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Abstract

In the current paper we examine the role of forest carbon sequestration
benefits in optimal forest management. When carbon benefits are consid-
ered not only the forested area is relevant, but also the flow of carbon
between land and the atmosphere through the carbon cycle. To account
for all these impacts a multi-vintage forest setting is used, following Salo
and Tahvonen (2004). The model is extended to three different carbon
accounting methods to measure the benefits form carbon sequestration:
carbon flow regime, tonne-year crediting and average storage. In the case
of the carbon flow regime, the impact on the optimal management and
allocation of land will depend upon the amount of carbon released when
the forest is harvested. Under the other two accounting systems optimal
steady state forest area will be increased, and in cases where optimal man-
agement imply cyclical harvesting, considering carbon benefits will always
increase cycles dimension.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6420338?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

Given the rising concern with CO2 levels, and the recognition in the Kyoto

Protocol of the important role that can be played by forests in the global car-

bon cycle to limit the impact of GHGs emissions, the consideration of carbon

sequestration benefits is in the center of recent developments in forestry litera-

ture. Thus, in order to allocate credits to forest owners, carbon sequestration

benefits’ accountability has to be thoroughly addressed.

In the context of the related literature, we should mention, among others,

Van Kooten, Binkley and Delcourt [5], who modeled a scheme to allocate carbon

credits, under which the carbon credit cash flows are a function of the annual

change in the forest carbon stock (carbon flow regime), Spring, Kennedy, and

Nally [8] that study the effect of carbon sequestration, fire frequency and water

scarcity in tree harvest decision, and Cunha-e-Sá and Rosa [6] where different

accounting methods of carbon sequestration benefits in the model of the pri-

vate forester are examined with constant and rising carbon prices. Also, while

Velt and Plantinga [7] explore the effect of rising carbon prices on the optimal

portfolio of greenhouse-gas mitigation strategies based on the carbon flow ac-

counting regime, Sohngen and Mendelsohn [4] develop an optimal control model

of carbon sequestration and energy abatement to explore the potential role of

forests in GHG mitigation using a simplified version of the tonne-year crediting

accounting regime.

When carbon benefits are considered not only the forested area is relevant,

but also the flow of carbon between land and the atmosphere through the carbon

cycle, namely, the amount of carbon released when the forest is harvested. To

account for all these impacts the usual analytical framework of one stand forest,

used in most of the recent literature, is insufficient. In a one stand forest neither

the decision on the optimal allocation between alternative uses is taken into
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account, nor the fact that forested areas contribute in a permanent way to the

carbon cycle. Therefore, a multi-vintage forest setting with possible conversion

to alternative land uses should be considered instead.

The model used in this paper follows closely the multiple vintage forest

model developed in Salo and Tahvonen [1], [2] and [3], extending their results

to the case where optimal use of land also considers the benefits from carbon

sequestration. The line of work developed by these authors has been able to

provide a full proof on the log-run optimality of the normal forest steady-state,

and as referred in Salo and Tahvonen [3] “...could provide a generalized and

computational efficient modeling structure...for studies on carbon sequestration,

deforestation or timber supply”.1

The present paper focus on the impact of different carbon accounting meth-

ods on optimal land allocation and optimal forest management. The social

planner’s decision problem on forest harvesting and land allocation is stud-

ied in those cases extending the proofs on the existence of optimal stationary

steady-states to this more general context. Besides, we characterize the optimal

solutions, and compare the results obtained with those without carbon seques-

tration benefits. Finally, numerical examples are presented and discussed to

illustrate the results obtained.

In general, we conclude that the main results in Salo and Tahvonen [3] still

apply. In fact, when we consider benefits from carbon sequestration, in the

case where all land is forested land, optimal forest management can still lead to

optimal cyclical harvesting and when it is optimal to allocate part of the forest

land to alternative land use, the remaining equilibrium is the normal forest

steady state. In addition, the optimal allocation area to forest will increase, as

the net value from accounting carbon sequestration benefits is positive. Finally,

the claim that the accounting method of carbon benefits is relevant for the

1See Salo and Tahvonen [3], pages 526-527.
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optimal forest management is reinforced, as it is clearly shown that different

accounting methods determine different impacts on both optimal cycles and

optimal steady states.

The remainder of the paper is organized as follows. Section 2 presents the

different accounting methods of carbon sequestration benefits, Section 3 extends

the theoretical multiple vintage model to account for carbon sequestration ben-

efits. Section 4 develops the model for the three carbon accounting methods

considered: the carbon flow regime, the ton-year crediting and the average stor-

age method. Section 5 concludes the paper. Technical details are presented in

the Appendices.

2 Accounting methods

By sequestering and storing GHG’s from the atmosphere, forests can generate

carbon offsets, which may be used to compensate for GHG emissions. However,

for this compensation to occur, the net effect of sequestration has to be compa-

rable to that of avoided emissions. This issue raises two important questions:

first, how to compare forest carbon sequestration with avoided emissions, and

second, how to incorporate the services provided by this activity when modeling

forest management, which depends upon the choice of the carbon accounting

method.

The IPCC Special Report on Land Use, Land-Use Change and Forestry [9]

considers different accounting methods to apply to forest or land use change in-

vestment projects, namely, the stock change method, the average stock method

and the tonne yearly crediting. In the economic forestry literature, similar

accounting methods have also been considered: the carbon flow regime, the

lump-sum regime, and the carbon stock regime, among others, as referred in

Locatelli and Pedroni [10].
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According to the carbon flow regime, as developed in Van Kooten, Bink-

ley and G. Delcourt [5], for the implementation of a carbon credit cash flow,

social benefits are a function of the annual change in the forest carbon stock.

A net increase in the forest carbon stock over a year means that carbon has

been removed from the atmosphere. Similarly, a fall in the forest carbon stock

suggests that carbon has been released into the atmosphere. To an increase in

the forest standing biomass corresponds an increase in the carbon stock, and

harvesting a forest decreases the carbon stock. However, the amount of carbon

released when the forest is harvested depends upon the use given to the timber

harvested. Different uses will have different impacts on the amount of carbon

released after harvest, as some uses are able to provide long term carbon storage

in structures like furniture or houses.

An alternative approach is the tonne-year crediting regime. The ton-year

method consists of crediting a forestry project with a fraction of its total yearly

GHG benefit, based on what is called an equivalence factor (Ef ). This fraction

is determined by the stock of carbon stored each year, which is then converted,

using (Ef ) to its equivalent amount of preventing effect. Notice that this method

does not require redemption of carbon credits upon harvest. Within this ap-

proach, two different methods have been proposed by Moura-Costa and Wilson

[11], and by Fearnside, Lashof and Moura-Costa [12]. In both, the calculations

are based on the residence time and decay pattern of atmospheric CO2, its Ab-

solute Global Warming Potential (AGWP), taking explicitly into account the

decay pattern of GHGs in the atmosphere.

Moura Costa and Wilson [11] aim to determine the storing time of carbon

sequestered in biomass for which the carbon stored is equivalent to an amount

of avoided emissions (equivalence time). It was found that keeping a megagram

(Mg) of CO2 out of the atmosphere for a full 100 years represents 55 Mg-year

(or ton-year) equivalents, rather than the 100 Mg-years that would be earned if
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the CO2 entering the atmosphere had no movement to the ocean or other sinks.

The number obtained, in this case, 55, is denoted by the equivalent time, Te.

In addition, assuming a linear relationship between the residence of CO2 in the

atmosphere and its radiative forcing effect, the effect of storing 1 tonne of CO2

in forest biomass for 1 year was derived. In particular, it was found that storing

one ton of carbon for one year is equivalent to preventing the effect of 0.0182

tones of CO2 emissions, which is denoted by equivalence factor (Ef = 1/ Te).

Also based on a Absolute Global Warming Potential (AGWP) function,

Fearnside et al. [12] estimate the incremental credit that can be awarded for

each year that carbon stocks remain sequestered. For this purpose these authors

assume as the benchmark “keeping a Mg of C out of the atmosphere for a full

100 years”. If the stock remains intact for 100 years, the cumulative awarding of

ton-year credits would equal the credits from a “permanent” emission reduction

of the same magnitude. If the stock is released at any time prior to the 100-year

time horizon, only the corresponding partial credit amount would be awarded.

Finally, the average carbon storage method consists of averaging the amount

of carbon stored in a site over the long run, assuming an average cycle rotation

period. By simplifying the process of credit allocation between the forest owners

and the regulatory agencies, this method is more efficient than both the carbon

flow and the tonne-year crediting ones. These three accounting methods will be

formally considered in the remainder of the paper.

3 The Model

The model used in this paper follows closely the multiple vintage forest model

developed in Salo and Tahvonen [3], which can be summarized as follows. The

model assumes multi vintages forest land, where s = 1, ..., n represents the age

of trees, xs,t the area of forest land allocated to the age class s in period t, fs
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the biomass content in timber per unit of land with trees of age class s, and

0 ≤ f1 ≤ .... ≤ fn. Land allocation must satisfy

0 ≤ yt = 1−
nX
s=1

xs,t (1)

that is, total land area equals 1, and yt is the area of land allocated to an

alternative use (agriculture or urban use).

Social utility of land use in period t can be derived from timber consumption

ct and carbon sequestration St, or from social utility of the alternative use of

land W (yt).

Let us denote by U(ct) =
R
D(c)dc the social utility from timber consump-

tion, where D(.) is the inverse demand for timber, and assume U(.) is a con-

tinuous, twice differentiable, increasing and strictly concave function. Also,

W (yt) =
R
Q(y)dy , where W (.) is a continuous, twice differentiable, increasing

and concave function. Finally, St depends on the way the benefits from carbon

sequestration are accounted for, as shown in Section 4.

Thus, the problem of optimal forest harvesting with carbon sequestration

benefits and allocation of land is obtained by maximizing the present value of

social utility from the use of land as follows:

v(x1,0 , ....xn,0) = Max
{xs,t+1,s=1,...n,t=0,...}

∞X
t=0

bt [U (ct) + St +W (yt)] (2)

subject to

ct =
n−1X
s=1

fs (xs,t − xs+1,t+1) + fnxn,t (3)

yt = 1−
nX
s=1

xs,t (4)

xs+1,t+1 ≤ xs,t, s = 1, .......n− 1 (5)
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nX
s=1

xs,t+1 ≤ 1 (6)

xs,t ≥ 0, s = 1, ...., n (7)

for all t = 0, 1..., where St is given by (11), (30), or (44), respectively, depending

on the particular carbon benefits accounting method used. Finally, the initial

land distribution satisfies

xs,0 ≥ 0, s = 1, ...., n,
nX
s=1

xs,0 ≤ 1 (8)

Therefore, given the discount factor b, the problem is to choose the next pe-

riod state, that is, the land allocation between different vintages and competing

uses of land for all t = 1, ....

The necessary conditions for optimal solutions can be obtained from the

following Lagrangian problem. For (2-8) it can be stated as :

L =
∞X
t=0

bt [U (ct) + St +W (yt)] + λt

Ã
1−

nX
s=1

xs,t+1

!
+
n−1X
s=1

[ps,t (xs,t − xs+1,t+1)]

(9)

where ps,t and λt are the Lagrangian multipliers. While ps,t can be interpreted

as the value of marginal changes in forest land area of vintage s at the beginning

of period t + 1, λt represents the value of marginal changes in land allocation

between forest and alternative uses.

Salo and Tahvonen [3] provide a full proof on the log-run optimality of the

normal forest steady-state for the above problem, when St = 0.

In this paper a similar definition for normal forest steady state is assumed.

Denote the Optimal rotation period by m, that satisfies 1 ≤ m ≤ n and

bmfm/(1− bm) ≥ bsfs/(1− bs), s = 1, ..., n. (10)
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Assume that m is unique.2

A forest is called an Optimal Steady-State Forest (OSSF) if the age-class

structure x = (x1, ..., xn) has the property x ∈ S, xs = 0 for s = m+1, ..., n and

if harvesting only trees of age m is the optimal solution for the above problem

when x0 = x. An OSSF is an interior OSSF if xs > 0 for s = 1, ...,m.

An OSSF with the normal forest structure is x = (1/m, ..., 1/m, 0, ..., 0), and

in each period it yields a constant consumption level of fm/m. An OSSF with

consumption that is periodic with period length equal to m can be expressed

as x = (1/m + φ1, ..., 1/m + φm, 0, ...0) ∈ S. Define φk as the largest number

φ that satisfies x = (1/m + φ1, ..., 1/m + φm, 0, ...0) ∈ K for all |φs| < φ,

s = 1, ...,m,
Pm

s=1 φs = 0.

For the case St = 0, Salo and Tahvonen [3] show that, if all land is allocated

to forestry, optimal forest management can lead to optimal cyclical harvesting

because smoothening an age class structure that deviates from the normal forest

is not optimal. On the contrary, if it is optimal to allocate part of the land to

alternative land use then optimal stationary cycles cannot exist.3 In this paper,

these results are extended to the case where forest management considers carbon

sequestration benefits, i.e. St 6= 0.

4 Introducing Carbon Sequestration Benefits

In this section, we introduce carbon sequestration benefits in the forest-vintage

model presented in Section 3. As mentioned before, we consider three different

carbon accounting methods to which correspond a different specification for

net carbon benefits: the carbon flow regime, the tonne-year crediting and the

2 In Salo and Tahvonen [3] no harvesting or plantation costs are considered nor any type
of forest externalities. Under these conditions m as defined in (10) is also equivalent to the
Faustmann rotation period in a one stand model and the authors named the normal stedy-
state forest as Optimal Faustman Forest . This is no longuer the case when we introduce
carbon benefits. Therefore, the normal steady state forest is here renamed as Optimal Steady
State Forest.

3 See Salo and Tahvonen [3], Proposition 1 and Corollary 1, pages 518-520.
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average carbon storage. For these three cases, the age-class and land allocation

forestry decision problem of the social planner is presented and the necessary

and sufficient optimality conditions are derived. By endogeneizing the amount

of land allocated to forest use, it is possible to show how the equilibrium cycles

are affected by that possibility, and compare the results with the case without

carbon sequestration benefits.

When formalizing net carbon benefits, we assume that the social value of

one unit of carbon removed from the atmosphere is constant and equal to Pc. 4

Also, we consider that the amount of carbon per cubic feet of timber biomass

growing in forest land is constant and equal to β.

4.1 Carbon flow regime

The carbon flow regime considers that to an increase in forest standing biomass

corresponds an increase in the carbon stock, and that harvest reduces the carbon

stock. Notice that once carbon has been sequestered, no further carbon benefits

will be obtained. Thus, in this case, what is relevant when modeling carbon

sequestration benefits in a standing forest is the change in the per period carbon

uptake. Finally, to take into account different uses of timber we introduce a

parameter θ which measures the fraction of timber that is harvested but goes

into long-term storage in structures and landfills.

Under these assumptions, the current net benefits from carbon sequestration

at any period t, St, can be represented as follows:

St = Pcβf1x1,t +
nX
s=2

Pcβ(fs −
fs−1
b
)xs,t − Pcβ(1− θ)ct (11)

where the first two terms represent the value of the carbon stock increase in

forest standing biomass, in period t, for all the area of forest land, and the last

4Pc is the present value, for all time, of removing one unit of carbon from the atmosphere
today. It is determined as the discounted value of the annual contribution to damage caused
by one unit of carbon added over the expected number of years that the unit of carbon is
present in the atmosphere.
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term represents the value of the decrease in the carbon stock due to timber

harvesting.

4.1.1 The necessary conditions for optimal solutions

The necessary conditions for optimal solutions of the problem (2-8) and St given

by (11), which can be derived from the Karush-Kuhn-Tucker conditions for all

t = 0, ..., are as follows:

bt
∂L

∂x1,t+1
= bf1Ú(ct+1) + bf1pcβ − bf1pcβ(1− θ)−

−bW 0(yt+1)− λt + bp1,t+1 ≤ 0 (12)

bt
∂L

∂xs+1,t+1
= −fsÚ(ct) + bfs+1Ú(ct+1) + b(fs+1 −

fs
b
)pcβ + fspcβ(1− θ)−

−bfs+1pcβ(1− θ)− bW 0(yt+1)− λt + bps+1,t+1 − ps,t ≤ 0 (13)

for s = 1, ..., n− 2,

bt
∂L

∂xn,t+1
= −fn−1Ú(ct) + bfnÚ(ct+1) + b(fn −

fn−1
b
)pcβ + fn−1pcβ(1− θ)−

−bfnpcβ(1− θ)− bW 0(yt+1)− λt − pn−1,t ≤ 0 (14)

xs,t+1 ≥ 0, xs,t+1
∂L

∂xs,t+1
= 0, s = 1, ..., n (15)

ps,t ≥ 0, ps,t(xs,t − xs+1,t+1) = 0, s = 1, ..., n− 1 (16)
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λt ≥ 0,λt(1−
nX
s=1

xs,t+1) = 0 (17)

The existence of optimal solutions for bounded utility and b < 1 follows from

Theorem 4.6 in Stokey and Lucas (p. 79).

4.1.2 On the existence of stationary cycles

As in Salo and Tahvonen [3], we first study the existence of optimal station-

ary cycles in a regime where the oldest age class is clear-cut and immediately

regenerated at the end of each period and no land is used outside forestry.

Proposition 1 Given g ≡ [U 0(fm/m)+βpcθ]bmfm
1−bm − b

1−bW
0(0) > 0, m ≥ 2, and

b < 1, there exists a set of interior Optimal Faustmann Forests with φk > 0.

Proof. Following Salo and Tahvonen [3], and using (12) to eliminate λt from

(13) and (14), s = 1, ...,m− 1, we obtain a system of m x (m− 1) equations:

b(ps+1,t+1+k − p1,t+1+k)− ps,t+k = −b [Ú(ct+1) + βpcθ] (fs+1 − f1) + [Ú(ct) + βpcθ] fs
(18)

−bp1,t+1+k − pm−1,t+k = −b [Ú(ct+1) + βpcθ] (fm − f1) + [Ú(ct) + βpcθ] fm−1
(19)

where s = 1, ...m − 2, k = 0, ...,m − 1. This system is linear in the Lagragian

multipliers ps,t+k, s = 1, ...m − 1, k = 0, ...m − 1. Solving for any multiplier

yields

ps,t =
bmfm
1− bm

£
b−s(U 0(ct+m−s) + βpcθ)− (U 0(ct) + βpcθ)

¤
− fs(U 0(ct) + βpcθ)

(20)

for s = 1, ...,m− 1, t = 0, ...., as can be verified by direct substitution into the

two equations above.

Following Salo and Tahvonen [3], condition (16) requires, for the indefinitely

repeated cycle, that ps,t+k ≥ 0 for s = 1, ...m − 1, k = 0, ...,m − 1. Thus, the
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fact that x ∈ K implies by (20) that

U 0(ct+k) + βpcθ

U 0(ct+k+m−j) + βpcθ
≤ bm−jfm
fj + bm(fm − fj)

(21)

for k = 0, ...,m− 1, j = 1, ...m− 1. Using (3) and the definition of Faustmann

harvesting, we can write ct+k = fmxs and ct+k+m−j = fmxs−m+j where s −

m+ j is understood as s− j, if s−m+ j ≤ 0. Equation (21) takes the form

U 0(fmxs) + βpcθ

U 0(fmxs−m+j) + βpcθ
≤ ηj ≡

bm−jfm
fj + bm(fm − fj)

(22)

or, alternatively,

U 0(fmxs)

U 0(fmxs−m+j)
≤ ηj

∙
1− βpcθ

U 0(fmxs−m+j)
(
1

ηj
− 1)

¸
(23)

for s = 1, ...m, j = 1, ...,m − 1. Since ηj > 1, j = 1, ...,m − 1, is equivalent

to (10), and the term in brackets is also positive and greater than 1, then by

the strict concavity of U , there must exist a φ > 0, such that (22) is satisfied if

xs = 1/m+ φs, s = 1, ...,m, for all |φs| < φ,
Pm
s=1 φs = 0.

Similarly, results can be derived for s = m+ 1, ..., n, and k = 0, ...,m− 1.

In addition, a stationary cycle with all land allocated to forestry must satisfy

λt ≥ 0, for t = 0, .... Solving (12) or (13) for λt, eliminating ps,t, s = 1, ...m−1,

t = 0, ..., using (20), we obtain

λt+k =
[U 0(ct+k) + βpcθ] b

mfm
1− bm − [U

0(ct+1+k) + βpcθ] b
m+1fm

1− bm − bW 0(0) ≥ 0
(24)

for s = 1, ...,m, where ct+1+m = ct+1. Writing ct+k = fmxs and ct+1+k =

fmxs−1, s = 1, ...,m, where x0 = xm yields

λs =
[U 0(fmxs) + βpcθ] b

mfm
1− bm − [U

0(fmxs−1) + βpcθ] b
m+1fm

1− bm − bW 0(0) ≥ 0
(25)

for s = 1, ...,m.

Given g = [U 0(fm/m)+βpcθ]bmfm
1−bm − b

1−bW
0(0) > 0, there must exist a φ > 0

such that (25) is satisfied if xs = 1/m + φs, s = 1, ...,m, for all |φs| < φ,Pm
s=1 φs = 0.
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Let i∞ represent the stationary state level of variable i.

Corollary 2 If g ≡ [U 0(fm/m)+βpcθ]bmfm
1−bm − b

1−bW
0(0) ≤ 0, optimal stationary

cycles with y∞ ≥ 0 and y∞ constant do not exist.

Proof. Given g ≤ 0, no solutions for (25) exist. Thus, by letting λt = 0 in

(12) or (13), eliminating ps,t, s = 1, ...,m− 1, t = 0, ..., using (20), and writing

(12) analogously to (25), we obtain:

[U 0(fmxs) + βpcθ] b
mfm

1− bm − [U
0(fmxs−1) + βpcθ] b

m+1fm
1− bm − bW 0(y∞) ≥ 0 (26)

for s = 1, ...,m.

This system is linear in [U 0(fmxs) + βpcθ] , s = 1, ...,m. Its solution is given

by

U 0(fmxs) + βpcθ =
W 0(y∞)

Pm−1
i=0 b

i

bm−1fm
, s = 1, ...,m (27)

as can be verified by direct substitution. Thus, xs = (1 − y∞)/m, s = 1, ...,m

and optimal stationary cycles cannot exist.

Proposition 1 and Corollary 2 extend the results obtained in Salo and Tahvo-

nen [3] to the case where carbon benefits are considered under a carbon flow

regime. It is shown that, if carbon is fully released when harvest takes place,

(θ = 0), the carbon flow accounting regime will have no impact neither on the

optimal forest management nor on the optimal land allocation between forest

and other uses. This occurs because in this case the benefits of carbon seques-

tration are fully offset by the negative impact of carbon release when harvest

takes place.

If , alternatively (θ > 0), and if all land is forested land, the optimal forest

management can lead to optimal cyclical harvesting, as shown in Proposition

1, because smoothening an age class structure that deviates from normal forest

is not optimal. From (23), we may conclude that when carbon sequestration
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benefits are accounted for, the cycle is larger than in the case without carbon

sequestration benefits. Considering that the right hand side of (23) defines the

maximized cycle radius, 5 it is clear that for the same values of the parameters

the term in brackets is greater than one. Therefore, the cycle radius is enlarged

compared to the case without carbon benefits.

Finally, when it is optimal to allocate part of the forest land to alternative

land use, the cycles that exist if all land is allocated to forestry are eliminated,

and the remaining equilibrium is the normal forest steady state. However, again

only if (θ > 0),the optimal allocation area to forest will be increased. This can

be derived from Corollary 2, but it is shown below in more detail.

4.1.3 Stationary states

Let assume that g ≤ 0. Thus, we focus on interior solutions, that is, in the sense

that land is used both in forestry and any alternative use. Corollary 2 above

shows that in this case there cannot exist stationary cycles with constant y∞.

We next show that in such cases there exists a stationary state that satisfies all

the necessary conditions for optimality.6

Assuming that m is unique, for a stationary state, we have that ps,t = ps,∞,

ct = c∞, yt = y∞, λt = 0, and xm,t = x∞, where c∞, y,∞, x∞, and ps,∞, for

s = 1, ..., n− 1, are constant. Direct substitution shows that

ps =W
0(y∞)

s−1X
i=0

b−i − fs [U 0(C∞) + βpcθ] , s = 1, ..., n (28)

where
Ps−1

i=0 b
−i = −b1−b−s1−b

With some more algebra, we can write for s = m

W 0(y∞)
b

1− b −
bmfm
1− bmU

0(
(1− y∞)fm

m
)− bmfm

1− bmβpcθ = 0 (29)

5For a more detailed explanation see Salo and Tahvonen [1] pages 8-9 and 15.
6The questions of convergence and stability of the stationary steady states are being stud-

ied.
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In this case, the allocation of land between forestry and the alternative use

is optimal when the present value of output from a marginal unit of land in the

alternative use equals the present value of a marginal use of bare forest land,

where both timber value and the net benefits from carbon sequestration are

accounted for. It is clear from (29) that, first if (θ = 0), net carbon benefits in

an optimal steady state are 0. Second, if (θ > 0) and assuming m is unique, the

first term has to be larger by concavity of W , and the second term has to be

lower by concavity of U , implying that y∞ has to decrease. In fact, if trees also

generate carbon benefits, given m, less land will be dedicated to the alternative

use and more land will be put to forest. Moreover, at the steady-state, the

incremental land area devoted to forest land will be evenly distributed among

the different vintages.

4.2 Tonne-year crediting

The ton-year accounting method consists of crediting a forestry project with a

fraction of its total yearly GHG benefit. This fraction is based on the stock of

carbon stored each year, which is then converted, using (Ef ) to its equivalent

amount of preventing effect.7

In this case, St can be defined as follows:

St = Pc(Efβ
n−1X
s=1

fsxs+1,t+1) (30)

where the term in brackets represents the equivalent amount of emissions avoided

in year t due to the amount of carbon stored during year t. By considering

fsxs+1,t+1, this formalization excludes from benefits’ accounting all possible

harvesting of younger age classes, in period t.

7Here, we consider Ef constant. This assumption is consistent with Moura-Costa and
Wilson’ [11] approach, and also with Fearnside et al. [12], if in this last case we assume
that the equivalence factor measures only the benefit of storing carbon in the forest for one
additional year. To be fully consistent with Fearnside et al. [12], the equivalence factor should
be different for each age class s, that is, Ef (s).

16



The decision problem in this case is similar to the previous one, except for

the way carbon benefits are accounted for.

The necessary conditions for optimal solutions of problem (2-8) and St given

by (30), are similar to the previous case and are presented in Appendix 1.

Based on this new formulation, and using a similar procedure to that used

above, from the foc’s we obtain a system of m x (m− 1) equations:

b(ps+1,t+1+k − p1,t+1+k)− ps,t+k = −bÚ(ct+1)(fs+1 − f1) + [Ú(ct)− βpcEf ] fs
(31)

−bp1,t+1+k − pm−1,t+k = −bÚ(ct+1)(fm − f1) + [Ú(ct)− βpcEf ] fm−1 (32)

where s = 1, ...m − 2, k = 0, ...,m − 1. This system is linear in the Lagragian

multipliers ps,t+k, s = 1, ...m − 1, k = 0, ...m − 1. Solving for any multiplier

yields

ps,t =
bmfm
1− bm

£
b−sU 0(ct+m−s)− U 0(ct)

¤
− fsU 0(ct) +As (33)

where As is given by

As =
βpcEf
1− bm

⎡⎣(1− bm−s)"m−1X
i=1

−bifi

#
+ (1− bm)

m−1X
j=s

bj−sfj

⎤⎦ (34)

for s = 1, ...,m− 1, t = 0, ...., as can be verified by direct substitution into the

two equations above. In Appendix 2 we show that As > 0, for s = 1, ...,m− 1.

4.2.1 On the existence of stationary cycles

Proposition 3 Given g ≡ U 0(fm/m)b
mfm

1−bm +
βpcEf
1−bm (

Pm−1
i=1 b

ifi)− b
1−bW

0(0) > 0,

m ≥ 2, and b < 1, there exists a set of interior Optimal Faustmann Forests with

φk > 0.
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Proof. Following Salo and Tahvonen [3], condition (61) requires, for the

indefinitely repeated cycle, that ps,t+k ≥ 0 for s = 1, ...m− 1, k = 0, ...,m− 1.

Thus, the fact that x ∈ K implies by (33) that

U 0(ct+k)

U 0(ct+k+m−j)
≤ bm−jfm
fj + bm(fm − fj)

+
Aj(1− bm)

[fj + bm(fm − fj)]U 0(ct+k+m−j)
(35)

for k = 0, ...,m − 1, j = 1, ...m − 1, where Aj is given by (34). Using (3)

and the definition of Faustmann harvesting, we can write ct+k = fmxs and

ct+k+m−j = fmxs−m+j where s−m+ j is understood as s− j, if s−m+ j ≤ 0.

Equation (35) takes the form

U 0(fmxs)

U 0(fmxs−1)
≤ bm−jfm
fj + bm(fm − fj)

+
Aj(1− bm)

[fj + bm(fm − fj)]U 0(fmxs−1)
(36)

or, alternatively,

U 0(fmxs)

U 0(fmxs−1)
≤ ηj

∙
1 +

Aj(1− bm)
U 0(fmxs−1)bm−jfm

¸
(37)

for s = 1, ...m, j = 1, ...,m− 1. Since ηj ≡ bm−jfm
fj+bm(fm−fj) > 1, j = 1, ...,m− 1, if

As ≥ 0 the second term is always larger than one. Then, by the strict concavity

of U , and since the right-hand side of (36) is larger than 1, there must exist a

φ > 0, such that (36) is satisfied if xs = 1/m+ φs, s = 1, ...,m, for all |φs| < φ,Pm
s=1 φs = 0.

Similarly, results can be derived for s = m+ 1, ..., n, and k = 0, ...,m− 1.

In addition, a stationary cycle with all land allocated to forestry must satisfy

λt ≥ 0, for t = 0, .... Solving (57) or (58) for λt, eliminating ps,t, s = 1, ...m−1,

t = 0, ..., using (33), we obtain

λt+k =
U 0(ct+k)b

mfm
1− bm − U

0(ct+1+k)b
m+1fm

1− bm +
βpcEf
1− bm (

m−1X
i=1

bi(1− b)fi)− bW 0(0) ≥ 0

(38)

for s = 1, ...,m, where ct+1+m = ct+1. Writing ct+k = fmxs and ct+1+k =
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fmxs−1, s = 1, ...,m, where x0 = xm yields

λs =
U 0(fmxs)b

mfm
1− bm − U

0(fmxs−1)b
m+1fm

1− bm +
βpcEf
1− bm (

m−1X
i=1

bi(1− b)fi)− bW 0(0) ≥ 0

(39)

for s = 1, ...,m.

Given g = U 0(fm/m)b
mfm

1−bm +
βpcEf
1−bm (

Pm−1
i=1 b

ifi)− b
1−bbW

0(0) > 0, there must

exist a φ > 0 such that (39) is satisfied if xs = 1/m + φs, s = 1, ...,m, for all

|φs| < φ,
Pm

s=1 φs = 0.

Again, let i∞ represent the stationary state level of variable i.

Corollary 4 If g ≡ U 0(fm/m)b
mfm

1−bm +
βpcEf
1−bm (

Pm−1
i=1 b

ifi)− b
1−bW

0(0) ≤ 0, optimal

stationary cycles with y∞ ≥ 0 and y∞ constant do not exist.

Proof. Given g ≤ 0, no solutions for (39) exist. Thus, by letting λt = 0 in

(57) or (58), eliminating ps,t, s = 1, ...,m− 1, t = 0, ..., using (33), and writing

(57) analogously to (39), we obtain:

U 0(fmxs)b
mfm

1− bm − U
0(fmxs−1)b

m+1fm
1− bm +

βpcEf
1− bm (

m−1X
i=1

bi(1− b)fi)− bW 0(y∞) ≥ 0

(40)

for s = 1, ...,m.

This system is linear in U 0(fmxs), s = 1, ...,m. Its solution is given by

U 0(fmxs) +
pcβEf (

Pm−1
i=1 b

ifi)

bmfm
=
W 0(y∞)

Pm−1
i=0 b

i

bm−1fm
, s = 1, ...,m (41)

as can be verified by direct substitution. Thus, xs = (1 − y∞)/m, s = 1, ...,m

and optimal stationary cycles cannot exist.

Proposition 3 and Corollary 4 extend the results obtained in Salo and Tahvo-

nen [3] for the case where carbon benefits are considered under a tonne year

credit regime. In this case, both the optimal land allocation and the optimal

forest management are changed when introducing carbon sequestration benefits.
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Again, if all land is forested land, optimal forest management can lead to

optimal cyclical harvesting. Moreover, the cycles increase when compared to

the case without carbon sequestration benefits, as As > 0 for s = 1, ...,m − 1,

implying that the right-hand side of (37) is larger than ηj .

When it is optimal to allocate part of the forest land to alternative land use,

from Corollary 4 we conclude that the cycles are eliminated, and the remaining

equilibrium is again the normal forest steady state. In this case, the optimal

allocation area to forest will always increase, due to the fact that carbon se-

questration benefits have always a positive net value. The stationary state is

developed below.

4.2.2 Stationary states

Let assume again that g ≤ 0 and focus on interior solutions, that is, in the sense

that land is used both in forestry and any alternative use. Corollary 4 above

shows that in this case there cannot exist stationary cycles with constant y∞.

We next show that in such cases there exists a stationary state that satisfies all

the necessary conditions for optimality.

Assuming again that m is unique, for a stationary state, we have that ps,t =

ps,∞, ct = c∞, yt = y∞, λt = 0, and xm,t = x∞, where c∞, y,∞, x∞, and ps,∞,

for s = 1, ..., n− 1, are constant. Direct substitution shows that

ps =W
0(y∞)

s−1X
j=0

b−j − fsU 0(C∞)− b−sβpcEf

Ã
m−1X
i=1

bifi −
m−1X
i=s

bifi

!
(42)

for s = 1, ..., n, where
Ps−1
j=0 b

−j = −b 1−b−s1−b ,

With some more algebra, we can write for s = m

W 0(y∞)
b

1− b −
bmfm
1− bmU

0(
(1− y∞)fm

m
)− βpcEf

1− bm
m−1X
i=1

bifi = 0 (43)

Therefore, the allocation of land between forestry and the alternative use is

optimal when the present value of output from a marginal unit of land in the
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alternative use equals the present value of a marginal use of bare forest land. In

this case, the net benefits from carbon sequestration (third term of (43)) are the

present value of “emissions equivalence reduction” of a marginal unit of forest

bare land with a rotation period of dimension m.

Since m is unique, it is clear from (43) that the first term has to be larger

and the second term has to be lower by concavity of W , and U , implying that

y∞ has to decrease. In fact, if trees also generate carbon benefits, given m, less

land will be dedicated to the alternative use and more land will be put to forest.

Moreover, at the steady-state, the incremental forest land area will be evenly

distributed among the different vintages.

4.3 Average Storage Method

The average storage accounting method consists of crediting a forestry project

with the amount of yearly carbon benefits that the land allocated to forest

generates, on average, at the end of each rotation. This average is calculated

using a constant weight, which corresponds to the average amount of the carbon

stock stored, which is applied to every class s area of forest land, for s =

1, ...,m− 1. In this case, and without loss of generality, we apply the average to

the next period class s land allocation, as it makes easier the comparison with

the ton-year crediting case.

In this case, St can be defined as follows:

St = Pcβ

Pm−1
s=1 fs
m

n−1X
s=1

xs+1,t+1 (44)

Again, the decision problem is similar to the previous one, except for the

way carbon benefits are accounted for. The necessary conditions for optimal

solutions of problem (2-8) and St given by (44), are similar to the previous case

and are presented in Appendix 3.

Based on this new formulation, and using a similar procedure to that used
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above, from the foc’s we obtain a system of m x (m− 1) equations:

b(ps+1,t+1+k − p1,t+1+k)− ps,t+k = −bÚ(ct+1)(fs+1 − f1) + fsÚ(ct)− bD
(45)

−bp1,t+1+k − pm−1,t+k = −bÚ(ct+1)(fm − f1) + fm−1Ú(ct)− bD (46)

where s = 1, ...m− 2, k = 0, ...,m− 1, and where D = Pcβ
Pm−1

s=1 fs
m .

This system is linear in the Lagragian multipliers ps,t+k, s = 1, ...m − 1,

k = 0, ...m− 1. Solving for any multiplier yields

ps,t =
bmfm
1− bm

£
b−sU 0(ct+m−s)− U 0(ct)

¤
− fsU 0(ct) +Bs (47)

where Bs is given by

Bs =
b(1− bm−s)
1− bm D (48)

for s = 1, ...,m− 1, t = 0, ...., as can be verified by direct substitution into the

two equations above. By inspection, it is clear that Bs > 0 , for s = 1, ...,m−1,

t = 0, .....

4.3.1 On the existence of stationary cycles

Proposition 5 Given g ≡ U0(fm/m)b
mfm

1−bm + b
1−bD−

b
1−bW

0(0) > 0, m ≥ 2, and

b < 1, there exists a set of interior Optimal Faustmann Forests with φk > 0.

Proof. Following Salo and Tahvonen [3], condition (72) requires, for the

indefinitely repeated cycle, that ps,t+k ≥ 0 for s = 1, ...m− 1, k = 0, ...,m− 1.

Thus, the fact that x ∈ K implies by (47) that

U 0(ct+k)

U 0(ct+k+m−j)
≤ bm−jfm
fj + bm(fm − fj)

+
Bj(1− bm)

[fj + bm(fm − fj)]U 0(ct+k+m−j)
(49)

for k = 0, ...,m − 1, j = 1, ...m − 1, where Bj is given by (48). Using (3)

and the definition of Faustmann harvesting, we can write ct+k = fmxs and
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ct+k+m−j = fmxs−m+j where s−m+ j is understood as s− j, if s−m+ j ≤ 0.

Equation (49) takes the form

U 0(fmxs)

U 0(fmxs−1)
≤ bm−jfm
fj + bm(fm − fj)

+
Bj(1− bm)

[fj + bm(fm − fj)]U 0(fmxs−1)
(50)

for s = 1, ...m, j = 1, ...,m − 1. Since ηj ≡ bm−jfm
fj+bm(fm−fj) > 1, j = 1, ...,m − 1,

and Bs > 0, the second term is always positive. Then, by the strict concavity

of U , and since the right-hand side of (50) is larger than 1, there must exist a

φ > 0, such that (50) is satisfied if xs = 1/m+ φs, s = 1, ...,m, for all |φs| < φ,Pm
s=1 φs = 0.

Similarly, results can be derived for s = m+ 1, ..., n, and k = 0, ...,m− 1.

In addition, a stationary cycle with all land allocated to forestry must satisfy

λt ≥ 0, for t = 0, .... Solving (68) or (69) for λt, eliminating ps,t, s = 1, ...m−1,

t = 0, ..., using (47), we obtain

λt+k =
U 0(ct+k)b

mfm
1− bm − U

0(ct+1+k)b
m+1fm

1− bm + bD − bW 0(0) ≥ 0 (51)

for s = 1, ...,m, where ct+1+m = ct+1. Writing ct+k = fmxs and ct+1+k =

fmxs−1, s = 1, ...,m, where x0 = xm yields

λs =
U 0(fmxs)b

mfm
1− bm − U

0(fmxs−1)b
m+1fm

1− bm + bD − bW 0(0) ≥ 0 (52)

for s = 1, ...,m.

Given g = U 0(fm/m)b
mfm

1−bm + b
1−bD−

b
1−bbW

0(0) > 0, there must exist a φ > 0

such that (52) is satisfied if xs = 1/m + φs, s = 1, ...,m, for all |φs| < φ,Pm
s=1 φs = 0.

Once more, let i∞ represent the stationary state level of variable i.

Corollary 6 If g ≡ U 0(fm/m)b
mfm

1−bm + b
1−bD−

b
1−bW

0(0) ≤ 0, optimal stationary

cycles with y∞ ≥ 0 and y∞ constant do not exist.

Proof. Given g ≤ 0, no solutions for (52) exist. Thus, by letting λt = 0 in

(68) or (69), eliminating ps,t, s = 1, ...,m− 1, t = 0, ..., using (47), and writing

23



(68) analogously to (52), we obtain:

U 0(fmxs)b
mfm

1− bm − U
0(fmxs−1)b

m+1fm
1− bm + bD − bW 0(y∞) ≥ 0 (53)

for s = 1, ...,m.

This system is linear in U 0(fmxs), s = 1, ...,m. Its solution is given by

U 0(fmxs) +

Pm−1
i=0 b

i

bm−1fm
D =

W 0(y∞)
Pm−1
i=0 b

i

bm−1fm
, s = 1, ...,m (54)

as can be verified by direct substitution. Thus, xs = (1 − y∞)/m, s = 1, ...,m

and optimal stationary cycles cannot exist.

Proposition 5 and Corollary 6 extend the results obtained in Salo and Tahvo-

nen [3] to the case where carbon benefits are calculated based on the average

stock regime. Under this accounting method, considering carbon benefits also

impacts both the optimal land allocation and the optimal forest management.

Again, if all land is forested land, optimal forest management can lead to

optimal cyclical harvesting and from (50), as Bs > 0, it is clear that the average

carbon storage accounting method also increases the cycles dimension.

When it is optimal to allocate part of the forest land to alternative land

use, the cycles are eliminated, and the remaining equilibrium is once more the

normal forest steady state. The optimal allocation area to forest will again

always increase, due to the fact that this carbon benefits accounting method

has a positive net value.

4.3.2 Stationary states

Let assume again that g ≤ 0 and focus on interior solutions, that is, in the sense

that land is used both in forestry and any alternative use. Corollary 6 above

shows that in this case there cannot exist stationary cycles with constant y∞.

We next show that in such cases there exists a stationary state that satisfies all

the necessary conditions for optimality.
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Assuming again that m is unique, for a stationary state, we have that ps,t =

ps,∞, ct = c∞, yt = y∞, λt = 0, and xm,t = x∞, where c∞, y∞, x∞, and ps,∞,

for s = 1, ..., n− 1, are constant. Direct substitution shows that

ps =W
0(y∞)

s−1X
j=0

b−j − fsU 0(C∞)−
s−1X
j=0

b−jD (55)

for s = 1, ..., n, where
Ps−1
j=0 b

−j = −b 1−b−s1−b ,

With some more algebra, we can write for s = m

W 0(y∞)
b

1− b −
bmfm
1− bmU

0(
(1− y∞)fm

m
)− b

1− bD = 0 (56)

Therefore, the allocation of land between forestry and the alternative use is

optimal when the present value of output from a marginal unit of land in the

alternative use equals the present value of a marginal use of bare forest land.

Here, the net benefits from carbon sequestration (third term of (56)) are the

present value of the yearly constant payment to a marginal unit of forest land,

D.

Since m is unique, it is clear from (56) that y∞ has to decrease. Also, more

land will be put to forest, and, at the steady-state, the incremental forest land

area will be evenly distributed among the different vintages.

5 Conclusion

The introduction of carbon sequestration benefits in the multiple vintage forest

model developed by Salo and Tahvonen [3] is undertaken by considering differ-

ent carbon accounting methods, namely, the carbon flow regime, the ton-year

crediting and the average carbon storage. In general, we conclude that the main

results obtained in Salo and Tahvonen still apply. In fact, if all land is forested

land, optimal forest management can lead to optimal cyclical harvesting be-

cause smoothening an age class structure that deviates from normal forest is

not optimal. When it is optimal to allocate part of the forest land to alternative
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land use, the cycles that exist if all land is allocated to forestry are eliminated,

and the remaining equilibrium is the normal forest steady state.

Although the major theoretical results still apply, the extension to the pres-

ence of carbon sequestration benefits is not without consequences. In fact, we

conclude that different accounting methods for carbon sequestration benefits de-

termine different impacts and their dimension depends largely on the empirical

parameters values.

First, in the case that all land is forested land, under the optimal cyclical

harvesting, the cycles are increased when compared to the case without carbon

benefits. Second, the optimal allocation area to forest will, in general, increase,

as the net value from accounting carbon sequestration benefits is positive.

Formally, it is not possible to compare the impact dimension of the different

accounting methods both on the cycles dimension and on the optimal land allo-

cation because they are based on distinct concepts, θ, Ef , and D, respectively.

However, empirically, depending on the values taken by the different parame-

ters, comparisons may eventually be undertaken. Thus, aside from numerical

simulations, some insights can be found. For example, if the value of θ is very

small, close to that of Ef , we observe that the impact in the tonne-year crediting

case is greater than in the carbon flow one.

When the carbon flow accounting method is considered, the impact on opti-

mal forest management will depend upon the amount of carbon released when

the forest is harvested. In fact, if all the carbon is released at harvest (θ = 0),

carbon sequestration benefits will have no impact on the optimal management

and allocation of land. The cumulative benefits from forest use over time are

zero. In addition, in this case, the carbon price level is irrelevant as an incentive

to forest carbon sequestration.

In the limit case of (θ = 1), carbon sequestration benefits will have the

maximum possible impact on the optimal allocation of land, increasing the
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forest land area. Here, the cumulative benefits from forest use over time are

positive due to the fact that some carbon is “permanently” stored in long run

structures.

When the tonne year crediting or the average storage accounting system are

considered, the optimal forest management changes. The optimal allocation of

land between forest and other uses increases the forested area. This is due to

the fact that in these cases the benefits from forest use are always positive.

To conclude, the theoretical model developed in this paper can be a useful

tool to empirical studies on forestry policy in general, or, in particular, to ex-

amine the impact of policy measures to reduce GHG emissions or to implement

the Kyoto Protocol.
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Appendix 1
The Karush-Kuhn-Tucker conditions for optimal solutions of problem (2-8)

and St given by (30) for all t = 0, ..., are given by:

bt
∂L

∂x1,t+1
= bf1Ú(ct+1)− bW 0(yt+1)− λt + bp1,t+1 ≤ 0 (57)

bt
∂L

∂xs+1,t+1
= −fsÚ(ct) + bfs+1Ú(ct+1) + fspcβEf −

−bW 0(yt+1)− λt + bps+1,t+1 − ps,t ≤ 0 (58)

for s = 1, ..., n− 2,

bt
∂L

∂xn,t+1
= −fn−1Ú(ct) + bfnÚ(ct+1) + fn−1pcβEf − bW 0(yt+1)− λt − pn−1,t ≤ 0

(59)

xs,t+1 ≥ 0, xs,t+1
∂L

∂xs,t+1
= 0, s = 1, ..., n (60)

ps,t ≥ 0, ps,t(xs,t − xs+1,t+1) = 0, s = 1, ..., n− 1 (61)

λt ≥ 0,λt(1−
nX
s=1

xs,t+1) = 0 (62)

The existence of optimal solutions for bounded utility and b < 1 follows from

Theorem 4.6 in Stokey and Lucas (p.79).

Appendix 2

Lemma 7 As > 0, for s = 1, ...,m− 1.
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Proof. From (34), and with some algebra As > 0 implies that:

m−1X
i=0

bi
m−1X
j=s

bj−sfj >
m−s−1X
j=0

bj
m−1X
i=1

bifi (63)

which can be rewritten as:

m−1X
j=s

bj−sfj +
m−1X
j=s

bj+1−sfj + ....+
m−1X
j=s

bj−1fj +
m−1X
j=s

bjfj +
m−1X
j=s

bj+1fj + ...+
m−1X
j=s

bj+m−1−sfj >

(64)

s−1X
i=1

bifi +
m−1X
i=s

bifi +
s−1X
i=1

bi+1fi +
m−1X
i=s

bi+1fi + ....+
s−1X
i=1

bi+m−s−1fi +
m−1X
i=s

bi+m−s−1fi

(65)

Eliminating the equal terms in both sides of the inequality and rearranging the

remaining sums of (64), we have:

m−1X
j=s

bj−sfj +
s−1X
i=1

bifs +
s−1X
i=1

bi+1fs+1 + .....+
s−1X
i=1

bi+m−s−1fm−1 > (66)

s−1X
i=1

bifi +
s−1X
i=1

bi+1fi + ....+
s−1X
i=1

bi+m−s−1fi (67)

Since
Pm−1
j=s b

j−sfj > 0, for b < 1, and
³Pm−1

j=s

Ps−1
i=1 b

i(fj − fi
´
> 0, the

result follows. Moreover, from (34), we observe that Am = 0, and that As

decreases to zero as s increases to m.

Appendix 3
The Karush-Kuhn-Tucker conditions for optimal solutions of problem (2-8)

and St given by (44) for all t = 0, ..., are given by:

bt
∂L

∂x1,t+1
= bf1Ú(ct+1)− bW 0(yt+1)− λt + bp1,t+1 ≤ 0 (68)
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bt
∂L

∂xs+1,t+1
= −fsÚ(ct) + bfs+1Ú(ct+1) + bD −

−bW 0(yt+1)− λt + bps+1,t+1 − ps,t ≤ 0 (69)

for s = 1, ..., n− 2,

bt
∂L

∂xn,t+1
= −fn−1Ú(ct) + bfnÚ(ct+1) + bD − bW 0(yt+1)− λt − pn−1,t ≤ 0

(70)

xs,t+1 ≥ 0, xs,t+1
∂L

∂xs,t+1
= 0, s = 1, ..., n (71)

ps,t ≥ 0, ps,t(xs,t − xs+1,t+1) = 0, s = 1, ..., n− 1 (72)

λt ≥ 0,λt(1−
nX
s=1

xs,t+1) = 0 (73)

where D = Pcβ
Pm−1

s=1 fs
m . The existence of optimal solutions for bounded utility

and b < 1 follows from Theorem 4.6 in Stokey and Lucas (p.79).
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