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Abstract:

A transformation kernel density estimator that is suitable for heavy-tailed
distributions is discussed. Using a truncated Beta transformation, the choice
of the bandwidth parameter becomes straightforward. An application to
insurance data and the calculation of the value-at-risk are presented.
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Resum:

Es presenta un estimador nucli transformat que és adequat per a
distribucions de cua pesada. Utilitzant una transformacio basada en la
distribucio de probabilitat Beta I’eleccié del parametre de finestra és molt
directa. Es presenta una aplicacié a dades d’assegurances i s mostra com
calcular el Valor en Risc.



1 Introduction

The severity of claims is measured in monetary units andusllysreferred to as
insurance loss or claim cost amount. The probability dgrfsmction of claim
amounts is usually right skewed, showing a big bulk of smialines and some
relatively infrequent large claims. For an insurance comypaensity tails are
therefore of special interest due to their economic mageitand their influence
on the re-insurance agreements.

It is widely known that large claims are highly unpredicablhile they are
responsible for financial instability and so, since solyeisca major concern for
both insurance managers and insurance regulators, themeisd to estimate the
density of claim cost amounts and to include the extremel theaanalyses.

This paper is about estimating the density function nonpatecally when
data are heavy-tailed. Other approaches are based on estrensubject that
has received much attention in the economics literaturebrEaits et al (1999),
Coles (2001), Reiss and Thomas (2001) have treated extralne theory (EVT)
in general. Chavez-Demoulin and Embrechts (2004), bas&hamez-Demoulin
and Davison (2005), have discussed smooth extremal madglsurance. Their
focus is devoted to highlight the nonparametric trends, asi@-dependence is
present in many catastrophic risk situations (such as stemmatural disasters)
and in the finansial marked. A recent work by Cooray and An&2d@5) combine
the lognormal and the Pareto distribution and derive aidigion which has a
suitable shape for small claims and can handle heavy taileer®have addressed
this subject with the g-and-h distribution, like Dutta areify (2006) for operation
risk analysis.

In previous papers, we have analysed claim amounts in a iomendional
setting and we have realized that a nonparametric apprdethatcounts for
the asymmetric nature of the density is preferred for inscedoss distributions



(Bolance et al. 2003, Buch-Larsen et al, 2005). Moreoverhaxe applied the
method on a liability data set and compared the nonparamieirnel density es-
timation procedure to classical methods (Buch-Larsen620@everal authors
(Clements et al., 2003) have devoted much interest to wamsttion kernel den-
sity estimation, which was initially proposed by Wand et(4B91) for asymmet-
rical variables and based on the shifted power transfoondéimily. The orig-
inal method provides a good approximation for heavy-tadedributions. The
statistical properties of the density estimators are addiol when estimating the
cumulative density function (cdf). Transformation kerastimation turns out to
be a suitable approach to estimate quantiles near 1 anddresri¢ can be used to
estimate value-at-risk (VaR) in financial and insurancatesl applications.
Buch-Larsen et al. (2005) proposed an alternative tramsftions based on a
generalization of the Champernowne distribution, simatastudies have shown
that it is preferable to other transformation density eation approaches for dis-
tributions that are Pareto-like in the tail. In the existoantributions, the choice
of the bandwidth parameter in transformation kernel dgrestimation is still a
problem. One way of undergoing bandwidth choice is to im@etthe trans-
formation approach so that transformation leads to a betailslition, then use
existing theory to optimize bandwidth parameter choice eta ldistributed data
and backtransform to the original scale. The main drawbsd¢Rkat the beta dis-
tribution may be very steep in the domain boundary, whictseamnumerical in-
stability when the derivative of the inverse distributiamétion is needed for the
backward transformation. In this work we propose to truatia¢ beta distribution
and use the truncated version at transformation kerneltgezstimation. The re-
sults on the optimal choice of the bandwidth for kernel dignsstimation of beta
density are used in the truncated version directly. In theuation study we see
that our approach produces very good results for heawyetdiata. Our results are



particularly relevant for applications in insurance, whére claims amounts are
analyzed and usually small claims (low cost) coexist witly@ifew large claims
(high cost).

Let f, be a density function. Terrell and Scott (1985) and TerdPQ) ana-
lyzed several density families that minimize functionﬁl%f,((p) (9:)}2 dx, where
superscriptp) refers to thep-th derivative of the density function. We will use
these families in the context of transformed kernel derestymation. The results
on those density families are very useful to improve the ertgs of the transfor-
mation kernel density estimator.

Given a sampleXy, ..., X, of independent and identically distributed (iid) ob-
servations with density functiofi, the classical kernel density estimator is:

Fulo) = -3 Kiw = X0), @

whereb is the bandwidth or smoothing parameter dadt) = K (¢/b) /b is the
kernel. In Silverman (1986) or Wand and Jones (1995) one odrafi extensive
revision of classical kernel density estimation.

An error distance between the estimated dengitgnd the theoretical density
fx that has widely been used in the analysis of the optimal battbw is the
mean integrated squared errdf (S E):

{ [ (fe0) - fu) de}. @

It has been shown (see, for example, Silverman, 1986, chaptkat theM/ IS E
is asymptotically equivalenttd — MISE:

0022 [ @Y+ 2 [ K 0Pa ®

wherek, = [t*K (t)dt. If the second derivative of, exists (and we denote
it by fi), then [ {7 (z)}? dz is a measure of the degree of smoothness because
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the smoother the density, the smaller this integral is. Ftbenexpression for
A — MISFE it follows that the smoothef,, the smaller the value of — M ISE.

Terrell and Scott (1985, Lemma 1) showed tBata (3, 3) defined on the do-
main (—1,/2, 1/2) minimizes the functionaf { f/ (x)}” dz within the set of beta
densities with same support. Tita (3, 3) distribution will be used throughout
our work. Its pdf and cdf are:

1
<gp<Z 4
<Ts<g, (4)
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We assume that a transformation exists so hék;) = Z; i = 1,...,nis
assumed from &ni form(0, 1) distribution. We can again transform the data so
thatG=! (Z;) = Yii = 1,...,nis arandom sample from a random variapleith
a Beta(3, 3) distribution, whose pdf and cdf are defined in (5).

In this work, we use a parametric transformatibf), namely the modified
Champernowne cdf as proposed by Buch-Larsen et al. (2005)

Let us define the kernel estimator of the density functiortiertransformed

variable: .
oy - L v
g(y)—n;Kb(y Y), (6)

which should be as close as possible t&&a(3,3). We can obtain an exact
value for the bandwidth parameter that minimizes- MISE of g. If K (t) =
(3/4) (1 —t*)1(]t] < 1) is the Epanechnikov kernel, wher¢-) equals one when
the condition is true and zero otherwise, then we show tlead timal smoothing

parameter foy; if y follows a Beta(3, 3) is:

SONOR

Finally, in order to estimate the density function of thegoral variable, since

=
=

nos, (7)



y =G (2) = G7H{T (x)}, the transformation kernel density estimator is:
fe@) = 4@ [GHT (@)}]' T () = (8)
= LY K (6T @) - 6T ) [T @] T (0)9)

The estimator in (8) asymptotically minimizég/SE and the properties of the
transformation kernel density estimation (8) are studmeBalancé et al. (2008).
Since we want to avoid the difficulties of the estimator defime (8), we will

construct the transformation so that we avoid the extrerheesaof the beta dis-

tribution domain.

2 Estimation procedure

Letz = T (x) be aUniform(0,1), we define a new random variable in the
interval[1 — [, /], wherel/2 < [ < 1. The values fof should be close td. The
new random variable is* = 7% (x) = (1 — 1) + (20 — 1) T'(x) . We will discuss
later the value of.

The pdf of the new variablg* = G~! (2*) is proportional to theBeta(3, 3)
pdf, but it is in[—a, a] interval, wherex = G~ (). Finally, our proposed trans-
formation kernel density estimation is:

o) = HE O ) o @) T @) a0)

- ISR @y - e e o @' T @

The value ofA — MISE associated to the kernel estimatigy*), where
the random variablg* is defined on an interval that is smaller th&ata(3, 3)

domain is:
1 a " 1 a
A—MISE, = 7v* (kz)z/ {g" )} dy+%/ 9(y) dy/K(t)zdt- (12)
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And finally, the optimal bandwidth parameter based on thengggtic mean inte-
grated squared error measure §dy/*) is:

b =y (/_11K(t)2dt/_zg(y)dy)% </_a {g" (y)}2dy)_%n‘é(l3)
_ (%)_ @ Ga (—400% + 48a* + 15)))é (14)

x (360a (—40a2 + 144a* + 5)) % n"%, (15)

The difficulty that arises when implementing the transfaiorakernel estima-
tion expressed in (10) is the selection of the valué dfhis value can be chosen
subjectively as discussed in the simulation results by iBmdaet al. (2008). Let
X;, 1 = 1,...,n, be iid observations from a random variable with an unknown
density f,. The transformation kernel density estimatorfgfis called KIBMCE
(kernel inverse beta modified Champernowne estimator).

3 VaR estimation

In finance and insurance, the VaR represents the magnitueldéreine events and
therefore it is used as a risk measure, but VaR is a quantdex B loss random
variable with distribution functiorfy, given a probability levep, the VaR ofx
isVaR (x,p) = inf {z, Fx () > p}. SinceFy is a continuous and nondecreas-
ing function, thenVaR (x,p) = F ! (p), wherep is a probability neai (0.95,
0.99,...). One way of approximatinga R (x, p) is based on the empirical distri-
bution function, but this has often been criticized becahs@mpirical estimation
is based only on a limited number of observations, and eyenay not be an in-
teger number. As an alternative to the empirical distridoutapproach, classical
kernel estimation of the distribution function can be ugdbut this method will
be very imprecise for asymmetrical or heavy-tailed vagabl



Swanepoel and Van Graan (2005) propose to use a nonparatretsforma-
tion, that is equal to a classical kernel estimation of ttstrdiution function. We
propose to use a parametric transformation based on abdisdm function.

Given a transformation functidfir (x) it follows that Fy (z) = Fryx) (T (2)).
So, the transformation kernel estimationldi R (x, p) is based in the kernel es-
timation of the distribution function of the transformediedble.

Kernel estimation of the distribution function is (Azzalii981 and Reiss,
1981):

Tr(:v)fT'r(Xi)

Frog@r@) =23 [ 7 K@ (16)

Therefore, thé/aR (x, p) can be found as:
VaR (x,p) = Tr ' [VaR (Tr (x),p)] = T [Frh )] (a7)

4 Simulation study

This section presents a comparison of our inverse betaforanation method
with the results presented by Buch-Larsen, et al. (2005 dasly on the modi-
fied Champernowne distribution. Our objective is to showt tha second trans-
formation, that is based on the inverse of a Beta distrilbtimproves density
estimation.

In this work we analyze the same simulated samples as in Bac$en, et al.
(2005), which were drawn from four distributions with diféat tails and different
shapes near Qognormal, lognormal-Pareto, Weibull andtruncated logistic. The
distributions and the chosen parameters are listed in Table



Table 1: Distributions in simulation study.

Distribution Density Parameters
oy e w?(ps 1,05 A, p, )
Mixture of f@) =pggeme ** — (0.7,0,1,1,1,—1)

plognormaly,o)and  +(1 —=p)(@ =) "N (03 0,1,1,1,-1)
(1 - p)ParEtQ)\v Ps C)

Lognormaly, o) f(z) . = (o) =(0,05)
273021: e (log;::m
Weibull(~) f(z) = 7o Ve =15
_@=w?
NormaK:u7 U) f(.l’) = \/2;?6 27 (M? U) = (57 1)

Buch-Larsen, et al. (2005) evaluate the performance of thkCE estima-
tors compared to the estimator described by Clements, €2@03), the estima-
tor described by Wand, et al. (1991) and the estimator desttiiby Bolance, et
al. (2003). The Champernowne transformation substayiialbrove the results
from previous authors. Here we see that if the second tramstion based on
the inverse beta transformation improves the results pteden Buch-Larsen, et
al. (2005), this means that the double-transformation otefitesented here is a
substantial gain with respect to existing methods.

We measure the performance of the estimators by the errosuresabased
in L; norm, L, norm andWISE. This last weighs the distance between the
estimated and the true distribution with the squared vafue @his results in an
error measure that emphasizes the tail of the distributidnich is very relevant
in practice when dealing with income or cost data:

o 1/2

/ (F) — 7)) ?dz | (18)

0

The simulation results can be found in Table 2. For every kEtad density
and for sample sized = 100 and N = 1000, the results presented here cor-
respond to the following error measures, L, andWISE for different values
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of the trimming parametelr = 0.99,0.98. The benchmark results are labelled
KMCE and they correspond to those presented in Buch-Laetext, (2005).

In general, we can conclude that after a second transfaymatised on the
inverse of a certain Beta distribution cdf the error measdiminish with respect
to the KMCE method. In some situations the errors diminisitegsubstantially
with respect to the existing approaches.

We can see that the error measure that shows improvementswshey the
KIBMCE estimator is thdV I S E, which means that this new approach is fitting
the tail of positive distributions better than existingeaftatives. ThéV IS E error
measure is always smaller for the KIBMCE than for the KMCHeatst for one
of the two possible value dfthat have been used in this simulation study. This
would make the KIBMCE estimator specially suitable for piwsi heavy-tailed
distributions. When looking more closely at the resultstfer mixture of a log-
normal distribution and a Pareto tail, we see that largenegabfl are needed to
improve the error measures that were encountered with th€EKkhethod.

We can see that for the Truncated logistic distribution,ltggmormal distri-
bution and the Weibull distribution, the method presentetths clearly better
than the existing KMCE. We can see in Table 2 thatfor 1000, the KIBMCE
WISE is about 20% lower than the KMCB/ISFE for these distributions. A
similar behavior is shown by the other error measufesand L., for N = 1000,
are about 15% lower for the KIBMCE.

Note that the KMCE method was studied in Buch-Larsen, e2&l0%) and the
simulation study showed that it improved on the error messtor the existing
methodological approaches (Clements, et al., 2003 and Veédiadl, 1991).
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Table 2: The estimated error measures for KMCE and KIBMCE

with [ = 0.99 and! = 0.98 for sample size 100 and 1000 based on 2000 repetitions

Log-Normal Log-Pareto Weibull  Tr. Logist.

p=7 p=3

N=100 L1 KMCE 0.1363 0.1287 0.1236 0.1393 0.1294

1=0.99 0.1335 0.1266 0.1240 0.1374 0.1241

1=0.98 0.1289 0.1215 0.1191 0.1326 0.1202

L2 KMCE 0.1047 0.0837 0.0837 0.1084 0.0786

1=0.99 0.0981 0.0875 0.0902 0.1085 0.0746

1=0.98 0.0956 0.0828 0.0844 0.1033 0.0712

WISE KMCE 0.1047 0.0859 0.0958 0.0886 0.0977

1=0.99 0.0972 0.0843 0.0929 0.0853 0.0955

1=0.98 0.0948 0.0811 0.0909 0.0832 0.0923

N =1000 L1 KMCE 0.0659 0.0530 0.0507 0.0700 0.0598

1=0.99 0.0544 0.0509 0.0491 0.0568 0.0497

1=0.98 0.0550 0.0509 0.0522 0.0574 0.0524

L2 KMCE 0.0481 0.0389 0.0393 0.0582 0.0339

1=0.99 0.0394 0.0382 0.0393 0.0466 0.0298

1=0.98 0.0408 0.0385 0.0432 0.0463 0.0335

WISE KMCE 0.0481 0.0384 0.0417 0.0450 0.0501

1=0.99 0.0393 0.0380 0.0407 0.0358 0.0393

1=0.98 0.0407 0.0384 0.0459 0.0369 0.0394

5 Datastudy

In this section, we apply our estimation method to a datalsdtdontains auto-
mobile claim costs from a Spanish insurance company fodaats occurred in
1997. This data set was analyzed in detail by Bolancé eRf03). It is a typi-
cal insurance claims amount data set, i.e. a large samglétiies heavy-tailed.
The data are divided into two age groups: claims from politgters who are less
than 30 years old, and claims from policyholders who are 3¥sy/eld or older.
The first group consists of 1,061 observations in the intdia26,000] with
mean value 402.70. The second group contains 4,061 obeeivat the interval
[1;17,000] with mean value 243.09. Estimation of the partansan the modified
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Champernowne distribution function for the two samplessofar young drivers
a, = 1.116, M, = 66, ¢, = 0.000 and for older driversi, = 1.145, M, = 68,
¢, = 0.000, respectively. We notice that; < «,, which indicates that the data
set for young drivers has a heavier tail than the data setidier drivers.

Figure 1 and 2 plot the estimated densities. For small costssee that the
KIBMCE density in the mode is greater than for the KMCE apptoproposed
by Buch-Larsen et al. (2005) both for young and older drivEs both methods,
the tail in the estimated density of young policyholdersaavier than the tail of
the estimated density of older policyholders. This can keras evidence that
young drivers are more likely to claim a large amount thareoldrivers. The
KIBMCE method produces lighter tails than the KMCE methoBased on the
results in the simulation study presented in Bolancé e2@0D8), we believe that
the KIBMCE method improves the estimation of the densityhméxtreme claims

class.
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Figure 1: KIBMCE withl = 0.99 and/ = 0.98 (solid line)
and KMCE (dashed line) estimators of automobile claims
for younger policyholders.

a) Extreme claims <30 years old, 1=0.98
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Table 3 presents th€aR (x,0.95) which are obtained from the empirical
distribution estimation and those obtained with the KMCH &iBMCE. We
believe that the KIBMCE provides an adequate estimatioh®MaR and it seems
a recommendable approach to be used in practice.

Table 3: Estimation of aR (x,0.95), in thousands.

KIBMCE
Empirical KMCE [=0.99 [=0.98
Young 1104 2912 1601 1716
Older 1000 1827 1119 1146
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Figure 2: KIBMCE withl = 0.99 and/ = 0.98 (solid line)
and KMCE (dashed line) estimators of automobile claims
for older policyholders.

¢) Extreme claims >30 years old, 1=0.98

ooooooo

ooooooo

oooooooooooooooooooooo
d) Extreme claims >30 years old, 1=0.99
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oooooooooooooooooooooo
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