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In this article we propose a record counting cointegration (RCC) test that is robust
to nonlinearities and certain types of structural breaks. The RCC test is based on the
synchronicity property of the jumps (new records) of cointegrated series, counting
the number of jumps that simultaneously occur in both series. We obtain the rate of
convergence of the RCC statistics under the null and alternative hypothesis. Since
the asymptotic distribution of RCC under the null hypothesis of a unit root depends
on the short-run dependence of the cointegrated series, we propose a small sample
correction and show by Monte Carlo simulation techniques their excellent small
sample behaviour. Finally, we apply our new cointegration test statistic to several
financial and macroeconomic time series that have certain structural breaks and
nonlinearities.
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1. Introduction

Granger (1981) introduced the concept of cointegration and with the contribution of
Engle and Granger (1987) and Johansen (1991) this concept has achieved immense
popularity among econometricians and applied economists. Only a few recent
papers have been dedicated to the simultaneous consideration of nonstationarity
and nonlinearity, even though many people agree that those are likely characteristics
of many macroeconomic and financial economic relationships. Granger (1995)
discussed the concepts of long-range dependence in mean and extended memory
that generalize the linear concept of integration, I�1�, to a nonlinear framework.

Received February 19, 2005; Accepted May 3, 2005
Address correspondence to Ana E. Sipols, Department of Statistics, Universidad

Rey Juan Carlos, Calle Tulipán S/N 28933 Mosteles, Madrid, Spain; E-mail:
anaelizabeth@urjc.es

939

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
C
a
r
l
o
s
 
I
I
I
 
o
f
 
M
a
d
r
i
d
]
 
A
t
:
 
1
2
:
1
7
 
1
2
 
M
a
y
 
2
0
0
9

1

Referencia bibliográfica
Published in:Communications in Statistics. 2006, vol. 35, nº 4. p. 939-956, ISSN 1532-4141
Taylor & Francis



940 Escribano et al.

On the other hand, there are interesting empirical macroeconomic applications
where nonlinearity has been found in a nonstationary context and therefore, there
is a need to justify those results econometrically.

Most unit root tests, like those of Dickey and Fuller (1979) or Phillips and
Perron (1988), are not robust to outliers, Franses and Haldrup (1994); nor to
structural breaks, Perron (1990); nor to nonlinear transformations, Granger and
Hallman (1991) and Aparicio et al. (2006a). Therefore, tests for noncointegration
based on the augmented Dickey and Fuller (ADF) test applied to the residuals of
the cointegrating relationship, Engle and Granger (1987), have size distortions and
losses in power. Aparicio et al. (2004, 2006a) analyzed the asymptotic properties of
a new range unit root (RUR) test and provide evidence of their nice behavior by
Monte Carlo simulation of nonlinearities and structural breaks and by some
empirical applications.

In this article we analyzed the properties of a RCC test that is robust to
monotonic nonlinear transformations and structural changes. This testing procedure
works with the ranges, instead of using the actual variables. The range for a
given time t is defined as the difference between the cumulative maximum and the
cumulative minimum at that time t. The first differences of the ranges are called
the jumps and they represent the arrival of a new maximum or minimum (new
record). The RCC test analyzed in this article is based on counting the synchronicity
of the jumps (new maximum or minimum) of the cointegrated series. This statistic
counts the number of jumps that simultaneously occur in both series. We compare
the properties of the well-known non cointegration test (see Engle and Granger
[EG], 1987), with those of RCC. We show by Monte Carlo simulations how EG
dramatically fails in the presence of nonlinearities and structural breaks. These well-
known results are general and affect most of the available tests of cointegration or
non-cointegration, like Johansen (1991), etc.

We have considered as empirical applications the prices of gold and silver,
analyzed by Escribano and Granger (1998) and the UK money demand from 1878
to 2000, analyzed by Escribano (2004). Those data sets were selected because there
was evidence that the series were cointegrated only after explicit treatments of
nonlinearities or structural breaks or both. In this article, however, we find evidence
of cointegration without any previous treatment (prefiltering) of those problems.

2. Analysis Based on Record Counting Cointegration (RCC)

In this section we introduce nonparametric methods to analyze cointegration that
do not impose restrictions on the functional form relating the variables. Some of
those procedures are robust to certain types of structural breaks (or level shifts) and
monotonic nonlinear transformations.

Aparicio (1995), Aparicio and Granger (1995), and Aparicio et al. (2006b)
propose an alternative nonparametric methodology to test for unit roots. The
basic idea behind this approach is to count recursively the number of new records
(maximum or minimum) in a time series. We expect nonstationary cointegrated
series to have many more new corecords (or synchronous new records) than
noncointegrated series or stationary series. To be more precise we need to introduce
some concepts and definitions that are useful in the rest of the article.

Definition 1. Given a time series xt we define the sequence of extremes of xt as the
sequence of x1�t = min�x1� � � � � xt� and xt�t = max�x1� � � � � xt�, when t = 1� 2� � � � � n.
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Record Counting Cointegration Tests 941

Definition 2. Let n be the sample size, the sequence of ranges of xt is defined as

R
�x�
t = xt�t − x1�t for t = 1� � � � � n� (1)

Definition 3. Given the sequence of ranges we can define the sequence of jumps
(new records) as the sequence of first differences of ranges:

�R
�x�
t = R

�x�
t − R

�x�
t−1� (2)

The series of new records �R�x�
t is positive or zero. When there is a new record

(maximum or minimum) in �x1� � � � � xt�, the first difference of the ranges will be
positive at time t, �R�x�

t > 0. A statistics record was proposed by Aparicio et al.
(2006a) for robust unit root testing. When the original series is stationary, with finite
variance, the series of first differences of the ranges are positive at the beginning of
the sample and the rest is almost a sequence of zeros. On the contrary when the
series are nonstationary I�1� new records appear with positive probability as the
sample increases. The key idea relied on the different vanishing rates of the long-
run frequency of a new record, n−1∑n

t=1 1��R
�x�
t > 0�, for an I�1� and an I�0� time

series, in such a way that the normalized long-run frequency of records

J�n�
x = n−1/2

n∑
t=1

1
(
�R

�x�
t > 0

)
(3)

converged in probability to zero under the alternative of stationary, and to a
nondegenerate positive random variable under the null hypothesis of a unit root. A
well-known result from extremal theory is that the statistical properties of records
from iid sequences of random variables are shared by a wide class of dependent
stationary time series (see for instance, Leadbetter and Rootzén, 1988; Lindgren and
Rootzén, 1988). This prompts the question of whether short-run dependencies and
cross-dependencies may have an impact on a record-based test for cointegration.
Then, one important alternative model to consider in this context is the case of
dependent random walks.

For plots of the sequence of ranges R
�y�
t and R

�x�
t of Models 1 to 4 below, see

Aparicio et al. (2006b). The following models are useful to motivate the new approach
we are proposing with parameter values equal to � = 0�5, b = 0�6, where et�0, et�1, et�2
are standard normal distributions and are mutually independent, Nid(0,1).

Model 1 (Linear cointegration): xt =wt + et�1, yt = �wt + et�2 where wt = wt−1 + et�0.
Model 2 (Nonlinear cointegration): xt =wt + et�1� yt = �w2

t + et�2 where wt

= wt−1 +et�0.
Model 3 (Independent random walks): xt = xt−1 + et�1, yt = yt−1 + et�2.
Model 4 (Random walks with short-run dependence �a �= 0��: �xt = et�1, �yt =

a�xt + et�2.

Figure 1 shows the cross plots of the sequences of new records or first difference
of ranges for the different models. From the cross plot of Fig. 1 it is clear
that dependent but not cointegrated random walks (d) have several new records
synchronized indicating some small number of corecords. This property will likely
reduce the power of the RCC test if the short-run correlation is high relative to the
cointegration relationship. The idea that cointegrated series imply arrivals of highly
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942 Escribano et al.

Figure 1. Cross plots of �R�y�
t and �R

�x�
t for pairs of series that are (a) linearly cointegrated

(model 1), (b) nonlinearly cointegrated (model 2), (c) independent random walks (model 3),
and (d) random walks with short-run dependence (model 4).

synchronized new records suggests the following nonparametric test statistic that we
called RCC

RCC�n�
x�y =

∑n
t=1 1

(
�R

�x�
t > 0

)
1
(
�R

�y�
t > 0

)
log�n�

� (4)

where the product of the two indicator functions 1��R�x�
t > 0�1��R�y�

t > 0� counts
the number of arrivals of new records that are coincident or synchronized
(corecords). That is, the RCC counts how many of the total arrivals of the jumps
coincide, relative to the log�n�. Therefore, the convergence rates of the test statistic
RC is log�n�.

Theorem 1. Let the processes xt =
∑t

i=1 ei�1 and yt =
∑t

i=1 ei�2 for t = 1� 2� � � � ��,
where ei�1 and ei�2 are independent continuous zero-mean iid sequences with finite
variances and symmetric pdf. Let RCC�n�

x�y be the number of joint records of xt and yt in
a sample of size n (4). Then

log�n�−1RCC�n�
x�y → 1� (5)

E
{
RCC�n�

x�y

} = O�log n�� (6)

Var
{
RCC�n�

x�y

} = O�log n�� (7)
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Record Counting Cointegration Tests 943

Proof. See the Appendix.

2.1. Consistency

If xt and yt are cointegrated, then for some a �= 0 there exists an I�0� sequence 	t
such that yt = axt + et�2. Since for large t, xt will dominate et�2, we can write

RCC�n�
x�y =

∑n
t=1 1

(
�R

�x�
t > 0

)
1
(
�R

�y�
t > 0

)
log�n�

�
∑n

t=1 1
(
�R

�x�
t > 0

)
log�n�

� (8)

But we know from Aparicio et al. (2006a) that
∑n

t=1 1��R
�x�
t > 0� = O�n1/2�.

Thus under the alternative hypothesis of cointegration, the test statistic will satisfy

�log n�−1RCC�n�
x�y → �� (9)

2.2. Invariance Against Monotonic Nonlinearities

Monotonic transformations preserve the ordering of the observations in any time
series, and thus the inter-record times. As a consequence, if we let f�·� and g�·� be a
monotonic nonlinear transformations, we must have

RCC�n�

f�x��g�y� = RCC�n�
x�y� (10)

More generally, let xt and yt be I�1� time series variables, and let x′t = f�yt�+ 
t,
y′t = g�xt�+ 	t, where �
t�t≥1� �	t�t≥1 are independent iid sequences with zero mean
and finite variances. Since for large values of t the nonlinear transformations
f�yt�yg�xt� dominate 
t and 	t, respectively, the records of x′t �y

′
t� will occur at the

same time as xt �yt�. As a consequence, the count of new records before and after
the transformation should be the same. That is,

RCC�n�

�x′�y′� =
n∑

t=1

1
(
�R

�x′�
t > 0

)
1
(
�R

�y′�
t > 0

)
(11)

� RCC�x�y� =
n∑

t=1

1
(
�R

�x�
t > 0

)
1
(
�R

�y�
t > 0

)
� (12)

In finite samples, the actual size will oscillate around the nominal size depending
on the type of transformations. For example, certain kinds of transformations can
emphasize the I�1� part over the I�0� part. This feature may lead, in finite samples,
to size fluctuations around the nominal one.

2.3. Small Sample Performance of the RCC Test: Monte Carlo Simulations

Let the data generation process (DGP) be the following noncointegrated random
walks but with short-run dependence �a �= 0�, H0 � �xt = et�1, �yt = a�xt + et�2.

In Table 1 we estimate the quintals of the empirical distribution of the
RCC test statistic, under H0, for different parameter values of the short-run
dependence �a = 0� 0�5� 1� 1�5�, different sample sizes n = 100� 250� 500� 1000, and
different significance values v. The estimated quintals, based on 10,000 Monte Carlo
simulations, are shown in Table 1. We observe that for most sample sizes �n�
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944 Escribano et al.

Table 1
Quintals of the empirical distribution of RCC for dependent not cointegrated

random walks, for different values of parameter a and for different sample sizes n

a = 0 a = 1

v/n 100 250 500 1000 100 250 500 1000

0.01 0.21 0.18 0.16 0.18 0.43 0.54 0.64 0.71
0.025 0.21 0.18 0.32 0.33 0.65 0.72 0.96 1.12
0.05 0.43 0.36 0.32 0.34 0.86 0.90 1.12 1.31
0.10 0.53 0.54 0.48 0.52 1.86 2.08 2.28 2.42
0.90 2.30 2.08 2.28 2.31 3.17 3.53 4.05 4.51
0.95 3.11 3.16 3.11 3.12 3.38 3.89 4.37 4.71

the quintals increase with the short-run dependence �a� in small sample sizes and
therefore the empirical distribution of RCC is shifted to the right. These simulation
results call for the need of a small sample correction of the RCC statistic to make it
useful, since in empirical application we do not know the true value of the parameter
a. One possibility is to prefilter the series (use of instrumental variables, etc.), but
this could be complicated if the dependence is nonlinear. A better alternative is
to divide the RCC by the number of new records that are synchronized between
the first differences of the series. We call this nonparametric statistic the RCC for
corrected dependence:

RCCCD =
∑n

t=1 1
(
�R

�x�
t > 0

)
1
(
�R

�y�
t > 0

)
log�n�

∑n
t=1 1

(
�R

��x�
t > 0

)
1
(
�R

��y�
t > 0

) � (13)

In Table 2 we estimate the quintals of the empirical distribution of the RCCCD

test statistic, under H0, for different parameter values of the short-run dependence
�a = 0� 1�, different sample sizes n = 100� 250� 500� 1000, and different significance
values v based on 10,000 Monte Carlo simulations. The asymptotic distribution
of the RCC is a good approximation of the distribution of the RCC in moderate

Table 2
Quintals of the empirical distribution of RCCCD for dependent not cointegrated

random walks, for different values of a and for different sample sizes n

RCCCD a = 0 a = 1

v/n 100 250 500 1000 100 250 500 1000

0.01 0�21 0�231 0�23 0�24 0�22 0�24 0�242 0�24
0.025 0�21 0�232 0�24 0�25 0�23 0�232 0�25 0�26
0.05 0�45 0�38 0�35 0�378 0�41 0�33 0�332 0�376
0.10 0�56 0�58 0�59 0�60 0�53 0�58 0�59 0�60
0.90 2�3 2�24 2�28 2�3 2�4 2�51 2�49 2�52
0.95 3�32 3�27 3�42 3�42 3�53 3�54 3�57 3�6
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Record Counting Cointegration Tests 945

Figure 2. Nonparametric kernel estimates of the density function of the RCCCD and RCC
test statistics under the null hypothesis of no cointegration for n = 100 and for a = 0� 1.

sample sizes. We can observe the invariance that was obtained with the small sample
correction of the RCC statistic for different values of a and different sample sizes n.
Figures 2 and 3 show the nonparametric estimates of the density function of RCC
and RCCCD test statistics under the null hypothesis of independent random walks
�a = 0�, with Nid(0,1) errors and a = 1� 1�000 replications were done using the
Epanechnikov kernel.

3. Size Adjusted Power of the RCC Tests: Monte Carlo Evidence

We will analyze the power of the RCC tests using the 5% right tail critical value. The
DGP under the alternative hypothesis of cointegration is generated by a bivariate
vector error correction model with weakly exogenous variables for the cointegrating
parameter vector.

Consider the following restricted VAR model, for the �yt� xt� vector that is
generated by [

1 a

0 1

][
�yt

�xt

]
=
[
c

0

]
+
[
b

0

]
�1�−��

[
yt−1

xt−1

]
+
[
w1t

w2t

]
� (14)
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946 Escribano et al.

Figure 3. Nonparametric kernel estimates of the density function of the RCCCD and RCC
test statistics under the null hypothesis of no cointegration, for n = 1� 000 and for a = 0� 1.

where

wt ∼ Nid

([
0

0

]
�

[
1 0

0 1

])
�

3.1. Linear Cointegration

H1: The alternative hypothesis is a standard linear error correction model (ECM)
DGP: �yt = c + a�xt + b�yt−1 − �xt−1�+ w1t� �xt = w2t,

where � = 1 and c = 0. We will study the power of different noncointegration tests:
the RCC, and the Engle–Granger (EG, 1987), for different parameter values of
the parameter (b), say b = 0 (noncointegration), b = −0�01, −0�1, −0�25, −0�75
(cointegration) and different short-run dependence given by a = 0� 1. This DGP
follows the parameterization used by Kremers et al. (1992) and Arranz and
Escribano (2001). The results of EG are in parenthesis in Table 3.

Since the EG test is based on estimating the true error correction model (DGP),
the EG test for noncointegration is more powerful than the RCC. However, the
RCC is more powerful for small values of b, slow error correction EC adjustment
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Record Counting Cointegration Tests 947

Table 3
Power of the RCC and EG tests for different parameter values of b, a, and n

a\n 100 250 500 100 250 500

b�EG� −0�01 −0�1
0 0.4 (0.047) 0.4 (0.0920) 0.5 (0.1590) 0.5 (0.38) 0.6 (0.99) 0.7 (1)
1 0.32 (0.09) 0.5 (0.12) 0.51 (0.21) 0.44 (0.49) 0.7 (0.99) 0.84 (1)

a\b −0�25 −0�75
0 0.6 (0.99) 0.8 (1) 0.81 (1) 0.7 (1) 0.9 (1) 0.91 (1)
1 0.54(0.99) 0.7 (1) 0.75 (1) 0.6 (1) 0.6 (1) 0.7 (1)

(see for example a = 0, b = −0�01 in Table 3). Notice that the power of the RCC
decreases the larger is a.

3.2. Nonlinear Cointegration and Nonlinear Error Correction

Escribano (1986, 2004) analyzes ECM models in nonlinear contexts where the
cointegration relationship can be linear or nonlinear and the equilibrium correction
term also can be linear or nonlinear. He proposes alternative representation
theorems for nonlinear error correction (NEC) models based on the concepts
of I�1� and I�0� introduced by Escribano (1986, 1987) and Escribano and Mira
(2002). Escribano (1986, 2004) proposes a methodology to implement parametric
and nonparametric ECMS. Using the databases of Friedman and Schwartz (1982)
and Ericsson et al. (1998), extended until the year 2000, he implemented this
methodology to estimate a nonlinear money demand for the United Kingdom
from 1878 to 2000. Within the class of parametric models he discusses cubic
polynomial (and rational polynomial) ECMs; see also Hendry and Ericsson (1991)
and Ericsson et al. (1998). Nonlinearities can eliminate most of the power of the
usual noncointegration test as will be seen in the following Monte Carlo simulations.

3.3. Power of RCC Against a Nonlinear Cointegrating Relationship

Consider now that the DGP under the alternative hypothesis is given by the
following linear ECM with a nonlinear cointegration relationship.

H1: The alternative hypothesis is a linear ECM but with nonlinear cointegration
DGP: �yt = c + a�xt + b�yt−1 − g�xt−1� ���+ w1t, �xt = w2t,

where w1t and w2t are Nid(0,1) and are mutually independent errors with � = 1.
We analyze now the power of the RCC test for different values of a and

we compare the results with the EG test (results in Table 4 are in parenthesis).
Let the nonlinear cointegration relationship be given by the following polynomial
cointegration term g�zt−1� �� = z

j
t−1. Based on 10,000 replications of the Monte Carlo

experiment we compute the empirical power of the tests for parameter values a =
0� 1 and values of b = −0�01, −0�1, −0�25, −0�75.

As we can see from Table 5, when the ECM is linear but with a polynomial
cointegration function RCC test is much more powerful than the EG in all
the cases. In particular, we observed that the highest power is obtained for
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948 Escribano et al.

Table 4
Size adjusted power of the RCC test and the EG test (in parenthesis) at 5%

significance level based on H1 with g = z
j
t−1, j = 2� 3, and 4, for different sample

sizes n, different values of parameter b, and fixing the parameter a at a = 0

100 250 500 100 250 500

j\b −0�01 −0�25
a = 0 2 0.71 (0.02) 0.86 (0.002) 0.94 (0.001) 0.88 (0.09) 0.98 (0.03) 1 (0.01)

3 0.88 (0.06) 1 (0.02) 1 (0.003) 0.9 (0.07) 1 (0.03) 1 (0.009)
4 0.92 (0.04) 1 (0.01) 1 (0.001) 0.93 (0.08) 1 (0.03) 1 (0.01)

j\b −0�1 −0�75
a = 0 2 0.88 (0.1) 0.96 (0.02) 1 (0.01) 0.9 (0.1) 0.95 (0.07) 0.98 (0.07)

3 0.94 (0.1) 1 (0.03) 1 (0.01) 0.9 (0.17) 1 (0.14) 1 (0.16)
4 0.93 (0.1) 1(0.11) 1(0.10) 1(0.23) 1(0.234) 1(0.275)

j = 3 followed by j = 4 and j = 2, respectively. The intuition given by Escribano
(2004) is the following: cubic polynomials are very flexible and can approximate
different level shifts. Furthermore, the error correction term in this case can
be equilibrium correcting (stable nonlinear adjustment) and therefore not a
deviating error adjustment term as can happen with the quadratic polynomial.
Notice that, as expected, the empirical power of the tests decreases with the
parameter a even for large negative values of b. Let the nonlinear cointegrating
function be g�zt−1� �� = exp�zt−1/100�. The size adjusted power of the RCC
test and the EG test (in parenthesis) for parameter values a = 0� 1 and b =
−0�01�−0�05�−0�1�−0�25�−0�5�−0�75, are given in Table 6.

The power of the EG test is very low since this linear procedure misspecifies
the estimation of the cointegrating vector by assuming that it is linear. When there
is no short-run dependence �a = 0� the power of the RCC is very high and it is
reduced when the parameter a is large. This is due to the fact that if the short-run
dependence is high, the nonlinearity also strongly affects the short-run dependence
of the cointegrating errors and therefore the power of those tests that do not take
this information into account is reduced. Similar results are obtained when the

Table 5
Size adjusted power of the RCC test and EG test (in parenthesis) at 5%

significance level based on H1 with g = z
j
t−1� j = 2� 3, and 4, for different sample

sizes n, different values of parameter b and fixing the parameter a at a = 1

100 250 500 100 250 500

j\b −0�01 −0�25
a = 1 2 0.35 (0.008) 0.5 (0.003) 0.65 (0) 0.45 (0.057) 0.6 (0.02) 0.7 (0.005)

3 0.6 (0.05) 0.7 (0.01) 0.87 (0.002) 0.6 (0.09) 0.8 (0.03) 0.9 (0.007)
4 0.55 (0.04) 0.7 (0.01) 0.8 (0.002) 0.5 (0.09) 0.6 (0.02) 0.7 (0.005)

j\b −0�1 −0�75
a = 1 2 0.5 (0.072) 0.6 (0.047) 0.8 (0.02) 0.3 (0.09) 0.4 (0.07) 0.6 (0.057)

3 0.6 (0.09) 0.8 (0.05) 0.9 (0.02) 0.45 (0.13) 0.64 (0.15) 0.8 (0.13)
4 0.55 (0.09) 0.7 (0.13) 0.8 (0.09) 0.3 (0.24) 0.45 (0.23) 0.6 (0.27)
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Record Counting Cointegration Tests 949

Table 6
Size adjusted power of the RCC test and EG test (in parenthesis) at 5%

significance level based on H1 with g = exp�zt−1/100� for different sample sizes n
and different values of parameters a and b

a = 0 a = 1

b\n 100 250 500 100 250 500

−0�01 0.4 (0.06) 0.48 (0.05) 0.5 (0.05) 0.4 (0.07) 0.45 (0.07) 0.46 (0.08)
−0�05 0.43 (0.05) 0.52 (0.05) 0.57 (0.05) 0.43 (0.05) 0.46 (0.05) 0.5 (0.05)
−0�1 0.5 (0.05) 0.61 (0.05) 0.7 (0.05) 0.43 (0.06) 0.5 (0.06) 0.6 (0.06)
−0�25 0.6 (0.05) 0.8 (0.06) 0.82 (0.09) 0.5 (0.07) 0.54 (0.06) 0.7 (0.08)
−0�5 0.65 (0.07) 0.85 (0.09) 0.9 (0.1) 0.52 (0.08) 0.57 (0.13) 0.76 (0.13)
−0�75 0.7 (0.1) 0.9 (0.11) 1 (0.15) 0.6 (0.14) 0.65 (0.17) 0.8 (0.19)

nonlinear cointegrating function is g�zt−1� �� = log�zt−1 + 100�; see Garcia (2004).
Polynomial transformations, cubic or rational, are flexible functional forms used
to study general nonlinear error correction adjustments in asymmetric contexts.
Escribano (2004) justified those functional forms based on Pade’s approximations.
In what follows we analyze the power of the noncointegration tests RCC and EG
for nonlinear error correction models.

H1: Linear cointegration with an NEC
DGP:

�yt = c + a�xt + f�yt−1 − �xt−1�+ w1t� (15)

�xt = w2t (16)

with w1t, w2t Nid(0,1) errors, mutually independent. Consider the following value of
the linear cointegrating parameter � = 1, with different nonlinear adjustments, f�·�.
Let the cointegrating error be Ut−1 = yt−1 − �xt−1 and let the NEC adjustment be
the following polynomial case:

f�Ut−1� = �Ut−1 − 0�2�U 2
t−1� (17)

The functional form (17) is justified by the representation theorem of NEC
models of Escribano (2004) where the stability condition on the nonlinear
adjustment is satisfied (−2 < df�Ut−1�

dxt−1
< 0).

It is clear that the power of the RCC is much higher than the power of the EG
and that the power of RCC decreases with the short-run dependence of both series
measures by parameter a. Following Escribano (2004), we combine now both types
of linearities.

H1: Nonlinear cointegration in an NEC model
DGP:

�yt = c + a�xt + f�yt−1 − g�xt−1� ���+ w1t� (18)

�xt = w2t� (19)
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950 Escribano et al.

Table 7
Size adjusted power of the RCC test and the EG

test (in parenthesis) for different values of
parameter a small and n small of model (17)

a\n 100 250 500

0 0.7(0.04) 0.8 (0.03) 0.9 (0.02)
0.5 0.6 (0.02) 0.7 (0.03) 0.8 (0.07)
1 0.2 (0.08) 0.43 (0.02) 0.5 (0.01)

where w1t, w2t are Nid(0,1), mutually independent and where � = 1. We can consider
two types of nonlinearities in the cointegration relationship.

Let Ut−1 = yt−1 − log�xt−1� and substitute in (17). The size adjusted power of the
RCC and EG tests are given in Table 7 if Ut−1 is included in (17). Similar power
results are obtained for Ut−1 = log�yt−1�− �xt−1.

3.4. Linear Cointegration with Structural Changes in the Cointegrating Vector

There is a body of literature on the effects of cointegration testing in the presence of
structural changes. In what follows we want to simulate different cases based on the
DGP of Arranz and Escribano (2001) to evaluate the power of the RCC in this context
when the break point is in the middle of the sample. Table 8 shows that the RCC test
is clearly more powerful than the EG test in the presence of structural breaks.

H1: Linear error correction and cointegration in the presence of structural change
in the cointegrating vector

DGP:
�xt = w1t� (20)

�yt = c + a�xt + b
yt−1 − �c1D1t−1xt−1 + �xt−1��+ w2t� (21)

where w1t, w2t are Nid(0,1) errors, and mutually independent, where c1 measures
the change in the cointegrating vector. We will consider the following values,
� = 1, c1 = 2. The structural break is created by the artificial dummy variable D1t,
defined by

D1t =
{
1� t ≥ n

2
�

0 otherwise�
(22)

Table 8
Size adjusted power of the RCC test and the
EG test (in parenthesis) for different values of

a and n when Ut−1 is included in (17)

a\n 100 250 500

0 0.72 (0.02) 0.85 (0.032) 0.93 (0.04)
0.5 0.6 (0.02) 0.7 (0.04) 0.8 (0.02)
1 0.35 (0.09) 0.42 (0.021) 0.45 (0.012)
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Table 9
Size adjusted power of the RCC test and EG test (in parenthesis) for different

values of parameters a, b, n and c1 = 2

c1 = 2
a\n 100 250 500 100 250 500

b = −0�01 b = −0�025

0 0.5 (0.2) 0.65 (0.1) 0.66 (0.2) 0.65 (0.2) 0.8 (0.24) 0.85 (0.23)
1 0.41 (0.05) 0.5 (0.03) 0.64 (0.02) 0.54 (0.01) 0.61 (0.01) 0.8 (0.007)

b = −0�5 b = −0�75
0 0.81 (0.23) 1 (0.25) 1 (0.25) 0.8 (0.25) 1 (0.26) 1 (0.29)
1 0.62 (0.03) 0.8 (0.02) 0.9 (0.01) 0.61(0.06) 0.73(0.06) 0.91(0.07)

Based on 10,000 replications of the Monte Carlo simulations, we obtained the
size adjusted power of the tests RCC and EG, see Table 9.

Table 9 show that the RCC is more powerful than the EG test to reject the
null hypothesis of noncointegration in the presence of a structural break in the
cointegrating vector. The power of the RCC is very good for moderate short-run
dependence �a = 1� and when the parameter �b� of the error correction adjustment
is not slow. Those power results of the RCC test statistic are very promising;
however, we need to find a small sample correction of the RCC test statistic to
make it invariant to the short-run dependence indicated by the parameter a. As was
mentioned in the previous section, the solution to this problem is in the test statistic
that we called RCCCD (RCC corrected for dependence). The idea of the correction
is to count the synchronicity of the jumps, or new records, of both series (y and x)
but relative to the synchronicity of the jumps in the first differences of the series (�y
and �x). The RCC with the correction for dependence is RCCCD mentioned before.
We showed in Table 2 that the critical values of the RCCCD test statistic are now
independent of the short-run correlation measured by the parameter a. The question
now is to evaluate the impact of this small sample correction on the power of the
test. However, since the empirical distribution of the RCCCD is very similar to the
RCC with a = 0, and since for a = 0 the RCC test was most powerful, we expect also
to get important power improvements when a �= 0 by using RCCCD instead of RCC.

4. Empirical Applications

4.1. Analysis of Gold and Silver Prices

Gold and silver have been actively traded for thousands of years and remain
important and closely observed markets. Here, following Escribano and Granger
(1998), monthly prices are analyzed from the end of 1971 until 1996. We are
interested in testing the existence of contemporaneous relationships between the
prices of the two commodities in log levels. These prices are determined in clearly
speculative markets and therefore their behavior should be captured by unit-root
time series models. The unit root is supported by the Dickey Fuller (DF) type tests
using from 1 to 6 lags of the dependent variable and including constant and constant
and trend variables in the regression equation. There is, however, a feature of this

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
C
a
r
l
o
s
 
I
I
I
 
o
f
 
M
a
d
r
i
d
]
 
A
t
:
 
1
2
:
1
7
 
1
2
 
M
a
y
 
2
0
0
9

13



952 Escribano et al.

data that makes it particularly interesting, which is the widely known and well-
documented bubble in silver prices from roughly June 1979 to March 1980. The
objective now is to investigate the effect of the bubble on testing for the existence
of a long-run relationship (cointegration). The results in Escribano and Granger
(1998) support that the use of the intercept dummies (level shifts in the intercept,
introduced to explain the bubble period and their impact on the postbubble period)
greatly strengthens the evidence of cointegration.

When testing the null hypothesis using the EG test on the residuals with one lag
we get a t ratio t0 = −2�23 and therefore we cannot reject H0 at the 5% significance
since the critical value is −3�7. If we consider the two level shifts that occur in
the cointegration relationship, however, we get t0 = −4�54, which rejects the null
of no cointegration.1 Testing for cointegration between the log prices of gold and
silver with the RCC test statistics is interesting since those procedures do not require
prior estimation of the cointegrating relationship and could indicate departures from
linearity.

On the available data sample (of length n = 224), the values obtained for the
RCC and for the RCCCD (with xt� yt representing now the logarithms of the gold
and the silver price series) were 4.8045 �a = 0� 5% C�V� = 3�12� and 3.56 �5% C�V� =
3�3�, respectively. These findings support the rejection by H0 of independent random
walks in favor of the cointegration alternative hypothesis (between the log prices),
respectively at the 5% significance level.

4.2. Analysis for the UK Money Demand (1878–2000)

Escribano (1986, 2004) found a cointegration relationship between the log of
velocity of circulation of money (V) and short-run interest rates in nominal terms
(RNA) from annual observations from 1878 to 2000. Therefore, this cointegration
relationship is nonlinear, and he showed that if we transform V and RNA in logs,
they are still cointegrated and the cointegration relationship is linear.

However, when we test the null hypothesis of no cointegration between log(V)
and RNA based on the residuals of the EG test statistic we obtain a value of −1�7
and therefore we cannot reject the null hypothesis 5%. This result contradicts the
ECM test done in the nonlinear error correction model. Applying our RCC test
statistic, we found RCC = 3�5, which is larger than the 5% critical value, for n = 130
and a = 0 �3�11�. That is, with the RCC we reject the null of no cointegration if
there is no short-run contemporaneous correlation. The same result is obtained for
certain values of a �= 0 but not for all. For example, we also reject for a = 0�5, but
not for a = 1 and 1�5. Therefore, it is important to apply the RRCCD test statistic,
which is independent of a, in order to make a final decision.

5. Summary

In this article we proposed a noncointegration test statistic (RCC) based on the first
differences of the ranges of the series. This model-free cointegration testing device
could also be used in the finite samples. The key idea is to count the synchronicity
of the new records, and it is therefore called record counting cointegration (RCC).

1There is a body of literature on the effects of structural breaks on unit root and
cointegration tests. See, for example, Arranz and Escribano (2001).
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The series will not be cointegrated if there is a lack of synchronicity (up to a
constant delay) between the sequences of jumps or between the new records of
the series. If the two series have a common stochastic component (common trend),
their ranges will tend to jump together, indicating the synchronicity of the new
records. The RCC test statistic clearly outperforms the traditional DF unit root
test on the cointegrating residuals (EG) as well as nonparametric tests in a similar
context previously proposed by Aparicio et al. (2006a). The small sample properties
of RCC nonparametric test are analyzed by Monte Carlo simulations and with some
empirical examples. In particular, we test the null hypothesis of noncointegration
against the alternative hypothesis of a NEC or nonlinear cointegration or both.
Furthermore, we are able to show that the RCC test for noncointegration is robust
to nonlinearities and structural breaks. One important advantage of this RCC
approach is that it does not require previous estimation of the unknown (maybe
nonlinear) cointegrating relationship. Our Monte Carlo simulation analysis suggests
that the proposed methodology is robust to different departures from the classical
linear cointegration context, like nonlinearities in the cointegrating relationship or in
the error correction term, or to structrual changes in the cointegrating relationship.
The performance evaluation of the RCC in terms of size and power is compared
to the EG cointegration test. However, the RCC is sensitive to the short-run
dependence between the series. Therefore, we suggest a small sample correction for
dependence, the RCCCD, which works very well even in very small samples (good
size and power properties). Finally, our RCC test statistic is applied to different data
sets to show its usefulness in identifying cointegration in the presence of important
nonlinearities and structural changes.

Appendix

Lemma 1. Let xt =
∑t

i=1 ei�1 where ei�1 are continuous i.i.d. random variables with
bounded and symmetric pdf, zero means, and finite variances. Suppose that x0 also has a
bounded pdf and finite variance. And let J�n�

�x� = n−1/2∑n
t=1 1��R

�x�
t > 0�. Then we have

n∑
t=1

1
(
�R

�x�
t > 0

) = O�n−1/2�

Proof. See Aparicio et al. (2006a).

Proof of Theorem 1. Since xt is a random walk we have from Lemma 1,

n∑
t=1

1��R�x�
t > 0� = O�n−1/2� �⇒ P

(
�R

�x�
t > 0

) = O�t−1/2�

�⇒ [
P
(
�R

�x�
t > 0

)]2 = O�t−1�

�⇒
n∑

t=1

[
P
(
�R

�x�
t > 0

)]2 = O�log n�

since from Euler’s formula we can write
∑n

t=1 t
−1 = log n+ �+ 1

2n + 1
12n2 +

O�n−4�� = 0�57721566 (Euler’s constant).
Now if xt and yt are independent we have
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E�RCC�n�
x�y� =

n∑
t=1

P
(
�R

�x�
t > 0

)
P
(
�R

�y�
t > 0

)

=
n∑

t=1

[
P
(
�R

�x�
t > 0

)]2 = O�log n��

Therefore, under H0, we can write for some positive constant �:

RCC�n�
x�y = � log n+ �nV�

where V denotes a nondegenerate random variable with unit variance and �n defines
the asymptotic order for the standard deviation of RCC�n�

x�y. Our next objective is to
determine �n. To do this, first note that E�RCC�n�

x�y − � log n�2 = E��nV�
2 = �2nE�V�

2

E�
RCC�n�
x�y�

2� = E

{ n∑
t=1

n∑
t′=1

1
(
�R

�x�
t > 0

)
1
(
�R

�y�
t > 0

)
1
(
�R

�x�
t′ > 0

)
1
(
�R

�y�
t′ > 0

)}

=
n∑

t=1

[
P
(
�R

�x�
t > 0

)]2 + 2
n∑

t=1

n∑
t′=t+1

[
P
(
�R

�x�
t �R

�x�
t′ > 0

)]2

=
n∑

t=1

[
P
(
�R

�x�
t > 0

)]2 +W�n�
x�y �

where we let

W�n�
x�y = 2

n∑
t=1

n∑
t′=t+1

[
P
(
�R

�x�
t �R

�x�
t′ > 0

)]2

= 2
n∑

t=1

n∑
t′=t+1


P��R
�x�
t′ > 0 
 �R�x�

t > 0��2
P��R�x�
t > 0��2

= 2
n−1∑
t=1

[
P
(
�R

�x�
t > 0

)]2 n∑
t′=t+1

[
P
(
�R

�x�
t′−t > 0

)]2
�

Now we observe that

n−1∑
t=1

[
P
(
�R

�x�
t > 0

)]2 n∑
t′=t+1

[
P
(
�R

�x�
t′−t > 0

)]2

= �2
n−1∑
t=1

t−1�log n− log t�

= �2�log n�2 − �2
n−1∑
t=1

t−1 log t

= �2�log n�2 − �2

{ n∑
t=1

(
t

n

)−1(
log

t

n
+ log n

)
1
n

}

= �2�log n�2 − �2�log n�2 − �2

{ n∑
t=1

(
t

n

)−1(
log

t

n

)
1
n

}
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� −�2
∫ 1

1/n

log x
x

dx

= 1
2
�2�log n�2�

It follows:

Var�RCC�n�
x�y� � � log n+ �2�log n�2 − 
E�RCC�n�

x�y��
2

= � log n�

This entails that

�n = O��log n�1/2� and �log n�−1RCC�n�
x�y → 1�
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