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All assignment games with the same core have the same
nucleolus

Abstract: There exist coalitional games with transferable utility which have
the same core but different nucleoli. We show that this cannot happen in the
case of assignment games. Whenever two assignment games have the same
core, their nucleoli also coincide. To show this, we prove that the nucleolus of
an assignment game coincides with that of its buyer–seller exact representa-
tive.
Key words: assignment game, core, kernel, nucleolus
JEL: C71, C78

Resum: Existeixen jocs cooperatius d’utilitat transferible que tot i tenir el
mateix core tenen diferent nucleolus. En aquest treball es mostra que això
no pot passar amb els jocs d’assignació, és a dir que, en aquests jocs, el
nucleolus ve determinat pel core del joc i per tant dos jocs d’assignació amb
el mateix core tenen forçosament el mateix nucleolus. Per provar-ho mostrem
que el nucleolus d’un joc d’assignació coincideix amb el de l’únic joc que el
representa amb la propietat de ser ”buyer-seller” exacte.



1 Introduction

In a bilateral assignment market a product that comes in indivisible units is
exchanged for money, and each participant either supplies or demands exactly
one unit. The units need not be alike and the same unit may have different
values for different participants. From these valuations, a matrix can be de-
fined whose entries give the profit that can be obtained by each buyer-seller
pair if they trade. Assuming that side payments are allowed, Shapley and
Shubik (1972) define the assignment game as a cooperative model for this
bilateral market and prove the nonemptyness of its core.

There may exist different assignment matrices which determine assignment
games with the same core. In fact, given a matrix A there exists a unique
matrix Ar such that (i) the core of the corresponding assignment games coin-
cides and (ii) Ar is maximal in the sense that no matrix entry can be raised
without modifying the core of the game (Núñez and Rafels, 2002b).

Several game–theoretic solution concepts for the assignment game have
been considered. Among them we should mention the τ–value. The τ–value
of a coalitional game was introduced by Tijs (1981) as a compromise between
a utopia vector and a minimal rights vector. For the assignment game, the
τ–value selects the midpoint between the buyers–optimal core allocation and
the sellers–optimal core allocation (Núñez and Rafels, 2002a).

Since the τ -value of an assignment game depends only on its core, the
assignment games related to A and to Ar have the same τ–value. The aim
of this paper is to prove that this property also holds for two other well-known
solution concepts: the kernel and the nucleolus.

2 The assignment model

Let M = {1, 2, . . . , m} be a set of buyers and M ′ = {1′, 2′, . . . , m′} a set
of sellers, where we denote the j-th seller by j′ to distinguish it from the
j-th buyer. Let A = (aij′)(i,j′)∈M×M ′ be a nonnegative matrix where aij′

represents the profit obtained by the mixed–pair (i, j′) if they trade. Let
n = m + m′ denote the cardinality of M ∪M ′ . An assignment problem
is a triple (M,M ′, A) . The goal is to find an optimal matching between the
two sides of the market. A matching for A is a subset µ of M ×M ′ such
that each k ∈ M ∪ M ′ belongs at most to one pair in µ . We denote the
set of matchings of A by M(A) or M(M, M ′) . We say a matching µ is
optimal if for all µ′ ∈ M(M,M ′) ,

∑

(i,j′)∈µ aij′ ≥
∑

(i,j′)∈µ′ aij′ . We denote
the set of optimal matchings by M∗(A) .

A transferable utility coalitional game (TU coalitional game) is a
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pair (N, v), where the set N = {1, 2, . . . , n} is its finite player set and v :
2N −→ R its characteristic function satisfying v(∅) = 0 . A payoff vector
will be x ∈ Rn and, for every coalition S ⊆ N we write x(S) :=

∑

i∈S xi

to denote the payoff to coalition S (where x(∅) = 0 ). An imputation is a
payoff vector that is efficient, x(N) = v(N) , and individually rational, which
means each player i ∈ N receives at least the individual worth v(i) . We
denote the set of imputations by I(N, v) . The core of (N,v) is defined by
C(N, v) = {x ∈ Rn | x(N) = v(N) and x(S) ≥ v(S) for all S ⊂ N } . The
core is a bounded convex polyhedron. When no confusion can arise regarding
the player set, we simply denote the set of imputations by I(v) and the core
by C(v) .

Assignment games were introduced by Shapley and Shubik (1972) to
model two–sided markets with transferable utility. Given an assignment prob-
lem (M, M ′, A) , the player set is M ∪ M ′ , and the matrix A determines
the characteristic function wA as follows: given S ⊆ M and T ⊆ M ′ , let
M(S, T ) be the set of matchings between S and T and let wA(S ∪ T ) =
max{

∑

(i,j′)∈µ aij′ | µ ∈M(S, T )} . We assume as usual that a coalition con-
sisting only of sellers or only of buyers has worth zero. A buyer i ∈ M is not
assigned by µ if (i, j′) 6∈ µ for all j′ ∈ M ′ (and similarly for sellers).

Shapley and Shubik proved that the core of an assignment game (M ∪
M ′, wA) is nonempty, and can be represented in terms of any optimal matching
µ of M ∪M ′ by

C(wA) =























ui ≥ 0, for all i ∈ M ; vj′ ≥ 0, for all j′ ∈ M ′

ui + vj′ = aij′ if (i, j′) ∈ µ
(u, v) ∈ RM×M ′

ui + vj′ ≥ aij′ if (i, j′) 6∈ µ
ui = 0 if i not assigned by µ
vj′ = 0 if j′ not assigned by µ .























(1)
Moreover, the core has a lattice structure with two special extreme points:

the buyers–optimal core allocation, (uA, vA) , where each buyer attains his
maximum core payoff, and the sellers–optimal core allocation, (uA, vA) , where
each seller does.

In Núñez and Rafels (2002b), an assignment game (M ∪M ′, wA) is said
to be buyer–seller exact if for all i ∈ M and all j′ ∈ M ′ there exists
(u, v) ∈ C(wA) such that ui +vj′ = aij′ . Note that when an assignment game
is buyer–seller exact, no matrix entry can be raised without changing the core
of the game.

As an example, all 3×3 assignment games defined by matrix





1 α 1
1 1 1
1 1 1



 ,

with 0 ≤ α ≤ 1 , have the same core, which is the line segment with endpoints
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(1, 1, 1; 0, 0, 0) and (0, 0, 0; 1, 1, 1) . But only the one with α = 1 is buyer–
seller exact. More examples will be found in the paper cited above.

It is proved in that paper that for all (M ∪M ′, wA) there exists a unique
buyer–seller exact assignment game (M∪M ′, wAr) such that C(wA) = C(wAr) ,
and that both games have at least one optimal matching in common. We then
say that wAr is the buyer-seller exact representative of wA . Then, two
assignment games with the same core have the same buyer–seller exact repre-
sentative. If A is square, this representative matrix Ar can be computed from
A in the following way: ar

ij′ = max{aij′ , ãij′} , where, for all (i, j′) ∈ M×M ′ ,

ãij′ = max
k1,k2,...,kr∈M\{i,j}

different

{aik′1 + ak1k′2 + · · ·+ akrj′ − (ak1k′1 + · · ·+ akrk′r)} . (2)

Since wA and wAr have the same core, it follows easily that τ(wA) = τ(wAr) .
The case of another solution concept, the kernel, is similar.

The kernel K(N, v) of a TU coalitional game (N, v) is a set-solution
concept introduced by Davis and Maschler (1965), and we just write K(v)
if no confusion can arise regarding the player set. In the case of a zero–
monotonic game ( v(S) ≥ v(T ) +

∑

i∈S\T v(i) , for all T ⊆ S ), as it is the
case of assignment games, the kernel is given by

K(v) = {z ∈ RN |
∑

k∈N

zk = v(N) and sv
ij(z) = sv

ji(z) , for all i, j ∈ N, i 6= j , }

where the maximum surplus sv
ij(z) of player i over another player j with

respect to the allocation z ∈ RN in the game (N, v) is defined by

sv
ij(z) = max{v(S)−

∑

k∈S

zk | S ⊆ N , i ∈ S , j 6∈ S} .

Then, the kernel K(v) can be understood as the set of all efficient allocations
for which all pair of players are in equilibrium.

Proposition 1 Let (M∪M ′, wA) be an assignment game and (M∪M ′, wAr)
its buyer–seller exact representative. Then K(wA) = K(wAr) .

Proof: Given two assignment games with the same core, the intersections
of the core and the kernel also coincide (Maschler, Peleg and Shapley, 1979).
Thus, K(wA) ∩ C(wA) = K(wAr) ∩ C(wAr) . But, since the kernel of an
assignment game is always included in the core (Driessen, 1998), the above
equality is equivalent to K(wA) = K(wAr) . 2

The nucleolus is a single-valued solution for TU coalitional games which
is always contained in the kernel, and also in the core whenever the core is
nonempty. In the next section we show that all assignment games with the
same core have the same nucleolus, since they have the same nucleolus as their
buyer–seller exact representative.
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3 The nucleolus of the buyer–seller exact rep-
resentative wAr

The nucleolus is a single–valued solution concept for TU coalitional games. Let
us recall the definition, which is due to Schmeidler (1969). For all imputation
x of (N, v) , and all coalition S ⊆ N , the excess of coalition S with
respect to x is e(S, x) = v(S) − x(S) . Now, for all imputation x , let us
define the vector θ(x) ∈ R2n−2 of excesses of all non trivial coalitions at x ,
arranged in a nonincreasing order. That is to say, for all k ∈ {1, . . . , 2n− 2} ,
θ(x)k = e(Sk, x) , where {S1, . . . , Sk, . . . , S2n−2} is the set of all nonempty
coalitions in N different from N , and e(Sk, x) ≥ e(Sk+1, x) .

Then the nucleolus of the game (N, v) is the imputation ν(N, v) (we
just write ν(v) when no confusion regarding the player set can arise) which
minimizes θ(x) with respect to the lexicographic order over the set of impu-
tations: θ(ν(v)) ≤Lex θ(x) for all x ∈ I(v) . It is easy to see that, whenever
the core of a game is nonempty, the nucleolus belongs to it.

One may think that the shape of the core determines the location of the
nucleolus. In Maschler, Peleg and Shapley (1979, p. 335) an example is given
of two games that have the same core but different nucleoli. This shows that,
in the general framework of arbitrary TU coalitional games, the coincidence
of the cores of two games does not imply the coincidence of their nucleoli.

An alternative definition of the nucleolus for an arbitrary TU coalitional
game was given by Maschler, Peleg and Shapley (1979) as an iterative process
that constructs the set of payoffs that lexicographically minimize the vector
of ordered excesses. They prove that this set of minimizers is actually a single
point, called the lexicographic center of the game, which coincides with
the nucleolus. Solymosi and Raghavan (1994) present a definition of lexico-
graphic center specialized for assignment games, based on the fact (already
pointed out by Huberman, 1980) that for assignment games, only one–player
coalitions and mixed–pair coalitions play a role in the computation of the
nucleolus.

The definition of lexicographic center of an assignment game we present
here is slightly different from that of Solymosi and Raghavan (1994). We use
instead that given by Maschler, Peleg and Shapley (1979), while Solymosi and
Raghavan replace excess by satisfaction and would therefore interchange min
and max in the following definitions. Moreover, we define the initial feasible
set X0 to be the core of the game, while Solymosi and Raghavan begin with
a particular subset of imputations that contains all core allocations. However,
all steps in the proof of Solymosi and Raghavan (1994) can be followed to
prove that our definition of lexicographic center of an assignment game also
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consists of only one point and coincides with the nucleolus.1

Let (M ∪M ′, wA) be an assignment game and µ a fixed optimal match-
ing for A . Let us consider the set of one–player coalitions and mixed–pair
coalitions, that is P = {{k} | k ∈ M ∪ M ′} ∪ {{i, j′} | i ∈ M , j′ ∈ M ′} .
We iteratively construct a sequence (∆0, Σ0), . . . , (∆s+1, Σs+1) of partitions
of P , with Σ0 ⊇ Σ1 ⊇ · · · ⊇ Σs+1 , and a sequence X0 ⊇ X1 ⊇ · · · ⊇ Xs+1

of sets of payoff vectors such that:
Initially ∆0 = {{i, j′} | (i, j′) ∈ µ} ∪ {{k} | k ∈ M ∪M ′ not matched by µ} ;
Σ0 = P\∆0 , and X0 = C(wA) = {(u, v) ∈ Rm+m′

+ | e(S, (u, v)) = 0 for all S ∈
∆0 , e(S, (u, v)) ≤ 0 for all S ∈ Σ0 } .
For r ∈ {0, 1, . . . , s} define recursively

1. αr+1 = min(u,v)∈Xr maxS∈Σr e(S, (u, v)) ,

2. Xr+1 = {(u, v) ∈ Xr | maxS∈Σr e(S, (u, v)) = αr+1},

3. Σr+1 = {S ∈ Σr | e(S, (u, v)) is constant on Xr+1} ,

4. Σr+1 = Σr \ Σr+1 , ∆r+1 = ∆r ∪ Σr+1 ,

where s is the last index for which Σr 6= ∅ . The set Xs+1 is called the
lexicographic center of (M ∪M ′, wA) .

Let us now compare the lexicographic center of an assignment game with
that of its buyer–seller exact representative. We show that they coincide.

From now on, by adding dummy players on one side of the market (that
is to say, null rows or columns in the assignment matrix) we will assume
m = m′ . Note that this does not affect the computation of the nucleolus. If
k is one of these added dummy players, then xk = 0 for all x ∈ C(wA) which
implies eA({k}, x) = 0 for all x ∈ C(wA) , and this excess does not allow to
discriminate between core allocations. Moreover, if S = {i, j} is a mixed–pair
coalition containing one of these added players, then coalition S is inessential,
which means that its worth is at most the sum of the worths of the coalitions of
a non-trivial partition of S (in our case wA({i, j}) = wA({i})+wA({j}) ) and
then, from Huberman (1980), S needs not be considered in any computation
of the nucleolus.

Theorem 2 Let (M ∪M ′, wA) be an assignment game and (M ∪M ′, wAr)
its buyer–seller exact representative. Then,

ν(wA) = ν(wAr) .

1The complete proof will be provided by the author upon request.
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Proof: Let us fix the same optimal matching µ in both games. Let us as-
sume, without loss of generality, that buyers and sellers have been ordered in
such a way that µ = {(i, i′) | i ∈ M} . We denote by (∆0, Σ0), . . . , (∆s+1, Σs+1)
and X0, . . . , Xs+1 the partitions and sets of payoffs which define the lex-
icographic center of (M ∪ M ′, wA) , and by (∆̃0, Σ̃0), . . . , (∆̃s′+1, Σ̃s′+1) and
X̃0, . . . , X̃s′+1 the partitions and sets of payoffs which define the lexicographic
center of (M ∪ M ′, wAr) . We prove that for all 0 ≤ r ≤ s + 1 , ∆r = ∆̃r ,
Σr = Σ̃r and Xr = X̃r and consequently ν(wA) = ν(wAr) . We also write
eA(S, x) = wA(S)−x(S) and eAr(S, x) = wAr(S)−x(S) , for all S ⊆ M ∪M ′

and all x ∈ I(wA) = I(wAr) .
The proof is by induction on r . By definition, ∆0 = ∆̃0 , Σ0 = Σ̃0 and

X0 = X̃0 . Assume now that, for some r ≥ 0 , ∆r = ∆̃r , Σr = Σ̃r and
Xr = X̃r and let us show that these equalities hold at step r + 1 . To see
this, we prove that, for all (u, v) ∈ Xr ,

max
S∈Σr

eA(S, (u, v)) = max
S∈Σr

eAr
(S, (u, v)) = max

S∈Σ̃r
eAr

(S, (u, v)) ,

where the last equality follows from the induction assumptions. We then take
(u, v) ∈ Xr = X̃r and consider two different cases depending on whether
maxS∈Σr eA(S, (u, v)) is attained at a mixed-pair coalition or at a one–player
coalition.
Case 1: maxS∈Σr eA(S, (u, v)) = eA({i, j′}, (u, v)) for some i ∈ M and j′ ∈
M ′ , {i, j′} ∈ Σr .

This means that eA({i, j′}, (u, v)) = aij′ − ui − vj′ ≥ ai1j′1 − ui1 − vj′1 , for
all {i1, j′1} ∈ Σr, aij′ − ui − vj′ ≥ −uk , for all k ∈ M , {k} ∈ Σr , and
aij′ − ui − vj′ ≥ −vk′ for all k′ ∈ M ′ , {k′} ∈ Σr .

Let us see that ar
ij′ = aij′ . Assume on the contrary that ar

ij′ > aij′ .
Then, from (2), there exist k1, . . . , kl ∈ M \ {i, j} and different such that
ar

ij′ = aik′1 + ak1k′2 + · · ·+ akl−1k′l
+ aklj′ − ak1k′1 − ak2k′2 − · · · − aklk′l

.
When computing the excesses of coalition {i, j′} in both games we have

eAr({i, j′}, (u, v)) = ar
ij′ − ui− vj′ > aij′ − ui− vj′ = eA({i, j′}, (u, v)) and, by

(2),

eAr({i, j′}, (u, v))
= aik′1 + ak1k′2 + · · ·+ aklj′ − ak1k′1 − ak2k′2 − · · · − aklk′l

− ui − vj′

= aik′1 + ak1k′2 + · · ·+ aklj′ − ak1k′1 − ak2k′2 − · · · − aklk′l − ui − vj′

−
∑l

t=1 ukt +
∑l

t=1 ukt −
∑l

t=1 vk′t +
∑l

t=1 vk′t
= (aik′1 − ui − vk′1) + (ak1k′2 − uk1 − vk′2) + · · ·+ (aklj′ − ukl − vj′)

since for all p ∈ {1, . . . , l} , akpk′p − ukp − vk′p = 0 as (u, v) ∈ Xr ⊆ C(wA) .
We claim that at least one of the coalitions {i, k′1}, {k1, k′2}, . . . , {kl, j′}

belongs to Σr . Otherwise, each one of these coalitions would belong to Σt
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for some t ∈ {1, . . . , r} and would be constant on X t . Then, as Xr ⊆
Xr−1 ⊆ · · · ⊆ X0 , the excess of all the above coalitions would be constant on
Xr . Since the equation

eAr
({i, j′}, (u, v)) = (aik′1−ui−vk′1)+(ak1k′2−uk1−vk′2)+ · · ·+(aklj′−ukl−vj′)

(3)
holds for an arbitrary (u, v) ∈ Xr , this would imply that the excess of {i, j′}
is also constant on Xr , in contradiction with {i, j′} ∈ Σr .

Let us assume without loss of generality that {kp−1, k′p} ∈ Σr , for some
p ∈ {1, . . . , l} (the cases where {i, k′1} ∈ Σr or {kl, j′} ∈ Σr are analogous).
Then, since all summands in (3) are nonpositive, we obtain akp−1k′p − ukp−1 −
vk′p ≥ ar

ij′ −ui− vj′ > aij′ −ui− vj′ which contradicts the assumption of Case
1. Then ar

ij′ = aij′ and thus eA({i, j′}, (u, v)) = eAr({i, j′}, (u, v)) .
Moreover, for all S ∈ Σr , S 6= {i, j′} , we either have S = {k} for some

k ∈ M ∪ M ′ , and then eAr(S, (u, v)) = eA(S, (u, v)) ≤ eA({i, j′}, (u, v)) =
eAr({i, j′}, (u, v)) , or S = {i1, j′1} for some i1 ∈ M and j′1 ∈ M ′ . In this
case, if ar

i1j′1
= ai1j′1 we are done. Otherwise, by (2) and the same argument

as above, there exist distinct k1, . . . , kl ∈ M \ {i1, j1} such that

eAr(S, (u, v)) = ar
i1j′1

− ui1 − vj′1
= (ai1k′1 − ui1 − vk′1) + (ak1k′2 − uk1 − vk′2) + · · ·+ (aklj′1 − ukl − vj′1) .

Since {i1, j′1} ∈ Σr , at least one of these summands corresponds to a coalition
in Σr . Let {kp−1, k′p} be one such coalition. Then, eAr(S, (u, v)) ≤ akp−1k′p −
ukp−1 − vk′p ≤ aij′ − ui − vj′ = eAr({i, j′}, (u, v)) , where the second inequality
follows from the assumption of Case 1.

This proves that if maxS∈Σr eA(S, (u, v)) is attained at a mixed-pair coali-
tion {i, j′} , then

max
S∈Σr

eA(S, (u, v)) = max
S∈Σr

eAr
(S, (u, v)).

Case 2: maxS∈Σr eA(S, (u, v)) = eA({k}, (u, v)) , for some k ∈ M , {k} ∈
Σr . The proof for the case where the maximum is attained at a coalition
{k′} ∈ Σr with k′ ∈ M ′ is analogous and left to the reader.

The assumption of Case 2 implies that eA({k}, (u, v)) = −uk ≥ aij′ −
ui − vj′ for all {i, j′} ∈ Σr , −uk ≥ −ul for all l ∈ M with {l} ∈ Σr , and
−uk ≥ −vl′ for all l′ ∈ M ′ with {l′} ∈ Σr .

Note that eAr({k}, (u, v)) = −uk = eA({k}, (u, v)) . Take S ∈ Σr , S 6=
{k} . We either have S = {l} for some l ∈ M , or S = {l′} for some l′ ∈ M ′ ,
or S = {i, j′} with i ∈ M and j′ ∈ M ′ . If S = {l} for some l ∈ M ,
then eAr({l}, (u, v)) = −ul ≤ −uk = eAr({k}, (u, v)) . If S = {l′} for some
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l′ ∈ M ′ we similarly obtain eAr({l′}, (u, v)) = −vl′ ≤ −vk = eAr({k}, (u, v)) .
If finally S = {i, j′} with i ∈ M and j′ ∈ M ′ , and if it holds ar

ij′ = aij′ ,
we are done. Otherwise, that is to say if aij′ < ar

ij′ , from (2) and the same
argument as in Case 1, there exist distinct k1, . . . , kl ∈ M \ {i, j} such that

eAr(S, (u, v)) = ar
ij′ − ui − vj′

= (aik′1 − ui − vk′1) + (ak1k′2 − uk1 − vk′2) + · · ·+ (aklj′ − ukl − vj′) .

Again, the same argument as in Case 1 leads to

eAr
(S, (u, v)) = ar

ij′ − ui − vj′ ≤ −uk = eAr
({k}, (u, v)) .

Thus, also when maxS∈Σr eA(S, (u, v)) is attained at a one–player coalition
{k} we obtain maxS∈Σr eA(S, (u, v)) = maxS∈Σr eAr(S, (u, v)) .

Once proven that for all (u, v) ∈ Xr ,

max
S∈Σr

eA(S, (u, v)) = max
S∈Σr

eAr
(S, (u, v)) ,

and taking into account that, from the induction hypothesis, Xr = X̃r and
Σr = Σ̃r , it follows that

αr+1 = min
(u,v)∈Xr

max
S∈Σr

eA(S, (u, v)) = min
(u,v)∈X̃r

max
S∈Σ̃r

eAr
(S, (u, v)) = α̃r+1 .

Consequently

Xr+1 = {(u, v) ∈ Xr | maxS∈Σr eA(S, (u, v)) = αr+1} =
= {(u, v) ∈ X̃r | maxS∈Σ̃r eAr(S, (u, v)) = α̃r+1} = X̃r+1 .

If S = {k} or S = {k′} , eAr(S, (u, v)) = eA(S, (u, v)) , while for S = {i, j′} ,
eAr(S, (u, v)) = eA(S, (u, v)) + ar

ij′ − aij′ . Then, eAr(S, (u, v)) is constant on
Xr+1 if and only if eA(S, (u, v)) is constant on Xr+1 . This means Σr+1 =
Σ̃r+1 , which implies Σr+1 = Σr \ Σr+1 = Σ̃r \ Σ̃r+1 = Σ̃r+1 and ∆r+1 =
∆r ∪ Σr+1 = ∆̃r ∪ Σ̃r+1 = ∆̃r+1 . 2

Corollary 3 Let (M ∪M ′, wA) and (M ∪M ′, wB) be two assignment games
with the same core. Then, ν(wA) = ν(wB) .

Proof: Since C(wA) = C(wB) , we have Ar = Br and, by the above
theorem, ν(wA) = ν(wAr) = ν(wBr) = ν(wB) . 2

Note that the above result also holds for assignment games with non-square
matrices. Since both games (M ∪M ′, wA) and (M ∪M ′, wB) have the same
player set, the same null rows or columns are necessary in both matrices to
make them square. Let Ã and B̃ be such square matrices. The assignment
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games wÃ and wB̃ also have the same core, which consists in completing all
core allocations of C(wA) = C(wB) with zero payoffs to the added dummy
agents. Then, both Ã and B̃ have the same buyer-seller exact representative
and, by Theorem 2, the same nucleolus. Taking into account the remark that
precedes Theorem 2, if we drop the (null) payoffs to the added dummy agents
we obtain the nucleolus of both (M ∪M ′, wA) and (M ∪M ′, wB) .

This paper completes a series of studies on the major core-based solution
concepts in the assignment game. As a concluding application we consider
an assignment game given in Shapley and Shubik (1972). Let M = {1, 2, 3}
be the set of buyers, M ′ = {1′, 2′, 3′} the set of sellers, and the assignment
matrix be

A =





5 8 2
7 9 6
2 3 0



 .

As shown in Shapley and Shubik (1972), the core of this game is the con-
vex hull of the points (3,5,0;2,5,1), (3,6,0;2,5,0), (4,6,1;1,4,0), (5,6,1;1,3,0),
(5,6,0;2,3,0), and (4,5,0;2,4,1). Among them we can distinguish (uA, vA) =
(5, 6, 1; 1, 3, 0) and (uA, vA) = (3, 5, 0; 2, 5, 1) . Note that for all (u, v) ∈
C(wA) , u1+v3′ ≥ 3 > 2 = a13′ , while each one of the remaining matrix entries
is attained in some extreme core allocation. Then, to obtain the buyer-seller
exact representative of this matrix we only have to raise a13′ from 2 to 3:

Ar =





5 8 3
7 9 6
2 3 0



 .

In fact, all matrices

A(α) =





5 8 α
7 9 6
2 3 0





with 0 ≤ α ≤ 3 define assignment games (M ∪M ′, wA(α)) that have the same
core as (M ∪M ′, wA) , C(wA(α)) = C(wA) .

All games in this family have the same τ -value,

τ(wA(α)) = (4, 5.5, 0.5; 1.5, 4, 0.5) , for all α ∈ [0, 3] ,

which is the midpoint between the buyers-optimal and the sellers-optimal core
allocations.

To compute the kernel of an assignment game, and since it is known that
in these games the kernel is included in the core, only the maximal surplus
sij, and sji, of the pairs (i, j) ∈ M×M ′ belonging to all µ ∈M∗(A) must be
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taken into account (see Rochford, 1984, p.275). Moreover, in an assignment
game, for all x ∈ C(wA) , the maximal surplus sij(x) is attained either at a
one–player coalition or at a mixed–pair coalition.

In our example, since we have a complete description of the core, it is not
difficult to check that, for all x ∈ C(wA) ,

s12′(x) = 5− x1 − x1′ ,
s2′1(x) = 9− x2 − x2′ ,

s23′(x) =
{

7− x2 − x1′ if x2′ − x1′ ≥ 2 ,
9− x2 − x2′ if x2′ − x1′ ≤ 2 ,

s3′2(x) = −x3′ ,
s31′(x) = −x3 ,

s1′3(x) =
{

5− x1 − x1′ if x2 − x1 ≥ 2 ,
7− x2 − x1′ if x2 − x1 ≤ 2 .

Then,

K(wA) = {x ∈ C(wA) | s12′(x) = s2′1(x), s23′(x) = s3′2(x), s31′(x) = s1′3(x) }.
(4)

Different cases must be considered, depending on the worth of x2′ − x1′ and
x2 − x1 , but only the point (4, 17

3 , 1
3 ;

5
3 , 4,

1
3) meets the constraints in (4).

Note that the excess of the mixed–pair coalition {1, 3′} is not relevant for the
computation of the kernel of this game, nor for the computation of K(wA(α)) ,
provided α ∈ [0, 3] . Then, as proved in Proposition 1, all the assignment
games (M ∪M ′, wA(α)) have the same kernel:

K(wA(α)) =
{(

4,
17
3

,
1
3
;
5
3
, 4,

1
3

)}

, for all α ∈ [0, 3] .

Since the nucleolus is always contained in the kernel, this point is also the
nucleolus of all these games,

ν(wA(α)) =
(

4,
17
3

,
1
3
;
5
3
, 4,

1
3

)

, for all α ∈ [0, 3] ,

which can also be obtained as the result of the iterative process that defines
the lexicographic center of any of the assignment games (M ∪M ′, wA(α)) .

References

[1] Davis M, Maschler M (1965) The kernel of a coperative game, Naval
Research Logistics Quarterly 12, 223–259.

12



[2] Driessen TSH (1998) A note on the inclusion of the kernel in the core of
the bilateral assignment game, International Journal of Game Theory 27,
301–303.

[3] Huberman G (1980) The nucleolus and the essential coalitions, in Analy-
sis and Optimization of Systems, Lecture Notes in Control and Informa-
tion Science 28, 417–422.

[4] Maschler M, Peleg B, Shapley S (1979) Geometric properties of the ker-
nel, nucleolus, and related solution concepts, Mathematics of Operations
Research 4, 303–338.
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