.360 0.725 0.609 0.290 0.397 0.402 0.986 0.732 1.829 1.521 1.118 1.361 1.202 

 
 
 

Table 3. Laspeyres (22), Paasche and Fisher (23) Productivity Indexes Decompositions. 
 

Process QL 
0M̂  A0 QP 1M̂  A1 QF 0,1M̂  A0,1 TC0,1 TEC0,1 RTS0,1 

1 0.829 0.744 1.114 0.799 0.857 0.932 0.814 0.799 1.019 0.681 0.982 1.194 
2 1.097 1.286 0.853 1.218 0.877 1.389 1.156 1.062 1.089 0.900 1.000 1.180 
3 1.266 1.286 0.985 1.151 0.877 1.313 1.207 1.062 1.137 0.900 1.000 1.180 
4 1.097 1.286 0.853 1.218 0.877 1.389 1.156 1.062 1.089 0.900 1.000 1.180 
5 1.850 1.704 1.086 1.807 1.667 1.084 1.828 1.685 1.085 1.655 1.118 0.911 



 

Finally, it is possible to discuss how the technically efficient processes which 

operate at the most productive scale behave and the effect they have on the remaining 

processes. The second and third processes experience productivity gains larger in the latter 

than the former, i.e 20.7% as opposed to 15.6%. It is interesting to note that their 

Malmquist productivity indexes reach the same value of 1.062. This result illustrates how 

they define equivalent benchmark productive frontiers in both periods −or facets in DEA 

terminology− when estimating the intertemporal or mix−period distance functions as 

defined right after equation (21) and developed in (30). With regard to the fourth process, it 

also projects onto the same hyperplane, as it is a simple downward rescalation of the second 

process. However, even if for the same reason they all share the same technical change 

−10.0%, technical efficiency change 0.0%, and returns to scale 18.0%, their allocative 

situation is not the same. In fact, while the improving allocative performance of the third 

process results in a productivity increase of 13.7%, the second and fourth processes 

experience a productivity gain of just 8.9%, which is responsible for their aggregate Fisher 

productivity differential. It is worth remarking that these processes lead the change in the 

most productive scale sizes into an area of increasing returns which is followed by the first 

and fourth process but not by the fifth process −it expands to an alternative scale that bears 

decreasing returns to scale. Nevertheless its technical and efficiency change geometric 

means signal that by changing its production process to such extent, it is able to take 

advantage of technical progress, while the leading firms do not experience these gains.  

 

 

8 Conclusions 

 

 This article presents the equivalence between the widely applied Laspeyres, Paasche 

and Fisher productivity indexes and their associated Malmquist productivity indexes, by 

way of the existing duality between the return to dollar function and the generalized graph 

distance function. By relying on this duality, we have shown how it is possible to undertake 

static and dynamic Farrell efficiency and productivity measurement and how to allocate 

efficiency and productivity change between two mutually exclusive technical and economic 

components. Specifically, when allowing for allocative criteria, it is shown how the 

Laspeyres, Paasche and Fisher indexes can be decomposed into Malmquist technical 

indexes and allocative indexes. With regard to the Fisher index, it is possible to recall the 
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existing literature on Malmquist productivity indexes decompositions to identify the 

relevant sources of productivity change, i.e. technical change, technical efficiency change 

and returns to scale.  

As the Fisher productivity index is standard practice for statistical offices, and the 

proposed decomposition of the Malmquist index is by now a routine exercise in applied 

analysis −though not exempt of controversy as summarized by Balk (2001) and Lovell 

(2003), we believe that while implementation of the model would require a limited amount 

of time and resources, the insight that is gained into the sources of productivity change is 

remarkable −as it unveils the technology underlying the Fisher index and the effect of 

prices on the allocative performance of the production processes. 

To reinforce our call for the empirical implementation of the model we have 

developed the DEA techniques necessary to calculate return to dollar efficiency and the 

generalized graph distance functions. Also, we have shown how to modify these 

mathematical programs as to allow for intertemporal or mix-period measures, which are in 

turn necessary to decompose the Laspeyres, Paasche and Fisher indexes into Malmquist and 

allocative indexes. Finally, using an example data set, we illustrate the potential of the 

model for efficiency and productivity analysis, as well as the applicability of the DEA 

programs we have introduced. 
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