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Abstract. This paper is an empirical application that combines averting behavior 

with contingent valuation data.  Consistency tests are performed incorporating 

alternative heteroscedastic structures in the bivariate probit models by taking 

advantage of the different information content that characterizes each data source. 

We look at three covariates not yet examined in the literature when combining stated 

and revealed preferred data to explain the variance in the models: income, the bid in 

the contingent valuation questionnaire, and the distance between the bid and the 

averting expenditures with drinking water. The models estimated include between 

and within data sources heteroscedasticity. The results obtained allow the 

combination of the two data sources under a common preference structure.  
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1. Introduction  

The combination of stated (survey) and revealed (real market) preference data 

has been used to better understand preferences.  In the context of the environmental 

economics literature, Cameron (1992) and Adamowicz, Louviere, and Williams 

(1994), amongst others, set up the basis for a new approach to non-market valuation 

which combines revealed and stated information to estimate a joint model.  These 

studies provide insights into strategies for pooling stated preferred (SP) and revealed 

preferred (RP) data, validate the approach, and show the advantages of pooling SP 

and RP data, i.e., improved efficiency in estimations, reduction of multicollinearity, 

and extension of the range of data beyond that available from RP data. 

However, Huang, Haab, and Whitehead (1997) show that RP and SP data 

should not be pooled assuming a common preference structure unless both decisions 

yield the same change in behavior caused by the quality change.  Therefore, when 

pooling the two sets of data under a single preference structure one has to examine 

whether both sets of data are consistent or not.  Prior to performing consistency tests, 

it is essential to improve the specification of the systematic and the transitory parts of 

the models within each data source. 

Ben-Akiva and Morikawa (1990), Swait and Louviere (1993), and 

Adamowicz et al. (1994) emphasize the role of the scale parameter as a mean to 

compare different data sources in the context of MNL choice models.  More recently, 

there is a growing interest in explaining heteroscedasticity structures within data 

sources. In particular, accounting for specific sources of heteroscedasticity using 

parametrised heteroscedastic models may improve significantly our understanding of 
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the underlying decision process. The majority of the studies that can be included in 

this line of research explore sources of variability that are present in both RP and SP 

data.  Swait and Adamowicz (1997) and Hensher, Louviere, and Swait (1999) should 

be mentioned in this context. Swait and Adamowicz (1997) model heteroscedasticity 

as a function of entropy, a measure of uncertainty inherent in the choice 

environment.  While their entropy measure takes into account task demand 

characterized by the number of alternatives available and the correlation structure of 

the attributes, other sources of variation intrinsic in SP data generated by contingent 

valuation surveys were not examined.  In the contingent valuation literature, 

Alberini, Kanninen, and Carson (1997) show how to specify heteroscedasticity to 

capture variability caused by the distance between willingness to pay and the cost 

amount presented in dichotomous choice contingent valuation surveys. 

Significant research has been done combining RP and SP data  (Cameron 

1992; Adamowicz et al. 1994; McConnell, Weninger, and Strand 1999; Herriges, 

Kling, and Azevedo 1999), but none of these studies combine averting behavior and 

contingent valuation data sets.  We contribute to the growing literature on data 

combination by combining averting behavior, RP, and SP data. In addition to 

including income and cost as sources of heteroscedasticity when combining data 

sources, we account for a source of variance intrinsic in contingent valuation surveys. 

In particular, we examine whether the distance between treatment costs and the bid 

significantly affects the variance of the error as in Alberini et al (1997).  We examine 

whether these sources of heteroscedasticity play a significant role when testing for 

consistency between RP and SP data sources.  Our findings indicate that 
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incorporating income as a source of variance generates more accurate models than 

those with the other two sources of variation. More importantly, we cannot reject the 

hypothesis of taste parameter equality across averting behavior and SP data.  These 

findings hold in models where we account for correlation between averting behavior 

and SP data. 

The remainder of this paper is divided as follows.  Section two describes the 

survey.  Section three presents the theoretical model. Section four has the empirical 

model, including the sources of heteroscedasticity. Section five discusses the results, 

and section six concludes the paper. 

 

 

2. The Survey 

The households were interviewed in 1996 in an urban area of the state of 

Espírito Santo, Brazil.  The surveys were conducted under the auspices of the 

Espírito Santo Company of Sanitation (CESAN) for the World Bank.  Enumerators 

attempted to interview nine hundred and thirty-two households, but only nine 

hundred and seventeen participated.  Seven hundred and ninety-one observations are 

used in the estimations of the dichotomous choice models1. The survey reveals 

socioeconomic information about the household, such as income, number of 

children, etc.  It also investigates how households treated water for drinking 

consumption based on their averting behavior.  Variable costs incurred (VCOST) 

with drinking water treatment were constructed based on the answers to the averting 

behavior questions2.  VCOST took on different values depending on the treatment 
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method adopted (filter, boiling, or purchase of bottled water).  For households not 

treating drinking water, VCOST was calculated as the average of the costs of the 

different treatment methods.  Seventy-nine percent of the households examined here 

treated drinking water. 

However, only nineteen percent of the households agreed to pay for drinking 

water treatment in the contingent valuation study. The contingent valuation question 

for the work presented in this paper was stated as follows: 

 

Now, I will ask if you are willing to pay an extra fee with your water billing 

statement to have tap water treated for drinking purposes3.  This way you will not 

have to buy bottled water, filter, or boil the water.  You will only have to turn the 

water on and drink.  I would like to tell you that there is not a right or wrong way 

to answer this question.  You should remember other expenses you have to see if 

you have the money to pay for this service.  It is important that you answer what 

you really think.  If you and other people say that you are not willing to pay any 

amount, it can be that it will not be possible to offer an efficient system.  If you say 

you can pay a lot, it can be that you will not have the money to pay the bill. 

Would you pay an extra $__C__ added  every month to your water billing 

statement to be able to drink tap water without having to filter or boil the water? 

0. No   1.Yes  2. Don’t know 

 

The following amounts (C)  $3, $6, $12, $20, $26, $32, $38, $42, $48, and 

$52 were randomly assigned to the respondents in the contingent valuation 

experiment.  
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3. Theoretical Model 
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Each household i chooses between treating drinking water and spending an 

amount equal to VCOSTi  or not treating.  This decision is modeled using the 

averting behavior data.  Using the contingent valuation approach, household i 

chooses between having treated water and paying a fee equal to Ci  or not having 
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It is possible that the random component from the averting expenditure 

decision, , is correlated with the one from contingent valuation, .  Ignoring the 

correlation between the RP and the SP data may cause biased coefficients.  In order 
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It is not possible to identify all parameters  and 

separately.  The common normalizing assumption is to set  and 

estimate the remaining parameters.  

,,,,,, rsrsr σργγδδ

sσ 1== sr σσ

Consistency between the SP and RP data sets requires the indirect utility 

functions to be the same. Therefore, the parameters across utility functions should be 

equal to each other:  and .  In this case, again, it is not possible to 

identify all parameters separately. A possible normalization is to set  and 

estimate the remaining parameters. Thus, the model accounts for between-data 

source heteroscedasticity.  In order to allow within-data source heteroscedastic 

structures of the error term, we reparameterize variances as follows: 

sr δδ = sr γγ =

1=rσ
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i
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                   and  
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i

s Wexp)6( θλσ +=s
i , 

where Wi
k denotes a vector of variables causing within-data heteroscedasticity, and 

θk is a vector of the corresponding coefficients for each data set k (k=r or s).  The 

parameter λ takes into account between-data heteroscedasticity. 

 

 

4.0  Incorporating Heteroscedasticity in the Bivariate Probit Models 

            In order to test for consistency, five sets of bivariate probit models are 

estimated.  Each set consists of an unrestricted and a restricted model.  In the 

unrestricted models, the parameters from the averting behavior model are allowed to 
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differ from those in the SP model while in the restricted models some parameters in 

both models, RP and SP, are set equal to each other.   

            The deterministic part of the indirect utility includes INC, CONNEC, 

INFAN, HSORMORE, COST, and a constant as regressors (Table I): 

 

( ) HSORMOREINFANCONNECCOSTINCV KKkkkkk
11111)7( βτηδα +++−+=  

 and 

,)8( 00000 HSORMOREINFANCONNECINCV KKkkkk βτηδα ++++=  

 

where INFAN is a dummy variable indicating whether children five years old or 

younger are present in the household.  If there are infants in the household, 

INFAN=1, otherwise INFAN=0.  CONNEC is also a dummy variable taking on the 

value of one if the household is connected to the water utility and zero otherwise. 

HSORMORE is another dummy variable taking the value of one if the head of the 

household has at least some high-school training and zero otherwise. COSTk is equal 

to VCOST if k=r and equal to C if k=s, where VCOST represents variable costs 

incurred with drinking water treatment, and C is the valuation bid from the 

contingent valuation exercise.  INC represents monthly household income. 

The bivariate probit models are characterized by different heteroscedastic 

structures of the error term.  While in model set i, the restricted model is estimated 

only with between data heteroscedasticity, within-data source heteroscedasticity is 

allowed in all of the other model sets. 
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Let µi
k=1/σi

k represent the scale functions in the estimated models, which is 

the usual approach to combining SP and RP data (Adamowicz et al. 1994;  Swait and 

Louviere 1993). 

In model set i, the scale functions are defined as follows: 

λ
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In model set ii, we have the following scale functions: 

.11)10(
3 iC

s
i

r
i

e
and

θλ
µµ

+
==  

Ci is a bid randomly assigned to household i in the willingness-to-pay question.  

Halvorsen and Saelensminde (1998) model variance as a function of cost to account 

for heteroscedasticity inherent in random valuation models.  We simply try to 

account for variance as a function of a characteristic of the alternative.  A positive θ3 

(negative θ3) indicates that households that face high bids are more heterogeneous 

(less heterogeneous) than those facing lower bids.  

In model set iii, the scale functions are: 

.11)11(
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iii CVCOSTZ −=  where VCOSTi indicates the cost household i faces when 

deciding whether or not to treat drinking water.  Adjusting Alberini et al. (1997) 

modelling of heteroscedasticity to the context of a random utility model, we assume 

that when the respondent compares the utility he/she would get with or without the 

service offered in the contingent valuation questionnaire, the respondent may anchor 

the bid offered on an average market cost, represented here by VCOST, of providing 
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treated drinking water.  If VCOST and the bid are far apart, the unexpected high or 

low bid value can be seen as unrealistic, making the respondent confused. Thus, 

respondents will be more heterogeneous than when VCOST and the bid are closer.  

Therefore we expect θ4 > 0.  

In model set iv, the scale functions are 

ii INC
s

iINC
r

i e
and

e 21

11)12( θλθ µµ +==  

The two coefficients (θ1,θ2) will be positive (negative) if the better off households 

have preferences that are more heterogeneous (less heterogeneous) than those of the 

worse off households.  

In the case of model set v, we have 

iiii ZCINC
s

iINC
r

i e
and

e 4321

11)13( θθθλθ µµ +++==  

Model set v includes all types of within SP data heteroscedasticity previously 

examined, within RP data variance caused by INC, and the parameter related to the 

average scale difference between data sources (λ). 

[TABLE I] 

 

5. Results 

Table II and Table III present the results from the bivariate probit estimations 

for each model set described in section four.  Two bivariate probit models were 

estimated in each set.  The first estimation does not impose taste parameter equality 

across data sets and yields the results in the SP and RP columns.  The joint 
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estimation (RP/ SP column) constrains taste parameters from the RP and SP model to 

be equal to each other, except for the coefficients on CONNEC and HSORMORE, 

and estimates a coefficient related to the scale parameter (λ). 

Most of the estimated coefficients are significant at the 5% level.  Regarding 

the independent variables, the exceptions are as follows: the coefficients on INFAN 

in all of the SP models and in the joint models for model sets ii and iii, where they 

are significant at 10%, and the coefficients on HSORMORE in the SP models and 

joint models of sets iv and v.  Regarding the coefficients used to model 

heteroscedasticity, the coefficients on C, Z, and λ, the coefficient related to the scale 

factor, are not significant in set v. λ is also not significant in set iv, and the 

coefficient on Z is significant at 10% in set iii.  The correlation coefficients (ρ) are 

not significant in any of the models. 

The coefficients on INFAN are positive given that households with small kids 

are more likely to treat drinking water.  The coefficients on COST are negative 

indicating that as the cost of treating drinking water increases, the probability of 

choosing treatment goes down.  The coefficients on HSORMORE are positive 

indicating that the probability of choosing treatment increases for households with 

more schooling. The coefficient on CONNEC is negative in SP models probably 

because of strategic behavior.  Households not yet connected to the water utility 

(CONNEC=0) are more likely to accept the bid offered in the contingent valuation 

questionnaire in order to be connected to the water utility. 

Given that the coefficients on CONNEC have opposite signs in the SP and 

RP models and the coefficients on HSORMORE are much higher in the RP model, 
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we follow Hensher et al. (1999) and do not impose taste parameter equality across 

data sources for η and β. Thus, each joint model has two coefficient estimates for 

CONNEC and for HSORMORE. 

The positive coefficient on Ci (θ3) indicates that households facing high bids 

are more heterogeneous than those facing lower bids.  θ4 is positive because 

households get confused with bids that are far from VCOST.  Coefficients on INC 

(θ1, θ2) are positive indicating that the better off households have tastes that are more 

heterogeneous than those of the worse off households.  Even though θ3 and θ4 are 

significant when C and Z are the only covariates used to model heteroscedasticity 

(sets ii and iii), they loose their significance when INC is introduced (set v).  

Specifying heteroscedasticity with INC also eliminates between data source 

heteroscedasticity.  Thus, λ is no longer significant in sets iv and v. Swait and 

Adamowicz (1997) and Hensher et al. (1999) also have shown that introducing 

within-data source heteroscedasticity eliminates between-data source 

heteroscedasticity.   

The standard hypothesis on the pooled SP and RP data sources is represented 

by model set i.  In this case, the usual approach is to allow for average scale 

differences between SP and RP data.  Thus, we estimate λ.  The value of the scale 

function (scale factor, µs) is 1.31 when λ = -0.267.  In all sets, except for sets iv and 

v, the SP models have scale factors significantly different from one.  

            Performing likelihood ratio tests (Table IV), we conclude that the taste 

parameter equality hypothesis cannot be rejected at the 95% confidence level.  The 

chi-squared statistics are presented in Table IV. The critical value is 5.99 for two 
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degrees of freedom.  Therefore, we cannot reject the null hypothesis of parameter 

equality (and different variances), except for β and η, at the 95% confidence level.  

Thus, the combination of the two data sources can be undertaken under the 

assumption of a common preference structure.  As in Hensher et al. (1999), when all 

the parameters are constrained to be the same in the joint estimation it is not possible 

to accept the hypothesis that the two data sets are originated in a common underlying 

preference structure. 

Likelihood ratio tests comparing model set i to the other model sets and 

comparing model set iv to model set v indicate that income is the most important 

covariate in the modeling of heteroscedasticity.  The values for the unconstrained 

log-likelihood functions are used in the tests.  The likelihood ratio statistics and the 

respective null hypothesis from comparing model set i to the other model sets are: 

4.7 for set i x set ii (H0: θ3=0), 3.66 for set i x set iii (H0: θ4=0), 62.3 for set i x set iv 

(H0: θ1=θ2=0), and 63.24 for set i x set v (H0: θ1=θ2=θ3=θ4=0).  Therefore we reject 

the hypothesis that the coefficients on C, INC, and Z are equal to zero4.  The 

likelihood ratio statistics from comparing model sets iv and v is 0.94 and H0: 

θ3=θ4=0.  In this last case we can not reject the null hypothesis that the coefficients 

on C and Z are significantly different from zero. 

 

[TABLE II] 

[TABLE III] 

[TABLE IV] 
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6. Conclusion 

        The novel combination of averting behavior and contingent valuation data 

presented in this paper contributes to the growing literature on pooling data sets.  We 

perform consistency tests to validate the combination of both data sets. 

        Bivariate probit models were estimated allowing for both between and within 

data sources heteroscedasticity.  We looked at three covariates not yet examined in 

the literature when combining SP and RP data to explain the variance in the models: 

income (INC), the bid in the contingent valuation questionnaire (C), and the distance 

between C and VCOST (Z).   

        When the sources of variance listed above were incorporated as well as when 

only the scale factor was included, the hypothesis of taste parameter equality across 

data sets, except for the parameters on HSORMORE and CONNEC, could not be 

rejected.  Thus, the consistency tests performed point to the existence of a common 

underlying preference structure behind the SP and the RP data sets across all models 

when a linear utility function is used. 
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Notes 

1. 917 questionnaires were collected.  126 were dropped for the following reasons.   

      98 questionnaires had one of the independent variables used in the estimations    

      missing.  17 households stated  “didn’t know”.  One of the households reported a  

      monthly income of $ 20,000 which was not credible given other characteristics of  

      this household.  Ten protest bids were also eliminated. 

 

2.   For a description of the construction of variable costs as well as a more detailed   

      description of the survey, see McConnell and Rosado (2000). 

 

3.   For household not yet connected to the water supply system, households were  

      told the following:  Now, I will ask if you are willing to pay a fee every month to  

      have tap water treated for drinking purposes. 

 

4.   H0: θ4=0 can be rejected only at the 10% significance level. 
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Table I. Variables used in the bivariate probit models 
Variable Description Mean  

INC Monthly household income $583 

VCOST Variable costs with drinking water treatment $10 

C Bid in the Contingent Valuation Questionnaire  $28 

INFAN Dummy variable equal to one if there are children 
five years old or younger in the household; 0 
otherwise 

31% 

Z Distance between VCOST and C $25 

CONNEC Dummy variable equal to one if household is 
already connected to the water utility; 0 otherwise 

86% 

HSORMORE Dummy variable equal to one if household has 
some high school or more schooling; 0 otherwise 

22% 
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Table II.  Parameter Estimates of Independent Variables from Unconstrained and Constrained Models (with correlation) 
            Model

Set i 
Model
Set ii 

Model
Set iii 

Model
Set iv 

   Model
Set v 

 

 RP 
(un
c) 

SP 
(unc) 

RP/SP 
(con) 

RP 
(unc) 

SP 
(unc) 

RP/SP 
(con) 

RP 
(unc) 

SP 
(unc) 

RP/SP 
(con) 

RP 
(unc) 

SP 
(unc) 

RP/SP 
(con) 

RP 
(unc) 

SP 
(unc) 

RP/SP 
(con) 

const. 
 
 

0.6
1 

(3.8
0) 

0.88 
(5.13) 

0.65 
(6.56) 

0.61 
(3.80) 

1.39 
(4.56) 

0.61 
(7.30) 

0.61 
(3.79) 

1.21 
(4.67) 

0.65 
(7.59) 

1.14 
(4.74) 

1.23 
(5.46) 

1.26 
(6.98) 

 

1.14 
(4.71) 

1.52 
(4.06) 

1.26 
(6.85) 

connec 
 
 
 

0.5
3 

(3.1
2) 

-1.00 
(-6.58) 

0.54 
(4.64) 

 
-0.77 
(-6.4) 

0.53 
(3.12) 

-1.30 
(-5.37) 

 

0.58 
(5.50) 

 
-0.61 
(-5.77) 

0.53 
(3.12) 

-1.22 
(-5.59) 

0.55 
(5.13) 

 
-0.68 
(-6.55) 

0.69 
(2.94) 

-1.35 
(-6.64) 

0.57 
(3.24) 

 
-1.49 
(-5.97) 

0.69 
(2.92) 

-1.51 
(-5.15) 

0.58 
(3.32) 

 
-1.37 
(-5.15) 

infan 
 
 

0.3
1 

(2.4
3) 

0.11 
(0.90) 

0.16 
(2.13) 

0.31 
(2.42) 

0.11 
(0.71) 

0.11 
(1.76) 

0.31 
(2.45) 

0.11 
(0.72) 

0.13 
(1.91) 

0.62 
(3.27) 

0.27 
(1.57) 

0.48 
(3.37) 

0.63 
(3.26) 

0.25 
(1.32) 

0.44 
(2.98) 

hsorm. 
 
 

1.4
0 

(8.8
9) 

0.37 
(2.56) 

1.40 
(8.98) 

 
0.27 
(2.55) 

1.40 
(8.87) 

0.46 
(2.38) 

1.40 
(8.98) 

 
0.20 
(2.37) 

1.4 
(8.93) 

0.37 
(2.0) 

1.4 
(9.01) 

 
0.20 
(2.1) 

1.62 
(6.57) 

0.05 
(0.20) 

1.60 
(6.59) 

 
0.52 
(0.16) 

1.62 
(6.53) 

0.11 
(0.40) 

1.60 
(6.56) 

 
0.07 
(0.26) 

vcost/c 
   
 

-
0.0
3 
(-

22.
17) 

-0.05 
(-11.83) 

-0.03 
(-22.34) 

 

-0.03 
(-22.13) 

-0.08 
(-4.68) 

-0.03 
(-22.36) 

-0.03 
(-22.07) 

-0.06 
(-6.19) 

-0.03 
(-22.21) 

-0.08 
(-11.88) 

-0.06 
(8.90) 

-0.08 
(-11.95) 

-0.08 
(-11.87) 

-0.08 
(-4.01) 

-0.08 
(-11.94) 

 
ρ 

       -0.01
(-0.05) 

-0.01 
(-0.06) 

-0.01 -0.01 
(-0.08) (-0.09) 

-0.08
(-0.72) 

-0.07 
(-0.66) 

-0.07
(-0.54) 

-0.07 
(-0.61) 

 -0.06 
(-0.48) 

-0.07 
(-0.57) 

Note:  Numbers in parenthesis are t-ratios. 
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Table III.  Parameter Estimates of Variables Explaining Heteroscedasticity in Unconstrained and Constrained Models (with correlation) 
              Model

Set i 
Model
Set ii 

Model
Set iii 

Model
Set iv 

Model 
Set v 

 

 RP 
(unc) 

SP 
(unc) 

RP/SP 
(con) 

RP 
(unc) 

SP 
(unc) 

RP/SP 
(con) 

RP 
(unc) 

SP 
(unc) 

RP/SP 
(con) 

RP 
(unc) 

SP 
(unc) 

RP/SP 
(con) 

RP 
(unc) 

SP 
(unc) 

RP/SP 
(con) 

Inc 
θ1 

 

            0.001  
(8.16) 

0.001
(8.01) 

0.0007 
(8.14) 

0.0007
(7.97) 

Inc 
θ2 
 

           

            

            

            

0.0005 0.001 
(3.66) (3.68) 

0.0005 0.0005 
(3.36) (3.49) 

C 
θ3 

 

0.01
(2.50) 

0.01 
(2.10) 

0.007 0.004 
(0.66) (0.42) 

Z 
θ4 
 

0.01
(2.13) 

0.01 
(1.92) 

0.0004 0.0005 
(0.06) (0.06) 

λ -0.27 
(-2.76) 

 -0.75 
(-3.40) 

-0.57
(-3.30) 

0.19
(1.34) 

0.01
(0.05) 

Note:  Numbers in parenthesis are t-ratios. 
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Table IV.  Consistency Tests 
  Model             

Set i 
Model
Set ii 

Model
Set iii 

Model
Set iv 

Model
Set v 

 

Lc 

 

             -589.84  -588.24 -588.37 -558.68  -558.47

Lu 
 

             

            

             

             

-588.88  -586.53 -587.05 -557.73  -557.26

# Parameters 

(constrained) 
 

9  10  10 11  13

# Parameters 

(unconstrained) 
 

11 12  12 13  15

Likelihood  
Ratio 
Test 

1.92 3.42  2.64 1.90  2.42
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