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Abstract: 
A transformation kernel density estimator that is suitable for heavy-tailed 
distributions is discussed. Using a truncated Beta transformation, the choice 
of the bandwidth parameter becomes straightforward. An application to 
insurance data and the calculation of the value-at-risk are presented. 
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Resum: 
Es presenta un estimador nucli transformat que és adequat per a 
distribucions de cua pesada. Utilitzant una transformació basada en la 
distribució de probabilitat Beta l’elecció del paràmetre de finestra és molt 
directa. Es presenta una aplicació a dades d’assegurances i es mostra com 
calcular el Valor en Risc. 
 
 



1 Introduction

The severity of claims is measured in monetary units and is usually referred to as

insurance loss or claim cost amount. The probability density function of claim

amounts is usually right skewed, showing a big bulk of small claims and some

relatively infrequent large claims. For an insurance company, density tails are

therefore of special interest due to their economic magnitude and their influence

on the re-insurance agreements.

It is widely known that large claims are highly unpredictable while they are

responsible for financial instability and so, since solvency is a major concern for

both insurance managers and insurance regulators, there isa need to estimate the

density of claim cost amounts and to include the extremes in all the analyses.

This paper is about estimating the density function nonparametrically when

data are heavy-tailed. Other approaches are based on extremes, a subject that

has received much attention in the economics literature. Embrechts et al (1999),

Coles (2001), Reiss and Thomas (2001) have treated extreme value theory (EVT)

in general. Chavez-Demoulin and Embrechts (2004), based onChavez-Demoulin

and Davison (2005), have discussed smooth extremal models in insurance. Their

focus is devoted to highlight the nonparametric trends, as atime-dependence is

present in many catastrophic risk situations (such as storms or natural disasters)

and in the finansial marked. A recent work by Cooray and Ananda(2005) combine

the lognormal and the Pareto distribution and derive a distribution which has a

suitable shape for small claims and can handle heavy tails. Others have addressed

this subject with the g-and-h distribution, like Dutta and Perry (2006) for operation

risk analysis.

In previous papers, we have analysed claim amounts in a one-dimensional

setting and we have realized that a nonparametric approach that accounts for

the asymmetric nature of the density is preferred for insurance loss distributions
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(Bolance et al. 2003, Buch-Larsen et al, 2005). Moreover, wehave applied the

method on a liability data set and compared the nonparametric kernel density es-

timation procedure to classical methods (Buch-Larsen, 2006). Several authors

(Clements et al., 2003) have devoted much interest to transformation kernel den-

sity estimation, which was initially proposed by Wand et al.(1991) for asymmet-

rical variables and based on the shifted power transformation family. The orig-

inal method provides a good approximation for heavy-taileddistributions. The

statistical properties of the density estimators are also valid when estimating the

cumulative density function (cdf). Transformation kernelestimation turns out to

be a suitable approach to estimate quantiles near 1 and therefore, it can be used to

estimate value-at-risk (VaR) in financial and insurance related applications.

Buch-Larsen et al. (2005) proposed an alternative transformations based on a

generalization of the Champernowne distribution, simulation studies have shown

that it is preferable to other transformation density estimation approaches for dis-

tributions that are Pareto-like in the tail. In the existingcontributions, the choice

of the bandwidth parameter in transformation kernel density estimation is still a

problem. One way of undergoing bandwidth choice is to implement the trans-

formation approach so that transformation leads to a beta distribution, then use

existing theory to optimize bandwidth parameter choice on beta distributed data

and backtransform to the original scale. The main drawback is that the beta dis-

tribution may be very steep in the domain boundary, which causes numerical in-

stability when the derivative of the inverse distribution function is needed for the

backward transformation. In this work we propose to truncate the beta distribution

and use the truncated version at transformation kernel density estimation. The re-

sults on the optimal choice of the bandwidth for kernel density estimation of beta

density are used in the truncated version directly. In the simulation study we see

that our approach produces very good results for heavy-tailed data. Our results are
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particularly relevant for applications in insurance, where the claims amounts are

analyzed and usually small claims (low cost) coexist with only a few large claims

(high cost).

Let fx be a density function. Terrell and Scott (1985) and Terrell (1990) ana-

lyzed several density families that minimize functionals
∫ {

f
(p)
x (x)

}2

dx, where

superscript(p) refers to thep-th derivative of the density function. We will use

these families in the context of transformed kernel densityestimation. The results

on those density families are very useful to improve the properties of the transfor-

mation kernel density estimator.

Given a sampleX1, ..., Xn of independent and identically distributed (iid) ob-

servations with density functionfx, the classical kernel density estimator is:

f̂x (x) =
1

n

n∑

i=1

Kb (x − Xi) , (1)

whereb is the bandwidth or smoothing parameter andKb (t) = K (t/b) /b is the

kernel. In Silverman (1986) or Wand and Jones (1995) one can find an extensive

revision of classical kernel density estimation.

An error distance between the estimated densityf̂x and the theoretical density

fx that has widely been used in the analysis of the optimal bandwidth b is the

mean integrated squared error (MISE):

E

{∫ (
fx (x) − f̂x (x)

)2

dx

}
. (2)

It has been shown (see, for example, Silverman, 1986, chapter 3) that theMISE

is asymptotically equivalent toA − MISE:

1

4
b4 (k2)

2

∫
{f ′′

X
(x)}

2
dx +

1

nb

∫
K (t)2 dt, (3)

wherek2 =
∫

t2K (t) dt. If the second derivative offx exists (and we denote

it by f ′′
X

), then
∫
{f ′′

x
(x)}2 dx is a measure of the degree of smoothness because
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the smoother the density, the smaller this integral is. Fromthe expression for

A−MISE it follows that the smootherfx, the smaller the value ofA−MISE.

Terrell and Scott (1985, Lemma 1) showed thatBeta (3, 3) defined on the do-

main(−1/2, 1/2) minimizes the functional
∫
{f ′′

x
(x)}2 dx within the set of beta

densities with same support. TheBeta (3, 3) distribution will be used throughout

our work. Its pdf and cdf are:

g (x) =
15

8

(
1 − 4x2

)2
,−

1

2
≤ x ≤

1

2
, (4)

G (x) =
1

8

(
4 − 9x + 6x2

)
(1 + 2x)3 . (5)

We assume that a transformation exists so thatT (Xi) = Zi i = 1, ..., n is

assumed from aUniform(0, 1) distribution. We can again transform the data so

thatG−1 (Zi) = Yi i = 1, ..., n is a random sample from a random variabley with

aBeta(3, 3) distribution, whose pdf and cdf are defined in (5).

In this work, we use a parametric transformationT (·), namely the modified

Champernowne cdf as proposed by Buch-Larsen et al. (2005)

Let us define the kernel estimator of the density function forthe transformed

variable:

ĝ (y) =
1

n

n∑

i=1

Kb (y − Yi) , (6)

which should be as close as possible to aBeta(3, 3). We can obtain an exact

value for the bandwidth parameter that minimizesA − MISE of ĝ. If K (t) =

(3/4) (1 − t2) 1 (|t| ≤ 1) is the Epanechnikov kernel, where1 (·) equals one when

the condition is true and zero otherwise, then we show that the optimal smoothing

parameter for̂g if y follows aBeta(3, 3) is:

b =

(
1

5

)− 2
5
(

3

5

) 1
5

(720)−
1
5 n− 1

5 , (7)

Finally, in order to estimate the density function of the original variable, since
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y = G−1 (z) = G−1 {T (x)}, the transformation kernel density estimator is:

f̂x (x) = ĝ (y)
[
G−1 {T (x)}

]′
T ′ (x) = (8)

=
1

n

n∑

i=1

Kb

(
G−1 {T (x)} − G−1 {T (Xi)}

) [
G−1 {T (x)}

]′
T ′ (x) .(9)

The estimator in (8) asymptotically minimizesMISE and the properties of the

transformation kernel density estimation (8) are studied in Bolancé et al. (2008).

Since we want to avoid the difficulties of the estimator defined in (8), we will

construct the transformation so that we avoid the extreme values of the beta dis-

tribution domain.

2 Estimation procedure

Let z = T (x) be aUniform(0, 1), we define a new random variable in the

interval [1 − l, l], where1/2 < l < 1. The values forl should be close to1. The

new random variable isz∗ = T ∗ (x) = (1 − l) + (2l − 1)T (x) . We will discuss

later the value ofl.

The pdf of the new variabley∗ = G−1 (z∗) is proportional to theBeta(3, 3)

pdf, but it is in [−a, a] interval, wherea = G−1 (l). Finally, our proposed trans-

formation kernel density estimation is:

f̂x (x) =
ĝ (y∗) [G−1 {T ∗ (x)}]

′
T ∗′ (x)

(2l − 1)
= ĝ (y∗)

[
G−1 {T ∗ (x)}

]′
T ′ (x) (10)

=
1

n

n∑

i=1

Kb

(
G−1 {T ∗ (x)} − G−1 {T (Xi)}

) [
G−1 {T ∗ (x)}

]′
T ′ (x)(11)

The value ofA − MISE associated to the kernel estimationĝ (y∗), where

the random variabley∗ is defined on an interval that is smaller thanBeta(3, 3)

domain is:

A − MISEa =
1

4
b4 (k2)

2

∫ a

−a

{g′′ (y)}
2
dy +

1

nb

∫ a

−a

g (y) dy

∫
K (t)2 dt. (12)
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And finally, the optimal bandwidth parameter based on the asymptotic mean inte-

grated squared error measure forĝ (y∗) is:

bopt
g = k

− 2
5

2

(∫ 1

−1

K (t)2 dt

∫ a

−a

g (y) dy

)1
5
(∫ a

−a

{g′′ (y)}
2
dy

)− 1
5

n− 1
5 (13)

=

(
1

5

)− 2
5
(

3

5

(
1

4
a

(
−40a2 + 48a4 + 15

))) 1
5

(14)

×
(
360a

(
−40a2 + 144a4 + 5

))− 1
5 n− 1

5 , (15)

The difficulty that arises when implementing the transformation kernel estima-

tion expressed in (10) is the selection of the value ofl. This value can be chosen

subjectively as discussed in the simulation results by Bolancé et al. (2008). Let

Xi, i = 1, ..., n, be iid observations from a random variable with an unknown

densityfx. The transformation kernel density estimator offx is called KIBMCE

(kernel inverse beta modified Champernowne estimator).

3 VaR estimation

In finance and insurance, the VaR represents the magnitude ofextreme events and

therefore it is used as a risk measure, but VaR is a quantile. Let x a loss random

variable with distribution functionFx, given a probability levelp, the VaR ofx

is V aR (x,p) = inf {x, Fx (x) ≥ p} . SinceFx is a continuous and nondecreas-

ing function, thenV aR (x,p) = F−1
x

(p), wherep is a probability near1 (0.95,

0.99,...). One way of approximatingV aR (x,p) is based on the empirical distri-

bution function, but this has often been criticized becausethe empirical estimation

is based only on a limited number of observations, and evennp may not be an in-

teger number. As an alternative to the empirical distribution approach, classical

kernel estimation of the distribution function can be useful, but this method will

be very imprecise for asymmetrical or heavy-tailed variables.
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Swanepoel and Van Graan (2005) propose to use a nonparametric transforma-

tion, that is equal to a classical kernel estimation of the distribution function. We

propose to use a parametric transformation based on a distribution function.

Given a transformation functionTr (x) it follows thatFx (x) = FTr(x) (Tr (x)).

So, the transformation kernel estimation ofV aR (x,p) is based in the kernel es-

timation of the distribution function of the transformed variable.

Kernel estimation of the distribution function is (Azzalini, 1981 and Reiss,

1981):

F̂Tr(x) (Tr (x)) =
1

n

n∑

i=1

∫ Tr(x)−Tr(Xi)
b

−1

K (t) dt, (16)

Therefore, theV aR (x,p) can be found as:

V aR (x,p) = Tr−1 [V aR (Tr (x) , p)] = Tr−1
[
F̂−1

Tr(x) (p)
]

(17)

4 Simulation study

This section presents a comparison of our inverse beta transformation method

with the results presented by Buch-Larsen, et al. (2005) based only on the modi-

fied Champernowne distribution. Our objective is to show that the second trans-

formation, that is based on the inverse of a Beta distribution, improves density

estimation.

In this work we analyze the same simulated samples as in Buch-Larsen, et al.

(2005), which were drawn from four distributions with different tails and different

shapes near 0:lognormal, lognormal-Pareto, Weibull andtruncated logistic. The

distributions and the chosen parameters are listed in Table1.

9



Table 1: Distributions in simulation study.
Distribution Density Parameters

Mixture of
pLognormal(µ, σ) and
(1 − p)Pareto(λ, ρ, c)

f(x) = p 1√
2πσ2x

e−
(log x−µ)2

2σ2

+(1 − p)(x − c)−(ρ+1)ρλρ

(p, µ, σ, λ, ρ, c)
= (0.7, 0, 1, 1, 1,−1)
= (0.3, 0, 1, 1, 1,−1)

Lognormal(µ, σ) f(x) =

1√
2πσ2x

e−
(log x−µ)2

2σ2

(µ, σ) = (0, 0.5)

Weibull(γ) f(x) = γx(γ−1)e−xγ

γ = 1.5

Normal(µ, σ) f(x) = 1√
2πσ2

e−
(x−µ)2

2σ2 (µ, σ) = (5, 1)

Buch-Larsen, et al. (2005) evaluate the performance of the KMCE estima-

tors compared to the estimator described by Clements, et al.(2003), the estima-

tor described by Wand, et al. (1991) and the estimator described by Bolancé, et

al. (2003). The Champernowne transformation substantially improve the results

from previous authors. Here we see that if the second transformation based on

the inverse beta transformation improves the results presented in Buch-Larsen, et

al. (2005), this means that the double-transformation method presented here is a

substantial gain with respect to existing methods.

We measure the performance of the estimators by the error measures based

in L1 norm, L2 norm andWISE. This last weighs the distance between the

estimated and the true distribution with the squared value of x. This results in an

error measure that emphasizes the tail of the distribution,which is very relevant

in practice when dealing with income or cost data:




∞∫

0

(
f̂(x) − f(x)

)2

x2 dx




1/2

. (18)

The simulation results can be found in Table 2. For every simulated density

and for sample sizesN = 100 andN = 1000, the results presented here cor-

respond to the following error measuresL1, L2 andWISE for different values
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of the trimming parameterl = 0.99, 0.98. The benchmark results are labelled

KMCE and they correspond to those presented in Buch-Larsen,et al. (2005).

In general, we can conclude that after a second transformation based on the

inverse of a certain Beta distribution cdf the error measures diminish with respect

to the KMCE method. In some situations the errors diminish quite substantially

with respect to the existing approaches.

We can see that the error measure that shows improvements when using the

KIBMCE estimator is theWISE, which means that this new approach is fitting

the tail of positive distributions better than existing alternatives. TheWISE error

measure is always smaller for the KIBMCE than for the KMCE, atleast for one

of the two possible value ofl that have been used in this simulation study. This

would make the KIBMCE estimator specially suitable for positive heavy-tailed

distributions. When looking more closely at the results forthe mixture of a log-

normal distribution and a Pareto tail, we see that larger values ofl are needed to

improve the error measures that were encountered with the KMCE method.

We can see that for the Truncated logistic distribution, thelognormal distri-

bution and the Weibull distribution, the method presented here is clearly better

than the existing KMCE. We can see in Table 2 that forN = 1000, the KIBMCE

WISE is about 20% lower than the KMCEWISE for these distributions. A

similar behavior is shown by the other error measures,L1 andL2, for N = 1000,

are about 15% lower for the KIBMCE.

Note that the KMCE method was studied in Buch-Larsen, et al. (2005) and the

simulation study showed that it improved on the error measures for the existing

methodological approaches (Clements, et al., 2003 and Wand, et al., 1991).
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Table 2: The estimated error measures for KMCE and KIBMCE
with l = 0.99 andl = 0.98 for sample size 100 and 1000 based on 2000 repetitions

Log-Normal Log-Pareto Weibull Tr. Logist.
p =.7 p =.3

N=100 L1 KMCE 0.1363 0.1287 0.1236 0.1393 0.1294
l=0.99 0.1335 0.1266 0.1240 0.1374 0.1241
l=0.98 0.1289 0.1215 0.1191 0.1326 0.1202

L2 KMCE 0.1047 0.0837 0.0837 0.1084 0.0786
l=0.99 0.0981 0.0875 0.0902 0.1085 0.0746
l=0.98 0.0956 0.0828 0.0844 0.1033 0.0712

WISE KMCE 0.1047 0.0859 0.0958 0.0886 0.0977
l=0.99 0.0972 0.0843 0.0929 0.0853 0.0955
l=0.98 0.0948 0.0811 0.0909 0.0832 0.0923

N =1000 L1 KMCE 0.0659 0.0530 0.0507 0.0700 0.0598
l=0.99 0.0544 0.0509 0.0491 0.0568 0.0497
l=0.98 0.0550 0.0509 0.0522 0.0574 0.0524

L2 KMCE 0.0481 0.0389 0.0393 0.0582 0.0339
l=0.99 0.0394 0.0382 0.0393 0.0466 0.0298
l=0.98 0.0408 0.0385 0.0432 0.0463 0.0335

WISE KMCE 0.0481 0.0384 0.0417 0.0450 0.0501
l=0.99 0.0393 0.0380 0.0407 0.0358 0.0393
l=0.98 0.0407 0.0384 0.0459 0.0369 0.0394

5 Data study

In this section, we apply our estimation method to a data set that contains auto-

mobile claim costs from a Spanish insurance company for accidents occurred in

1997. This data set was analyzed in detail by Bolancé et al. (2003). It is a typi-

cal insurance claims amount data set, i.e. a large sample that looks heavy-tailed.

The data are divided into two age groups: claims from policyholders who are less

than 30 years old, and claims from policyholders who are 30 years old or older.

The first group consists of 1,061 observations in the interval [1;126,000] with

mean value 402.70. The second group contains 4,061 observations in the interval

[1;17,000] with mean value 243.09. Estimation of the parameters in the modified
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Champernowne distribution function for the two samples of is, for young drivers

α̂1 = 1.116, M̂1 = 66, ĉ1 = 0.000 and for older driverŝα2 = 1.145, M̂2 = 68,

ĉ2 = 0.000, respectively. We notice thatα1 < α2, which indicates that the data

set for young drivers has a heavier tail than the data set for older drivers.

Figure 1 and 2 plot the estimated densities. For small costs,we see that the

KIBMCE density in the mode is greater than for the KMCE approach proposed

by Buch-Larsen et al. (2005) both for young and older drivers. For both methods,

the tail in the estimated density of young policyholders is heavier than the tail of

the estimated density of older policyholders. This can be taken as evidence that

young drivers are more likely to claim a large amount than older drivers. The

KIBMCE method produces lighter tails than the KMCE methods.Based on the

results in the simulation study presented in Bolancé et al (2008), we believe that

the KIBMCE method improves the estimation of the density in the extreme claims

class.
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Figure 1: KIBMCE withl = 0.99 andl = 0.98 (solid line)
and KMCE (dashed line) estimators of automobile claims

for younger policyholders.

Table 3 presents theV aR (x, 0.95) which are obtained from the empirical

distribution estimation and those obtained with the KMCE and KIBMCE. We

believe that the KIBMCE provides an adequate estimation of the VaR and it seems

a recommendable approach to be used in practice.

Table 3: Estimation ofV aR (x, 0.95), in thousands.
KIBMCE

Empirical KMCE l = 0.99 l = 0.98
Young 1104 2912 1601 1716
Older 1000 1827 1119 1146
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Figure 2: KIBMCE withl = 0.99 andl = 0.98 (solid line)
and KMCE (dashed line) estimators of automobile claims

for older policyholders.
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