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1 Introduction

Financial séries are characterised by periods of large volatility followed by

periods of relative quietness. Tins type of clustering led to the idea that

volatility is predictable, which is of primary importance for option pricing,

for portfolio sélection and for designing optimal dynamic hedging stratégies.

The ARCH and GARCH models introduced respcctively by Engle (1982)

and by Bollerslev (1986) were quitc succcssful in predicting volatility coin-

pared to more traditional methods as underlined for instance in Engle, Kane

and Noh (1996) or Noh, Engle and Kanc (1995). But better prédictions are

obtained when asymmetrics [Engle and Ng (1993)] and non-linearities [Pa-

gan and Schwert (1990)] in the response of volatility to news arriving on
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the market arc taken into account. Tlic "leverage effect"1 that comrnonly

represents the asymmetric impact of good news and bad news on volatility

has certainly be the most widely explorée! with Nelson (1991) who propo

sed his EGARCH model or Glosten, Jaganimthan and Runkle (1993) (G.IR

from now on) and also Zakoian (1994) who proposed a threshold GARCH

or TGARCH. Engle and Ng (1993) provided a summary of asymmetric

GARCH models and introduced sorae new formulations. They tested thèse

models to the daily return séries of the Japanese TOPIX index covering

1980-1988. If on average thèse models perform better than the syminetric

GARCH, they found évidence of mis-specification in ail the models, even if

the TGARCH was onc of the most successful. This suggests that there is

still some room for finding a flexible non-linear modelling of the skedastic

function.

This paper considère a new class of GARCH models that introduces

a smooth transition between two régimes defined by a threshold. I named

this model STGARCH for Smooth Transition GARCH. As financial data

hâve very often a high frequency of observation, a smooth transition seems

a priori better than an abrupt transition. Engle and Ng (1993) found that

the most severe mis-specification direction was that the tested models did

not take adequatcly account of the sign asymmetry. The smooth transition

model that is proposed in this paper addresses the problem of sign asym

metry. But it is more than a simple généralisation of the TGARCH as it

allows for various transition functions that conter a great flexibility to the

skedastic function, taking into account sign but also size effects. Finally the

spécification retained accepts the simple GARCH as a restriction.

The approach of the paper is Bayesian in its spirit. When a non-

linearity is introduced in a model, the likelihood function becomes tricky to

maximise as it may be non-differentiable. In such a case, averaging is more

secure than maximising, even if the computational burden may be severe.

In this paper I shall use a version of the Gibbs sampler that is the Griddy

Gibbs sampler developed in Bauwens and Lubrano (1998). Spécification

tools appeared rapidly as a necessity becaiLse of the computation burden

involved in trying to fit différent types of non-linear models. A Bayesian

spécification search is thus developed in the paper. The strategy is based

on the comparison between the posterior and the prédictive variance of the

Bayesian residuals. It draws on Bauwens and Lubrano (1991). The Bayesian

approach provide a nice and convenient framework and the test régressions

proposed are compared in the paper to some of the existing tests available

in the literature.

The paper is organised as follows. In section 2, I présent the gêne

rai smooth transition GARCH with appropriate transition functions for

1 The term "leverage effect" cornes from the fact that a decrease in the stock price would increase the

financial leverage of the firm. This implies a négative corrélation between volatility and past returns. In

GARCH models, the conditional variance ht is a function only of the squares of past errors u^_j and not

of their signs, which precludes any corrélation between ht and ut _j.
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sign and size asymmetries. In section 3, I compare the impact curves of

thèse différent models and stress thc rôle of a threshold parameter. In sec

tion 4, I introduce the methodology for discriminating between différent

types of asymmetry. In section 5, I study Bayesian inference in GARCH

and STGARCH models, insisting on various available parameterisation for

the GARCH and on the fact that the posterior density of the transition

parameter in STGARCH is not integrable under a flat prior. The next two

sections are devoted to empirical applications concerning the Brussels and

the Tokyo stock indexes. A last section concludes.

2 A gênerai class of smooth transition GARCH

models

Thc simple GARCH(1,1) is certainly the most widely used model for predic-

ting the volatility of financial séries [see Bollerslev, Chou and Kroner (1992)

for a good review on the topic]. The régression model with GARCH(l.l)

errors can be writtcn as follows :

yt = x[S + ut

ut=ety/ih ct~A'(0,l) (1)

ht = u,1 H- ovjf_1 + ftht-i

Most of the time, xt contains a constant and lagged values of yt.. In (1),

thc conditional cxpectation of yt is x'tô and the unpredicted part of yt is

Ut = yt —x'tô. This represents the "news" arriving on the market as defined

by Englc and Ng (1993). In the GARCH model, news hâve a symmetric

impact on volatility. whatever their sign or magnitude and whatever the

level of yt. I shall use this model as a starting point to introduce asymmetry

and level cffects on volât il i t.v.

2.1 Some existing models with asymmetry

The possibility of an asymmetric impact of news on volatility lias for long

been suspocted in the literature and conlirmed among others by Nelson

(1991). The EGARCH model constitutes the first introduction of an asym

metric effect between négative and positive shocks in an economctric model

of volatility with :

\og(ht) = ui + a.g(et-i) + p\og(ht-i) (2)

The formulation in logarithrn relaxes the usual positivity constraint on the

parameters. The asymmetric effect is introduced by the non-linear function
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(3)

which is a function of both the magnitude and the sign of et. By construc

tion it bas a zéro mean. For positive e;s, g{et) is a linear function with slope

6 + 7. For négative e's, the slope becomes 9 - 7. S allovvs for possible né

gative corrélation between et and future values of the skedastic function ht

(leverage effect). Under the normality assumption, E(|et|) = yjij-n.

The success of the EGARCH model motivated a large literature of

follower models. See Engle and Ng (1993) for a review. The model of GJR

(1993) is directly related to the présent paper2 :

ht = uj + aru^il - St-i) + a2ul_vSt-i + 0ht-\ (4)

St is an indicator function that is zéro when ut is négative and one otherwise.

This formulation introduces an asymmetry of reaction for the conditional

variance. The change of régime occurs when Ut crosses the threshold zéro.

I call this model a threshold GARCH or TGAR.CH3. Compared to the

EGARCH model, moments are simpler to compute as underlincd in Pagan

(1996).

2.2 Smooth transition between négative and positive

shocks

Threshold GARCH models can be generalised using a smooth transition

function F(ut_i,7) taking continuous values between zéro and one. The

parameter 7 governs the smoothness of the transition. Using this smooth

transition function, the two régime skedastic function in (4) becomes :

ht = u) + a-i w?_i[1 - F[ut-i,7)] + Q2 u^Fiut-i, 7) + j3ht-i

= a; + ai uj_x + Auf_t F{ut-\, 7) + ,8 ht-i (5)

where A = Q2 — ai. Among the many possible odd smooth transition func-

tions4, the logistic function was proved to be very convenient in a classical

non-linear modelling framework by Terasvirta (1994). For a smooth tran

sition GARCH where tho objective is to allow for a possible différence of

reaction between négative and positive shocks, this function is :

2 Zakoian (1994) suggested a model équivalent to :

s/{ht) =

The news impact curve of this model is différent from that of GJR (1993) due to the squaring of ht- It is not

minimum at u = 0.

3 Zakoian (1994) used TARCH for his model.

4 An odd function vérifies f(-x) = f(x). For the logistic function, F{x) - 1/2 is odd.
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The function F(.) tends to zéro when u —» —oo and to one for u —> +00.

So ai will characterise négative shocks and c*2 positive ones. For 7 —> oc,

the transition function becomes équivalent to the Dirac function St defi-

ned above. This formulation is more flexible than GJR (1993) or Zakoian

(1994) as it allows a graduai transition that may be an important feature for

high frequency data. For a similar suggestion see Gonzales-Riviera (1996) or

Hagerud (1997). I shall call this model LSTGARCH for logistic STGARCH.

2.3 Smooth transition between small and big shocks

Periods of important volatility do not last for long in firiancial séries. For

instance the great crash of October 1987 gave birth to a peak of the variance

in the S&P500. but volatility dampened very quickly. Engle and Mustapha

(1992) found a a variable persistence of shocks for the S&P500, small shocks

being more persistent than big shocks. Susmel and Engle (1994) detected

an symmetry between small and big shocks for the New-York and London

equity market. An even° transition function like the exponentiai function

F(ut-wr) = ! -exp(-7«?-i) (?)

was made popular by Terasvirta (1994) for modelling size asymmctries in

models presenting a non-linearity in the mean. Hère F(±oo) = 1 and F(0) =

0. So ai will characterise small shocks and Q2 big shocks. For 7 —> 00,

F(.) becomes an indicator function for the point u = 0, which makes our

model équivalent to the symmetric GARCH. Hagerud (1997) suggested to

use this transition function for size asymmetry in GARCH models. However,

this simple exponentiai function is rather restrictive as it does not give an

information on the magnitude of what is really a big shock. An improvement

over this function6 that says that F goes to zéro if u belongs to the interval

[—c, c] and goes to one otherwise is given by :

(8)
-c2

1

c2)]

I hâve now introduced an extra parameter, the threshold c, that détermines

at which magnitude of past errors the change of régime occurs. The range

of c is restricted to positive values for an identification purpose.

The exponentiai transition function (7) can also be generalised by

introducing a threshold parameter c

7K_1 -c)2] (9)

An even transition function vérifies f(-x) = f(x).

See the paper of Jansen and Terasvirta (1996) for another type of généralisation of the exponentiai transition

function used for non-tinear modelling of the mean.
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\\\

7=0.00

7=0.25

7=0.50

7=00

■ v

\\\ ■ ■
i

: \

7=0.00

7=0.25

7=0.50

-3-2-101234 -4-3-2-101

Figure 1 : News impact curves for LSTGARCH

The parameter c translates the exponential curve so that F{.) is now mi

nimum at ut = c This introduces the possibility of an asymmetry between

positive and négative shocks that is now combined with the size effect as

will be detailed in the next section.

3 Comparing models through news impact curves

A clear idea about the différences between the three above proposed smooth

transition models is provided by the inspection of the "news impact curve".

As defined by Engle and Ng (1993), the news impact curve gives the relation

between ht and ut-\ holding constant the other informations. It shows how

new information is incorporated to the measure of volatility. We shall see

that the différent models I hâve proposed hâve very différent news impact

curves. This means that predicted volatility, at least in the short term, will

be very différent according to the model which is used. This lias no trivial

conséquences on the valuation of options, on hedging stratégies or portfolio

sélection.

The news impact curve of the STGAR.CH is

h = u; + + A u2 F{u, 7) + /3h (10)

where h is set equal to the unconditional mean of the returns. Fixing a;, ai,

7 and ,8 and giving a value to /i, the function h can be drawn for the whole

range of possible values for u. In the next subsection. I shall take a range

for u equal to [—4,4]. I shall fix the parameters at the following values:

a; = 0.25, a\ = 0.3, A = —0.25, (3 = 0.6. The parameters 7 and c will vary

from case to case.



Michel Lubrano 263

a: Négative A b: Positive A
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Figure 2 : News impact curves for- LSTGARCH

3.1 Logistic and exponential

Let me now draw various news impact curves for specified values of the

paramcters. The news impact curve of the simple GARCH is syrnmetric

for négative and positive news. The logistic transition function opérâtes a

rotation around u = 0 in the LSTGARCH, on the right for négative a A (see

Figure La) or on the left for a positive A (see Figure l.b). The importance

of the rotation is determined by 7 but has a limit given by the TGARCH

impact curve (7 = oc). The impact curve of the EGARCH model has a

similar gênerai shape, but its tails are of course of the exponential form.

The exponential transition function (with c = 0) gives more weight

to small news compared to the symmetric GARCH, and soften greatly the

impact of big news in the ESTGARCH (see Figure 2.a). The point at which

the impact curve crosses the impact curve of the simple GARCH dépends on

7. But 7 monitors also srnootliness of the transition. The model is relatively

constrained as for either 7 = 0 or 7 —> 00, we recover a symmetric GARCH.

A U shape can be given to the news impact curve by changing the sign of

A (see Figure 2.b). In that case, big news receive more weight than small
ones.

3.2 The importance of the threshold parameter c

Introducing a threshold c gives a great flexibility in managing the im

pact curves of models with exponential and generalised exponential transi

tion functions7. Let me consider first the generalised exponential model or
GESTGARCH. The introduction of a positive c (or négative as the transi

tion function is symmetric in c) together with a small value of 7 modifies

roughly speaking the level of the tails, but not their slope (see Figure 3.a).

A threshold, when introduced in the logistic transition function, has a very minor influence on the shape of

the impact curve. Consequently it is not worth being considered hère.
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a: Généralisée! exponential b: Exponential with c < 0
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Figure 3 : News impact curves for STGARCH with a threshold

So the constraints présent in the initial ESTGARCH are removed. A higher

value for 7 distorts the impact curve more deeply. Introducing a threshold

in the exponential transition function mixes two asymmetry effects : the size

and the sign efiect. For small values of 7, a négative c rotâtes the impact

curve clockwise and a positive c anticlockwise (see Figure 3.b). A higher

value of 7 gives lise to humps in the right or the left tail depending on the

sign of c. A positive A gives a U shape to the impact curve and a néga

tive threshold translate and distorts the left tail, while leaving the right. tail

roughly unchanged.

4 Spécification searches

The multiplicity of possible non-linear models that can be applied to

a given sample renders the econometric analysis difficult. Tools are needed

for a preliminary analysis especially hère as the computational burden for

inference may be important. We must first verify if a GARCH model is

necessary and second if the GARCH effect présents a non-linearity of 011e

of the types described above. Bauwens and Lubrano (1991) hâve proposed

a Bayesian approach to investigate the Bayesian residuals of a linear ré

gression model when heteroskedasticity is suspected. The method compares

the posterior expectation of the squared Bayesian residuals computed under

the null hypothesis of homoskedasticity Hq, with the prédictive mean of the

squared error term computed under various hypothesis of heteroskedasticity

Hi. The posterior distribution of the Bayesian residuals contains informa

tion on what the residuals really are, including modelling deficiencies. On

the contrary, the prédictive density of the error term of a model predicts

what the residuals should be considering a spécifie alternative hypothesis.

This duality will be at the heart of my spécification strategy where I shall

compare posterior and prédictive expectations by mean of an auxiliary re-
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gression using a Bayesian information criterion to sélect the inost likely

hypothesis.

4.1 Posterior residuals under Ho

In a linear régression model, a Bayesian residual (as defined for instance

in Zellner 1975), is a random variable that is a linear combination of the

random variable ô once a given sample (y,X) of dimension T has been

observed :

u = y-X5 (11)

The variable u also represent the news as defined above. The posterior

distribution of u is a linear transformation of the posterior distribution of

6. Under Hq and a natural conjugate prior density, the latter is a Student

density :

\ Mmi8.,v.) (12)

where

( AU = Mo + X'X

y'y + ÔqM06q - S+A'US*

T-d

resuit from the application of standard formulae of natural conjugate ana-

lysis8. Symbols with a subscript equal to zéro represent prior quantities and
those with a subscript equal to a star their posterior équivalent. Usual theo-

rems on the distribution of linear transformations of random variables gives

the posterior density of Bayesian residuals which is Student :

<f>(w|z/) = /t(w|û, P+,sJ,i/^) (14)

where P+ is the Moore-Penrose inverse of :

P = XM~lX' (15)

and û = y - X<5*. Under a non informative prior, the posterior mean of the

Bayesian residual is given by the classical residual. By marginalisation, I
get:

V(«t|î/) = /t(ut|ût,(Ptt)-1,si!i,«'*) (16)

and

See for instance Bauwens et al (1999), chapter 2
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As Va.r(ut\y) = E(u2\y) - [E(ut\y)}2, I can deduce that

E(u?|y)=E(«72|y)P« + û? (18)

For t —> oo, E(u2\y) —► û2 as P« represents a small samplc effect that

goes to zéro. The posterior expectation E(u2\y) will be compared to various

prédictive expectations by means of the following régression :

û? = oo + ajP« + ^J

The left. hand side plus oo and a\Pti represents thc posterior expectation

of u2 under Ho- The rest of the right hand side represents the prédictive

expectation of u2 under alternative hypothèses of non-linearity. To limit

the number of regressors which is the plague of this type of régression9, I

hâve used the approximation defined by Engle (1982) to enforce positivity

constraints for ARCH(p). It is important to keep the number of regressors

at a minimum to conduct the search for the type of non-linearity. Otherwise,

the message of the sample may be blurred by too many regressors.

4.2 Prédictive errors under Hi

The prédictive of the observed sample under Ho is

PM = I p{ut\o-2) <p(a2) do1

= [fN(ut\0,<T2)fig((T2\so,Vo)d<T2 (20)

= ft{ut\QA,so,vo)

where the subscripts N, ig and t stand for the Normal, the inverted gamma2

and the Student densities. See Bauwens et al (1999), appendix A for more

détails. Under Hi, a2 becomes time variable so that the prédictive density

becomes

p(ut) = Jp{ut\ht{O))<p{O)d0 (21)

But this density and its moments hâve no closed form. It is convenient for

the sequel to consider an approximate prédictive density with

= / p{ut\ht)(p(ht)dht

= J fN(ut\0,ht)fi9(!it\hot,vo)dht (22)

9 See for instance Granger and Terasvirla (1993), page 73 where a similar type of régression is used for

testing linearity in the mean.



Michel Lubrano 267

where fig{ht\h^, uo) is a prior density on ht with scale parameter h® and

uq degrees of freedom. A part of the model is for the while discarded, but

will be reintroduced by an adéquate choice of the scale parameter h®. The

approximate prédictive density of the squared error term u\ is a Fisher

density :

ti?~F(l,n,)/i?/i* (23)

with expectation :

E(u?) = h°t/(u0 - 2) (24)

I shall concentrate ail my efforts in determining the most reasonable h%

corresponding to each alternative hypothesis.

4.2.1 Hi : ARCH(l) model

In an ARCH(l) model, the skedastic function is ht = u> + aii^ with

Ut = yt-xtô. I suppose that xt is univariate for ease of notations. Combining

thèse two expressions gives :

ht =u> + atyl-i + aS2xt-i - 2aôyt-ixt-i (25)

Let me linéarise the products aS and aô2 around o = 0 and ô = ô which is

the OLS estimator of Ô under Ho. The resulting candidate for h® is :

/*?=<«;+ <*«?_! (26)

4.2.2 H2 : STARCH(l) model

Combining (5) and (26), the scale parameter of my prior is now of the form :

/i? = w + ajû^i + ^ti%-i.7) (27)

This formulation is not very convenient for the while because it still pré

sents the non-linearity. I shall apply the same recipe as above and linéarise

F(ut-i,'y). This is in accordance with some of the linearity tests reported

in the classical literature [sec e.g. Luukkonen et al (1988) and Terasvirta

(1994)] where a third order Taylor expansion of F(z) around z = 0 is re-

cominended. The motivation in the classical literature is to overcome the

identification problem présent under the null of linearity. Hère the ques

tion is simply to get a manageable prior scale parameter to compute an

approximate conditional prédictive density. I shall sélect the logistic, expo-

nential and generalised exponential transition functions. Their respective

third order Taylor expansions are :

T3L(z) <x 24 + I2z - z3

T3E{z - c) oc 3c2 - 6cz(l - c2) 4- 322(1 - 3c2) + 2c23(3 - 5c2) (28)

T3Ge(z2~c2)(xz2(2-c2)
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Going up to the third order makes very apparent the différence between

thèse three transition fonctions. The expansion of the logistic is always

of the first and third degree, while the expansion of the exponential with

c = 0 and of the generalised exponential are of the second degree only. The

exponential with a threshold lias an expansion where ail the terms up to

the third degree are présent. Of course, for c = 0, the adéquate terni vanish.

Let me now replace F(ut-i,"f) by its Taylor expansion in the ex

pression of h® (27). I get three alternative formulations for the prior scale

parameter

h® =

which will be the basis of my spécification search.

4.3 Comparing hypothèses using an auxiliary model

I can now compare the posterior expectation of uf to its various possible

prédictive expectations by mean of the following gênerai régression :

-2 r» V^ P ■+" 1 ~ .7 * 2
Ûf = (1q -f- Cb\Ptt -\- d2 / — 7~Ui — i

jr{ p{p + l) (30)

x [1 + a^ut-j + &\ut_A + a^ut_j\ + et

(c0 - ciût-i + c2û(2_1 + caû^) (29)

I first hâve to sélect the optimal p in the full régression (30) using an

information criterion. Conditionally on that choice, I shall try to impose the

restrictions corresponding to each of the three possible models and choose

the model that minimises the Schwarz criterion. This corresponds to selec-

ting the model that has the maximum posterior probability under a diffuse

prior information. The set of restrictions can be summarised as follows :

- a.2 = û3 = d\ = 05 = 0 mean that there is no ARCH effect.

- as = 04 = a.5 = 0 mean that the ARCH effect is linear.

- a4 = 0 while as ^0 and as ^ 0 means that the non-linearity is of an odd

type corresponding to a logistic transition fonction.

- a3 = a$ = 0 and a± ^ 0 means that the non-linearity is of an even type

that can be modelled either by an exponential with c = 0 or a generalised

exponential transition fonction.

- ct3 ^ 0, 04 t^ 0 and as ^ 0 means that the non-linearity mixes size and

sign effects which can be reasonably modelled by an exponential transition

fonction with a threshold, although this case is not as clear as the others.

Many non-linear transition fonctions can lead to such a Taylor expansion.
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Remark :

Engle and Ng (1993) hâve proposed in a classical framework sign

and size bias test régressions as mis-specification tests, but also as

exploration tools. They regress ûj over a constant and St-i for positive

sign bias, St-iût-i for positive size bias and (1—St-i)ût-i for négative

size bias.

5 Bayesian inference in the STARCH model

Bayesian inference in usual GARCH models is made complicated by the

fact that the posterior density must be integrated out numerically. Klei-

bergen and van Dijk (1993) use importance sampling while Geweke (1994)

proposes an independent Metropolis algorithm. The usual Gibbs sampler is

not applicable hère as the posterior density lias no property of conjugacy

[as defined by Carlin and Gelfand (1991)]. Bauwens and Lubrano (1998) use

a Griddy-Gibbs sampler to overcome tins difficulty. The algorithm is based

on the numerical inversion of each conditional posterior density. As in usual

Gibbs samplers, the algorithm encounters numerical difficulties in the case

of a strong corrélation between the parameters of the rnodel. This may mo-

tivate the introduction of an alternative parameterisation of the GARCH

model. The présence of a smooth transition function créâtes some spécifie

problems that concerns the intcgrability of the posterior density of 7, the

smooth transition parameter and a local identification problem at 7 = 0

that corresponds to the linearity of the skedastic function ht. The threshold

c may also cause identification problems.

5.1 Prior and posterior densities

Let me give now the complète notation of the smooth transition GARCH

model :

yt = x't8 + ut

et~N{0,l) (31)

ht = u) + a 1 u}_ ! + Auf_ l F( ut _ 1,7, c) + ,3ht -1

Let me define the diagonal (T - 1) x (T - 1) matrix H(ô,ô) having ht as

its [t.t] élément and where 9' = [w.ai, A,/?, 7,c]. The likelihood function of

the T — 1 observations of yt is :

l{y\ô,0) oc [//(Mir^exp-iu'tf-^rMyu (32)

where u — y — XS. To evaluate this function, it is necessary to define hi. I

shall treat this initial condition as fixed. For î*0 = 0? ^1 = ^- So h\ can be

taken equal to the empirical variance of the first observations.
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I shall be non informative on S with

<p{ô) oc 1 (33)

It is difficult to devise an informative prior for the skedastic parameters. The

prior should guaranty or préserve the positivity of ht. In a usual GARCH,

this means that u;, a and 0 should be positive. Hère Qi and a2 hâve to

be positive, which means that À > —ai. So the parameterisation in À may

not be the most convenient to impose positivity constraints a priori. In the

transition function F(.), 7 has to be positive for identification purposes.

The same may hold for c in certain transition functions. I shall not try to

impose a priori strict stationarity that is necessary for inference. But in

gênerai, strict stationarity is verified for most available samples [see e.g.

Kleibergen and van Dijk (1993)].

I first propose a non informative prior for the parameters of the ske

dastic function that cause no problem. I shall discuss below the case of 99(7)

and of ip(c) that raise spécifie issues such as integrability of the posterior

and identification. So :

<*-.*.<*.<»« u
The complète posterior density

<p{5t 9\y) oc tp{S) x <p(u, aua2, P) x ^(7, c) x l{y: ô, 9) (35)

has to be integrated out numerically. No partial analytical intégration is

possible.

5.2 Integrability for 7

The smooth transition function F{.) becomes a Dirac function for

7 —» 00. For instance with the logistic function model (31) becomes in this

case observationally équivalent to the model of GJR (1993). Consequently :

Theorem 1 The posterior density of 7 is of the same order of integrability

as the prior 93(7). In particular posterior moments exist only up to the order

of prior moments.

Proof. For 7 —> 00, F(i.ut) is 0(1) in 7. Consequently ^("/lï/) d°es not

tend to 0 as 7 tends to infinity and is not integrable. a

A similar problem arises in régression rnodels with Student errors as

underlined in Bauwens and Lubrano (1998). The conclusion is that a prior

information is needed to force the posterior density to tend to zéro quickly

enough at its right tail in order to be integrable. The prior should at least be
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O(71+u) with v > 0. A convenient minimal prior is the truncated Cauchy

density with10 :

^7) = {(1 + (7-7o)2)"1 {î2>0 (*o
l. 0 otherwise

O(j2). This prior has no moment. Only the mode and the quantiles exist11.

The prior mode of 7 is equal to 70. In order to be able to elicit easily 70, 7

should be scale free. This is obtained by scaling the observations (dividing

the yt by their empirical standard déviation). With 70 = 0, we hâve the

least informative case. Increasing 70 leads to a model where the transition

function is sharper and sharper, leading at the limit to model (4) if the

transition function is odd. I shall perform a sensitivity analysis with varying

70, while being non-informative on the other parameters.

5.3 Local identification for À

The smooth transition function becomes constant at the point 7 = 0.

Consequently the skedastic function présents a perfect coUinearity and the

parameter A becomes not identified. If for some samples, the point 7 = 0

is not in the useful intégration range and so the problem has no practical

importance, this is not the gênerai situation, especially for high frequency

data. Consequently it is recommended to exclude a priori the point 7 = 0

from the intégration range. It may also be wise to use a positive 70 in the

Cauchy prior. so as to eventually translate the mode of the posterior away

from zéro. Supposing 7 strictly positive is not a bias in favour of asymmetry

as there is still the possibility that A = 0.

5.4 The spécial case of the threshold parameter c

In usual non-linear régression models, the posterior density of the

threshold c may be very badly behaved [see for instance Lubrano (1998)

or Osiewalski and Welfe (1998)]. Hère, the threshold parameter détermines

what is the most likely value for a big shock when the generalised expo-

nential transition function is chosen. When a threshold is used in the ex-

ponential transition function, it détermines where, on the scale of the u is

the asynmietry betwoen the positive and négative shocks. Of course the do

main of définition of c is deterrnined by the observed sample. But there will

be an identification problem every tirne there is not enough observations

10 A flat prior on 1/7 yields #(l) oc 1/t2. But this prior créâtes a singularity at 7 = 0 which is a point of
interest. The Cauchy prior simply translates the singularity outside of the région 7 > 0.

11 A prior that guaranties the existence of ail the posterior moments of 7 is the exponential prior used for
instance by Geweke (1993) :

<p(-/) oc exp(-7/70) 7o>7 > 0 (37)
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left between the end points of the intégration range and the minimum and

maximum of the sample. So c lias to be integrated out on a restricted range.

5.5 Another possible parameterisation

The gênerai notation for the GARCH model assumes that in (1) the

variance of et is not constrained to be one, but is equal to g2. Adopting this

formulation for the STGARCH model gives :

yt = x'tô + ut

ut = ety/ht et~N(Q,a2) (38)

a2ht = uj + aiu2_l + Xu2_1F(ut-i,'y, c) + ÔG2ht-i

I can divide by a2 both members of the définition of ht :

4 ^î ^î,'V,c)+0ht-i (39)

This shows that in this parameterisation only ù) = uj/g2, ai = ai/a2 and

X = (a2 - a\)/a2 are identified. On the contrary, /? is always identified.

The traditional parameterisation insures identification by setting g2 = 1.
Another possible simple identification rule consists in setting ùj = 1 which

means that uj = g2. The drawback of this parameterisation is that ai and A

now dépend on the scale of the yt. Its advantage is that g2 can be integrated

out analytically. The size of the numerical intégration is thus reduced by

one. The skedastic function becomes :

ht = l + àiu2t_i + Xu2_iF{ut-Uy,c) + 0ht-i (40)

As g2 will be integrated out analytically, there will be no possible nume

rical trade off between the constant and the variable part of the skedastic

function. This certainly will improve numerical stability [see e.g. Robert

and Mengersen (1995) for an analysis of reparameterisation issues on the

performance of the Gibbs sampler].

The likelihood function (32) of the T - 1 observations of yt is trans-

formed into :

^'H-1(6J)u (41)

where 8' = [âi,Â,/?,7,c]. Note that in order to evaluate this likelihood

function, I hâve now hi = 1 as a starting value.
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The prior densities on a2 and 8 hâve to be made compatible with

those on 6. A usual prior density on a1 which is a scale parameter is

ip{*2) = fi9(<T2\s0,V0) (42)

or simply ip(cr2) oc a~2 if we are non informative. As the new parameteri-

sation implies that u) = a2, the prior on a? must hâve the same form. The

prior density (34) on a and A was uniform. Due to the Jacobian of the

transformation from a* to ai, the resulting prior is

¥?(ai,À)oc<7-4 (43)

The priors on 8, y and c remain the same as before. With thèse priors, I

can get nice expressions for the posterior densities

Theorem 2 The marginal posterior density of ô and 9 is given by

2<p(6, ë\y) oc / l{y; ô, a\ §) v{o2) ip(5) y>(è) da
Jo2>0

« \H(ôJ)\-1/2 x {so + u'H-1(ôJ)u]-^

The conditional posterior density of a2 is an inverted gamma2 with :

<p(a2\6,0, y) = figi^MS, §)tV0 + T + 3) (44)

where

s*{S, ë) = sa+ u'H~l{&, è)u (45)

The marginal posterior density of a2 can be simulated by :

o*~8m{ôjtêj)/x2('* + T-l) (46)

where ôj and ôj are draws of the corresponding parameters made from their

marginal posterior density.

Proof. The proof follows from the integrating constants of the inverted

gamma2 density. The simulation procédure is simply based on the property

of usual algorithms for simulating an inverted gamma2. d

Of course, we are interested in the posterior density of thc original

parameterisation which is the most common one and not of the transfor-

med parameters. The backward transformation can be done easily. Poste

rior draws for ai and À arc obtairied using the non-linear transformation :

Qij = à\j x a2 and Xj = Xj x a2.
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Figure 4 : Brussels Spot Index returns

linear non-linear odd transition even trans.

BIC 1.729 1.567 1.555 1.672

Table 1 : Which GARCH for SPOTW data

6 Spécification and inference for the Brussels index

As a first illustration of the rnethod, I shall use data of the Brussels Spot

Market Index. I hâve weekly data collected at the closure of the market

each Priday covering the period 03/01/86 to 26/01/96. The data hâve been

corrected for bank holidays. This make 509 observations that I will take in

différences of logs. The transformed observations are displayed in Figure 4.

Thèse data présent very large fluctuations after the melt down of October

1987, some large fluctuations around 1991 and are relatively quiet after

1993.

6.1 Spécification search

The returns are first filtered by an AR(2) model to remove auto-correlations :

Ayt = 0.08 4- 0.19
[1.74] [4.41]

-! + 0.16 At/t_2 + ût
[3.68]

(t statistics are given between square brackets). From this régression, I get

506 residuals ût that are analysed by mean of the auxiliary régression (30).
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7

MLE 0.055 0.24 0.051 0.79 1.84

[0.020] [0.061] [0.042] [0.042] [2.60]

70 = 0 0.069 0.29 0.064 0.75 1.91

[0.026] [0.072] [0.042] [0.051] [1.60]

70 = 10 0.070 0.26 0.079 0.76 9.89

[0.024] [0.056] [0.039] [0.044] [2.36]

70 = 100 0.073 0.26 0.081 0.75 100

[0.028] [0.063] [0.042] [0.055] [3.57]

a: = a2 0.075 0.19 - 0.73 -

[0.028] [0.044] [0.053]

Table 2 : MLE and posterior results for SPOTW data

A BIC determined an optimal p of 4. The resulting régression is :

4

û2t = 0.15 + 0.00025P» + 0.50
[1.10] [3.10] [2.56]

P+1-Jû?
f^ p(P + 1) l~3

1 - 0.51 ût-j - 0.011 û? , + 0.019 ûj ,
[-8.421 f-1.251 (8.091

Let me now investigate various types of restrictions in this régression and

sélect the most probable model, i.e. the one that lias the minimum Schwarz

criterion. From Table 1, I can conclude that there is definitely an ARCH

effect, that this effect is non-linear and that the non-linearity distinguishes

between négative and positive shocks. The non-linearity is generated by the

large fluctuations of the first half of the sample. If I discard the first 250

observations, the ARCH effect becomes linear. But if I discard only the first

100 observations non-linearity is still présent, despite the fact that the melt

down of 1987 is excluded. For each sub sample analysis, I refiltered the data

with an updated AR(2).

6.2 Inference results

A LSTGARCH(1,1) model was fitted to the filtered returns that were stan-

dardised (division by the empirical standard déviation). Maximum likeli-

hood estimâtes, as reported in Table 2, were obtained with a standard algo-

rithm. Their Bayesian counterpart12 corresponds to the case were 70 = 0,

12 The draws of the Griddy Gibbs display a certain amount of négative corrélation between ,3 and (w, ai)
of respectively —0.79 and -0.63. Other corrélations are negligible. I used 1000 draws + 150 draws for

warming up the chain Convergence was checked using CUMSUM graphs. It took 4 minutes on a Penthium

350 for the 1150 draws.
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and «2 (ai + a2)/2 +
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Figure 5 : Posterior densities for BRUSSELS with 70 = 0

1.05

the prior on ail the other parameters being uniform. There are not much dif

férences between classical and Bayesian estimâtes in this case. On average,

Bayesian standard déviations are slightly greater, but the ratio of posterior

means over posterior standard déviations are in gênerai lower. Note that

the smooth transition parameter 7 is, as usual, badly estimated. Increasing

the value of 70 takes us nearer to the GJR model. A truly abrupt transition

model (70 = 100) is not confirmed by the data as the posterior expecta-

tion of u>, which represent the unexplained part of the volatility, slightly

increases for 70 = 100. A symmetric GARCH model is also not favoured by

the data, following the same criterion. Note that the posterior expectation

of 7 is very sensitive to the prior, showing that in fact the data may not be

too informative on the speed of the transition.

The joint graph of the posterior densities of Qi and ai shows in Figure

5 that négative (ai) and positive (0:2) shocks hâve a quite différent impact.

Négative shocks hâve a greater contribution to the conditional variance than

positive ones. If the graphs of the posteriors slightly overlap, the posterior

probability that A > 0 is equal to zéro when estimated directly from the

draws. The posterior graphs are obtained, not from the draws, but using a

technique of variance réduction explained in Bauwens and Lubrano (1998).

The shocks are not persistent as the weak stationarity condition (see

the appendix for a dérivation) is verified with a probability of 0.98. The

posterior density of the transformation (a\ + c*2)/2 + /3, given in Figure 5,

was estimated with a kernel method, using the draws of the Gibbs sampler.

6.3 Analysis of non-linearity

The posterior density of 7 for 70 = 0 is given in Figure 6. It is fairly

concentrated on low values of 7, which put crédit to a smooth transition

between the régimes. The moments of 7 were computed on the truncated

range [0,8], because un-truncated posterior moments do not exist with a
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Posterior of 7 Transition function F(zt)
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Figure 6 : The smooth transition function foi- SPOTW data
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Figure 7 : News impact curve for SPOTW data

Cauchy prior. The graph of the smooth transition function F(ut-i), given

in Figure 6, is obtained as a transformation of the posterior draws. On

the same graph, I give the same transition function, but evaluated at the

posterior expectation. This combination shows that the Bayesian transition

function is much softer than the transition function obtained by a point

estimate. As the fîltered returns were standardised, the scale is expressed in

term of standard déviations. Most of the observations are situated within ±2

standard déviations. They correspond to the quasi linear part of the smooth

transition function. The transition function is lower than 0.053 (respectively

0.10) or greater than 0.94 (respectively 0.90) only for four observations

(respectively 10 and 8 observations which corresponds to the melt down of

October 1987 and a period in July 1990. This dcmonstrates the fact that

the smooth transition is important and that the change of régime is not an

abrupt function of the signs of the shocks, but evolves gradually with their

magnitude. This is a soft transition. An abrupt transition concerns only

very few observations in the sample.
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Figure 8 : Tokyo NIKKEI 225 returns

96.01

The news impact curve is displayed in Figure 7 for 70 = 0, for

70 = 100. This curve is very much tilted, revealing a large asymmetry bet-

ween négative and positive shocks, even for small shocks. There is a visible

différence between the smooth transition inodel and the GJR model. For

ease of comparison, the news impact curve for the symmetric GARCH is

also given. It underline the importance of modelling non-linearity.

7 Spécification and inference for the Tokyo index

Hère I try to illustrate the even transition function with the daily NIKKEI

225 index covering the period 17 Feb 1994 to 18 Jan 1996. This makes 475

observations corresponding to the closure of the market. The data, displayed

in Figure 8, are taken in différences of logarithms. A first look at this graph

reveals that we hâve another type of sample configuration. The first year

of observations is characterised by a relative quietness of the market. The

second year corresponds to a greater volatility with many peaks.

7.1 Spécification search

It appeared that it was not necessary to filter the data. I only standardised

the returns13 Ut = A\og(yt) where yt is the levé! of the index. The test

régression was estimated with an optimal lag of p = 1 :

ûjûj = 0.72 + 0.38 £?_!
[5.78] [3.84]

x [1 + 0.0025 ût-i - 0.016
[0.071] [-3.02]

- 0.00017 û?_j] + et
[-0.10]

13 This scaling was not enough for the Bayesian computations. It was necessary to divide the scaled returns
by10.
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linear non-linear odd even

BIC 1.612 1.635 1.640 1.605

Table 3 : Which GARCH for the daily NIKKEI data

oci

MLE 0.000020 0.59 0.069 0.87 6.28 -0.82

[0.0025] [0.17] [0.030] [0.048] [5.21] [0.18]

7o = 0 0.0052 0.86 0.20 0.31 2.23 -1.04

[0.0018] [0.34] [0.074] [0.18] [1.72] [0.33]

70 = 10 0.0051 1.27 0.22 0.32 10.4 -1.03

[0.0019] [0.54] [0.077] [0.18] [2.56] [0.18]

ai = a2 0.0065

[0.002]

0.29 0.23

[0.093] [0.18]

Table 4 : Posterior results for the NIKKEI 250 index

(t statistics between square brackets). A séquence of BIC, as reported in

Table 3 clearly indicates the even (exponential) transition model (EST-

GARCH) as the preferred model. In preliminary inference results not repor

ted hère, I hâve tried three différent even transition functions. The model

with an exponential transition and a threshold seemed to give the better fit

and the best account of non-linearity. The next subsection présents inference

results corresponding to tins case.

7.2 Inference results

The Tokyo data set is tricky to analyse as there is a very high né

gative corrélation between u> and 0 (around —0.95) that impeded the con

vergence of the Griddy Gibbs algorithm. However using the alternative pa-

rameterisation of the GARCH solves the case as it kills the corrélation.

With 1000+150 draws. convergence of the chain was achieved as checked on

CUMSUM graphs. Thus the maximum likelihood estimâtes were computed

using the normalisation a2 = 1 (and imposing positivity constraints). The

Bayesian estimâtes were computed using a; = 1. The Bayesian estimâtes

reported in Table 4 were obtained by applying the necessary transforma

tions indicated in Theorem 2 and below. I performed a sensitivity analysis

and présent results obtained with 70 = 0 (to be compared to the maximum

likelihood estimâtes), with 70 = 10 and finally for a symmetric GARCH.

There are some substantial différences between the Bavesian and the
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Figure 9 : Posterior densities for Tokyo with 70 = 0

classical estimâtes for the GARCH parameters and reasonable similarities

for the non-linear parameters. The posterior density of (3 is in fact bimo-

dal and this explains certainly the main différences. A Dickey-Savage ratio

would favour the restriction (3 = 0, restriction which is in accordance with

the spécification search that retained an optimal lag p = 1 for the test ré

gression. The probability that À = a2 — ct\ > 0 is equal to 0.015 (when

7o = 0 and 0.011 when 70 = 10). It goes up to 0.31 when c is imposed to

be zéro. The présence of a threshold is essential hère for modelling the non-

linear effèct that totaly disappears otherwise. And the symmetric GARCH

seems to be rejected by the data as the posterior expectation of uj is lar-

ger in this case as shown in the last Une of Table 4. It is very difficiilt to

say that big shocks hâve a permanent effect. The posterior expectation of

ws = «2 + P, which gives indications on stationarity and persistence (see

the appendix for a dérivation), is 0.51 with a standard déviation of 0.14.

The probability that ws > 1 is equal to 0.001. This probability does not

change much when c = 0. The impact of bigger shocks given by 0:2 is much

smaller than that of smaller shocks (ai). However. the posterior density of

ai is flatter, indicating a larger uncertainty about the effective impact of

small shocks on volatility.

7.3 Analysis of non-linearity

The even transition function is plotted against the standardised shocks.

Most of the shocks are within ±2 standard déviations. The transition func

tion is sharper when evaluated at posterior expectation than vvhen computed

directly. Consequently the "Bayesian" actual transition is smoother than its

"classical" counterpart. Averaging has also the conséquence that the tran

sition function is not zéro at its minimum, except when c = 0. The présence

of a threshold makes that there are much more observations on the right

hand side of the transition function than on the left hand side even if there
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Figure 11 : News impact curve for Tokyo

are as many positive than négative shocks in the data.

The graph of the posterior density of c shows that the négative thre-

shold c = —1.05 is relatively precisely estimated. The range of intégration for

c was truncated for identification reasons (greater than -1.8). The positive

segment receives none of the probability14 (as verified on experiments not

reported hère). When 70 is increased to 10, the posterior density ofc concen

trâtes around its posterior mean. The (Baycsian) news impact curve displavs

a fairly large asymmetry when compared to the symmetric GARCH. Figure

11 indicates that if most of the points concern small shocks betwoen ±2

standard déviations, the déformation of the impact curve is situated inside

that interval. Inside that interval, positive and négative shocks hâve a dif

férent impact. The volâtility is higher for small négative shocks (between 0

and 1.5 standard déviations) than for positive ones. Over 2 standard dévia

tions, positive and négative shocks hâve the same influence on volatility. The

14 As a matter of fact, the maximum iikelihood routine did not converge when c was left free, when c was
constrained to be positive, but did converge when c was conslrained to be négative.
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impact curve for the linear GARCH gives a greater weight to big shocks.

Increasing 70 to 10 modifiée! only locally the news impact curve.

8 Conclusion

In this paper, I hâve considered a new type of asymmetric GARCH(1,1)

with différent choices for the asymmetry. It appears clearly that the Baye-

sian approach was successful. First of ail, the advantage of the Bayesian

approach is that problems are clearly pointed out and in particular the dif-

ficulties coming from inference on the smooth transition parameter that are

frequently reported in classical analysis of non-linear models [see e.g. Gran-

ger and Terasvirta (1993), p. 123] are given hère a sound theoretical basis.

Secondly those inference difficulties receive a correct numerical treatment as

the posterior density of the STGARCH model may reveal easier to integrate

than to maximise in certain cases. Point estimâtes are not the same with

the two methods because posterior densities are skewed and may exhibit

bimodality.

The asymmetric GARCH models proposed by GJR (1993) or by Za-

koian (1994) had an abrupt transition. With financial data, and especially

at high frequency, the smooth transition proved to be relevant in the two

empirical illustrations given in this paper. And the Bayesian approach pro

duces a transition that is even smoother than the transition obtained with

point estimâtes.

The présence or absence of non-linearity may dépend on the frequency

of the observations. In empirical investigations not reported in paper, I ana-

lysed the CAC40 Paris index. Weekly data did not présent non-linearity

according to the spécification tests, but daily data did. This exercice de-

monstrates the usefulness of the spécification tools introduced in this paper

to detect the présence or absence of non-linearity in the data and their

ability to give some information on the nature of non-linearity. The ques

tion still remains to know if the models I hâve proposed and implemented

capture ail the asymmetry présent in the data.
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APPENDIX

A Stationarity and persistence

Nelson (1990) discusses stationarity and persistence in the GARCH(l.l)

model. I shall extend some of Nelson's rcsults to the STAR.CH model. The

gênerai skedastic function (5) can be factorised as :

h,, =uj + ht-i(ai ej_, +\e%_1Ft-i + 0) (47)

Repeatedly substituting for ht-i in the above formula, we hâve for t ^ 2 :

t

ht = /io

tal'-1*. 2 2 <48)
k=li=l

This équation defines the conditional process of the ht as starting from h0.

I shall suppose ho finite and strictly positive with probability one. Two

questions will be addressed :

- When is the process of the ht strictly stationary

- When does a shock given to the conditional process ht decay as t —* oc ?

A first theorem, largely inspired from Nelson (1990), gives conditions

for strict stationarity :

Theorem 3 When u) = 0, the conditional process of the ht goes to zéro

almost surely if

E{\og[ai e2t+\e2tFt + 0]) < 0 (49)

and goes to infinity for the reverse case. When cj > 0, the conditional process

of the ht is strictly stationary if (49) holds.

Proof. The proof follows directly from the appendix of Nelson (1990). □

I shall now concentrate on a particular définition of persistence, persis

tence in L1 which corresponds to Nelson's formula (36) and is related to the
integrated GARCH of Engle and Bollerslev (1986). This type of persistence

implies that the process is not weak stationary. I shall study persistence

analysing the impact of an initial shock e0 on the conditional variance h,t.

Theorem 4 A shock will be said to be persistent in L1 unless

lim [axEtâ) + A E{e2Ft) + P}1'1 = 0 (50)

Intégration in the sensé of Engle and Bollerslev corresponds to

alE(e2) + XE(e2Ft) + 0= 1 (51)
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Proof. The impact of a normalised shock €q on ht is defined by

eU + A *_,*_ H- fl

= (ai + A[E(F0) + E(e2^-)}) x [aiE(^) + AE(e?Ft)

using the factorisation (48). When t —» oo

goes to zéro or to infinity depending if the inside bracket is lower or greater

than one. a

There is presumably no analytical resuit available to compute E(c2Ft),

except when F is an indicator function. In this case, I can compute truncated

moments for the two above cases : négative versus positive shocks and small

versus big shocks. I shall assume that e lias a Normal distribution with zéro

mean and unit variance.

A.l Négative and positive shocks

F is now zéro when e is négative and one otherwise. So as the distribution

of e is symmetric, négative and positive values are equally probable and :

= /
J —

0

2ezf{e)de = l/2 (53)

The weak stationarity (non-persistence) condition becomes

(ai + a-i)f2 + j3 < 1 (54)

and persistence is measured by ot\ for négative shocks and by Q2 for positive

ones. For A = 0, we recover the results of Engle and Bollerslev (1986).

A.2 Small and big shocks

F now is zéro when e € [—c, c] and one otherwise. Because of the symmetry

of the distribution of e :

'C e2f(e)de
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Assuming normality

) = [1 - ERF(c-^) +c^exp(-£)]
l sf-K 2 (55)

where ERF(z) is the error function defined as the intégral of the Gaussian

function from zéro to z. g(c) is an increasing function of c > 0 taking values

in [0,1]. The weak stationarity condition becornes a not trivial function of

c with :

(al+X[l~g(c)])+iô<l (56)

For c —> oo, we recover the usual condition for weak stationarity in linear

GARCH with ai +0 < 1. For c = 0, we hâve the stationarity condition for

the simple exponential transition function which is «2 + P < 1-
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