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Abstract

We study signal-dependent experimentation in the presence of accumu-
lation and show that the passive-learner’s action surprisingly coincides with
the experimentor’s when the unknown term is the one determining the de-
cay rate of the stock, while they differ when the parameter being learned is
the one measuring the accumulation rate. These results highlight the impor-
tance of the dynamic structure of the problem in signal-dependent experi-
mentation. Moreover, they have important consequences for the pollution-
accumulation debate currently in progress.
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1 Introduction

RECENTLY, the experimentation literature has begun to study signal-depen-

dent problems where today’s signal, besides prompting the updating of

beliefs, is also directly payoff relevant in the future.1 We add to the signal-

dependent experimentation literature by showing that with accumulation, the

experimentation effect—defined as the difference between the experimentor’s

choice and the passive learner’s—can be zero. This is so in problems with ac-

cumulation when the unknown parameter is the one affecting the decay rate of

the stock.

These results highlight the importance of the dynamic structure in signal-

dependent problems, as they contrast with Datta, Mirman and Schlee’s (2002).

These authors have shown that the experimentation effect is in general not zero

in signal-dependent models. However, their dynamic structure cannot fully ac-

commodate accumulation and decay, and the uncertainty surrounding them. It

is exactly for the latter that we show experimentation to be necessarily nil.

One important application of our results involves the currently raging pol-

lution-accumulation debate concerning the tradeoff between the benefits of ex-

tra output and consumption today versus the future social cost of the pollution

thus caused. For instance, the effects of greenhouse gases (GHG) on climate

∗Thanks are due to Pedro P. Barros, Maria M. Ducla-Soares, Iliyian Georgiev, Mário Páscoa, Volker
Wieland, three anonymous referees and very especially Leonard J. Mirman for useful suggestions.
The authors retain responsibility for any remaining errors.

1Most of the extant experimentation literature involves signal-independent problems, of which
probably the best-known example is that of one or several firms altering their myopic quantity or
price choice to learn the demand they face (see inter alia Alepuz and Urbano (1999), Mirman et al.
(1977, 1993a, b, 1994)). Experimentation is also relevant in macroeconomics (see, among others,
Balvers and Cosimano (1994), Bertocchi and Spagat (1998) and Wieland (2000b, 2006).)
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change are of great relevance to the issue of whether or not to curb emissions

(and thus consumption) now.

We model a regulatory agency mandated to control consumption within a

dynamic model of a stock externality in which the regulator may learn over

time the relation between consumption and the pollution stock.2 This problem

involves, by its very nature, uncertainty regarding the parameters associated

with physical processes. Thus, the agency entertains different likely scenarios

concerning the unknown variables by holding priors whose supports encom-

pass the possible realizations that the unknown parameters may take. This

uncertainty makes learning of paramount importance to the agency since the

information available to it is constantly evolving.

We discuss three different and realistic ways in which the agency may learn.

First, it may simply take a prior and stick to it without ever revising it in light of

new evidence. We term it a non-learner. This depicts the case of an agency faced

with very limited resources to perform its regulatory task. Second, the agency

may choose consumption without realizing that its own choice influences the

subsequent learning process. We call it a passive learner. This might be the

case of an agency with moderate though enough resources to keep updating

its knowledge of the physical phenomena at the root of pollution accumula-

tion. A third and fully-sophisticated behavior would entail the agency setting

consumption while also weighting the value of extra information generated by

different consumption levels. We name it an experimentor. We compare opti-

mal consumption decisions in these three cases.3

Thus, besides contributing to the theoretical experimentation literature, our

paper also adds to the climate change literature. Several papers have exam-

ined the effect of learning on optimal decisions with irreversibilities, building

on Arrow and Fisher (1974), Henry (1974) and Epstein (1980).4 Kelly and Kol-

stad (1999) developed an experimentation model based on the unobservable

relationship between GHG levels and global mean temperature change, com-

puting the expected time involved in learning this relationship. Recently, Karp

and Zhang (2006) have studied the impact on optimal emissions of exogenous,

anticipated learning about the relation between environmental stocks and eco-

nomic damages in the context of a linear-quadratic model. In this setup, antici-

pated exogenous learning always increases emissions for a given set of beliefs.

Finally, tangential to this paper, there exists an important computationally-

oriented literature that quantifies the extent of active learning in economic

models with Bayesian learning, building upon the engineering dual-control lit-

erature. In this regard, particular mention should be given to the contributions

of Kiefer (1989), Wieland (2000a, b, 2006), and Beck and Wieland (2002) who

have studied the likelihood of incomplete learning and the speed of conver-

gence to the true parameter values. The theoretical problems underlying these

computational models, such as the asymptotic properties of beliefs, the pos-

sibility of incomplete learning, and the existence and characterization of the

2One may question the realism of this setting insofar as one does not observe regulatory agen-
cies directly regulating consumption. In reality, regulators curb emissions. This, in turn, reduces
consumption. In order not to clutter the presentation, the model includes only consumption and
pollution while omitting emissions.

3Beck and Wieland (2002) numerically compare the decisions of an experimentor and a passive
learner in a different setup.

4See, among others, Manne and Richels (1992), Kolstad (1993, 1996a, b), Peck and Teisberg
(1993), Ulph and Ulph (1997), Nordhaus and Popp (1997) and Kennedy (1999).
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optimal policy and value function in a Bayesian learning framework, are ad-

dressed in Easley and Kiefer (1988), Kiefer and Nyarko (1989), Aghion, Bolton,

Harris and Jullien (1991) and Nyarko (1991), among others.

Our main conclusions concerning the pollution-accumulation problem are

that a passive-learner agency, despite being less informationally sophisticated

than an experimentor, does as well as the latter when the decay rate is un-

known, but less well if the marginal contribution of consumption to the pollu-

tion stock is unknown. Thus, the lack of informational sophistication involved

in passively learning may or may not matter to welfare, depending on the pa-

rameter whose value is unknown. Moreover, it is shown that when there is accu-

mulation, beliefs interact with the pollution stock, qualifying the “näıve” view

that one should always consume more in order to learn more.5 This, in turn,

yields a new (informational) rationale for conservative emissions’ policies.

The remainder of the paper is organized as follows. The model is presented

in Section 2. In Sections 3 and 4, the agencies’ problems are examined when un-

certainty affects the decay rate and the marginal contribution of consumption

to the stock, respectively. Brief conclusions are drawn in Section 5.

2 The Model

The general problem under scrutiny is6

Max
c0,c1,...

∞∑
t=0

δtE
[
U
(
ct, pt

)]
s.t. pt+1 = αpt + βct + εt (1)

p0 given

where ct is consumption in period t, pt stands for the pollution stock in period

t, α represents the pollution decay rate, and β the rate at which consumption

adds to the stock of pollution. Finally, εt is a random variable capturing all

determinants of pollution besides consumption.7

The rates at which the stock of pollution decays, α, and consumption adds

to the pollution stock, β, are unknown, being instead parameters to be learned;

yet, other factors of a random nature (climatological, say) captured by εt ob-

scure this relationship.8 The agency must set consumption in this, to our mind,

quite informationally-realistic rendition of the pollution-accumulation process.

Further restrictions and assumptions are now added.

Assumption 1 δ ∈ (0,1).
5As Kelly and Kolstad (1999), p. 493, write: “We could interpret our climate change policy as

a grand experiment: by increasing GHG emissions we obtain information about how emissions
influence the climate.”

6From now on, we severely abuse notation by writing the pollution-accumulation problem as if
α and β were known, thus avoiding a cumbersome writing of the whole problem.

7Below we assume (in Assumption 7) that the distribution of εt has full support, f (ε) > 0,∀ε ∈
(−∞,+∞), thus ensuring that Bayesian updating never leads to a degenerate posterior. However,
this permits negative values of pt . It will become clear that this modeling trick does not affect the
main results of the paper. Moreover, by increasing the exogenous initial pollution stock, p0, one
can arbitrarily decrease the likelihood of negative future pollution stocks without any qualitative
impact on the paper’s conclusions. Thus, we suggest that the reader, while gathering the intuition
of the main results, think of the pollution stock as being positive.

8Note that these two issues are conceptually distinct. While in one case there are parameters
whose values are unknown, in the other there is stochastic uncertainty perturbing an otherwise
deterministic relationship.
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Assumption 2 0 < α ≤ 1,0 < β < +∞.

Assumption 3 U(·, ·) is continuously differentiable in c and p.

Assumption 4 Uc > 0.

Assumption 5 Up < 0 and Upp < 0.

Assumption 6 The random variables εt have zero mean and are identically,

independently distributed according to the continuously-differentiable density

function f (ε), such that f ′(ε)
f (ε) is continuous and decreasing in ε.

Assumption 7 f (ε) > 0,∀ε ∈ (−∞,+∞).

Assumption 1 states the discounting rate. Assumptions 2, 4 and 5 (first

part) ensure that the economic problem is meaningful. Assumption 2’s first

part rules out instantaneous decay, thus ensuring that accumulation takes

place, while the second part guarantees that consumption contributes posi-

tively to the pollution stock. Assumption 4 makes plain that consumption is

an economic good whereas Assumption 5 (first part) shows that pollution is an

economic “bad.” These assumptions, together with restriction (1), imply that

there is a tradeoff between current and future welfare. Assumptions 3, 5 (sec-

ond part), 6, and 7 are technical. Assumption 3 permits differentiation in what

follows. Assumption 5 (second part) allows for the computations in the paper.

Assumption 6 requires f ′(ε)
f (ε) to be decreasing in ε. This amounts to imposing

the strict monotone likelihood-ratio property (MLRP).9 Assumption 7’s rôle was

already explained in a footnote. Finally, the existence and characterization of

the optimal policy and value function in a Bayesian learning framework such

as ours is outside the scope of this paper (see the Introduction).

The timing is as follows. The stock of pollution is known at the beginning of

each period. Consumption is then chosen, pollution decay takes place, the ran-

dom factors behind ε are felt, and a new pollution stock is observed. Bayesian

updating of beliefs over the unknown parameters, α and β, takes place, and a

new period begins. The non-learner agency sticks to its prior concerning the

values of α and β. The passive-learner agency knows Bayes’ rule, but does not

take into account that it affects the rule’s realization by its choice of consump-

tion. The experimentor agency knows Bayes’ rule and fully incorporates it in its

decision process.

Since there are two parameters to be learned, we deal with each separately

while assuming the other to be known. We thus avoid entangling the effects of

two learning processes. We first treat the case where α is a parameter to be

learned while the true value of β is known, and then study the opposite case.

When the pollution decay rate, α, is unknown, suppose that it can take

values αi, i = 1, . . . ,m such that 0 < α1 < α2 < · · · < αm ≤ 1. Each αi
constitutes a scenario that the agency entertains concerning pollution decay

9To see this, consider any two values that α and β may take and denote them α′ and α′′
such that α′ > α′′, and β′ and β′′ such that β′ > β′′. As simple computations using (1)

show, f ′(ε)
f (ε) decreasing is a necessary and sufficient condition for

d

[
f(pt+1−α′pt−βet)
f(pt+1−α′′pt−βet)

]
dpt+1

> 0 and

d

[
f(pt+1−αpt−β′et)
f(pt+1−αpt−β′′et)

]
dpt+1

> 0. In plain words, Assumption 6 implies that a bigger future pollution

stock, pt+1, is associated with a higher relative posterior probability of a worse state of Nature
occurring. See Milgrom (1981).
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and to which it attaches a probability.10 Denote each period’s prior by πi ≡
Pr [α = αi] , i = 1, . . . ,m and write it succinctly as {πi}mi=1.

Similarly, when the marginal contribution to the stock, β, is unknown and

can take values βi, i = 1, . . . , n such that 0 < β1 < β2 < · · · < βn < +∞, denote

each period’s prior by πi ≡ Pr [β = βi] , i = 1, . . . , n and write it concisely as

{πi}ni=1.11

Finally, because degenerate beliefs do not allow for experimentation or even

learning, we make the following mild

Assumption 8 Initial prior beliefs, denotedπ0
i , are non-degenerate:π0

i < 1,∀i =
1,2, . . . ,m when α is unknown and π0

i < 1,∀i = 1,2, . . . , n when β is un-

known.12

2.1 Complete information

Suppose that the values of both α and β are known, in which case there is no

scope for either learning or experimentation. Then, the value function for such

a problem is

V
(
p
) = Max

c
U
(
c,p

)+ δEp̂ [V (p̂)]
s.t. p̂ = αp + βc + ε,

where ε being a random variable explains the expectation over p̂ regarding the

future.

2.2 Experimentor agency

2.2.1 Unknown α

Suppose that β’s value is known while α’s is not, i.e., the agency entertains

a prior on α which it updates by experimenting. From the prior {πi}mi=1, we

obtain the posterior

π̂i
(
p̂, c

) = πif
(
p̂ −αip − βc

)∑m
j=1πjf

(
p̂ −αjp − βc

) , i = 1,2, . . . ,m. (2)

The value function for such a problem is13

V
(
p, {πi}m−1

i=1

)
= Max

c

{
U
(
c,p

)+ δEp̂ [V (p̂, {π̂i (p̂, c)}m−1
i=1

)]}
s.t. p̂ = αp + βc + ε (3)

= Max
c

{
U
(
c,p

)+ δ∫ V (p̂, {π̂i (p̂, c)}m−1
i=1

)
h
(
p̂, c

)
dp̂
}

s.t. p̂ = αp + βc + ε,
where

h
(
p̂, c

) =
m∑
i=1

πif
(
p̂ −αip − βc

)
,

10Thus, low values of α constitute good states of Nature, i.e., optimistic scenarios.
11Since we always assume one of the parameters to be known, using this simplified notation for

beliefs, πi, (instead of coining different symbols for beliefs about α and β) spares confusion.
12Assumption 8 does not exclude the possibility of one or several elements in the support of

the distributions having zero probability in the initial prior. A version of the paper with only two
possible realizations for α and β is available from the authors upon request.

13Only m − 1 probabilities are needed as arguments of the value function since both prior and
posterior probabilities sum up to one. Obviously, the probability to be dropped can be arbitrarily
chosen.
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is the probability of p̂, and V
(
p̂,
{
π̂i
(
p̂, c

)}m−1
i=1

)
is a simplified notation for

V
(
p̂, π̂1

(
p̂, c

)
, π̂2

(
p̂, c

)
, . . . , π̂m−1

(
p̂, c

))
.14

2.3 Unknown β

Suppose now that α’s value is known while β’s is not, i.e., the agency entertains

a prior on β which it updates by experimenting. From the prior {πi}ni=1 one

obtains the posterior

π̂i
(
p̂, c

) = πif
(
p̂ −αp − βic

)∑m
j=1πjf

(
p̂ −αp − βjc

) , i = 1,2, . . . , n. (4)

The value function for such a problem is

V
(
p, {πi}n−1

i=1

)
= Max

c

{
U
(
c,p

)+ δEp̂ [V (p̂, {π̂i (p̂, c)}n−1
i=1

)]}
s.t. p̂ = αp + βc + ε

= Max
c

{
U
(
c,p

)+ δ∫ V (p̂, {π̂i (p̂, c)}n−1
i=1

)
h
(
p̂, c

)
dp̂
}

s.t. p̂ = αp + βc + ε,
where

h
(
p̂, c

) =
n∑
i=1

πif
(
p̂ −αp − βic

)
.

2.4 Passive-learner agency

The passive-learner’s problem is formally described as the experimentor’s but

for one crucial informational aspect. Hence, rather than giving a formal de-

scription of the passive learner’s problem similar to the one in the previous

subsection, we instead explain the difference between the two problems.15

A passive-learner agency does not factor in the effect of its choice of con-

sumption on posterior beliefs, but otherwise fully understands the dynamics of

the problem, including that beliefs updating takes place. The passive learner’s

problem thus coincides with the experimentor’s, except that the former does

not factor in the impact of its choice of consumption, c, on the posterior dis-

tribution of beliefs,
{
π̂i
(
p̂, c

)}m
i=1. This raises the question of how the passive-

learner’s beliefs and their updating feature in the problem. The passive-learner

optimizes based on future beliefs which are taken to be unaffected by its choice

of consumption, c, yet those beliefs must result from the Bayesian updating de-

scribed by (2) and (4) where c does appear.

Formally, take the objective function in (4) and write it as

V
(
p, {πi}m−1

i=1

)
= Max

c

{
U
(
c,p

)+ δEp̂ [V (p̂, {π̂i (p̂, y = c)}m−1
i=1

)]}
The experimentor is aware that y is indeed c and thus fully uses Bayes’ rule

to compute the f.o.c. The passive learner instead takes y as being independent

of c when optimizing, while using the latter to compute
{
π̂i
(
p̂, y = c)}m−1

i=1 ac-

cording to Bayes’ rule.16

14A simplified notation that we will use from now on.
15While restricting attention in the remainder of this section to the case where α is unknown.

The opposite case follows straightforwardly mutatis mutandis.
16Note that

{
π̂i
(
p̂, y = c)}m−1

i=1 determines the values of the last m − 1 arguments of

V
(
p̂,
{
π̂i
(
p̂, y = c)}m−1

i=1

)
. Hence, the passive learner must rationally expect the value function.
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From a computational viewpoint, the difference between the experimentor’s

and passive learner’s problems is that, when computing a f.o.c., the passive-

learner agency does not take into account the derivative of each π̂i (·, ·) with

respect to c whereas the (fully-rational) experimentor does.17

2.5 Non-learner agency

Take the non-learner agency’s problem. Its value function is

V
(
p;
{
π0
i

}m−1

i=1

)
= Max

c

{
U
(
c,p

)+ δEp̂ [V (p̂;
{
π0
i

}m−1

i=1

)]}
s.t. p̂ = αp + βc + ε

= Max
c

{
U
(
c,p

)+ δ∫ V (p̂;
{
π0
i

}m−1

i=1

)
h
(
p̂, c

)
dp̂
}

s.t. p̂ = αp + βc + ε,

where

h
(
p̂, c

) =
m∑
i=1

π0
i f
(
p̂ −αip − βc

)
.

3 The Agencies’ Problems: Unknown α

Let β be known and α the object of learning. We begin by formally comparing

the experimentor’s choice of consumption with the passive learner’s and the

non-learner’s, explaining the results intuitively and relegating all proofs to an

appendix.

Theorem 1 A passive-learner agency chooses the same consumption level as an

experimentor agency.

We now compare the experimentor and non-learner agencies’ choice of con-

sumption.

Theorem 2 Experimentor and passive-learner agencies may choose higher, lower

or the same consumption level as a non-learner agency.

These results are intuitive. Let us begin with Theorem 1. Note that a unitary

increase in c shifts the distribution of p̂ by the same amount, namely β, what-

ever the realization of α. To see this, take Figure 1 which considers two possible

realizations of the unknown parameter and denotes them α′ and α′′ such that

α′ > α′′. Then, note that the relative position of the distributions of p̂ condi-

tional on α′ and α′′ stays the same whatever the value chosen for the decision

variable, c. Formally, dπ̂i
dc = 0, i = 1,2, . . . ,m.18 Plainly, whatever the consump-

tion level chosen, nothing more is learned at the end of one period about the

true value of the unknown parameter, α, besides the information generated by

17See equations (A.2) and (A.3) in Datta, Mirman and Schlee (2002), p. 604.
18Note that

dπ̂i
dc

= ∂π̂i
∂p̂

dp̂
dc

+ ∂π̂i
∂c

, i = 1,2, . . . ,m,

which, by (1) and (A.1), yields

dπ̂i
dc

= β∂π̂i
∂p̂

− β∂π̂i
∂p̂

= 0, i = 1,2, . . . ,m.
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pollution decaying from p to αp. Hence, the experimentor agency—who con-

siders the informational consequences of its choice—and the passive-learner—

who does not—choose the same consumption level (Theorem 1). On the other

hand, the non-learner ignores the information generated by pollution decay.

This explains the difference in behavior between the non-learner and the other

two agencies (Theorem 2).

✲

p̂
∣∣α′′,c p̂

∣∣α′,c
p̂
∣∣α′′,c+∆c p̂

∣∣α′,c+∆c

p̂

✲ ✲ ✲ ✲

Figure 1. Immediate informational effect of changes in c: α unknown (∆c > 0).

Interestingly, setting a higher consumption today does yield extra informa-

tion after two or more periods. Why? A unitary increase in current consump-

tion implies an increase in tomorrow’s pollution stock of β which, after one

more period, will start decaying at a rate determined by the realization of the

unknown parameter, α. Such an increase in p brought about by a previous in-

crease in c shifts the distributions of p̂ contingent on α′ and α′′ by different

amounts, driving them apart (see Figure 2). Therefore, the more consumption

an agency allows in one period, the more it learns about the true value of the

unknown parameter two periods hence and beyond.

One may then find Theorem 1 paradoxical in view of this fact: why do not

these delayed informational effects lead to a difference in the setting of optimal

consumption between an experimentor agency and a passive-learner agency?

To see why, note that the latter, while not taking into account the impact of

extra consumption in one period on beliefs updating at the end of that period,

fully understands the dynamics of the problem. Thus, it realizes the long-run

impact of an extra unit of consumption on all subsequent beliefs updating

once it translates into β extra units of pollution stock.19 Therefore, all infor-

mational gains other than that occurring at the end of the current period are

equally perceived by both the passive-learner and the experimentor agencies.

Any difference in their behavior, were it to exist, would result from different

assessments of the impact of their choice of consumption on immediate (end-

of-period) beliefs updating. Yet, while the experimentor agency chooses c know-

19Formally, note that the passive-learner agency acts as if
{
π̂i
(
p̂, c

)}m
i=1 did not depend on c

only when optimizing, but otherwise reasons as the experimentor (recall subsection 2.4). Hence,
once consumption feeds the pollution stock, the passive-learner agency gathers all the information
generated by its decay.
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✲

p̂
∣∣∣α′′,p p̂

∣∣∣α′,p
p̂
∣∣∣α′′,p+∆p p̂

∣∣∣α′,p+∆p

p̂

✲ ✲ ✲ ✲

Figure 2. Delayed informational effect of changes in c: α unknown (∆c > 0).

ing that beliefs will not be affected by that choice, dπ̂i
dc = 0, i = 1,2, . . . ,m, the

passive-learner agency chooses it assuming that they are not affected by c, i.e.,
dπ̂i
dc ≡ 0, i = 1,2, . . . ,m, an assumption that thus turns out to prove correct.

Ergo, the same level of consumption is chosen by the experimentor and the

passive-learner agencies.

Let us explain Theorem 2 now. Informational effects are taken into ac-

count by the experimentor and passive-learner agencies and ignored by the

non-learner. Hence their different choice of consumption. How will an exper-

imentor and a passive-learner agency set consumption when compared to a

non-learning agency? At this point, one may be tempted to invoke Mirman et

al.’s (1993a, p. 560) intuition—namely, that “ . . . the firm will adjust quantity so

as to increase the spread between mean demand curves,” i.e., always adjust the

decision variable so as to increase information—and conclude that consump-

tion as set by the experimentor and the passive-learner agencies will necessar-

ily be higher than the non-learner’s in a quest for more information. As will

be demonstrated, this is not necessarily the case.20 The proof makes it plain

that the result depends on the sign and magnitude of the terms involving the

cross-derivatives of the value function with respect to the pollution stock and

beliefs. This interaction between beliefs and the pollution stock may lead the

experimentor and passive-learner agencies to choose less consumption than

the non-learner agency even though more consumption, and the associated

pollution, would yield more information.

4 The Agencies’ Problems: Unknown β

Let α be known and β the object of learning. Interestingly, the results of the

previous section do not carry over to the case where the marginal contribution

of the flow to the stock is unknown. In fact,

20This is the major consequence of the signal-dependent nature of the pollution-accumulation
problem as we formulate it. Mirman et al.’s (1993a) problem is signal independent. Hence, their
conclusion.
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Theorem 3 An experimentor agency may choose a higher, lower or the same

consumption level as a passive-learner agency.

The reason for the striking difference between Theorems 1 and 3 is easy to un-

derstand by reference to the previous section’s intuitions. Now, an additional

unit of consumption immediately drives apart the distributions of pollution

conditional on different realizations of β. Hence, beliefs are impacted differ-

ently by different choices of consumption. Therefore, informational gains are

obtainable by taking into account the impact of c on beliefs updating, some-

thing that the experimentor does and the passive learner does not.

Why does not the experimentor agency necessarily set a higher consump-

tion level in order to gather more information? Again, the explanation was al-

ready given at the very end of the previous section.

Taking a non-learner agency as the benchmark, we obtain the following

Theorem 4 An experimentor agency may choose a higher, lower or the same

consumption level as a non-learner agency.

The intuition for this result is the same as the one in the previous section.

To summarize, when the marginal contribution of the flow to the stock is

uncertain, the experimentor agency may choose a higher or lower consump-

tion, or the same as the passive-learner and non-learner agencies, even though

consuming more yields more information.

5 Conclusions

We study a signal-dependent experimentation problem involving accumulation.

We show that if the decision variable is a flow and the parameter to be learned

is the decay rate of the stock, the experimentation effect is nil, and passive

learning encapsulates all the learning that may take place, whereas this result

does not hold if the unknown parameter is the one measuring the marginal con-

tribution of the flow to the stock. This uncovers the importance of the dynamic

structure of signal-dependent problems.

We illustrate these points in the context of an informationally-realistic ren-

dition of the pollution-accumulation problem by assuming that uncertainty sur-

rounds two physical processes, the pollution-stock decay and the marginal rate

at which consumption adds to the pollution stock. We conclude that if there is

uncertainty concerning the decay rate of pollution while the rate at which con-

sumption feeds the pollution stock is well-determined, then an agency that

does not experiment but acts instead as a passive learner induces no welfare

loss, whereas a non-learner will likely induce such a loss. In contrast, if un-

certainty surrounds the marginal contribution of consumption to the pollution

stock, both the passive-learner and the non-learner agency will likely induce a

welfare loss. Moreover, it may be optimal for an experimentor agency to de-

crease consumption vis-à-vis a passive- or a non-learner agency, even though

increasing consumption yields more information concerning those processes.

This hinges on the impact that increased pollution resulting from increased

consumption has on the value of extra information, and qualifies the näıve in-

formational view that consumption should always be increased when one is in

the position to learn more by emitting.
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One can draw an analogy between our (signal-dependent) problem and the

signal-independent one treated in Mirman et al. (1993a). They study how a mo-

nopolist distorts its myopic choice in order to learn about the unknown de-

mand it faces: our α-case resembles their unknown-intercept case, whereas the

β-case is reminiscent of the unknown-slope one.21

The three agencies depict three types of behavior resulting from different

levels of sophistication in dealing with information. Only the experimentor can

be described as fully optimal in dealing with information. The passive-learner

agency’s lack of sophistication becomes apparent if one thinks of it as erro-

neously computing a first-order condition. As to the non-learner agency, it cor-

rectly solves its mathematical problem but exhibits näıve understanding. To

see this, suppose that it is endowed with an optimistic prior (i.e., a positively

skewed π0 entailing a high probability of α or β taking small values) and sees

large levels of pollution steadily accumulating (i.e., a bad state of Nature in-

volving a high value of α or β turns out to be true). This non-learner agency, by

definition, sticks to its prior even though it observes dauntingly-increasing pol-

lution stocks. Yet, because one can easily imagine situations where pollution-

setting agencies may sub-optimally deal with information in a manner that our

analysis captures, these theoretical results are of practical interest.

One may reasonably ask—as one referee did—which type of physical pro-

cess is more likely to be unknown and subject to learning and experimentation

over time. First, both types of processes, those captured by α as well as those

modeled by β, are equally likely to involve uncertainty. For an example of an

α-type parameter, take carbon dioxide’s natural abatement, mainly an oceanic

process. The depreciation rate, α, determines the time constant, 1
α , of CO2’s

residence in the atmosphere. Nordhaus (1991) surveyed the literature and set

α = 0.005, corresponding to a time constant of 200 years. However, there is

controversy concerning the residence time of CO2 in the atmosphere as the

literature that studies carbon sinks and CO2 mitigation strategies makes plain

(IPCC report (Watson et al., 2001), Moura-Costa and Wilson (2000)). For an ex-

ample of a β-type parameter, consider the use of forests as a carbon sink. The

amount of CO2 that is released when the forest is harvested depends upon the

use given to timber, as well as the amount of litter, branches, tops, stump and

roots produced at harvest. With this is mind, Van Kooten, Binkley and Delcourt

(1995) introduced a parameter, b, which measures the fraction of timber that

goes into long-term storage in permanent structures. The precise value of b
is unknown.22 As to the relative likelihood of these two types of parameter

uncertainty, one may only conjecture that since β-like parameters are directly

associated with consumption whereas α-type parameters are associated with

the pollution stock, the former may be easier to ascertain than the later insofar

as consumption and emissions are easier to observe than the pollution stock.

Moreover, current technology seems to be better at finely controlling emissions

(e.g., scrubbers, car converters) than the pollution stock.

From a policy standpoint, we show that it can be socially rational to de-

crease consumption, even though this leads to less information gathering. This

is a new reason for conservative emissions’ policies, stemming as it does from

21We are grateful to Leonard J. Mirman for pointing out this analogy.
22Interestingly, b is not only a technology-driven parameter but an economic-driven one, too,

since it depends on the relative prices of competing timber uses.
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an informational argument, and should be contrasted to the better-known con-

servation argument associated with the accumulation effect of an economic

“bad.”
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Appendix

Proof of Theorem 1 We begin by calculating ∂π̂i
∂p̂ and ∂π̂i

∂c , i = 1,2, . . . ,m, which

will later prove useful. From (2), recall that

π̂i = πi f
(
p̂ −αip − βc

)∑m
j=1πj f

(
p̂ −αjp − βc

) , i = 1,2, . . . ,m.

Thus,

∂π̂i
∂p̂

=
πi f ′

(
p̂ −αip − βc

)∑m
j=1πj f

(
p̂ −αjp − βc

)
(∑m

j=1πj f
(
p̂ −αjp − βc

))2 −

−
πi f

(
p̂ −αip − βc

)∑m
j=1πj f ′

(
p̂ −αjp − βc

)
(∑m

j=1πj f
(
p̂ −αjp − βc

))2 , i = 1,2, . . . ,m.

Similarly,

∂π̂i
∂c

= −
πiβf ′

(
p̂ −αip − βc

)∑m
j=1πj f

(
p̂ −αjp − βc

)
(∑m

j=1πj f
(
p̂ −αjp − βc

))2 +

+
πi f

(
p̂ −αip − βc

)
β
∑m
j=1πj f ′

(
p̂ −αjp − βc

)
(∑m

j=1πj f
(
p̂ −αjp − βc

))2 , i = 1,2, . . . ,m,

which yields

∂π̂i
∂c

= −β∂π̂i
∂p̂

, i = 1,2, . . . ,m. (A.1)

From section 2.2.1, recall that the value function of the problem of an ex-

perimentor agency is

V
(
p, {πi}m−1

i=1

)
= Max

c

{
U
(
c,p

)+ δEp̂ [V (p̂, {π̂i (p̂, c)}m−1
i=1

)]}
s.t. p̂ = αp + βc + ε

= Max
c

{
U
(
c,p

)+ δ∫ V (p̂, {π̂i (p̂, c)}m−1
i=1

)
h
(
p̂, c

)
dp̂
}

s.t. p̂ = αp + βc + ε,

where

h
(
p̂, c

) =
m∑
i=1

πif
(
p̂ −αip − βc

)
,

The f.o.c. for an interior solution of this problem is such that

∂U
(
c,p

)
∂c

+ δ
∂Ep̂

[
V
(
p̂,
{
π̂i
(
p̂, c

)}m−1
i=1

)]
∂c

= 0.

The second term reflects both accumulation, which captures the welfare conse-

quences of variations in the pollution stock brought about by changes in con-

sumption, and experimentation, which concerns the influence of consumption
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on future beliefs. Formally,

∂Ep̂
[
V
(
p̂,
{
π̂i
(
p̂, c

)}m−1
i=1

)]
∂c

=
∂
∫
V
(
p̂,
{
π̂i
(
p̂, c

)}m−1
i=1

)
h
(
p̂, c

)
dp̂

∂c
=

=
∫ m−1∑

i=1

∂V
(
p̂,
{
π̂i
(
p̂, c

)}m−1
i=1

)
∂π̂i

∂π̂i
∂c

h (p̂, c)dp̂ +

+
∫
V
(
p̂,
{
π̂i
(
p̂, c

)}m−1
i=1

) ∂h (p̂, c)
∂c

dp̂.

Inserting (A.1), we obtain

∂
∫
V
(
p̂,
{
π̂i
(
p̂, c

)}m−1
i=1

)
h
(
p̂, c

)
dp̂

∂c
=

= −β
∫ m−1∑

i=1

∂V
(
p̂,
{
π̂i
(
p̂, c

)}m−1
i=1

)
∂π̂i

∂π̂i
∂p̂

h (p̂, c)dp̂ +

+
∫
V
(
p̂,
{
π̂i
(
p̂, c

)}m−1
i=1

) ∂h (p̂, c)
∂c

dp̂. (A.2)

Rewriting the second term of the right-hand side, we have∫
V
(
p̂,
{
π̂i
(
p̂, c

)}m−1
i=1

) ∂h (p̂, c)
∂c

dp̂ =

= −β
∫
V
(
p̂,
{
π̂i
(
p̂, c

)}m−1
i=1

)
×

×
 m∑
i=1

πi f ′
(
p̂ −αip − βc

)dp̂.

Integrating by parts, one obtains

β
∫ m−1∑

i=1

∂V
(
p̂,
{
π̂i
(
p̂, c

)}m−1
i=1

)
∂π̂i

∂π̂i
∂p̂

×
×
 m∑
i=1

πi f
(
p̂ −αip − βc

)dp̂ +

+β
∫ ∂V (p̂, {π̂i (p̂, c)}m−1

i=1

)
∂p̂

×

×
 m∑
i=1

πi f
(
p̂ −αip − βc

)dp̂ =

= β
∫ m−1∑

i=1

∂V
(
p̂,
{
π̂i
(
p̂, c

)}m−1
i=1

)
∂π̂i

∂π̂i
∂p̂

h (p̂, c)dp̂ +

+β
∫ ∂V (p̂, {π̂i (p̂, c)}m−1

i=1

)
∂p̂

h
(
p̂, c

)
dp̂,

which, substituted in (A.2), yields

∂
∫
V
(
p̂,
{
π̂i
(
p̂, c

)}m−1
i=1

)
h
(
p̂, c

)
dp̂

∂c
=

= β
∫ ∂V (p̂, {π̂i (p̂, c)}m−1

i=1

)
∂p̂

h
(
p̂, c

)
dp̂.
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Thus, an experimentor agency evaluates the future welfare cost of pollution to

be weighted against the utility of current consumption as

∂Ep̂
[
V
(
p̂,
{
π̂i
(
p̂, c

)}m
i=1

)]
∂c

=

= β
∫ ∂V (p̂, {π̂i (p̂, c)}mi=1

)
∂p̂

h
(
p̂, c

)
dp̂.

Now, take the initial-period problem of the passive-learner agency. Its value

function is

V
(
p, {πi}m−1

i=1

)
= Max

c

{
U
(
c,p

)+ δEp̂ [V (p̂, {π̂i (p̂, c)}m−1
i=1

)]}
s.t. p̂ = αp + βc + ε

= Max
c

{
U
(
c,p

)+ δ∫ V (p̂, {π̂i (p̂, c)}m−1
i=1

)
h
(
p̂, c

)
dp̂
}

s.t. p̂ = αp + βc + ε,

which thus equals that of the experimentor, except that the dependency of

the posterior
{
π̂i
(
p̂, c

)}m
i=1 on consumption is ignored by the passive learner

agency when optimizing. Differentiating the second term of the objective func-

tion with this in mind, one obtains

δ
∂Ep̂

[
V
(
p̂,
{
π̂i
(
p̂, c

)}m−1
i=1

)]
∂c

= δ
∂
[∫
V
(
p̂,
{
π̂i
(
p̂, c

)}m−1
i=1

)
h
(
p̂, c

)
dp̂
]

∂c
=

= δ
∫
V
(
p̂,
{
π̂i
(
p̂, c

)}m−1
i=1

) ∂h (p̂, c)
∂c

dp̂. (A.3)

Rewriting the r.h.s. of the previous expression, we obtain

δ
∫
V
(
p̂,
{
π̂i
(
p̂, c

)}m−1
i=1

) ∂h (p̂, c)
∂c

dp̂ =

= −δβ
∫
V
(
p̂,
{
π̂i
(
p̂, c

)}m−1
i=1

)
×

×
 m∑
i=1

πi f ′
(
p̂ −αip − βc

)dp̂.

Integrating by parts while recalling that the dependency of the posterior on

consumption is ignored by the passive learner, we get

δ
∫
V
(
p̂,
{
π̂i
(
p̂, c

)}m−1
i=1

) ∂h (p̂, c)
∂c

dp̂ =

= δβ
∫ ∂V (p̂, {π̂i (p̂, c)}m−1

i=1

)
∂p̂

×

×
 m∑
i=1

πi f
(
p̂ −αip − βc

)dp̂ =

= δβ
∫ ∂V (p̂, {π̂i (p̂, c)}m−1

i=1

)
∂p̂

h
(
p̂, c

)
dp̂,
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which, substituted in (A.3), yields

δ
∂
[∫
V
(
p̂,
{
π̂i
(
p̂, c

)}m−1
i=1

)
h
(
p̂, c

)
dp̂
]

∂c
=

= δβ
∫ ∂V (p̂, {π̂i (p̂, c)}m−1

i=1

)
∂p̂

h
(
p̂
)

dp̂.

Therefore,

δ
∂Ep̂

[
V
(
p̂,
{
π̂i
(
p̂, c

)}m−1
i=1

)]
∂c

=

= δβ
∫ ∂V (p̂, {π̂i (p̂, c)}m−1

i=1

)
∂p̂

h
(
p̂
)

dp̂. (A.4)

Hence, both agencies perceive the same tradeoff between present welfare-en-

hancing consumption and future welfare reductions due to increased pollution

generated by current consumption.

Proof of Theorem 2 Now, take the problem of the non-learner agency. Its value

function is

V
(
p;
{
π0
i

}m
i=1

)
= Max

c

{
U
(
c,p

)+ δEp̂ [V (p̂;
{
π0
i

}m−1

i=1

)]}
s.t. p̂ = αp + βc + ε

= Max
c

{
U
(
c,p

)+ δ∫ V (p̂;
{
π0
i

}m−1

i=1

)
h
(
p̂, c

)
dp̂
}

s.t. p̂ = αp + βc + ε,

where

h
(
p̂, c

) =
m∑
i=1

π0
i f
(
p̂ −αip − βc

)
.

Differentiating the second term of the objective function, one obtains

δ
∂Ep̂

[
V
(
p̂;
{
π0
i

}m−1

i=1

)]
∂c

= δ
∂
[∫
V
(
p̂;
{
π0
i

}m−1

i=1

)
h
(
p̂, c

)
dp̂
]

∂c
=

= δ
∫
V
(
p̂;
{
π0
i

}m−1

i=1

)
∂h
(
p̂, c

)
∂c

dp̂. (A.5)

Rewriting the r.h.s. of the previous expression, we obtain

δ
∫
V
(
p̂;
{
π0
i

}m−1

i=1

)
∂h
(
p̂, c

)
∂c

dp̂ =

= −δβ
∫
V
(
p̂;
{
π0
i

}m−1

i=1

)
×

×
 m∑
i=1

πi f ′
(
p̂ −αip − βc

)dp̂.
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Integrating by parts, we get

δ
∫
V
(
p̂;
{
π0
i

}m−1

i=1

)
∂h
(
p̂, c

)
∂c

dp̂ =

= δβ
∫ ∂V (p̂;

{
π0
i

}m−1

i=1

)
∂p̂

×

×
 m∑
i=1

πi f
(
p̂ −αip − βc

)dp̂ =

= δβ
∫ ∂V (p̂;

{
π0
i

}m−1

i=1

)
∂p̂

h
(
p̂, c

)
dp̂,

which, substituted in (A.5), yields

δ
∂
[∫
V
(
p̂;
{
π0
i

}m−1

i=1

)
h
(
p̂, c

)
dp̂
]

∂c
=

= δβ
∫ ∂V (p̂;

{
π0
i

}m−1

i=1

)
∂p̂

h
(
p̂, c

)
dp̂.

Thus,

δ
∂Ep̂

[
V
(
p̂;
{
π0
i

}m−1

i=1

)]
∂c

= δβ
∫ ∂V (p̂;

{
π0
i

}m−1

i=1

)
∂p̂

h
(
p̂, c

)
dp̂. (A.6)

Direct comparison of (A.4) and (A.6) shows that their difference rests on the

impact of beliefs updating on the future value of the game, an effect that cannot

be signed.

Proof of Theorem 3 As before, we need to evaluate ∂π̂i
∂p̂ and ∂π̂i

∂c , i = 1,2, . . . , n.

From (4), recall that

π̂i = πif
(
p̂ −αp − βic

)∑n
j=1πjf

(
p̂ −αp − βjc

) , i = 1,2, . . . , n,

from which we obtain

∂π̂i
∂p̂

=
πif ′

(
p̂ −αp − βic

)∑n
j=1πjf

(
p̂ −αp − βjc

)
(∑n

j=1πjf
(
p̂ −αp − βjc

))2 −

−
πif

(
p̂ −αp − βic

)∑n
j=1πjf ′

(
p̂ −αp − βjc

)
(∑n

j=1πjf
(
p̂ −αp − βjc

))2 , (A.7)

i = 1,2, . . . , n.

By the same token,

∂π̂i
∂c

= −
πiβif ′

(
p̂ −αp − βic

)∑n
j=1πjf

(
p̂ −αp − βjc

)
(∑n

j=1πjf
(
p̂ −αp − βjc

))2 +

+
πif

(
p̂ −αp − βic

)∑n
j=1πjβjf ′

(
p̂ −αp − βjc

)
(∑n

j=1πjf
(
p̂ −αp − βjc

))2 ,

i = 1,2, . . . , n.
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which can be restated as

∂π̂i
∂c

= −βi ∂π̂i∂p̂
−
πiβif

(
p̂ −αp − βic

)∑n
j=1πjf ′

(
p̂ −αp − βjc

)
(∑n

j=1πjf
(
p̂ −αp − βjc

))2 +

+
πif

(
p̂ −αp − βic

)∑n
j=1πjβjf ′

(
p̂ −αp − βjc

)
(∑n

j=1πjf
(
p̂ −αp − βjc

))2 ,

i = 1,2, . . . , n.

Using (4), we finally obtain

∂π̂i
∂c

= −βi ∂π̂i∂p̂
−
π̂iβi

∑n
j=1πjf ′

(
p̂ −αp − βjc

)
∑n
j=1πjf

(
p̂ −αp − βjc

) +

+
π̂i
∑n
j=1πjβjf ′

(
p̂ −αp − βjc

)
∑n
j=1πjf

(
p̂ −αp − βjc

) , i = 1,2, . . . , n.

(A.8)

Take the value function of the experimentor agency’s problem:

V
(
p, {πi}n−1

i=1

)
= Max

c

{
U
(
c,p

)+ δEp̂ [V (p̂, {π̂i (p̂, c)}n−1
i=1

)]}
s.t. p̂ = αp + βc + ε

= Max
c

{
U
(
c,p

)+ δ∫ V (p̂, {π̂i (p̂, c)}n−1
i=1

)
h
(
p̂, c

)
dp̂
}

s.t. p̂ = αp + βc + ε,

where

h
(
p̂, c

) =
n∑
i=1

πif
(
p̂ −αp − βic

)
.

Differentiating the second term of the functional objective, one obtains

δ
∂Ep̂

[
V
(
p̂,
{
π̂i
(
p̂, c

)}n−1
i=1

)]
∂c

=

= δ
∫ n−1∑

i=1

∂V
(
p̂,
{
π̂i
(
p̂, c

)}n−1
i=1

)
∂π̂i

∂π̂i
∂c

h (p̂, c)dp̂ +

+δ
∫
V
(
p̂,
{
π̂i
(
p̂, c

)}n−1
i=1

) ∂h (p̂, c)
∂c

dp̂. (A.9)
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Using (A.8) and integrating the second term above by parts, we obtain

−δ
∫ n−1∑

i=1

βi
∂V
(
p̂,
{
π̂i
(
p̂, c

)}n−1
i=1

)
∂π̂i

∂π̂i
∂p̂

×
×
 n∑
i=1

πif
(
p̂ −αp − βic

)dp̂ +

+
∫ n−1∑

i=1

βi
∂V
(
p̂,
{
π̂i
(
p̂, c

)}n−1
i=1

)
∂π̂i

π̂i

×
×
 n∑
i=1

πif ′
(
p̂ −αp − βic

)dp̂ −

−
∫ n−1∑

i=1

∂V
(
p̂,
{
π̂i
(
p̂, c

)}n−1
i=1

)
∂π̂i

π̂i

×
×
 n∑
i=1

πiβif ′
(
p̂ −αp − βic

)dp̂ −

−
∫ n−1∑

i=1

∂V
(
p̂,
{
π̂i
(
p̂, c

)}n−1
i=1

)
∂π̂i

∂π̂i
∂p̂

×
×
 n∑
i=1

πiβif
(
p̂ −αp − βic

)dp̂ −

−
∫ ∂V (p̂, {π̂i (p̂, c)}n−1

i=1

)
∂p̂

×

×
 n∑
i=1

πiβif
(
p̂ −αp − βic

)dp̂

 . (A.10)

We need to integrate the second and third terms above by parts. Let us begin

with the second term:

−
∫ n−1∑

i=1

βi
∂V
(
p̂,
{
π̂i
(
p̂, c

)}n−1
i=1

)
∂π̂i

π̂i


︸ ︷︷ ︸

u(p̂)

 n∑
i=1

πif ′
(
p̂ −αp − βic

)dp̂

︸ ︷︷ ︸
v′(p̂)dp̂

.

We get

∫ n−1∑
i=1

βi
∂2V

(
p̂,
{
π̂i
(
p̂, c

)}n−1
i=1

)
∂π̂2

i

∂π̂i
∂p̂

π̂i+

+
n−1∑
i=1

βi
∂2V

(
p̂,
{
π̂i
(
p̂, c

)}n−1
i=1

)
∂π̂i ∂p̂

π̂i+

+
n−1∑
i=1

βi
∂V
(
p̂,
{
π̂i
(
p̂, c

)}n−1
i=1

)
∂π̂i

∂π̂i
∂p̂

v (p̂)dp̂,

where v
(
p̂
) =∑n

i=1πif
(
p̂ −αp − βic

)
.

Now, take the third term of (A.10),

∫ n−1∑
i=1

∂V
(
p̂,
{
π̂i
(
p̂, c

)}n−1
i=1

)
∂π̂i

π̂i


︸ ︷︷ ︸

u(p̂)

 n∑
i=1

πiβif ′
(
p̂ −αp − βic

)dp̂

︸ ︷︷ ︸
v′(p̂)dp̂

,
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and subject it to a similar integration, yielding

−
∫ n−1∑

i=1

∂2V
(
p̂,
{
π̂i
(
p̂, c

)}n−1
i=1

)
∂π̂2

i

∂π̂i
∂p̂

π̂i+

+
n−1∑
i=1

∂2V
(
p̂,
{
π̂i
(
p̂, c

)}n−1
i=1

)
∂π̂i ∂p̂

π̂i +

+
n−1∑
i=1

∂V
(
p̂,
{
π̂i
(
p̂, c

)}n−1
i=1

)
∂π̂i

∂π̂i
∂p̂

v (p̂)dp̂,

where v
(
p̂
) = ∑n

i=1πiβif
(
p̂ −αp − βic

)
. Replacing all these in (A.10), we fi-

nally obtain

∂Ep̂
[
V
(
p̂,
{
π̂i
(
p̂, c

)}n−1
i=1

)]
∂c

=

= δ
∫ n−1∑

i=1

βi
∂2V

(
p̂,
{
π̂i
(
p̂, c

)}n−1
i=1

)
∂π̂2

i

∂π̂i
∂p̂

π̂i

×
×
 n∑
i=1

πif
(
p̂ −αp − βic

)dp̂ +

+
∫ n−1∑

i=1

βi
∂2V

(
p̂,
{
π̂i
(
p̂, c

)}n−1
i=1

)
∂π̂i∂p̂

π̂i

×
×
 n∑
i=1

πif
(
p̂ −αp − βic

)dp̂ −

−
∫ n−1∑

j=1

∂2V
(
p̂,
{
π̂i
(
p̂, c

)}n−1
i=1

)
∂π̂2

i

∂π̂i
∂p̂

π̂i

×
×
 n∑
i=1

πiβif
(
p̂ −αp − βic

)dp̂ −

−
∫ n−1∑

i=1

∂2V
(
p̂,
{
π̂i
(
p̂, c

)}n−1
i=1

)
∂π̂i∂p̂

π̂i

×
×
 n∑
i=1

πiβif
(
p̂ −αp − βic

)dp̂ +

+
∫ ∂V (p̂, {π̂i (p̂, c)}n−1

i=1

)
∂p̂

×

×
 n∑
i=1

πiβif
(
p̂ −αp − βic

)dp̂

 . (A.11)

The comparable expression for a passive-learner agency is as follows:

∂Ep̂
[
V
(
p̂,
{
π̂i
(
p̂, c

)}n−1
i=1

)]
∂c

=

= δ
∫ ∂V (p̂, {π̂i (p̂, c)}n−1

i=1

)
∂p̂

×

×
 n∑
i=1

πiβif
(
p̂ −αp − βic

)dp̂. (A.12)
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The difference between (A.11) and (A.12) captures the experimentation effect.

The comparison is made easier by simplifying the problem to only two states

of Nature,
{
β,β

}
. Without loss of generality, let β > β and π and π̂ be the prior

and posterior probabilities associated with β. In this case, (A.11) can be written

as

δ
[∫

β
∂2V

(
p̂, π̂

(
p̂, c

))
∂π̂2

∂π̂
∂p̂
π̂×

×
(
πf

(
p̂ −αp − βc

)
+ (1−π)f

(
p̂ −αp − βc

))
dp̂ +

+
∫
β
∂2V

(
p̂, π̂

(
p̂, c

))
∂π̂∂p̂

π̂ ×

×
(
πf

(
p̂ −αp − βc

)
+ (1−π)f

(
p̂ −αp − βc

))
dp̂ −

−
∫
∂2V

(
p̂, π̂

(
p̂, c

))
∂π̂2

∂π̂
∂p̂
π̂ ×

×
(
πβf

(
p̂ −αp − βc

)
+ (1−π)βf

(
p̂ −αp − βc

))
dp̂ −

−
∫
∂2V

(
p̂, π̂

(
p̂, c

))
∂π̂∂p̂

π̂ ×

×
(
πβf

(
p̂ −αp − βc

)
+ (1−π)βf

(
p̂ −αp − βc

))
dp̂ −

+
∫
∂V
(
p̂, π̂

(
p̂, c

))
∂p̂

×

×
(
πβf

(
p̂ −αp − βc

)
+ (1−π)βf

(
p̂ −αp − βc

))
dp̂
]
,

which collapses to

δ
[∫

∂2V
(
p̂, π̂

(
p̂, c

))
∂π̂2

∂π̂
∂p̂
π̂×

×
(
β− β

)
(1−π)f

(
p̂ −αp − βc

)
dp̂ +

+
∫
∂2V

(
p̂, π̂

(
p̂, c

))
∂π̂∂p̂

π̂ ×

×
(
β− β

)
(1−π)f

(
p̂ −αp − βc

)
dp̂ +

+
∫
∂V
(
p̂, π̂

(
p̂, c

))
∂p̂

×

×
(
πβf

(
p̂ −αp − βc

)
+ (1−π)βf

(
p̂ −αp − βc

))
dp̂
]
.

By the same token, (A.12) yields

δ
∫
∂V
(
p̂, π̂

(
p̂, c

))
∂p̂

×

×
(
πβf

(
p̂ −αp − βc

)
+ (1−π)βf

(
p̂ −αp − βc

))
dp̂
]
.

Direct comparison of the last two expressions shows that the experimentor and

the passive-learner agencies would choose the same consumption level iff∫
∂2V

(
p̂, π̂

(
p̂, c

))
∂π̂2

∂π̂
∂p̂
π̂ ×

×
(
β− β

)
(1−π)f

(
p̂ −αp − βc

)
dp̂ +

+
∫
∂2V

(
p̂, π̂

(
p̂, c

))
∂π̂∂p̂

π̂ ×

×
(
β− β

)
(1−π)f

(
p̂ −αp − βc

)
dp̂ = 0,
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that is,

(
β− β

)∫ (∂2V
(
p̂, π̂

(
p̂, c

))
∂π̂2

∂π̂
∂p̂

+ ∂
2V
(
p̂, π̂

(
p̂, c

))
∂π̂∂p̂

)
×

× π̂ (1−π)f
(
p̂ −αp − βc

)
dp̂ = 0.

From (4), we have that π̂ (1−π)f
(
p̂ −αp − βc

)
= π (1− π̂) f

(
p̂ −αp − βc

)
.

Thus, we may alternatively write the expression above as follows

(
β− β

)∫ (∂2V
(
p̂, π̂

(
p̂, c

))
∂π̂2

∂π̂
∂p̂

+ ∂
2V
(
p̂, π̂

(
p̂, c

))
∂π̂∂p̂

)
×

× π (1− π̂) f
(
p̂ −αp − βc

)
dp̂ = 0. (A.13)

This expression measures the effect of consumption on expected utility through

beliefs. Its first term is necessarily positive: Fusselman and Mirman (1993) have

proven the convexity of the value function, i.e., that
∂2V(p̂,π̂(p̂,c))

∂π̂2 > 0, implying

that information is valuable.23

Also, ∂π̂∂p̂ > 0. To see it, note that (A.7) collapses to

∂π̂
∂p̂

=
π (1−π)

[
f
′
f − ff ′

]
πf + (1−π)f ,

where f = f
(
p̂ −αp − βc

)
, f = f

(
p̂ −αp − βc

)
, f

′ = f ′
(
p̂ −αp − βc

)
, and

f ′ = f ′
(
p̂ −αp − βc

)
. Dividing the expression above by ff does not change

its sign and yields

∂π̂
∂p̂

=
π (1−π)

[
f
′

f −
f ′

f

]
πf + (1−π)f .

Assumption 6 (MLRP) implies that the term in square brackets is positive.

Hence, ∂π̂∂p̂ > 0, implying that the whole first term of (A.13) is positive.

In the second term of (A.13),
∂2V(p̂,π̂(p̂,c))

∂π̂∂p̂ measures how increased future

pollution affects the value of future information through future beliefs. Thus,

it can be understood as a dynamic experimentation effect. This term cannot be

signed. Hence, in general, (A.13) cannot be signed.

Finally, the future pollution stock, besides having an impact on the infor-

mational aspects of the problem—already discussed—also influences expected

utility physically through

δ
∫
∂V
(
p̂, π̂

(
p̂, c

))
∂p̂

×

×
(
πβf

(
p̂ −αp − βc

)
+ (1−π)βf

(
p̂ −αp − βc

))
dp̂
]
. (A.14)

Insofar as (A.13) differs from zero, these terms also differ for a passive-learner

agency and an experimentor and their difference also cannot be signed.

Ergo, the effect of experimenting vs. passively learning on an agency’s be-

havior cannot be signed without specific information on the value function.

23Upp < 0 (Assumption 5) is needed for convexity. Computations are available from the authors
upon request.
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Proof of Theorem 4 Take the value function of an experimentor agency:

V
(
p, {πi}n−1

i=1

)
= Max

c

{
U
(
c,p

)+ δEp̂ [V (p̂, {π̂i (p̂, c)}n−1
i=1

)]}
s.t. p̂ = αp + βc + ε

= Max
c

{
U
(
c,p

)+ δ∫ V (p̂, {π̂i (p̂, c)}n−1
i=1

)
h
(
p̂, c

)
dp̂
}

s.t. p̂ = αp + βc + ε,

Differentiating the second term of the functional objective, one obtains

δ
∂Ep̂

[
V
(
p̂,
{
π̂i
(
p̂, c

)}n−1
i=1

)]
∂c

=

= δ
∫ n−1∑

i=1

∂V
(
p̂,
{
π̂i
(
p̂, c

)}n−1
i=1

)
∂π̂i

∂π̂i
∂c

h (p̂)dp̂ +

+δ
∫
V
(
p̂,
{
π̂i
(
p̂, c

)}n−1
i=1

) ∂h (p̂)
∂c

dp̂,

which reduces to (A.11), as seen in the proof of the previous theorem. The

comparable expression for a non-learner agency is as follows:

∂Ep̂
[
V
(
p̂; {πi}n−1

i=1

)]
∂c

=

= δ
∫ ∂V (p̂; {πi}n−1

i=1

)
∂p̂

×

×
 n∑
i=1

πiβif
(
p̂ −αp − βic

)dp̂.

Now, besides the experimentation effect, already analyzed in the previous theo-

rem, we have an additional difference: the experimentor does update its beliefs

whereas the non-learner does not, a disparity that cannot be signed.
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