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Abstract 
 

In two widely cited but unpublished working papers, Simar and Wilson (1998) and 

Zofío and Lovell (1998) proposed an alternative decomposition of the Malmquist Productivity 

Index, which retained what seemed to be the strongholds of previous proposals with regard to 

the contribution of technological and efficiency change to productivity change. Namely, a 

technical change term with regard to the best practice (VRS) technology which is to be found in 

Ray and Desli (1997) and a scale efficiency change term that illustrates a firm’s situation with 

regard to optimal scale (benchmark technology), Färe, Grosskopf, Norris and Zhang (1994). 

Attaining this objective required the introduction of an additional term in the Malmquist 

Productivity Index decomposition, which would reflect the scale bias of technical change. It is 

our objective to provide economic rationale for this term within a theory of production context, 

the existing decompositions and recent articles that further elaborate on this issue. The ideas are 

illustrated using productivity trends in 17 OECD countries 
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1. Introduction 
 

Two decades ago Caves, Christensen and Diewert, CCD, (1982) theoretically 

introduced the now popular Malmquist index (MI) as the ratio between two distance functions 

that compares a firm’s productivity with that of an alternative firm and, in a straightforward 

dynamic extension, over time. A decade later, Färe, Grosskopf, Lindgren and Roos, FGLR, 

(1989, 1994), in a working paper which dates back to 1989 showed how the MI could be 

empirically implemented by means of Data Envelopment Analysis, DEA, techniques, while 

proposing an initial decomposition. Drawing on the idea initially proposed by Nishimizu and 

Page (1982), these authors showed that in a Farrell (1957) context, productivity change based on 

Malmquist indexes can be decomposed into technological change and efficiency change, when 

allowing for inefficient production processes −i.e. a firm does not exploit the possibilities that 

the best practice frontier offers, but falls short from potential output. 

However, by implicitly defining the MI with regard to what has been called a constant 

returns to scale-cone technology, the index imposes a technology representation that allows the 

comparison of a firm’s productive performance to a maximum output to input ratio, a 

productivity ratio which is linked to the concept of returns to scale and scale efficiency, see Färe 

and Grosskopf (1998) or, more recently, Balk (2001). However, why imposing such 

technological restriction on the underlying technology when defining the Malmquist Index?  In 

the original CCD (1982) Malmquist index this characterization of the technology was not 

present, culminating in an inaccurate measure of productivity change as Grifell-Tatjé and Lovell 

(1995) show, i.e. it ignores the contribution of scale change to productivity change.   

This clearly called for a precise definition of what was to be understood as an 

“adequate” measure of productivity change. Researches soon agreed that extending the single 

input−single output ratio case to multiple variable production −where radial distance functions 

aggregate outputs and inputs, meant that the Malmquist index combining them had to fulfill 

several properties. Forsund (1997) summarizes this axiomatic approach to acknowledge an 

index as a productivity index, but the most relevant for the purpose at hand is the proportionality 

one. This property states that if outputs are to be increased in the same proportion from one 

period to the next while inputs remain the same, then the productivity index is to increase in the 

same proportion. Correspondingly, if inputs are reduced in the same proportion while outputs 

remain the same, then the productivity index should increase in such proportion. With regard to 

the specific Malmquist productivity indexes (MPI) this property requires that the distance 

functions which comprise it should be linearly homogeneous of degree +1 in outputs and –1 
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inputs, i.e. the benchmark technology characterizes by constant returns to scale.1  

However, the fact that the supporting technology to correctly define productivity 

indexes corresponds to constant returns to scale does not mean that the underlying technology 

may not exhibit variable returns to scale. In fact, when identifying the contribution of returns to 

scale and scale efficiency one implicitly assumes that these terms have a role to play driving 

productivity change and, therefore, have to be included in the analysis. When doing so, two 

possibilities arise. Following Balk’s (2001) terminology, 1) one may follow a top-bottom 

approach, decomposing the aggregate Malmquist productivity index initially proposed by FGLR 

(1989, 1994), which comply with the desirable proportionality property, but does not 

individualize the contribution that returns to scale and scale efficiency make to productivity 

change; 2) one can generalize the CCD (1982) index, which does not satisfy the proportionality 

property because it does not comprise the contribution that returns to scale and scale efficiency 

make to productivity change −but eventually satisfies it when scale change is included in the 

analytical formulation. 

In the next section we introduce the necessary notation regarding technology and its 

distance functions representation. Section 3 summarizes the approaches followed by different 

authors trying to individualize the contribution of scale change to productivity change. This 

leads us to differentiate between the concepts of scale efficiency change and returns to scale and 

to show how they are interrelated. We make a distinction between these two concepts, as the 

existing literature clearly supports the idea that they are not interchangeable but complementary 

terms.  

In section 4 we provide a meaningful theory of production interpretation of the scale 

bias of technical change, which can be considered as the link between the different 

decompositions proposed in the literature. The particular advantages and drawbacks of these 

proposals in uncovering and overlooking technological and efficiency change information are 

discussed in section 5. Here we focus on the theoretical work by Simar and Wilson (1998) and 

Zofío and Lovell (1998) −later applied but not justified by Wheelock and Wilson (1999)− to 

come up with a comprehensive decomposition of the MPI that would retain generally accepted 

definitions of these terms, while informing about the general framework where productivity 

change as well as technological and efficiency change take place −both from a technical and a 

scale perspective−. In this section we summarize the history surrounding the different 

                                                           
1 Nevertheless, some authors believe that the axiomatic approach to index number theory, which relies on 
several desired properties to adequately define productivity indexes −e.g. proportionality, should not be 
strictly enforced: “At the risk of being labeled heretic, I see nothing “wrong” with estimating the 
Malmquist index based on empirical VRS technologies; we just need to be make sure that we and our 
readers are aware that it does not have an average product interpretation”, Grosskopf (2003:465). 
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decompositions proposed in the literature and the contribution we make to ease their 

understanding. In this sense, our extended decomposition of the MPI, which has been 

extensively cited in the literature by Balk (2001), Ray (2001), Orea (2002), Lovell (2003) and 

Grosskopf (2003), falls into one of the most active research areas in productivity and efficiency 

measurement (see Olesen and Petersen, 2003). In section 6, we show how productivity change 

in OECD countries can be explained in the light of our extended decomposition.  

Finally, we believe that this paper provides a meaningful interpretation of all the 

“building blocks” proposed in the literature to decompose the Malmquist productivity index, 

thus providing researches with an unifying framework where accurately interpret and choose 

among the existing decompositions.  

 

2. Technology and Distance Functions 

 

   Consider a panel of i = 1,...,I producers observed in t = 1,...,T periods, transforming 

input vectors xi
t = (x1i

t
 ,..., xNi

t) ∈ ℜN
+ into output vectors yi

t = (y1i
t,..., yMi

t) ∈ ℜM
+.  Given these 

data, technology can be represented by the production possibility set of feasible input-output 

combinations: 

 

( ){ }ttttt yxy,xS  produce can := , t = 1,…,T                               (1) 

 

which satisfies the usual Shephard (1970) or Färe and Primont (1995) axioms. Under this 

framework, a valid representation of the technology from the ith firm perspective is given by 

Shephard’s output distance function2. 

 

( ) ( ){ }tt
i

t
i

t
i

t
i

t SyxyxD ∈θ>θ≡
θ

/,:0inf,O ,                           (2) 

which is linearly homogenous of degree +1 in y and nonincreasing in x. If ( )t
i

t
i

t yxD ,O  =1 the 

evaluated firm is said to be efficient belonging to the best practice technology −frontier− 

represented by the subset Isoq St(x, y) = {(x, y): ( )t
i

t
i

t yxD ,O  =1}. Therefore, if ( )t
i

t
i

t yxD ,O  < 1, a 

radial expansion of the output vector yi
t is feasible within the production technology for the 

observed input level xi
t, and the evaluated firm is said to be inefficient.  

 If period t technology were to exhibit global or local constant returns to scale, then the 

                                                           
2 A complementary analysis could be developed from the input distance function perspective. However, 
using this orientation in what follows would not change any relevant issue regarding the decomposition of 
the Malmquist Productivity Index. 
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technology St implies a mapping x → y that is homogeneous of degree +1, i.e. (x, y) ∈ St implies 

(λx, λy) ∈ St for all λ > 0. This technology can be represented by  

 

( ) ( ){ }.0,: >λ∈λλ= tttttt Sy,xy,xS
(

                  (3) 

 

The relevant consequence of this result is that the output distance function, if defined on 

a linearly homogeneous technology (3), is homogeneous of degree –1 in inputs −Färe and 

Primont (1995: 24), thus satisfying the condition that would render any Malmquist index based 

on a constant returns to scale technology a productivity index, see also Färe and Grosskopf 

(1996:54, proposition 3.2.6). 

 Clearly, whether the technology exhibits constant or variable returns to scale is to be 

determined with the sample data. However, if one assumes that the technology exhibits variable 

returns to scale, any Malmquist index based on the corresponding distance functions would not 

be regarded as a productivity index. Then, how can it be ensured that a Malmquist productivity 

index would satisfy the desirable homogeneity properties in outputs and inputs while retaining 

at the same time the variable returns to scale assumption on the technology? By defining 

distance functions that would compare productive performance to a benchmark linearly 

homogeneous technology which enhances such comparison from technical efficiency to include 

scale efficiency, i.e. which gauge productive efficiency. Balk (2001:16, eq. (16)) shows how 

this comparison corresponds to a distance function defined on the supporting −virtual− cone 

technology (3), which is equivalent to measure efficiency against firms operating at the most 

productive scale sizes, MPSSs, and whose productions processes characterize by local constant 

returns to scale. Thus, a distance function that encompasses technical and scale efficiency can 

be equivalently expressed as that one defined on the linear homogeneous extension (3) of the 

production possibility set (2). This distance function corresponds to      

   

( ) ( ){ }tt
i

t
i

t
i

t
i

t SyxyxD
((((

∈θ>θ≡
θ

/,:0inf,O                  (4) 

 

( )t
i

t
i

t yxD ,O
(

 can be regarded as a measure of productive efficiency that compares a firm’s 

observed productivity to the highest productivity level which corresponds to the highest scale 

elasticity. If ( )t
i

t
i

t yxD ,O
(

 = 1, then no productivity gains are feasible −either from a technical or a 

scale perspective. However, if ( )t
i

t
i

t yxD ,O
(

 < 1, the firm is productively inefficient and 

productivity gains can be achieved by increasing technical efficiency, scale efficiency, or both.   
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3. Decomposing the Malmquist index, MI 

 

For any given firm i observed in two periods, t =1,2, (xi
1, yi

1) and (xi
2, yi

2), and using t 

=1 as benchmark technology, the original CCD (1982) Malmquist index defines as:  

 

( )
( )111

O

221
O22111

O ,
, ) , , ,( M

ii

ii
iiii yxD

yxDyxyx = ,                      (5)  

 

where ( )221
O , ii yxD  represents a mix period distance function which compares second period 

firms to the base period technology. In doing so, it is not mandatory that ( ) 122 , Syx ii ∈ . In this 

case values of ( )221
O , ii yxD  > 1 would be verified in the presence of technical progress, whose 

contribution to (5) can be singled out through the following decomposition: 

 

( )
( )

( )
( )

( )
( )

( ) ( )22111,2
O

221,2
O

111
O

222
O

222
O

221
O

111
O

221
O22111

O

,,,TEC,TC

,
,

,
,

,
, ) , , ,( M

iiiiii

ii

ii

ii

ii

ii

ii
iiii

yxyxyx

yxD
yxD

yxD
yxD

yxD
yxDyxyx

⋅=

=⋅==
                  (6) 

 

The Malmquist index (6) decomposes into a technical change and an efficiency change 

component. In an accepted interpretation of these terms, FGLR (1989,1994) stated that 

) ,( TC 221,2
O ii yx  captures the shift in the technology between the two periods with regard to the 

actual best practice frontier, while ) ,, ,( TEC 22111,2
O iiii yxyx  measures the change in relative 

efficiency, i.e. how far observed production is from maximum potential production. However, 

the index does not satisfy the proportionality property since it is not homogeneous of degree –1 

in inputs. In the single input-single output case it does not measure productivity change 

understood as the change in average productivities as Grifell-Tatjé and Lovell (1995) show. 

Formally, this property requires that the Malmquist index (5) verifies ) , , ,( M 22111
O iiii yxyx = 

νµ=νµ /) , , ,( M 22111
O iiii yxyx .  

Aware of this limitation, FGLR (1989, 1994) implicitly defined equal index but taking 

into consideration as benchmark technology not the actual best practice set (2) but its cone 

representation (3), which would render the Malmquist index (6) a productivity index, i.e. 
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                   (7) 

 

while interpreting both technical and efficiency change terms in the same way. Unfortunately, 

the nature of what is measured completely changes as now the technical change term yields 

potential productivity change between firms that operate at the MPSSs −where firms are 

technical and scale efficient− in two consecutive periods −as argued before (4)−, i.e. 

( )221,2
O ,PTC ii yx  may be viewed as the highest productivity change in the absence of inefficiency3. 

Therefore ( )221,2
O ,PTC ii yx  measures technical change with regard to the virtual supporting cone 

technology (3), and it would only correctly measure “technical change when constant returns to 

scale hold”, Ray and Desli, RD, (1997: 1036). On the other hand, equal reasoning applies to the 

efficiency change term, which now measures how far a firm is from the benchmark cone 

productivity, and therefore comprises both technical and scale efficiency change terms −as Färe, 

Grosskopf, Norris and Zhang, FGNZ, (1994) would render later explicit in their enhanced and 

final decomposition.  

Instead of working their way up from (6) to generalize the Malmquist index with a scale 

component that would take into account the contribution of returns to scale as proposed by 

Griffel-Tatjé and Lovell (1996, 1999), FGLR (1989, 1994) redefined the original Malmquist 

index into a productivity index by making use of the virtual cone technology (3). This forced 

them and later coauthors −FGNZ (1994)− to endorse the above interpretation of technical 

change which, nevertheless, does not correspond to the one commonly accepted −see the critics 

by RD (1997) and Balk (2001).  

 

3.1. Interpreting technical efficiency change   

Before further decomposing the productivity definition (7) of the Malmquist index (5), 

it is important to remark that the efficiency change term referred to the best practice technology 

in (6), ( )22111,2
O ,,,TEC iiii yxyx , compares how a given firm varies its productive performance in 

time with regard to the base period technology −the Malmquist index− to how technology 

changes. Rearranging (5), one obtains 

                                                           
3 Notice how potential technical change does not have to be led by a single producer, it is just the change 
between two periods productivity at optimal scale, which may be achieved by different producers in each 
period. 
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( ) ( )
( )

( )
( )

( )
( )

( )221,2
O

22111
O

222
O

221
O

111
O

221
O

111
O

222
O22111,2

O

,)/TC , , ,( M
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=

===
                  (8) 

 

From this perspective, increasing technical efficiency, ( )22111,2
O ,,,TEC iiii yxyx >1, 

represents a final situation where the change in productivity outgrows technological change. If 

the latter outgrows the former, ( )22111,2
O ,,,TEC iiii yxyx <1. Finally, when ( )22111,2

O ,,,TEC iiii yxyx =1, 

the relative technical situation of the firm remains unchanged. This is depicted in figure 1, 

where the evaluated firm gets closer to the base period best practice frontier −captured by 

1) , , ,( M 22111
O >iiii yxyx , but contemporarily the production frontier experiences technical 

progress, ( )221,2
O ,TC ii yx >1. Since the productivity gain from increasing technical efficiency is 

exactly offset by technical progress, the distance from (xi
t,yi

t) to the best practice frontier is the 

same, TEi
1 = yi

1/ y~ i
1 = TEi

2 = yi
2/ y~ i

2, and there is no change in technical efficiency, i.e. 

( )22111,2
O ,,,TEC iiii yxyx  = ( )222

O ,TE ii yx  / ( )111
O ,TE ii yx  = ) , , ,( M 22111

O iiii yxyx  / ( )221,2
O ,TC ii yx  = 1. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Interpreting Technical Efficiency Change 

 

The Malmquist index (6) defines relative to the base period technology and technical 

change with regard to the firm observed in the comparison period, but it is possible to reverse 

this comparison structure. In this case, 

f 1 (x) 

x 

y 

0 

f 2 (x) 

(xi2, yi2) 

(xi1, y~ i1) 

(x i2, y~ i2) 

(xi1, yi1) 
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Since both components will not generally yield the same result, one can define the 

geometric mean of both decompositions. Hence, 
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3.2. Interpreting scale efficiency change   

These results, based on the original CCD (1982) Malmquist index definition, just take 

into account technical information with regard to the best practice technology, but can be 

considered as benchmark for a parallel evaluation and interpretation of scale efficiency change.  

Defining scale efficiency as any productivity differential due just to a suboptimal scale 

−i.e. the deviation from optimal scale that yields maximum productivity, MPSS−, and taking 

into consideration (2) and (4), one can derive a scale efficiency measure by means of the 

following index: 

 

( ) ( )
( )111

O

111
O111

O ,
, ,SE

ii

ii
ii yxD

yxDyx
(

= ,              (11) 

     

If ( )t
i

t
i

t yxD ,O  represents a technical efficiency measure which reflects how far is the evaluated 

firm from the best practice technology and ( )t
i

t
i

t yxD ,O
(  reflects how far it is from the highest 

productivity represented by the supporting −virtual− cone technology, then any difference 

between these two definitions corresponds to scale efficiency −since (4) represents both 

technical and scale efficiency while (3) only represents technical efficiency. Just as technical 

efficiency compares a firm’s productivity −actual output divided by its input level− to potential 

productivity in the best practice frontier −potential output divided by the input level, scale 

efficiency compares the highest −technically efficient− productivity attained at actual scale to 

the highest productivity observed at optimal scale.  
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In both cases, productivity differentials are assessed with respect to contemporary 

optima. If technical efficiency change (10) is the result of comparing technical efficiency in 

both periods, extending this concept to scale efficiency change requires the comparison of scale 

efficiency in both periods, i.e. 

 

 ( ) ( ) ( )
( ) ( )111

O
111

O

222
O

222
O22111,2

O ,/,
,/,,,,SEC

iiii

iiii
iiii yxDyxD

yxDyxDyxyx (

(

= .             (12) 

 

 If one agrees with this definition of scale efficiency change and the parallel process that 

leads to it departing from its technical efficiency change counterpart (10), it is possible to extend 

the idea of scale efficiency change as the final net result of comparing how a firm’s changes its 

productive performance from a scale perspective to how technology’s optimal scale changes. 

We consider that while moving from the base to the comparison period, a firm can improve its 

productive performance making use of the returns to scale offered by the best practice 

technology, while it is quite likely that at the same time the nature of the best practice 

technology with regard to optimal scale also changes from one period to the next.  

These changes can be rendered explicit by decomposing scale efficiency change along 

the lines already introduced for the technical efficiency change case:4  
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         (13) 

 

where ( )22111,2
O ,,,RTS iiii yxyx  represents productivity variations coming from a change in the scale 

                                                           
4 It is interesting to note that both Balk (2001) and Lovell (2003) seem to be concerned by the fact that 

( )22111,2
O ,,,SEC iiii yxyx  does not only combine quantity vectors from both periods but also from both period 

technologies. However, the same claim could be extended to the previous technical efficiency change 
term ( )22111,2

O ,,,TEC iiii yxyx , where both periods’ quantity vectors and technologies are considered. 
Regarding ( )22111,2

O ,,,SEC iiii yxyx  Balk (2001:172) concludes that “there seems to be to be some double-
counting of technical change here” but there isn’t because as presented in (13), ( )22111,2

O ,,,SEC iiii yxyx  is the 
net result of comparing returns to scale to the scale −bias− of technical change and this last term is the 
only one to include both period technologies −just as ( )22111,2

O ,,,TEC iiii yxyx  in (9) is the net result between 
productivity change and technical change and it is in this last term where both technologies can be found. 
Lovell (2003) states that ( )22111,2

O ,,,SEC iiii yxyx  “must combine the effects of scale economies and technical 
change”. This is exactly what is presented in (13) and discussed in what follows, i.e. ( )22111,2

O ,,,SEC iiii yxyx  
combines the effect of returns to scale and the scale −bias− of technical change.  
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of the evaluated firm with respect to the base technology, i.e. returns to scale −more on this in 

the following section, while ( )221,2
O ,STC ii yx  represents productivity variations on scale efficiency 

coming from the change in the technology with regard to the comparison period firm, i.e. the 

scale −bias− of technical change. If one takes into account the second period technology to 

measure returns to scale and the base period firm to measure the scale −bias− of technical 

change, it is possible to express scale efficiency change as the geometric mean of these two 

indexes: 
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                    (14) 

 

4. Interpreting returns to scale and the scale −bias− of technical change 

 

4.1 Returns to scale 

The different components in which scale efficiency change can be decomposed refer to 

several terms already proposed in the Malmquist index literature. The second line of eq. (14), 

( )22111,2
O ,,,RTS iiii yxyx , corresponds to what RD (1997) initially referred to as scale efficiency 

change, as well as Grifell-Tatjé and Lovell (1996, 1999) and Balk (2001)5. However, this term 

clearly differs from the one introduced in (12), as the latter uses a single period technology 

while scale efficiency change compares scale efficiency with regard to own period technologies, 

i.e. how the firm moves toward or away from optimal scale in both periods. In an interpretation 

that illustrates the nature of this term, Orea (2002) and Lovell (2003) make use of discrete time 

formulations that identify it as a measure of the contribution of returns to scale to productivity 

change.  
                                                           
5 Grifell-Tatjé and Lovell (1996, 1999) propose ( )12111,2

O ,,,RTS iiii yxyx  as the scale effect index, which is 
equivalent to the one presented in (14) since from the output perspective, it is homogeneous of degree 0 in 
outputs as long as y2=λy1, λ>0, making irrelevant which output level, y1 or y2, is chosen. Balk (2001) and 
Lovell (2003) explicitly consider the contribution to productivity change of any change in the output mix, 
i.e. y2≠λy1, λ>0. However, as it is not the scope of this paper, we assume that this term plays no role, so 
the subsequent proposals made by Grifell-Tatjé and Lovell (1996, 1999), Balk (2001) and Lovell (2003) 



 
12

On the basis of a translog output-oriented parametric definition of productivity change, 

which includes technical change, technical efficiency change and a remaining scale effect, both 

authors defend that the latter term corresponds to ( )22111,2
O ,,,RTS iiii yxyx  in (14). Orea (2002: 9, 

eq.(4)) states that ( )22111,2
O ,,,RTS iiii yxyx  measures the “contribution of scale economies to 

productivity growth indirectly, that is, through comparisons … with the most productive scale 

size”. This author continues by providing an alternative way to assess the contribution of scale 

economies “without any reference to scale efficiency” ibid. pag. 12, implicitly stating that 

( )22111,2
O ,,,RTS iiii yxyx  must not be conceptually mixed up with ( )22111,2

O ,,,SEC iiii yxyx . From the 

same perspective, Lovell (2003) supports this interpretation for ( )22111,2
O ,,,RTS iiii yxyx , stating 

that it “provides a valid measure of the contribution of scale economies”. His next statement 

implicitly supports the distinction we are trying to make here between scale efficiency change, 

( )22111,2
O ,,,SEC iiii yxyx , and returns to scale, ( )22111,2

O ,,,RTS iiii yxyx : “An important implication … 

is that change in scale efficiency plays no explicit role in the decomposition of the Malmquist 

productivity index”. Finally, Ray (2001) also seems to acknowledge some difficulties when 

interpreting ( )22111,2
O ,,,RTS iiii yxyx  as a measure of scale efficiency change, stating that this term 

“is less easy to interpret”. Nevertheless he keeps addressing it in such way “this (term) can be 

called the scale (efficiency) factor”, but denotes it by SCF (scale change factor) in order to 

differentiate it from ( )22111,2
O ,,,SEC iiii yxyx  −as proposed by FGNZ (1994)6.  

To reinforce the interpretation of the second line in (13) as an index which measures the 

contribution of returns to scale to productivity change, let us consider the next alternative 

decomposition of the Malmquist productivity index (7): 
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          (15) 

 

which is the original CCD (1982) Malmquist index enhanced with the contribution of returns to 

scale to productivity change. Grifell-Tatjé and Lovell (1996, 1999:85), were the first authors to 

propose (15) as a way to generalize the original index with a term which would take into 
                                                                                                                                                                          
coincide with the one initially introduced by RD (1997). 
6 It is interesting to note that the translog parametric definition of scale efficiency, which goes back to 
Ray (1998) in the single output case and Balk (2001) in the multiple output case, is not disputed here. We 
just support the alternative scale efficiency change term, ( )22111,2

O ,,,SEC iiii yxyx  in (12), without giving up 
the information provided by ( )22111,2

O ,,,RTS iiii yxyx , which nevertheless should not be named scale 
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account the contribution of scale economies to productivity change. Even if they kept terming 

the second component of the right hand side of (15) as scale efficiency change −in opposition to 

(12), its meaning was the one just stated. In fact ) , , ,( M 22111
O iiii yxyx

(

<
>  ) , , ,( M 22111

O iiii yxyx  

“depending upon the local … nature of scale economies characterizing period t technology … 

Locally increasing (decreasing) returns to scale produces an upward (downward) adjustment to 

the conventional Malmquist productivity index”, ibid. pag. 86.   

Thus, If ( )22111,2
O ,,,RTS iiii yxyx  > 1, the firm improves its performance on a scale basis 

with regard to the base period productivity benchmark by exploiting increasing returns to scale 

and getting closer to the MPSS. Contrarily, ( )22111,2
O ,,,RTS iiii yxyx < 1 indicates that input change 

carries decreasing returns to scale and the firm is moving away from optimal scale. Finally, 

when ( )22111,2
O ,,,RTS iiii yxyx  = 1, the firm does not profit (endure) from scale economies 

(diseconomies) as when constant returns to scale prevail over the input range [ ]21, ii xx . Figure 2 

illustrates ( )22111,2
O ,,,RTS iiii yxyx  > 1 when considering the first period technology as benchmark. 

Here the firm (xi
1, yi

1) profits from increasing returns to scale when moving toward (xi
2, yi

2) 

−increasing average production along the best practice frontier f1(x) from the efficient projection 

(xi
1, y~ i

1) toward the MPSS represented by xi
1*, i.e. it becomes scale efficient from the base 

period perspective.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Interpreting Scale Efficiency Change 
 

                                                                                                                                                                          
efficiency change if one wants to avoid conflicting denominations. 
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However, it is quite likely that while the evaluated firm gets closer to the base period 

optimal scale represented by (xi
1*, yi

1*), this optimal scale contemporarily changes, rendering 

such attempt to improve its scale performance useless. This is what happens in figure 2, where 

optimal scale moves from (xi
1*, yi

1*) to (xi
2*, yi

2*).  Hence, the productivity differential due to the 

inefficient scale of (xi
t,yi

t) with regard to the highest productivity experienced at optimal scale is 

the same in both periods, ( )111
O ,SE ii yx  = ( y~ i

1/xi
1) / (yi

1*/xi
1*) and ( )222

O ,SE ii yx = ( y~ i
2/xi

2) / 

(yi
2*/xi

2*). As a result there is no change in scale efficiency, i.e. ( )22111,2
O ,,,SEC iiii yxyx  = 

( )222
O ,SE ii yx  / ( )111

O ,SE ii yx  = ( )22111,2
O ,,,RTS iiii yxyx  / ( )22111,2

O ,,,STC iiii yxyx  = 1. In this case, the 

productivity increase obtained by (xi
1, yi

1) by reducing its productive scale toward the base 

period optimal scale, ( )22111,2
O ,,,RTS iiii yxyx  > 1 −experimenting increasing returns to scale, is 

exactly offset by a contemporary reduction in optimal scale from xi
1* to xi

2* which leaves the 

evaluated firm in an scale inefficient position. 

 

4.2 Scale −bias− of technical change 

This result is captured by the third line in (14), which has been termed by Simar and 

Wilson (1998: 9-10) and Zofio and Lovell (1998:4) as the scale –bias− of technical change, 

( )22111,2
O ,,,STC iiii yxyx , because it is the scale counterpart of ( )22111,2

O ,,,TC iiii yxyx . Just as 

( )22111,2
O ,,,TC iiii yxyx  represents the benchmark to assess if any technical gain of the firm finally 

results in a technical efficiency gain when moving toward the best practice frontier −eq. (10), 

( )22111,2
O ,,,STC iiii yxyx  plays the same role by showing whether any productivity gain (loss) due to 

the effect of increasing (decreasing) returns to scale with respect to the benchmark technology, 

finally results in a scale efficiency gain or not −eq. (14). This can be emphasized by jointly 

taking into account technical change and the scale −bias− of technical change to determine 

potential productivity change over time from a given firm perspective, i.e. productivity change 

at the reference optimal scale. In this scheme, it is possible to recall this term −introduced in 

(7)− and decompose it in the following way: 
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From the firm’s comparison period perspective, potential productivity change at optimal 

scale can be decomposed into technical change −first term in the right hand side of (16)− 

weighted by a bias against or in favor of the reference firm input scale. This can be easily shown 

rearranging ( )221,2
O ,STC ii yx  as in the third line of (16). The numerator corresponds to 

productivity change at optimal scale while the denominator corresponds to productivity change 

coming from technical change at the reference input scale, i.e. ( )221,2
O ,STC ii yx  = 

( )221,2
O ,CT ii yx

( / ( )221,2
O ,TC ii yx .  

If ( )221,2
O ,STC ii yx  > 1, productivity gain reflected by technical change at the comparison 

period input scale does not match the potential productivity change observed at optimal scale, 

and accordingly, technical change at the firms’ scale has to be augmented with an additional 

productivity gain if it is to match that one at optimal scale. Therefore, we can conclude that the 

change in the technology with regard to optimal scale presents a bias against the reference input 

scale, which would be the interpretation for ( )221,2
O ,STC ii yx  when expressed as in the first line of 

(16). Contrarily, when ( )221,2
O ,STC ii yx  < 1, productivity change at the reference input scale 

exceeds productivity change at optimal scale, and consequently technical change has to be 

lowered in the amount necessary to match productivity change at optimal scale. Therefore, the 

change in the technology with regard to optimal scale presents a bias in favor of the reference 

input scale. Finally, ( )221,2
O ,STC ii yx  = 1 shows how the scale bias of technical change is neutral 

since productivity change at the reference input scale matches productivity change at optimal 

scale, as would be the case in the presence of constant returns to scale7. 

Let us now interpret the alternative values of the scale bias of technical change with 

respect to returns to scale and their net result regarding scale efficiency change −eq. (14). From 

a geometric mean perspective, if ( )22111,2
O ,,,STC iiii yxyx  > 1, the scale bias of technical change 

works against the reference input scales −as in eq. (16)− and any productivity gain due to 

increasing returns to scale, ( )22111,2
O ,,,RTS iiii yxyx  > 1 would be counterbalanced. Therefore, 

whether there is scale efficiency gain or not will depend on ( )22111,2
O ,,,RTS iiii yxyx  

<
>  

( )22111,2
O ,,,STC iiii yxyx  . On the other hand, if the firm undergoes decreasing returns to scale from 

the base to the comparison period, productivity loss is reinforced and the firm losses scale 

                                                           
7 Zofio and Lovell (1998) state that if ( )22111,2

O ,,,STC iiii yxyx  equals unity “technical change is neutral with 
respect to scale because it has not altered the technically optimal scale”. However, Ray (2001) shows how 
this numerical outcome is also compatible with technological changes where optimal scale changes.  All 
it is necessary is that productivity change at the reference input scale matches productivity change at 
optimal scale. 
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efficiency, ( )22111,2
O ,,,SEC iiii yxyx  = ( )22111,2

O ,,,RTS iiii yxyx  / ( )22111,2
O ,,,STC iiii yxyx  < 1. When 

( )22111,2
O ,,,STC iiii yxyx  < 1, the scale bias of technical change works in favor of the reference input 

scale. Hence, if the firm experiences decreasing returns to scale when moving from the first to 

the second period, this productivity loss would be offset by the scale bias of technical change 

and the final result on scale efficiency change once again depends on their relative values. If the 

firm enjoys increasing returns to scale, the scale bias of technical change reinforces such 

productivity gain and ( )22111,2
O ,,,SEC iiii yxyx  = ( )22111,2

O ,,,RTS iiii yxyx  / ( )22111,2
O ,,,STC iiii yxyx  < 1. 

Finally if ( )22111,2
O ,,,STC iiii yxyx  = 1, technical change at the reference and optimal inputs scales 

coincide, and any change in scale efficiency is exclusively given by the nature of returns to 

scale as the scale bias of technical change is neutral.  

 

5. Decomposing the Malmquist productivity index, MPI 

 

 The key question regarding the above developments is whether it is possible to propose 

a Malmquist productivity index decomposition that provides all relevant information regarding 

technological and efficiency change, and whose terms can interpreted in an meaningful manner. 

One way to proceed is to chronologically assess the relative advantages and drawbacks of the 

alternative decompositions proposed in the literature.  

The initial and still most popular decomposition of the MPI is the one proposed by 

FGNZ (1994), which enhances the one presented in (7) to take into account a scale component. 

Considering its geometric mean definition, it is equal to  
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  This decomposition stresses a definition of technical change ( )22111,2
O ,,,PTC iiii yxyx  which 

corresponds to potential productivity change at optimal scale −the shift in the virtual supporting 

cone technology−, but overlooks the change in the best practice technology, i.e. the usual 

definition of technical change ( )22111,2
O ,,,TC iiii yxyx . On the other hand, it informs about technical 
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efficiency change ( )22111,2
O ,,,TEC iiii yxyx  and scale efficiency change ( )22111,2

O ,,,SEC iiii yxyx , 

defined as argued in the previous section. Clearly, technical change measured on the benchmark 

cone technology neglects the shift on the best practice frontier and may overstate or 

underestimate this latter value. “Hence, the [FGNZ (1994)] technical change component must 

include something else”, Lovell (2003). This something else is the scale bias of technical change 

as presented and discussed in eq. (16) 8.  

Following in time is the RD (1997) proposal, which coincides in the single output case 

with that of Grifell-Tatjé and Lovell (1996,1999), Balk (2001) and Lovell (2003). This 

decomposition corresponds to  
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 This proposal would be the most widely accepted one if we were to take into account 

the number of academics who endorse it. It measures the contribution of best practice technical 

change ( )22111,2
O ,,,TC iiii yxyx , the undisputed factor representing technical efficiency change 

( )22111,2
O ,,,TEC iiii yxyx  and returns to scale, ( )22111,2

O ,,,RTS iiii yxyx .  

If we were to balance both proposals, it is interesting to highlight what these authors say 

in favor of and against each decomposition. With respect to (17), RD (1997), Grifell-Tatjé and 

Lovell (1999) and Balk (2001) note that ( )22111,2
O ,,,PTC iiii yxyx  would not correctly measure 

technical change in the presence of variable returns to scale; productivity change at optimal 

scale is nothing but the potential productivity change that a firm could enjoy if it were 

producing efficiently from a technical and a scale perspective in both periods. 
                                                           
8 Grifell-Tatjé and Lovell (1996, 1999:92) show how an upward bias in ( )22111,2

O ,,,PTC iiii yxyx  mismeasures 
technical change by an amount that “creates a proportionally large downward bias in the FGNZ scale 
effect”, This amount is precisely ( )22111,2

O ,,,STC iiii yxyx . Since the relevant scale effect for this authors 
measures the contribution of returns to scale: ( )22111,2

O ,,,RTS iiii yxyx  = ( )22111,2
O ,,,SEC iiii yxyx  / 

( )22111,2
O ,,,STC iiii yxyx , if ( )22111,2

O ,,,PTC iiii yxyx  > ( )22111,2
O ,,,TC iiii yxyx  −an upward bias in technical change−, 

then ( )22111,2
O ,,,STC iiii yxyx  > 1 and ( )22111,2

O ,,,SEC iiii yxyx  < ( )22111,2
O ,,,RTS iiii yxyx  −the equivalent downward 
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( )22111,2
O ,,,SEC iiii yxyx  is identified as a scale effect which does not attract much criticism −it is 

easy to interpret in the way already discussed−, but it is to be replaced by ( )22111,2
O ,,,RTS iiii yxyx  if 

one wants to correctly assess technical change9. Substituting ( )22111,2
O ,,,RTS iiii yxyx  for 

( )22111,2
O ,,,SEC iiii yxyx  does not pose a problem, as the former is also easy to interpret as a scale 

effect that takes into account the contribution of returns to scale10.  On the other hand, Färe, 

Grosskopf and Norris (1997:1.042) exemplify how ( )22111,2
O ,,,RTS iiii yxyx  in (18) cannot be 

interpreted as a scale efficiency change component as it “may incorrectly identify the scale 

properties of the underlying  technology”. In fact, ( )22111,2
O ,,,SEC iiii yxyx  “contains no mix-period 

terms”, which is what renders ( )22111,2
O ,,,RTS iiii yxyx  unsuitable for scale efficiency change 

evaluations −as previously argued for a correct interpretation of technical efficiency change 

( )22111,2
O ,,,TEC iiii yxyx  in both (17) and (18). Therefore, there is a trade off between technical 

change and scale efficiency change. If one supports a decomposition that includes the accepted 

notion of effective technical change at the firms input scale −and not potential productivity 

change at optimal scale−, then one gives up a scale efficiency change term but takes in a returns 

to scale component.  

At this point, asking for an economically meaningful decomposition of the Malmquist 

productivity index is equivalent to discard any proposal whose terms cannot be interpreted in a 

theory of production context. However, both (17) and (18) decompose in terms which have a 

clear interpretation. There are a number of “building blocks” that can be combined in different 

but intelligible ways to produce the same MPI result. Therefore, if one were to reject one 

particular proposal, it would be on the grounds that some of its components cannot be 

interpreted in the way they claim. Nevertheless, they can be interpreted in the way already 

discussed. Therefore, besides cross criticisms, our conclusion is that all terms in which the 

alternative decompositions break down can be interpreted in a valid way. Regarding (18), it 

provides an accurate decomposition of productivity change taking into account firm’s input 

scale for measuring both technical change and returns to scale. In (17), this desirable 

                                                                                                                                                                          
bias in scale efficiency change with respect to the relevant returns to scale term−. 
9 Only Balk (2001) does not comment on ( )22111,2

O ,,,SEC iiii yxyx . This author dismisses the interpretation of 
scale efficiency change as argued in (14), i.e. as the relative relationship between returns to scale and the 
scale −bias− of technical change which informs about the final situation with regard to optimal scale in 
both periods: ( )22111,2

O ,,,SEC iiii yxyx  = ( )22111,2
O ,,,RTS iiii yxyx  / ( )22111,2

O ,,,STC iiii yxyx . However, this provides 
rationale for a meaningful interpretation of these terms −including the scale −bias− of technical change 
beyond “a ratio of scale efficiencies” ibid. pag. 172. 
10 Leading Lovell (2003) to conclude that (18) “jettisons the notion of change in scale efficiency 

( )22111,2
O ,,,SEC iiii yxyx , a notion that I believe has misled researchers for years”. 
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relationship between scale and productivity change coming from technical change is lost, but 

additional information regarding technological and efficiency changes is given, i.e. potential 

productivity change and scale efficiency change are now explicitly considered.  

However, even if by choosing one of the two decompositions one has to sacrifice some 

information regarding technical and scale changes, both proposals are interrelated. In fact, from 

(16) ( )22111,2
O ,,,PTC iiii yxyx  = ( )22111,2

O ,,,TC iiii yxyx  · ( )22111,2
O ,,,STC iiii yxyx  and from (14) 

( )22111,2
O ,,,SEC iiii yxyx  = ( )22111,2

O ,,,RTS iiii yxyx  / ( )22111,2
O ,,,STC iiii yxyx . Therefore, the scale −bias− of 

technical change ( )22111,2
O ,,,STC iiii yxyx  represents the cornerstone that links both decompositions, 

rendering possible a complete characterization of productivity change both from a technological 

−best practice− and efficiency perspective. Including ( )22111,2
O ,,,STC iiii yxyx  in the Malmquist 

productivity index decomposition would allow immediate access to all components that have 

been proposed in the literature. The question is whether it is possible to suggest a decomposition 

which includes the scale −bias− of technical change.  

Being aware of the debate surrounding (17) and (18), Simar and Wilson (1998) and 

Zofío and Lovell (1998) introduced such decomposition. Their proposal can be obtained from 

both formulations. One may replace the potential contribution of productivity change at optimal 

scale in (17) by that of the effective contribution of technical change −productivity change of 

the benchmark technology at the firm’s input scale− weighted by the scale −bias− of technical 

change −how productivity change at optimal scale shows a bias against or in favor of the firm’s 

input scale, i.e. ( )22111,2
O ,,,PTC iiii yxyx  = ( )22111,2

O ,,,TC iiii yxyx  · ( )22111,2
O ,,,STC iiii yxyx . Alternatively, 

one may replace the effective contribution of returns to scale −how a firm profits from local 

increasing returns or endures local decreasing returns that materialize in higher or lower 

productivity change− by their counterpart in the form of the effective contribution of scale 

efficiency change −the movement of the firm toward or away from technically optimal scale in 

both periods− weighted by the scale −bias− of technical change, i.e. ( )22111,2
O ,,,RTS iiii yxyx  = 

( )22111,2
O ,,,SEC iiii yxyx  · ( )22111,2

O ,,,STC iiii yxyx . Proceeding in either way, one obtains the following 

decomposition: 
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All these terms have been previously interpreted, but given the number of scholars who 

advocate using (18), it is important to remark that the contribution of returns to scale is 

implicitly considered in (19) through (14). By jointly looking at scale efficiency change and the 

scale −bias− of technical change, we can obtain relevant information with regard to returns to 

scale. Rephrasing the discussion in section 4.1, if the firm gains scale efficiency from the base 

to the comparison period, ( )22111,2
O ,,,SEC iiii yxyx  > 1, while the scale bias of technical change 

works against the firm’s reference input scale ( )22111,2
O ,,,STC iiii yxyx  > 1, this outcome is only 

possible if returns to scale make a positive contribution to productivity change, 

( )22111,2
O ,,,RTS iiii yxyx  > 1 −a contribution which is larger than the unfavorable change in the scale 

bias of technical change. On the other hand, if a scale efficiency gain is accompanied by a 

favorable scale change of the technology, ( )22111,2
O ,,,STC iiii yxyx  < 1, then the presence of 

increasing returns to scale reinforces such scale efficiency gains. Alternatively, if decreasing 

returns to scale reduce productivity change, ( )22111,2
O ,,,RTS iiii yxyx  < 1, then scale efficiency gains 

are still possible as long as the favorable scale −bias− of technical change is not counterbalanced 

by those lowering returns, ( )22111,2
O ,,,RTS iiii yxyx  > ( )22111,2

O ,,,STC iiii yxyx  −where both terms are 

smaller than one. In both cases the final outcome would be ( )22111,2
OSEC iiii y,x,y,x  = 

( )22111,2
O ,,,RTS iiii yxyx  / ( )22111,2

O ,,,STC iiii yxyx  > 1 and an opposite discussion may be presented 

when scale efficiency change reduces ( )22111,2
O ,,,SEC iiii yxyx  = ( )22111,2

O ,,,RTS iiii yxyx  / 

( )22111,2
O ,,,STC iiii yxyx  < 1.  

As Simar and Wilson (1998: 11) remark, all this information would be lost if one settles 

for (18), because one would know the contribution of returns to scale to productivity change, 
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but would not know if such contribution finally results in scale efficiency gain or not, 

( )22111,2
O ,,,SEC iiii yxyx  

<
>  1, neither if the change experienced by optimal scale works against or in 

favor of the firm’s reference scale, ( )22111,2
O ,,,STC iiii yxyx  

<
>  1. 

 

5.1 Summarizing the history of MPI decompositions. 

The different parts of the MPI decomposition puzzle are presented in Table 1 as they 

were introduced in the literature. Here, the initial Caves et al. (1982) index ) , , ,( M 22111,2
O iiii yxyx  

does not comply with the proportionality property, which derives from ignoring the impact of 

returns to scale on productivity change, and therefore it does not constitute a productivity index. 

In order to define a MPI definition that would comply with such property, Färe et al. 

(1989,1994) followed a top-down approach which yielded an index which measures 

productivity ) , , ,( M 22111,2
O iiii yxyx

(  by implicitly incorporating the effect of returns to scale 

( )22111,2
O ,,,RTS iiii yxyx  −proposing an initial decomposition into potential productivity gain 

( )22111,2
O ,,,PTC iiii yxyx  and efficiency change ( )22111,2

O ,,,EC iiii yxyx . Unfortunately, when trying to 

individualize the scale contribution, FGNZ (1994) endorsed the technical change component 

inherited from FGLR (1989, 1994) −which corresponds to productivity change at optimal scale, 

believing that the contribution of scale change was adequately identified by decomposing 

efficiency change into (pure) technical efficiency change ( )22111,2
O ,,,TEC iiii yxyx  and scale 

efficiency change ( )22111,2
O ,,,SEC iiii yxyx .       
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Table 1. Alternative Malmquist Productivity Index decompositions 
 

 Product. 
Change 

Potential 
Product. 

Change (1) 

Eff. 
Change(2)

Tech. 
Change

Tech. Eff.
Change 

Returns to 
Scale (3) 

Scale 
Eff. 

Change 

Scale of 
Tech. 

Change 
Proposal  M1,2

O
(   PTC1,2

O   EC1,2
O   TC1,2

O   TEC1,2
O   RTS1,2

O   SEC1,2
O   STC1,2

O

) , , ,( M 22111,2
O iiii yxyx  

CCD (1982) 
NO NO NO YES YES NO NO NO 

) , , ,( M 22111,2
O iiii yxyx

(  
FGLR (1989,1994) 

YES YES YES NO NO NO NO NO 

) , , ,( M 22111,2
O iiii yxyx

(
 

FGNZ (1994) 
YES YES YES NO YES NO YES NO 

) , , ,( M 22111,2
O iiii yxyx

(  
RD (1997) (4) YES NO NO YES YES YES NO NO 

) , , ,( M 22111,2
O iiii yxyx

(  
SWZ (1998) 

YES YES YES YES YES YES YES YES 

(1)  PTC1,2
O =  TC1,2

O ·  STC1,2
O  

(2)   EC1,2
O =  TEC1,2

O ·  SEC1,2
O  

(3)  RTS1,2
O =  SEC1,2

O ·  STC1,2
O  

(4) Ray and Desli (1997) proposal is equivalent to that of Grifell-Tatjé and Lovell (1996, 1999), Balk (2001) 
and Lovell (2003) in the single output case.  

 

Unconvinced by the existing definition of technical change, Grifell-Tatjé and Lovell 

(1996,1999) followed a bottom-up approach departing from the initial CCD (1982) definition, 

which coincides with the RD (1997) proposal −who, nevertheless, followed a top-down 

approach from FGNZ (1994) MPI definition, but rejected their decomposition. Both sets of 

authors identified the commonly accepted definition of technical change, ( )22111,2
O ,,,TC iiii yxyx , 

adopted the technical efficiency change component, ( )22111,2
O ,,,TEC iiii yxyx , and claimed a 

different definition of scale efficiency change which is inconsistent with the parallel notion of 

technical efficiency change −a fact that was criticized by Färe, Grosskopf and Norris (1997). 

Grifell-Tatjé and Lovell (1996,1999:88) clearly suggested that the new scale efficiency term, 

even if called in such way, really captures the contribution of returns to scale. The work by Orea 

(2002) and Lovell (2003) provide further rationale for supporting this interpretation, and so it 

can be identified with ( )22111,2
O ,,,RTS iiii yxyx .  

However, even the proposal made by RD (1997) and its equivalent Grifell-Tatjé 

(1996,1999), Balk (2001) and Lovell (2003) counterparts identify the role of scale when 

defining technical change and the contribution of returns to scale, it disregards productivity 

change at optimal scale and the change in scale efficiency. Simar and Wilson (1998) and Zofio 

and Lovell (1998) uncovered the concept of scale −bias− of technical change 

( )22111,2
O ,,,STC iiii yxyx  offering a decomposition whose terms could be interpreted within the 
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theory of production context, and whose combination grants access to all relevant information 

found in the Malmquist Productivity Index literature. Therefore if one wants to know the whole 

picture about the change in technology −benchmark (virtual) and best practice− and efficiency 

−comprising technical and scale efficiency−, choosing (19) would ease such task since all terms 

are directly calculated or can be easily determined by simple computations, e.g. productivity 

change at optimal scale ( )22111,2
O ,,,PTC iiii yxyx , efficiency change ( )22111,2

O ,,,EC iiii yxyx  as well as 

returns to scale  ( )22111,2
O ,,,RTS iiii yxyx . 

 

6. Empirical analysis 

  

 In this section we present the results reported by Simar and Wislon (1998:19) regarding 

productivity change in 17 OECD countries. Here we stress the role of the scale −bias− of 

technical change when interpreting technological and efficiency change. The database consists 

of annual figures on labor, capital and gross domestic product for 17 countries, which are taken 

from the Penn World Tables (version 5.6) and have been previously used by FGNZ (1994) and 

RD (1997). Table 2 shows the geometric mean of all indices that have been proposed in the 

literature over the 12 periods (1979-80, 1980-81,…, 1989,1990), while the geometric mean for 

all countries is reported in the last row.  

There we identify an average annual productivity gain of 0.67%. On average we see that 

the leading countries, which are productively efficient from a technical and scale perspective, 

drive potential productivity gains to a 0,42% per year. Since average productivity change 

exceeds potential productivity change, we conclude that a catching up process in OECD 

countries exists, which is equivalent to an efficiency gain of 0.25% per year, i.e. 1,2
OEC = 

1,2
OM

( / 1,2
OPTC  −eq. (7) by FGLR(1989,1994). This increase in efficiency is explained by a better 

productive performance both in technical and scale terms. In fact, we see that the average 

efficiency gain is mainly explained by a converging process toward optimal scale, as the 

average scale efficiency change index 1,2
OSEC  yields a 0.18% annual increase; two and a half 

times greater than technical efficiency change 1,2
OTEC  that reaches 0.07%, and showing how 

countries also get closer on average to the best practice frontier −eq. (17) by FGNZ (1994).  

Given the importance of the scale efficiency change component when explaining the 

annual 0.25% productive efficiency gain, it is important to determine what its sources are. Since 
1,2
OSEC = 1,2

ORTS / 1,2
OSTC , the converging process toward optimal scale is sustained by the 

existence of increasing returns to scale −which contribute with an average 0.05% annual 
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productivity gain, fostered by a change in the scale of the technology which on average works in 

favor of OECD countries −a 0.10% annual value −eq. (13). In fact, from the average country 

input scale perspective and the consecutively updated base periods, countries tend to get closer 

−by way of increasing returns to scale− to each period’s optimal scale −mainly represented by 

the U.S., which is normally responsible for the shift in the benchmark virtual technology. But 

contemporarily these optima show a convergence toward the average country reference input 

scale −a favorable scale bias of technical change as discussed in section 3.1.1. The fact that 

changes in the scale of the technology works in favor of these countries input scales may be 

equivalently shown by comparing average potential productivity change at optimal scale 
1,2
OPTC  to the average technical change value, 1,2

OTC . In this case, productivity gains coming 

from shifts in the best practice technologies at these countries’ input scales beat those of the 

leading productively efficient countries by a 0.10% per year, 1,2
OSTC = 1,2

OPTC / 1,2
OTC  −eq. (16). 

Therefore, the growth differential between these figures would reflect how technical change 

shows a scale bias favorable in average to OECD countries, supporting the scale convergence of 

0.18% per year previously shown, and which is mainly responsible for the overall average 

efficiency gain. 

It is now possible to turn our attention to the relevant sources responsible for the 

average productivity gain of 0.67% per year, which can be found in the rate of technical 

progress, 1,2
OTC , technical efficiency gain 1,2

OTEC and the contribution of increasing returns to 

scale 1,2
ORTS  −eq. (18) by RD (1997). The shift in the best practice frontier shows an average 

technical progress of 0.55%. Nevertheless, there is a catching−up process of 0.07% per year 

since the average productivity gain represented by the original CCD (1982) Malmquist index 

exceeds technical progress by such amount −eq. (8). Finally, as previously discussed, the 

contribution of increasing returns to scale equals 0.05% annually.  
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Table 2. The Malmquist Productivity Index and its decompositions; 
 Geometric means (1979-1990) 

 

 
Product. 
Change 

 

Potential 
Product. 
Change  

Effi. 
Change

Tech. 
Change 

Tech. 
Eff. 

Change 

Returns 
to Scale

Scale Eff. 
Change 

Scale of 
Tech. 

Change 

Country  M1,2
O

(   PTC1,2
O   EC1,2

O   TC1,2
O   TEC1,2

O   RTS1,2
O  SEC1,2

O   STC1,2
O  

         
Australia 1.0112 1.0104 1.0007 1.0094 0.9990 1.0028 1.0017 1.0010 
Austria 0.9947 0.9989 0.9957 1.0085 0.9995 0.9868 0.9962 0.9905 
Belgium 1.0153 1.0105 1.0049 1.0096 1.0030 1.0027 1.0019 1.0008 
Canada 1.0150 1.0105 1.0045 1.0104 1.0036 1.0010 1.0009 1.0001 
Denmark 1.0033 0.9990 1.0044 1.0101 0.9976 0.9957 1.0068 0.9890 
Finland  1.0257 1.0105 1.0150 1.0075 1.0107 1.0073 1.0043 1.0029 
France 1.0115 1.0101 1.0013 1.0100 1.0011 1.0003 1.0002 1.0001 
Germany 1.0072 1.0104 0.9968 1.0105 0.9966 1.0002 1.0002 0.9999 
Greece 0.9982 0.9987 0.9996 0.9991 0.9981 1.0010 1.0015 0.9996 
Ireland 1.0066 1.0000 1.0066 − 1.0000 − 1.0066 − 
Italy 0.9995 0.9946 1.0049 0.9949 1.0048 0.9998 1.0001 0.9997 
Japan 1.0010 0.9979 1.0031 0.9965 1.0003 1.0042 1.0028 1.0014 
Norway 1.0154 1.0105 1.0049 1.0108 1.0000 1.0046 1.0049 0.9997 
Spain 0.9967 0.9993 0.9973 0.9996 0.9970 1.0000 1.0003 0.9997 
Sweden 1.0129 1.0104 1.0025 1.0073 1.0000 1.0056 1.0025 1.0031 
UK 0.9982 0.9982 1.0000 0.9982 1.0000 1.0000 1.0000 1.0000 
USA 1.0021 1.0021 1.0000 1.0058 1.0000 0.9963 1.0000 0.9963 
         
ALL 1.0067 1.0042 1.0025 1.0055 1.0007 1.0005 1.0018 0.9990 

Source: Own elaboration from Simar and Wilson (1998) 
 
 

7. Conclusions 
 

In the last decade several Malmquist indexes definitions and decompositions have been 

proposed in the literature. Each set of authors supported their own proposals criticizing the 

weaknesses of the opposing views, but never tried to find the common ground that would render 

all terms meaningful from a theory of production context.   

We first show how each one of the different terms in which the Malmquist productivity 

index can be decomposed may be interpreted   consistently, assigning alternative and non-

competing names to each one of them, e.g. potential benchmark technical change 1,2
OPTC  versus 

actual best practice technical change 1,2
OTC , or scale efficiency change 1,2

OSEC  versus returns to 

scale, 1,2
ORTS . In doing so we overcome the concept shortage that limited the understanding and 

proposals of several authors, while giving room and valuing all terms that have been proposed 
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in the literature. Also, we show how the competing decompositions of FGNZ (1994) and RD 

(1997) are linked by the concept of the scale −bias− of technical change. Introduced by Simar 

and Wilson (1998) and Zofio and Lovell (1998) in two widely known but so far unpublished 

working papers, this concept has a clear interpretation and enables us to show all relevant 

information with regard to a firm’s own productivity change, as well as to that of the leading 

firms which, at the end, are responsible for technological change.  

Finally, this leads us to conclude that a decomposition of the MPI that includes the scale 

bias of technical change term would enrich the analysis, allowing a complete assessment of the 

general framework where productivity change, as well as technological and efficiency change 

−both from a technical and a scale perspective−, take place. Hence we believe that the 

decomposition introduced by Simar and Wilson (1998) and Zofío and Lovell (1998) provides a 

unifying framework where one may deal with a complete characterization of technological and 

efficiency change. How such complete analysis can be undertaken is illustrated with a set of 

OECD countries.   
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