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Abstract

I construct a model in which money and bond holdings are consistent with
individual decisions and aggregate variables such as production and interest
rates. The agents are infinitely-lived, have constant-elasticity preferences, and
receive a fraction of their income in money. Each agent solves a Baumol-Tobin
money management problem. Markets are segmented because financial frictions
make agents trade bonds for money at different times. Trading frequency,
consumption, government decisions and prices are mutually consistent. An
increase in inflation, for example, implies higher trading frequency, more bonds
sold to account for seigniorage, and lower real balances.
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1. Introduction

Aggregate variables such as the money-income ratio depend on individual decisions.

Here, I combine the general equilibrium Baumol-Tobin models of Jovanovic (1982)

and Romer (1986) with the market segmentation models of Grossman and Weiss

(1983), Rotemberg (1984), and Grossman (1987) to connect individual decisions to

variables used in monetary policy. The objective is to create a framework to analyze

consumption, prices, and money taking into account the changes in the individual

demands for money.

I use two features from the models above. I obtain the demands for money from

an inventory model of Baumol (1952) and Tobin (1956) in general equilibrium, as Jo-

vanovic and Romer (other general equilibrium Baumol-Tobin models are in Fusselman

and Grossman 1989, Heathcote 1998, Chiu 2007, and Rodriguez-Mendizabal 2006).

And I express individual optimization problems as in the market segmentation models

of Grossman and Weiss, and Rotemberg. As a result, agents trade bonds for money

at different times, now with the trading frequency obtained in equilibrium.

In addition to combining the two frameworks, I make two changes from the models

above. First, the model has infinitely-lived agents and consumption smoothing while

Jovanovic assumes constant consumption and Romer assumes zero intertemporal dis-

count and overlapping generations. I consider consumption smoothing because it

affects the demand for money and the welfare cost of inflation. Infinite-lived agents,

on the other hand, remove the influence of the length of life of each generation on

equilibrium variables. In particular, consumption and money over time after policy

changes are not affected by the length of each generation. Infinite lives and consump-

tion smoothing, moreover, facilitate comparison with cash-in-advance models such as

the models of Lucas and Stokey (1987), and Cooley and Hansen (1989, 1991).

Second, I let agents receive a fraction of income in money within holding periods. I
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allow a fraction of income inmoney because market segmentation implies large holding

periods to match data on velocity (Edmond and Weill 2008), holding periods of six

months or larger. As traditional Baumol-Tobin models implicitly assume that agents

receive their income in interest-bearing bonds (Karni 1973), large holding periods

would make agents separated from their income for a long period. Therefore, I follow

Alvarez et al. (2009) and Khan and Thomas (2010) and assume that agents receive

part of their income in bonds and the remaining in money. The fraction of income

in money is thought to be substantial, sixty percent for example, and interpreted as

labor income.

The result is a monetary model in which trading periods, consumption and the

distribution of money holdings are consistent with individual decisions and aggregate

variables. An increase in inflation, for example, implies higher trading frequency,

more bonds sold to account for seigniorage, and lower real balances. Silva (2009,

forthcoming) uses the model to study the effects of interest rate shocks and the

welfare cost of inflation. Even with the modifications made here, the model allows its

steady state to be characterized analytically.

Having the frequency of trades chosen optimally, as in the model, implies a better

fit with the data on money and interest rates. The demand for money, for example,

has an interest elasticity of −0.5 and semi-elasticity of −12.5. The interest elastic-
ity is approximately zero, in contrast, with fixed holding periods (Romer 1986 and

Grossman 1987). The choice of the interval between trades makes easier for agents

to change their demand for money.

2. The Model

There is a continuum of infinitely-lived agents with measure one. There is an asset

market and a goods market. The asset market concentrates trades between bonds

and money and the goods market concentrates the trades between goods and money.
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Only money can be used to buy goods. The government sets government consumption

and taxes and controls the supply of money through open market operations.

The financial frictions appear when agents transfer resources between the asset

market and the goods market. Each agent has a brokerage account and a bank

account, as in Alvarez et al. (2002, 2009). The brokerage account is used to manage

the activities in the asset market and the bank account to manage the activities in the

goods market. The financial frictions are represented by a transfer cost Γ in real terms

that the agents need to pay whenever they transfer resources between the brokerage

account and the bank account. The transfer cost is paid with the resources in the

brokerage account and it does not depend on the volume transferred. Γ represents a

fixed cost of portfolio adjustment.

Time is continuous, t ≥ 0. Time is continuous to avoid integer constraints on

the decision of the time to make transfers. At t = 0, each agent has M0 in money

in the bank account and B0 in bonds in the brokerage account. There is a given

distribution F of M0 and B0. Index agents by their initial holdings of money and

bonds, s = (M0, B0).

Each agent is composed of three participants, a worker, a trader, and a shopper,

as in Lucas (1990). At the beginning of each period, the worker engages in the

production and sales of the consumption good, the trader goes to the asset market

to manage the brokerage account, and the shopper goes to the goods market to buy

consumption goods. At the end of each period, the three participants rejoin to share

the consumption good.

The flow of funds occurs in the following way. The worker produces Y (t) goods

and sells the production for money to other agents in the goods market by the price

P (t). After the sale, the worker transfers aP (t)Y (t) to the bank account and

(1− a)P (t)Y (t) to the brokerage account. The trader trades bonds and money
with the resources of the brokerage account. The trades can be made with other
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traders or with the government in open market operations. If it is necessary to make

a transfer from the brokerage account to the bank account, the trader sells the neces-

sary quantity of bonds and makes the transfer. In the same way, the trader can make

transfers from the bank account to the brokerage account. As the money deposited

in the brokerage account cannot be used to buy goods and does not receive interest,

the money in the brokerage account is immediately used to buy bonds. The shopper

uses the available money in the bank account to buy goods in the goods market.

The shopper then brings the goods purchased to the other participants to be shared

among then in the end of the period.

In Baumol (1952) and Tobin (1956), the agents have access to money only when

they pay the financial costs to convert bonds into money. This case is obtained here

with a = 0. Then, all sales are converted into bonds and the shopper can only use

the sales proceeds to buy goods after a transfer from the brokerage account to the

bank account. The introduction of a fraction a > 0 allows the shopper to use part of

the sales proceeds immediately. To simplify, the transfers of the worker to the trader

and to the shopper do not pay the financial costs. Only the transfers between the

brokerage account and the bank account pay the financial costs.

Agent s decides consumption c(t, s), the times to make transfers Tj (s), j = 1, 2, ...,

money and bond holdings in the bank and brokerage account, M(t, s), B(t, s), and

the transfers of money between the two accounts, z (t, s). The worker, the trader, and

the shopper are together represented as agent s. Let T0 (s) ≡ 0. T0 is not a decision
variable. If an agent decides to make the first transfer at t = 0, then T1 (s) = 0. A

holding period is given by (Tj, Tj+1).

Let r (t) denote the nominal interest rate at time t. If there is not a transfer at t,

bond holdings in the brokerage account evolve as

Ḃ (t, s) = r (t)B (t) + (1− a)P (t)Y (t) , t ≥ 0, t 6= T1 (s) , T2 (s) , ..., (1)
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where ẋ is the derivative of x with respect to time. If there are no transfers, the agent

simply accumulates the interest rate and the income from sales. Bond holdings in the

brokerage account increase.

Let B− (Tj (s) , s) represent bond holdings just before a transfer at t = Tj and

B+ (Tj (s) , s) represent bond holdings just after the transfer, B− (Tj (s) , s) ≡ limt→Tj ,
t<TjB(t, s) and B

+ (Tj (s) , s) ≡ limt→Tj ,t>Tj B (t, s). At t = Tj, the constraint on the
brokerage account is

z (Tj (s) , s) + P (Tj (s))Γ = B
− (Tj (s) , s)−B+ (Tj (s) , s) , t = T1 (s) , T2 (s) , ... (2)

If there is a positive transfer to the bank account, z (Tj (s) , s) > 0, then B−(Tj (s) , s)

> B+(Tj (s) , s). In this case, bond holdings in the brokerage account decrease just

after the transfer.

Money holdings in the bank account follow

Ṁ (t, s) = −P (t) c (t, s) + aP (t)Y (t) , t ≥ 0, t 6= T1 (s) , T2 (s) , ..., (3)

during a holding period. If there are no transfers, money holdings decrease with goods

purchases and increase with the income transfers from sales. The shopper can use the

money transferred from the worker to buy goods in the same period. Analogously

to the definitions for bond holdings, let M+ (Tj (s) , s) and M− (Tj (s) , s) denote

money holdings just after a transfer and money holdings just before a transfer. We

have z (Tj (s) , s) = M+ (Tj (s) , s) −M− (Tj (s) , s). If the transfer is positive then

M+ (Tj (s) , s)−M− (Tj (s) , s) > 0. When there is a transfer,

Ṁ (Tj (s) , s)
+ = −P (Tj) c+ (Tj (s) , s) + aP (t)Y (t) , t ≥ 0, t = T1 (s) , T2 (s) , ...,

(4)

where Ṁ (Tj (s) , s)
+ is the right derivative ofM (t, s)with respect to time at t = Tj (s)
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and c+ (Tj (s) , s) is consumption just after the transfer. Notice that the government

does not distribute money directly to agents with, for example, lump-sum transfers.

Only those agents in the asset market, trading bonds for money, have access to the

transfers of money from the government.

The agents make transfers so that M+ (Tj (s) , s) covers the purchases during (Tj,

Tj+1) and any balance M− (Tj+1 (s) , s), that is, using (3),

M+ (Tj (s) , s) =

Z Tj+1(s)

Tj(s)

P (t) c (t, s) dt−
Z Tj+1(s)

Tj(s)

aP (t)Y (t) dt+M− (Tj+1 (s) , s) ,

(5)

j = 1, 2, ... Agent s = (M0, B0) starts withM0 in money holdings at t = 0. The agent

has to useM0 until the first transfer, at T1 (s). For the first holding period (0, T1 (s)),

we have

M0 =

Z T1(s)

0

P (t) c (t, s) dt−
Z T1(s)

0

aP (t)Y (t) dt+M− (T1 (s) , s) . (6)

It can be the case that the agent chooses to make the first transfer at t = 0. For

example, if a = 0 and M0 = 0. In this case, T1 (s) = 0, and M− (0, s) = 0.

Let Q (t) denote the price at time zero of a bond that pays one dollar at time t.

Given the nominal interest rate r (t), Q (t) = e−R(t), where R (t) =
R t
0
r (τ) dτ . Using

(1), Q (Tj+1)B− (Tj+1) = Q (Tj)B+ (Tj) +
R Tj+1
Tj

Q (t) (1− a)PY (t) dt. Substituting
for the different holding periods, together with the condition limt→∞Q (t)B (t) = 0,

we obtain the constraint on the brokerage account in present value,

∞X
j=1

Q (Tj (s)) [z (Tj (s) , s) + P (Tj (s))Γ] ≤
Z ∞

0

Q (t) (1− a)P (t)Y (t) +B0, (7)

where z (Tj (s) , s) =M+ (Tj (s) , s)−M− (Tj (s) , s).

7



The problem of agent s is then to obtain c (t, s), M (t, s), and Tj (s) to solve

max
∞X
j=0

Z Tj+1(s)

Tj(s)

e−ρtu (c (t, s)) dt (8)

subject to (3)-(7) and to Tj+1 (s) ≥ Tj (s) and M (t, s) ≥ 0. ρ is the intertemporal

rate of discount. The utility function is u (c) = c1−1/η
1−1/η , η 6= 1, η > 0; and u (c) = log c,

η = 1. The transfer cost does not enter in the utility function. η is the elasticity of

intertemporal substitution.

It is never optimal to set M− (Tj+1) > 0, j ≥ 1. M− (Tj+1) > 0 means that

the agent maintained money holdings in the bank account during the whole holding

period (Tj, Tj+1) without receiving interest. The agent is always better off reducing

the amount transferred at Tj, M+ (Tj+1), until M− (Tj+1) = 0. As agents cannot

change M0, it can still be the case that M− (T1) > 0. For the other holding periods,

M− (Tj+1) = 0. Therefore, using (3), the demand for money at t of agent s is given

by M (t, s) =
R Tj+1(s)
t

[P (t) c (t, s)− aP (t)Y (t)]dt, Tj (s) ≤ t < Tj+1 (s), j ≥ 1.
The transfer cost rules out an equilibriumwith a representative agent. In a standard

cash-in-advance model, agents have access to bonds and to their income in the end of

every period. Here, agents have access to their bonds and to their income deposited

in bonds only when they sell bonds for money. At every moment, some agents sell

part of their bonds for money and make a transfer while others accumulate bonds

and keep using money in the bank account until the next transfer.

To make the budget constraints linear in income, let Γ = γY (t). As preferences

are homothetic, this implies that optimal consumption and that the demand for

money are linear in income. A demand for money linear in income, that is, income

elasticity equal to one, agrees with the empirical evidence as discussed, among others,

by Meltzer (1963), Lucas (2000).

Let BG0 denote the supply of government bonds at t = 0. Consider first a situation
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with no taxes and no government consumption. In this case, all seigniorage collected

by the government is redistributed to agents as initial bonds. The government budget

constraint is BG0 =
R∞
0
Q (t)P (t) Ṁ(t)

P (t)
dt, where M (t) is the aggregate money supply.

Higher money growth implies higher BG0 and more bonds distributed across agents.

The market clearing conditions for money and bonds are M (t) =
R
M (t, s) dF (s)

and BG0 =
R
B0 (s) dF (s). The market clearing condition for goods takes into account

the goods used to pay the transfer cost. Let A (t, δ) ≡ {s : Tj (s) ∈ [t, t+ δ]} denote
the set of agents that make a transfer during [t, t + δ]. The number of goods during

[t, t+ δ] to pay the transfer cost is then given by
R
A(t,δ)

1
δ
ΓdF (s). Taking the limit to

obtain the number of goods used at time t yields that the market clearing condition

for goods is given by
R
c (t, s) dF (s) + limδ→0

R
A(t,δ)

1
δ
ΓdF (s) = Y .

An equilibrium is defined as prices P (t), Q (t), allocations c (t, s),M (t, s), transfer

times Tj (s), j = 1, 2, ..., and a distribution of agents F such that (i) c (t, s), M (t, s),

and Tj (s) solve the maximization problem (8) given P (t) and Q (t) for all t ≥ 0 and s
in the support of F ; (ii) the government budget constraint holds; and (iii) the market

clearing conditions for money, bonds, and goods hold.

Solving the model

Focus on the steady state, an equilibrium in which the nominal interest rate is

constant at r, the inflation rate is constant at π, and aggregate consumption grows

at the same rate of output. Let output grow at the rate g, Y (t) = Y0egt, where ρ >

g (1− 1/η). I look for an equilibrium in which all agents have the same consumption
pattern within holding periods and the same interval between transfers N . The

steady state is interpreted as the allocations and prices of an economy that has not

been exposed to shocks for a long time.

Rewrite the maximization problem in terms of the consumption-income ratio ĉ (t, n)

≡ c (t, n) /Y (t). ĉ (t, n) decreases at a constant rate within holding periods, according
to r and η. We can then write ĉ (t, n) for the entire holding period as a function of its
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value at the beginning of a holding period. With the exception of the short holding

period from t = 0 to the first transfer, let the steady state be such that all agents

begin a holding period with the same consumption-income ratio, ĉ0.

At a certain time t, ĉ (t, n) varies across agents because each agent is in a different

position in the holding period. But all agents look the same within holding periods.

They start with the same consumption-income ratio and it decreases at a common

rate. As the maximization problem can be written in terms of the consumption-

income ratio, having the same ĉ0 implies that all agents choose the same interval

between transfers N . Let n represent the time of the first transfer, n ∈ [0, N).

Therefore, an agent n makes transfers at n, n+N and so on.

As aggregate consumption grows at the same rate of aggregate output, the same

number of agents must be starting a new holding period at every time. Otherwise,

aggregate consumption would vary over time. As a result, the distribution of agents

is uniform along [0, N), with density 1/N .1

The first order condition with respect to consumption implies c (t, n) = e−(ρ+π)ηt
[P0Q(Tj)λ(n)]η

,

t ∈ (Tj, Tj+1), j = 1, 2, ..., using P (t) = P0e
πt, and where λ (n) is the Lagrange

multiplier of (7). Set the nominal interest rate in the steady state at r = ρ+ g/η+π.

The first order condition then implies ċ (t, n) /c (t, n) = −ηr + g and that ĉ (t, n)
decreases at the rate ηr.

If η, r or a are high, then agents would consume more in the beginning of holding

periods by borrowing against their money receipts within the same holding period.

They would consume less than aY in the end of a holding periods. A useful property

of the model is that c > aY for the empirically relevant range of η, r, and a. That

is, for η between zero and five, r between zero to 16% per year, and a ≤ 0.6. This
is the empirically relevant range of η, r, and a because the usual estimates of η are

1For a proof that the only distribution of agents compatible with a steady state in which agents
have the same consumption pattern is the uniform distribution, see Grossman (1985). Grossman
(1985, 1987) study the effects of monetary policy changes in a model with N fixed.
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below five (Bansal and Yaron 2004 and Bansal 2006 discuss the evidence about η,

Bansal and Yaron focus on η = 1.5); the annual interest rate for the U.S. is below 16%

during 1900-1997, using commercial paper rate for r; and because money receipts are

interpreted as labor income, implying a ≤ 0.6 (Khan and Thomas 2010 and Alvarez et
al. 2009 also interpret money receipts as labor income; I use the same value for a that

they use, a = 0.6). We can, therefore, study the properties of the equilibrium without

the constraint c ≥ aY . This property facilitates the analysis and characterization of
the equilibrium.

The value of ĉ0 is obtained with the market clearing condition for goods. The

market clearing condition for goods implies
1

N

R N
0
ĉ (t, n) dn + γ

N
= 1. Write the

consumption-income ratio within holding periods as ĉ (t, n) = ĉ0e−ηr(t−Tj(n)), for the

highest j (n) such that Tj (n) ≤ t < Tj+1 (n). The market clearing holds for every

t. In particular, for t = N ,
1

N

R N
0
ĉ0e

−ηr(N−n)dn + γ
N
= 1, which implies ĉ0 (N) =¡

1− γ
N

¢ ³
1−e−ηrN

ηrN

´−1
.

The effect of the transfer cost is apparent in the term γ/N . As we must take

into account γ/N , the consumption-income ratio can be less than 1 during the entire

holding period. With transfer cost in utility terms, γ/N disappears and ĉ0 > 1.

The effect of γ through the market clearing condition would not be considered. The

expression of N , given in proposition 1 below, implies N > γ. So, ĉ0 > 0.

The first order conditions for Tj (n), j = 2, 3, ..., imply

(r − π − g) γ + r
Z Tj+1

Tj

e(π+g)(t−Tj)ĉ (t, n) dt+
£
ĉ+ (Tj, n)− erN ĉ− (Tj, n)

¤
=
ĉ+ (Tj, n)− erN ĉ− (Tj, n)

1− 1/η + r

Z Tj+1

Tj

ae(π+g)(t−Tj)dt+ a
¡
1− erN¢ . (9)

The left hand side and the right hand side are the marginal gain and loss of delaying

Tj. The marginal gain is given first by postponing the transfer cost and second by
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decreasing balances from Tj to Tj+1; the third term is the net effect of increasing

[Tj−1, Tj) and decreasing [Tj, Tj+1), this effect is zero when η = 1. The right hand

side is given by the loss in utility caused by the increase in Tj, and by the net effect of

the money receipts within the holding period. We obtain N with (9), r = ρ+g/η+π,

and the expression of ĉ (t, n).

Proposition 1 The optimal interval between transfers N is the positive root of

ĉ0 (N) rN

∙
1− e−r(η−1)N
r (η − 1)N − 1− e−[ρ−g(1−1/η)+r(η−1)]N

[ρ− g (1− 1/η) + r (η − 1)]N
¸
= [ρ− g (1− 1/η)] γ

+ arN

∙
erN − 1
rN

− e[r−ρ+g(1−1/η)]N − 1
[r − ρ+ g (1− 1/η)]N

¸
, for η 6= 1, and (10)

ĉ0 (N) rN

∙
1− 1− e

−ρN

ρN

¸
= ργ + arN

∙
erN − 1
rN

− e
(r−ρ)N − 1
(r − ρ)N

¸
, for η = 1, (11)

where ρ > g (1− 1/η) and ĉ0 (N) =
¡
1− γ

N

¢ ³
1−e−ηrN

ηrN

´−1
. N exists and is unique for

all positive a that satisfies ĉ0e−ηrN ≥ a and all positive values of γ, η, ρ, g, and r.

With the value of N , we find all optimal trading periods Tj (n), n ∈ [0, N), as
agents trade at n, n+N and so on. With γ in utility terms, ĉ0 disappears for a = 0

from (10) and (11). As discussed above, ĉ (t) ≥ a (and so ĉ0e−ηrN ≥ a) for the

empirically relevant cases.

The formulas were arranged to facilitate the identification of the terms 1−e
−x
x
≈ 1−x

2

and ex−1
x
≈ 1+x

2
, where x ≥ 0 in the formulas if η ≥ 1, π ≥ 0, and g ≥ 0. In particular,

ρ− g (1− 1/η) + r (η − 1) = rη − π − g and r − ρ+ g (1− 1/η) = π + g.

Proposition 2 N is such that (i) ∂N
∂r
< 0 and (ii) ∂N

∂γ
> 0. Moreover, (iii) ∂N

∂a
> 0;

(iv) ∂N
∂ρ
> 0; (v) ∂N

∂η
> 0 if g = 0; ∂N

∂η
> 0 if g > 0 for η > ηg, where ηg is given in

the proof of the proposition; and (vi) ∂N
∂g
< 0 if η > 1 and ∂N

∂g
> 0 if η < 1.
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Proposition 2 shows that N decreases with r and increases with γ. In addition, N

increases with a and ρ. When g = 0, N increases with η, and when g > 0, N increases

with η if η is sufficiently high, and decreases with η if η is close to zero. The familiar

substitution and income effects are present in the model. They have opposite signs

and cancel each other when η = 1: N increases with g if η < 1, decreases if η > 1,

and g disappears from the formula of N if η = 1.

The parameters that affect N the most are r, γ and a. To see this, make a second-

order expansion of (10). The result is N ≈p2γ/ (ĉ0 (N)− a) r. The Baumol-Tobin
model assumes a = 0 and constant c = Y (so ĉ0 = 1). In this case, the square-

root formula
p
2γ/r approximates the optimal N . The square-root formula does not

approximate N when a > 0. With a = 0.6, for example, and ĉ0 (N) = 1 (a good

approximation for ĉ0 when r is small such as 3%), we have N ≈
p
2γ/ (0.4r) =

1.6
p
2γ/r, 60% higher than the square root approximation. Money receipts within

holding periods increase the interval between transfers. For a given a, in any case,

the interest elasticity of N is close to −0.5.
With the value of N , the output growth rate g, and the fact that agents consume at

the rate −ηr + g within holding periods, we obtain M0 (n) and W0 (n) such that the

economy is in the steady state from t = 0 and on. The growth rate g is used to write

consumption just after a transfer. The consumption-income ratio ĉ0 at the beginning

of holding periods after t = T1 (n) is the same for all agents in the steady state. The

value of ĉ (0, n) differs across agents because the holding period that initiates at t = 0

has different lengths, according to n ∈ [0, N). We have c+ (Tj (n) , n) = ĉ0Y0egTj(n):
consumption at the beginning of holding periods grows at the rate g. Proposition 3

gives the values ofM0 (n). As we don’t need B0 (n) to discuss the demand for money,

the values of B0 (n) are in the proof of proposition 3, in the appendix.

Proposition 3 The initial money holdings such that the economy is in a steady state

equilibrium for t ≥ 0 are given by M0 (n) = P0Y0n[e
ηr(n−N)ĉ0 1−e

−[ρ−g(1−1/η)+r(η−1)]n
[ρ−g(1−1/η)+r(η−1)]n −
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ae
[r−ρ+g(1−1/η)]n−1
[r−ρ+g(1−1/η)]n ], n ∈ [0, N), where ĉ0 (r,N) =

¡
1− γ

N

¢ ³
1−e−ηrN

ηrN

´−1
and N is given

by proposition (1).

An agent withM0 (n) makes transfers at t = n, n+N , and so on. As ĉ0e−ηrN > a,

M0 (n) increases with n. So, agents that make the first transfer later have more

initial money holdings. Analogously, the initial value in the brokerage account B0 (n)

decreases with n. If an agent makes the first trade of bonds for money soon (n small),

then B0 (n) is high.

Although the distribution of agents along [0, N) is uniform, with density f (n) = 1
N
,

the distribution of individual money holdings is not uniform. As prices and output

grow over time, individual money holdings also grow over time. So, consider the

distribution of individual money-income ratios. The distribution of money-income

ratios is constant over time.

The individual money-income ratio is given by b (n) = M0(n)
P0Y0

. The individual

money-income ratio is distributed along [0,mH), where mH = limn→N b (n). The

density fb (m) of the individual money-income ratios is given by f(b−1(m))
∂b−1(m)

∂m
,

where f (n) = 1
N
and b−1 (m) is the value of n such that b (n) = m (as b (n) is in-

creasing, we always have one and a unique value of b−1 (m)). Therefore, fb (m) =
1
N
[ηrm+ e[r−ρ+g(1−1/η)]b

−1(m)(ĉ0e
−ηrN − a) + ηra e

(r−ρ+g(1−1/η))b−1(m)−1
[r−ρ+g(1−1/η)] ]−1, m ∈ [0,mH).

The distribution of real money holdings is concentrated on small quantities of money,

but it is close to a uniform. The distribution is more concentrated on small quantities

of money if η increases.2

We obtain the aggregate demand for money with M0 =
1
N

R N
0
M0 (n) dn. The

aggregate money-income ratio m (r), the inverse of velocity, is obtained by dividing

2Berentsen et al. (2004) and Santos (2006) obtain other distributions of individual demands for
money.
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M0 by P0Y0. The aggregate money-income ratio is then

m (r) =
ĉ0 (r,N) e

−ηrN

ρ− g (1− 1/η) + r (η − 1)
∙
eηrN − 1
ηrN

− e[r−ρ+g(1−1/η)]N − 1
[r − ρ+ g (1− 1/η)]N

¸
− a

r − ρ+ g (1− 1/η)
∙
e[r−ρ+g(1−1/η)]N − 1

[r − ρ+ g (1− 1/η)]N − 1
¸
, (12)

where N is given by proposition 1 and ĉ0 (r,N) =
¡
1− γ

N

¢ ³
1−e−ηrN

ηrN

´−1
. The first

term in the expression of m (r) is always positive, as ηrN > [r− ρ+ g(1− 1/η)]N ⇔
ρ − g(1 − 1/η) + r(η − 1) > 0. Notice that g does not affect the money-income

ratio if η = 1. A fraction a of income received directly as money means, in practice,

that the agents need to hold less money to buy goods. So, m decreases with a. The

aggregate money-income ratio is a function of the interest rate r and also of preference

parameters, financial technology, and output growth. I write m (r) to emphasize the

relation of the money-income ratio to the interest rate.

Figure 1 shows m (r) and U.S. annual data. I use M1 for money and commercial

paper rate for r, as Lucas (2000), Lagos and Wright (2005) and others (there are

questions about the choice of the proxies for M and r, as pointed out by Teles and

Zhou 2005, I use M1 and commercial paper rate to facilitate comparison with the lit-

erature). A second-order approximation of m (r) yields (e−ηrN ĉ0− a)N2 . The interest
elasticity of m is, therefore, close to the interest elasticity of N , −0.5. Lucas (2000)
argues that an interest elasticity of −0.5 provides a good fit to the data. Many empir-
ical studies, however, find smaller interest elasticities in absolute value, especially for

the short-run. More recently, on the other hand, Alvarez and Lippi (2009) estimate

interest elasticities close to −0.5. The semi-elasticity of m is −12.5, compatible with
the findings of Lucas (1988), Stock and Watson (1993), and the long-run elasticities

of Guerron-Quintana (2009).

To calibrate the model, I set the conventional values ρ = 1% p.a., g = 2% p.a. and
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Fig. 1. m(r) and U.S. data, 1900-1997 (M1/(PY) for the money-income ratio and
commercial paper rate for the nominal interest rate, the data points indicate years).

η = 1 (log utility). I set a = 0.6, as Alvarez et al. (2009) and Khan and Thomas

(2010), who interpret a as labor income. The only parameter left is γ, which I set

to γ = 1.265%. γ is set so that m (r) passes through the historical average of the

data, that is, m (r̄) equals the historical money-income ratio when r̄ is the historical

interest rate, obtained with their geometric means. This is the same procedure of

Lucas (2000). Similarly, Alvarez et al. (2009) and Khan and Thomas (2010) calibrate

their models to fit the historical M2 velocity.

γ = 1.265% means that agents in the model spend about 22 minutes per week in

financial transfers when inflation is equal to 1%. To get this value, notice that γ/N

is the cost of financial transfers per year as a fraction of income. When π = 1%,

proposition 1 implies that N = 1.27. With the average weekly hours from 1957 to

1997 of U.S. workers, equal to 36.5 according to the OECD, the time devoted to

financial transfers is then γ
N
× 36.5× 60 = 22 minutes per week.
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The model implies a large interval between transfers, as common in market seg-

mentation models (Edmond and Weill 2008). With π = 1%, g = 2%, and a = 0, the

model implies N of about 6 months. N increases to 1.27 year when a = 0.6. Alvarez

et al. (2009), for example, set the transfer interval from 1.5 to 3 years (larger inter-

vals because they use M2). Financial transfers both here and in Alvarez et al. are

transfers from high-yielding assets to currency, not ATM withdrawals, which change

the allocations of checking deposits and currency, but do not change the quantity of

money. Although large, the transfer intervals agree with the low trading frequency of

households (Vissing-Jorgensen 2002, Alvarez et al. 2009) and the large cash holdings

of firms (Bates et al. 2009). Notice that agents in the model represent households

and firms, as 62% of M1 in the U.S. is held by firms (Bover and Watson 2005). Silva

(forthcoming) discusses the calibration in more detail and compares m (r) with a = 0

or 0.6, N fixed or optimal, and different η’s.

I simplified the model to facilitate its application: the objective is to create a

framework to study changes in monetary policy taking into account the frictions

to manage money holdings and a nondegenerate distribution of money holdings. In

particular,m (r) is stable with constant γ and constant financial market participation.

Following Reynard (2004) we can obtain a stable m (r) with decreasing γ (financial

innovation) together with increasing financial market participation. It simplifies,

however, to have constant γ and financial market participation. As figure 1 shows,

these assumptions imply a close match with the data. Another simplification is to

impose that agents need money to buy goods through a cash-in-advance constraint

instead of obtaining a demand for money from matching as in Kiyotaki and Wright

(1989), Rocheteau and Wright (2005), and Lagos and Wright (2005). Moreover,

Mulligan and Sala-i-Martin (2000) and Ireland (2009) point out that the demand

for money changes with low interest rates. The model is intended to be used with

moderate interest rates, in the range of the interest rates of figure 1, for which m (r)
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follow the general pattern of the data.

With taxes and government consumption, the government budget constraint

changes to

B0 +

Z ∞

0

Q (t)P (t)Gdt =

Z ∞

0

Q (t) τdt+

Z ∞

0

Q (t) ṀS (t) dt, (13)

where G is government consumption and τ is a lump-sum tax. The total supply of

government bonds is still given by B0 = 1
N

R
B0 (n) dn. With lump-sum taxes and a as

the fraction in money of gross income, each agent transfers to the brokerage accountR∞
0
Q (t) [P (t) (1− a)Y (t) − τ ]dt at each time. According to (13), if revenues from

seigniorage are zero, for example, then B0 =
R∞
0
Q (t) [τ − P (t)G]dt, which means

that net government revenues are rebated to agents through government bonds.

Different ways of financing government consumption, therefore, affect the economy

in different ways. A higher G financed with an increase in τ decreases consumption

to satisfy the market clearing condition for goods, but does not change the frequency

of trading bonds for money. According to (13), this is done by making the increase in

τ equal to the increase in G so that ṀS (t) does not change. As Ṁ
M
= π+ g, inflation

and the decision on N do not change.

On the other hand, an increase in G financed with seigniorage increases inflation.

The change in inflation implies an additional decrease in consumption because the

frequency of trading increases and so the resources devoted to financial transactions

increase. In a model with fixed N , financing G with taxes or seigniorage would yield

similar results. Seigniorage would still increase inflation, but the effect on consump-

tion would be restricted to consumption smoothing within holding periods. Here, the

increase in the frequency of trades further affects consumption.
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3. Conclusions

This paper introduces a model to study how changes in monetary policy such as

changes in the interest rate or in the money supply affect prices and the real demand

for money. The distribution of money holdings, prices, interest rates, production and

government actions are consistent in equilibrium. That is, they are consistent with

market clearing conditions, budget constraints and individual maximization.

The model combines the Baumol-Tobin general equilibrium frameworks of Jo-

vanovic (1982) and Romer (1986) with the market segmentation models of Grossman

and Weiss (1983) and Rotemberg (1984). The result is a cash-in-advance model in

which the length of the time period is optimal and money holdings are heterogeneous.

Some applications of the model are to study how changes in the trading frequency

affect the demand for money and the welfare cost of inflation. Taking into account

the changes in the trading frequency, Silva (forthcoming) shows that the estimates of

the welfare cost of inflation increase substantially. More generally, the model is useful

to study how the adjustment of money holdings affects real variables.

Appendix - Proofs

I will use the following functions and definitions in propositions 1, 2 and 3: f (x) =
1−e−x
x
, ρ̂ ≡ ρ − g(1 − 1/η), x1 ≡ r (η − 1)N , x2 ≡ x1 + ρ̂N, g (y) = ey−1

y
, y1 =

rN , y2 = y1 − ρ̂N . ρ̂ > 0 by assumption to imply a bounded solution for the

maximization problem, so x2 > x1 and y1 > y2. Moreover, g is increasing and convex

and so [g (y1) − g (y2)] > 0 and [g0 (y1) − g0 (y2)] > 0, as y1 > y2. Similarly, f is

decreasing and convex and so [f (x1) − f (x2)] > 0 and [f 0 (x1) − f 0 (x2)] < 0, as

x1 < x2. Let G be defined by G (N) = ĉ0 (N) rN [f (x1)− f (x2)]− ρ̂γ− z (N), where
z (N) = arN [g (y1)− g (y2)]. The optimal interval N∗ is such that G (N∗) = 0.

Proposition 1. Proof. The first order conditions for Tj, j = 2, 3, of agent n are
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e−ρTju (c− (Tj))− e−ρTju (c+ (Tj))− λ[Q̇ (Tj)
R Tj+1
Tj

P (t) c (t) dt+Q (Tj)P (Tj) c
+ (Tj)

−Q (Tj−1)P (Tj) c− (Tj)+Q̇ (Tj)
R Tj+1
Tj

aP (t)Y egtdt−Y egTjP (Tj) a(Q (Tj)−Q (Tj−1))
−γY egTj(P (Tj) Q̇ (Tj) + Q (Tj) Ṗ (Tj)) − Y γgegTjP (Tj)Q (Tj)] = 0. The first order
conditions for consumption yield e−ρTjc− (Tj)

−1/η = λQ (Tj−1)P (Tj) and e−ρTj ×
c+ (Tj)

−1/η = λQ (Tj)P (Tj). In the steady state, Q (t) = e−rt and P (t) = P0e
πt,

Nj = N , and c (t) = ĉ (t)Y0egt. Substituting and simplifying yields γ(r − π − g) +£
ĉ+ (Tj)− erN ĉ− (Tj)

¤
=

ĉ+(Tj)−erN ĉ−(Tj)
1−1/η −r R Tj+1

Tj

ĉ(t)e(g+π)

e(g+π)Tj
dt +r

R Tj+1
Tj

ae(g+π)t

e(g+π)Tj
dt+a(1−

erN). Moreover, ĉ (t) = ĉ0e
−ηr(t−Tj), ĉ+ (Tj) = ĉ0, and erN ĉ− (Tj) = e−r(η−1)N ĉ0.

Substituting yields ĉ0 1−e
−r(η−1)N
η−1 − rĉ0

R Tj+1
Tj

e(g+π−ηr)(t−Tj)dt = (r− π− g)γ + a(erN −
1) − ra R Tj+1

Tj
e(g+π)(t−Tj)dt. Solving the integrals and rearranging yields (10). Note

that r = ρ+ g/η + π. The steps for η = 1 are analogous.

For existence and uniqueness, the strategy is to show thatG is increasing inN , with

limN→γ G (N) < 0 and limN→+∞G (N) > 0. These three properties of G imply that

N∗ exists and is unique. Moreover N∗ > γ. We have G (r,N) = ĉ0 (N) [1−e
−r(η−1)N
η−1 −

r 1−e
−[ρ̂+r(η−1)]N
ρ̂+r(η−1) ]− ρ̂γ − a[erN − 1− r e(r−ρ̂)N−1

r−ρ̂ ] and so GN = ĉ0NrN [f (x1)− f (x2)] +
rerN(1 − e−ρ̂N)[ĉ0 (N) e−ηrN − a]. If a = 0 then, as ĉ0N ≡ ∂ĉ0 (N) /∂N > 0, we

have GN > 0. If a > 0 then a sufficient condition for GN > 0 is ĉ0 (N) e−ηrN ≥ a.
That is, consumption in the end of a holding period is higher than or equal to the

money receipts. This condition is satisfied because of the constraint c (t, n) ≥ aY (t).
As discussed in the text, in any case, we always have c (t, n) > aY (t), nonbinding,

for the empirically relevant parameters. For η = 1, analogously, GN > 0. For the

limits, we have limN→+γ GN (N) ≤ −ρ̂γ for all η > 0, with equality if and only if

a = 0. So, limN→+γ GN (N) < 0. Finally, limN→+∞GN (N) > 0 for all η > 0.

Therefore, limN→+∞G (N) = +∞. (Eventually, the constraint ĉ (t) ≥ a binds, as

limN→+∞ ĉ0 (N) e−ηrN = 0; we still have in this case that limN→+∞G (N) = +∞.)
Therefore, G crosses the zero and, as it is increasing, it crosses the zero only once.

The unique N∗ is such that G (N∗) = 0.¥

20



Proposition 2. Proof. We have to obtain the sign of ∂N
∂x
= − Gx(N∗)

GN (N∗)
to prove

each property, where G is defined above and Gx denotes ∂G/∂x. In proposition 1, we

already proved that GN > 0.

(i) ∂N
∂r
< 0. We have to show that Gr(N∗) > 0. Consider first the case a = 0.

We have Gr = ĉ0N [f (x1)− f (x2)]h (x1), using ĉ0r = −ĉ0 f 0(rηN)f(rηN)
ηN , and where

h (x1) = 1− rηN f 0(rηN)
f(rηN)

+ r (η − 1)N f 0(x2)−f 0(x1)
f(x2)−f(x1) . If η < 1, all terms in the expression

of h (x1) are positive and so Gr > 0 (recall that f 0 < 0, f 0 (x2) − f 0 (x1) > 0 and

f (x2) − f (x1) < 0). The same reasoning applies for η = 1. For η > 1, notice that
x1 ≡ r (η − 1)N > 0 and write h (x1) as h (x) = 1−(x+ rN) f 0(x+rN)f(x+rN)

+xf
0(x+ρN)−f 0(x)
f(x+ρN)−f(x) ,

x > 0. The function xf
0(x)
f(x)

is decreasing (so − (x+ rN) f 0(x+rN)
f(x+rN)

> −xf 0(x)
f(x)

) and we

have f 0(x+ρN)−f 0(x)
f(x+ρN)−f(x) >

f 00(x)
f 0(x) . Therefore, h (x) > 1 − xf

0(x)
f(x)

+ xf
00(x)
f 0(x) , which is positive

for all x. As a result, Gr > 0.

When a > 0, we have Gr = ĉ0N [f (x1)− f (x2)]h (x1) − zr (N), where zr (N) >
0. Substituting the definition of z (N), we obtain that Gr > 0 if and only if a <

ĉ0[f(x1)−f(x2)]h(x1)
[g(y1)−g(y2)]+rN [g0(y1)−g0(y2)] . In practice (for a ≤ 0.6 and the standard values for η and
r, for example), this condition is always satisfied and so Gr > 0.

(ii) ∂N
∂γ
> 0. Gγ = −r f(x1)−f(x2)]f(rηN)

− ρ̂ < 0.

(iii) ∂N
∂a
> 0. Ga = −rN [g (y1)− g (y2)] < 0.

(iv) ∂N
∂ρ
> 0. It suffices to show that Gρ̂ < 0, as ρ̂ = ρ− g (1− 1/η). We have Gρ̂ =

−ĉ0rN2f 0 (x2)−γ−arN2g0 (y2). For a = 0, Gρ̂ (N
∗) < 0 if ĉ0rN2f 0 (x2) > −γ at N∗,

which is true because −γ = ĉ0rN2 f(x2)−f(x1)
ρ̂N

when N = N∗, and f 0 (x2) >
f(x2)−f(x1)

ρ̂N
,

as f is convex. Therefore, Gρ̂ < 0. When a increases, Gρ̂ decreases as the first order

effect on Gρ̂ is −rN2g0 (y2) < 0 (the effect of N on Gρ̂, caused by the increase in a, is

small compared with the first order effect of a). Therefore, Gρ̂ (N
∗) is also negative

for a > 0.

(v) ∂N
∂η
> 0. We have to prove that Gη < 0. For g = 0, Gη = ĉ0 (rN)

2 [f (x1) −
f (x2)]h (x1), using ĉ0η = −ĉ0 f 0(rηN)f(rηN)

rN , and where h (x1) =
f 0(x2)−f 0(x1)
f(x2)−f(x1) −

f 0(rηN)
f(rηN)

.
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So Gη < 0 if h (x1) < 0 (the condition is the same for a ≥ 0). Write h (x1) as

h (x) = f 0(x+ρN)−f 0(x)
f(x+ρN)−f(x) − f 0(x+rN)

f(x+rN)
, x > −rN . We have f 0(x+ρN)−f 0(x)

f(x+ρN)−f(x) <
f 00(x+ρN)
f 0(x+ρN) and

f 00(x+ρN)
f 0(x+ρN) <

f 0(x+ρN)
f(x+ρN)

. Therefore, h (x) < f 0(x+ρN)
f(x+ρN)

− f 0(x+rN)
f(x+rN)

. If r > ρ then f 0(x+ρN)
f(x+ρN)

<

f 0(x+rN)
f(x+rN)

as f 0(x)
f(x)

is increasing. So, h (x) < 0 and Gη < 0. If r < ρ, use the fact that
f 0(y)−f 0(x)
f(y)−f(x) is increasing in y and so

f 0(x+ρN)−f 0(x)
f(x+ρN)−f(x) < limρN→∞

f 0(x+ρN)−f 0(x)
f(x+ρN)−f(x) = f 0(x)

f(x)
.

Therefore, h (x) < f 0(x)
f(x)
− f 0(x+rN)

f(x+rN)
< 0 as f

0(x)
f(x)

is increasing. So, h (x) < 0 and Gη < 0.

When g > 0, we have Gη = ĉ0 (rN)
2 h (x1) + rN

gN
η2
ĉ0[f

0 (x2) − f(x2)−f(x1)
ρ̂N

] for a = 0

(the idea is similar for a > 0). The second term in the right in positive because

f 0 (x2) >
f(x2)−f(x1)

ρ̂N
. We have Gη > 0 for η close to zero when g > 0. Let ηg > 0 be

such that Gη

¡
ηg
¢
= 0. Therefore, Gη < 0 if and only if η > ηg.

(vi) ∂N
∂g
< 0 if η > 1 and ∂N

∂g
> 0 if η < 1. The only term in which g appears is

ρ̂ = ρ− g (1− 1/η), ∂N/∂ρ̂ > 0. As ∂ρ̂/∂g = − (η − 1) /η, ∂N/∂g has the same sign
of ∂N/∂ρ̂ if η < 1 and the opposite sign if η > 1 (g disappears from the formula of

N if η = 1).¥
Proposition 3. Proof. M0 (n) is such that agent n consumes at the steady state

rate in the interval [0, n),M0 (n) =
R n
0
P (t) c (t, n) dt−R n

0
aP (t)Y0e

gtdt. Agent n = 0

consumes c0 at time t = 0. Given that the consumption growth rate within N in the

steady state is equal to − (ηr − g), and that consumption just after a transfer grows
at the rate g, an arbitrary agent n consumes c0e−ηr(N−n) at t = 0. That is, agent n

would consume c0e−gNegn at t = n−N < 0 and consumes
¡
c0e

−gNegn
¢
e−(ηr−g)(N−n) =

c0e
−ηr(N−n) at t = 0. Therefore, c (t, n) = c0e

−ηr(N−n)e−(ηr−g)t, 0 ≤ t < n. More-

over, P (t) = P0e
πt in the steady state. Substituting above and solving the inte-

grals yields the value of M0 (n) in the body of the text. For W0, let W0 (n) ≡R∞
0
Q (t) (1− a)P (t)Y (t)+B0 (n). Then,W0 (n) is such thatW0 (n) =

P∞
j=1Q(Tj)×

M+(Tj (n)) +
P∞

j=1Q (Tj)P (Tj) γY (t), equal to the present value of future trans-

fers plus transfer costs. The quantity of money needed in each holding period

M+ (Tj (n)) is given by
R Tj+1(n)
Tj(n)

P (t) c (t, n) dt−R Tj+1(n)
Tj(n)

aP (t)Y (t) dt, with c (t, n) =
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c0e
gTj(n)e−(ηr−g)(t−Tj) and Tj (n) = n + (j − 1)N . Substituting and solving yieldsP∞
j=1Q (Tj)M

+ (Tj (n)) =
P0Y0Ne−(ρ−g(1−1/η))n
1−e−(ρ−g(1−1/η))N [ĉ0f (x2) − ag (y2)]. Similarly, we haveP∞

j=1Q (Tj)P (Tj) γY (t) =
P0Y0γe−(ρ−g(1−1/η))n
1−e−(ρ−g(1−1/η))N . Initial bond holdings B0 (n) can then

be obtained with the definition of W0 (n).¥
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