
Studies in Nonlinear Dynamics &
Econometrics

Volume , Issue   Article 

Information-Theoretic Analysis of Serial

Dependence and Cointegration

F. M. Aparicio∗ A. Escribano†

∗Universidad Carlos III de Madrid
†Universidad Carlos III de Madrid

http://www.bepress.com/snde

ISSN: 1558-3708

Studies in Nonlinear Dynamics & Econometrics is produced by The Berkeley Electronic
Press (bepress). All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of the publisher
bepress, which has been given certain exclusive rights by the author.

Copyright c©1998 by The Berkeley Electronic Press.

This volume was previously published by MIT Press.



Information-Theoretic Analysis of Serial Dependence and Cointegration

F. M. Aparicio∗

A. Escribano†

∗Department of Statistics and Econometrics
†Department of Economics

Universidad Carlos III de Madrid
28903 Getafe (Madrid), Spain
aparicio@est-econ.uc3m.es

Abstract. This paper is devoted to presenting wider characterizations of memory and cointegration in time

series, in terms of information-theoretic statistics such as the entropy and the mutual information between

pairs of variables. We suggest a nonparametric and nonlinear methodology for data analysis and for testing the

hypotheses of long memory and the existence of a cointegrating relationship in a nonlinear context. This new

framework represents a natural extension of the linear-memory concepts based on correlations. Finally, we

show that our testing devices seem promising for exploratory analysis with nonlinearly cointegrated time series.
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1 Introduction

Many economic time series exhibit important random changes in their mean behavior. These series are
sometimes said to be integrated, in the sense that it is possible to simulate the most important features in their
patterns with sums of an increasing number of weakly dependent random variables. Integrated series can be
expressed in terms of unobserved components, where one of the components is a stochastic trend. The fact
that remote shocks have a persistent influence on the levels of these series is known as long memory or
extended memory, depending on whether this influence is linear or nonlinear (Granger 1995).

In some cases, the accumulated changes in mean behavior may be correlated across series. In the context
of macroeconomics and finance, certain models suggest the presence of economic or social forces preventing
two or more series from drifting too far apart from each other. Pairs of series which exhibit a common
long-memory component or stochastic trend are said to be cointegrated. The concept of cointegration was
coined by Granger (1981), and later on developed by Engle and Granger (1987). Well-known examples of
cointegrating relationships can be found between income and expenditure, prices of a particular good in
different markets, interest rates in different parts of a country, etc.

Underlying the idea of cointegration is the existence of a long-run equilibrium (i.e., a deterministic
relationship that holds on the average for the levels) between two integrated variables, xt , yt . A strict (linear)
equilibrium exists when for some a 6= 0, one has yt = axt . This unrealistic situation is replaced, in practice, by
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that of a (linear) cointegrating relationship, in which the equilibrium error zt = yt − axt is different from zero
but fluctuates around this value much more frequently than each of the individual series (i.e., zt is
mean-reverting), and the size of these fluctuations is much smaller.

During the last years, nonlinear time-series models have been a pole of attraction of econometric research
(Granger and Teräsvirta [1993] offer an overview of recent contributions). Indeed, economic theory suggests
the presence of nonlinearities in many economic variables, as well as in their relationships. Such nonlinear
behavior can, for example, take the form of asymmetries in adjustment costs and convexities in production
(for example, see the work of Escribano and Pfann [1998]). A growing number of authors are considering
nonlinear versions of the classical cointegration model. For example, Granger and Hallman (1991) proposed
the definition of a nonlinear attractor, whereby the strength of attraction toward a linear long-run equilibrium
depends on the level of the series. Escribano and Mira (1997) presented a different definition of nonlinear
cointegration, based on the near-epoch dependence concept, and Balke and Fomby (1997) proposed a
threshold-cointegration model, that is, one that switches between different regimes, and which seems to
mimic well the nonlinear adjustment process describing many economic phenomena.

A most difficult aspect of nonlinear cointegration is that of testing. A common belief of many authors is that
conventional cointegration tests may have low power for most forms of nonlinearity in a long-run relationship
between the variables (Aparicio 1995; Aparicio and Granger 1995b; DeJong 1992; Granger and Hallman 1991;
Schotman and Van Dijk 1991; Sims 1988). A consequence of this is that many pairs of series that are considered
noncointegrated by standard tests could, in fact, have a nonlinear equilibrium relationship. It is therefore
important to investigate new methods that are capable of detecting long-run equilibriums other than linear.

There have been few attempts to address this problem. One was due to Hallman (1990), who proposed
applying standard cointegration tests (unit-root tests) to the ranks rather than to the levels of the series in
order to make these tests more robust against monotonic nonlinear transformations of cointegrated variables.
However, this strategy is unable to cope with more complex types of nonlinearity in the relationship of the
variables. Moreover, Hallman’s approach relies on an invariance assumption regarding the distributional
properties of the conventional tests when applied to the ranks.

Granger and Hallman (1991) proposed estimating the nonlinear transformations using a nonparametric
technique known as the alternate conditional expectation (ACE) algorithm (Breiman and Friedman 1985).
This was followed by a standard cointegration test applied on the transformed variables, obtained as the ACE
estimates. These estimates also allowed the possibility of checking the hypothesis of linearity in cointegration.
But as remarked by these authors, it is unclear how nonparametric estimators of the transformations affect the
asymptotic distribution of the standard cointegration test statistics.

More recently, Balke and Fomby (1997) proposed a two-step threshold-cointegration testing device by
adapting the Engle-Granger approach. This was motivated by their findings of a certain robustness of standard
cointegration tests in the presence of threshold nonlinearities in the long-run relation. Thus the analysis could
be focused first on the global behavior (test for cointegration) and later on the local one (test for threshold
nonlinearity). However, this test is tailored to the specific nonlinear cointegration model considered by these
authors (here a threshold cointegration model), who also leave open the question of testing more general
forms of nonlinear cointegration. Their results also suggest a higher effectiveness of nonparametric testing
devices for detecting cointegration in this nonlinear context.

All of these findings call for a nonparametric characterization of cointegration which could be used to
check this hypothesis in the general context (i.e., where any form of nonlinearity is allowed), and more
importantly, where prior estimation of the nonlinear relation is not required.

In this paper, we first review the concepts of mean reversion, short and long memory, and cointegration,
and introduce a new characterization of these properties using information-theoretic ideas. This will lead us to
propose some new schemes for exploratory data analysis and for testing the hypotheses of long memory and
cointegration between two long-memory time series. Although we only address here the bivariate case, these
ideas could be extended to a multivariate context. The derivation of an asymptotic theory for the test statistics
that we propose is beyond the scope of this paper, but work on this subject is currently in progress.

The rest of the paper is structured as follows. Section 2 introduces a general framework for the analysis of
mean reversion, short (long) memory, and cointegration, in a nonlinear context. Section 3 presents the
information-theoretic tools to be used later. In particular, we review the definitions of entropy and mutual
information for random variables and stochastic processes. In Section 4, we propose an interpretation of
nonlinear dependence in and among time series using the previous tools, which leads us to a more general
definition of long memory and cointegration. In Section 5, we turn the previous characterization into
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exploratory tests of long memory and cointegration. We also provide some simulation results for the
cointegration test, and apply it to pairs of financial series from a stock and a foreign exchange-rate market.
Finally, Section 6 gives a concise summary of the paper.

2 Toward a General Characterization of Memory and Cointegration

Standard definitions for long memory and cointegration are inadequate when dealing with non-Gaussian and
nonlinear time series, and with pairs of series which are nonlinearly related. In the first case, the trouble is
that the autocorrelation function (ACF) fails to capture the higher-order dependencies in the data. In the
second case, the problem lies with series which do not appear to be “aligned” in their mean behavior, but
which could be cointegrated after being nonlinearly transformed. In fact, what we need is a nonlinear
measure of serial dependence, and to reformulate the cointegration concept in terms of the latter.

2.1 A general characterization of memory in time series
The standard characterization of memory in a time series xt is given in terms of its ACF, say
ρx(τ, t) = cov(xt ,xt−τ )

σxt σxt−τ
, which we consider to be generally dependent on a time index, so as to allow for some

heterogeneity.

Definition 1. A process xt is said to be mean reverting if ∀t , limτ→∞ ρx(τ, t) = 0.

Intuitively, the process xt is mean reverting if xt − E (xt ) changes sign frequently enough. When the process
is not mean reverting, its memory span is larger and limτ→∞ |ρx(τ, t)| > 0. Thus any two infinitely distant
variables from such a process are still correlated (persistent behavior). However, even for a mean-reverting
process, the memory span can be very large in the sense that its ACF decays very slowly as τ grows. This
motivates the distinction between short and long memory.

Definition 2. A process xt is said to have short memory (in short, I (0)) if ∀t , ∃bt <∞ such that
limT→∞

∑T
τ=1 |ρx(τ, t)| = bt .

Definition 3. A process xt is said to have long memory if ∀t , limT→∞
∑T

τ=1 |ρx(τ, t)| = ∞.

Definition 4. A time series of xt is said to be integrated of order d (in short, I (d)), if
limT→∞

∑T
τ=1 |ρx(τ, t |) = ∞, ∀t , and d is the smallest positive real number such that

limT→∞
∑T

τ=1 |ρz (τ, t)| <∞, ∀t , with zt = (1− B)dxt .

The parameter d that appears in this latter definition serves to quantify the memory span in the series. The
previous characterization of memory in terms of the ACF is adequate for Gaussian series, since all of the
dependence structure is captured by its second-order moments. With non-Gaussian time series, in particular,
nonlinear time series, the ACF cannot provide a full account of the serial dependence structure. A first attempt
to establish a general characterization of memory in a non-Gaussian context was due to Granger and Teräsvirta
(1993). They proposed a general definition of mean reversion in terms of the conditional distribution function
of the process. Let Xt denote the random variable at time t from a time series of a stochastic process xt , and let
Fh(x) = P(Xt+h ≤ x | It ) represent the conditional distribution function of the random variable Xt+h given its
h-horizon past, It = F−∞,tx , where F−∞,tx denotes the σ -field generated by the random variables Xt ,Xt−1, . . ..

Definition 5. A process xt has no extended memory if limh→∞ Fh(x) does not depend on the conditioning
past, It .

As a consequence, for any Borel sets C1,C2 and for any integer k such that P(Xt−k ∈ C2) > 0, we would
have

lim
h→∞
| P(xt+h ∈ C1|xt−k ∈ C2)− P(xt+h ∈ C1)| = 0 (1)

This property reminds us of the concept of φ-mixing, since it means that the dependence among temporarily
nonoverlapping blocks of random variables from the process vanishes in the limit, when the temporal
distance between the blocks becomes infinite.
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In the sequel, we propose an alternative generalization of the memory concept for time series based on a
measure of serial dependence which generalizes the ACF, such as the mutual information measure proposed
in Section 4. Suppose ix(τ, t) is such a non-negative measure of serial dependence that captures the
higher-order dependency structure in the series. A most general characterization of mean reversion, short and
long memory, and of integration can then be proposed. A process xt could be said to be:

• mean reverting in information, if ∀t limτ→∞ ix(τ, t) = 0 ∀t ;
• short memory in information (in short, I I (0)), if ∀t limT→∞

∑T
τ=1 ix(τ, t) <∞;

• long memory in information, if ∀t limT→∞
∑T

τ=1 ix(τ, t) = ∞;1 or

• integrated of order d in information, say xt ∼ I I (d), if limT→∞
∑T

τ=1 ix(τ, t) = ∞, ∀t , and d is the
smallest positive real number such that limT→∞

∑T
τ=1 iz (τ, t) <∞, ∀t , with zt = (1− B)dxt .

Remark 1. In principle, the function ix(τ, t) could be any serial dependence measure capable of capturing
nonlinear dependencies between the variables in the series. Remark that

∑∞
τ=1 ix(τ, t) rather than

∑∞
τ=1 ρx(τ ),

with ρx(τ ) representing the ACF of xt , should be used as a persistence measure for non-Gaussian time series.

Remark 2. Note that the rates of convergence of ix(τ, t) toward 0 as τ →∞ are different for long- and for
short-memory processes. A short-memory process is also mean reverting, according to these definitions.

2.2 A general characterization of cointegration
A minor modification of the standard definition of cointegration, due to Granger (1981), goes as follows:

Definition 6. Two long-memory time series xt , yt , with long-memory parameter d, are said to be (linearly2)
cointegrated if ∃a ∈ R− {0} such that the series zt = yt − axt is I (dz ) with dz < d.

Figure 1 illustrates a simulation example of linear cointegration with a pair of correlated random walks
(d = 1) and for a = 0.72. The scatter plot clearly shows the linearity of the relationship between xt and yt .

An important shortcoming in this definition of cointegration is that it requires the cointegrating relationship
between the series to be linear. As as consequence, classical cointegration testing techniques relying on these
definitions yield misleading results when nonlinearity enters the true equilibrium relationship. Evidence of this
problem with Definition 6 was first reported by Hallman (1990), who proposed applying standard
cointegration tests to the ranks rather than the levels of the series. However, even though this trick succeeds
in making the test more robust against monotonic nonlinearities, it fails when confronted with general forms
of nonlinearity.

In general, it should be possible to find time series that are cointegrated only after applying certain
nonlinear transformations to them. Indeed, an extension of the (linear) cointegration concept follows by
noticing that the common low-frequency component may “live” in a moment of higher-order than the mean;
that is, in nonlinear transformations of the series. For example, xt and yt could be cointegrated when squared,
while being more or less uncorrelated in their levels. To explain, suppose yt = xtεt , with xt an I (1) series, and
εt a zero mean iid sequence, and thus yt ∼ I (0). It follows that y2

t = σ 2
ε x2

t + (ε2
t − σ 2

ε )x
2
t , where the rightmost

term must be short memory, since it is the product of an I (0) process (ε2
t − σ 2

ε ) and an I (1) process (x2
t ). Thus

y2
t is linearly cointegrated with x2

t , although yt is not cointegrated with xt .

Example 1. Consider the following nonlinear factor model:(
yt

xt

)
=
(

a
1

)
wt +

(−b
0

)
w2

t +
(

vt

ξt

)
, (2)

where a 6= 0, wt = wt−1 + εt with w0 = 0, and (vt , ξt , εt ) are independent sequences of independent and
identically normally distributed random variables with zero mean and joint covariance matrix equal to the

1As shown by example later in the paper, ix (τ, t) need not converge to zero as τ tends to infinity for a long-memory process.
2In the work of Granger (1983), there is no explicit mention of the term “linear,” although it is implied.
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Figure 1
Two simulated linearly cointegrated random walks (a), and their scatter plot (b). The series xt , yt were generated with the
model yt = awt + vt , xt = wt + ξt , and wt = wt−1 + εt , with w0 = 0, and where εt , vt , ξt were independent sequences of iid
Gaussian random variables.

identity matrix. Let β ′l,⊥ = (a, 1), and let β ′n,⊥ = (−b, 0). Thus the orthogonal complements of β ′l,⊥ and β ′l,⊥
are, respectively, β ′l = (1,−a) and β ′n = (0, b). The nonlinear cointegrating relationship can be obtained as

zt = β ′l

(
yt

xt

)
+ β ′n

(
yt

x2
t

)
= yt − axt + bx2

t . (3)

Thus the cointegration errors are given by zt = 2bwtξt + bξ 2
t + vt − aξt , and can be easily shown to be short

memory according to our definition.

Figure 2 illustrates a simulation experiment of nonlinear cointegration with series having a common factor,
and obtained with the model shown by Equation (2), with a = 2.0 and b = 0.05. Figure 3 shows a real
example of an apparently nonlinearly cointegrating relationship. In both cases, the scatter plots clearly show
that the dependence between the variables is not linear.

Some previous concepts of nonlinear cointegration are the following:

Definition 7 (Granger and Hallman 1991). A pair of series xt , yt , are said to have a cointegrating nonlinear
attractor if there are nonlinear measurable functions f (.), g(.) such that f (xt ) and g(yt ) are both I (d), d > 0,
and zt = g(yt )− f (xt ) is ∼ I (dz ), with dz < d.

Remark 3. Assuming that f and g can be expanded in a Taylor series up to some order p ≥ 2 around the
origin, we may write zt = c0 + c1ut +HOT(xt , yt ), where ut = yt − axt , and HOT denotes higher-order terms.
It follows that the linear approximation, ut , to the true cointegration residuals differs from the latter by some
higher-order terms. These terms express that the strengh of attraction onto the cointegration line yt = axt may
vary with the levels of the series, xt , yt , when nonlinearities exist in their relationship.

As stated in the introduction, a difficulty with the application of this definition is the need to find proper
estimates of the cointegrating functions f (.) and g(.) in order to test for cointegration.

Escribano and Mira (1997) propose the following definition of nonlinear cointegration, based on the
concepts of α-mixing (Rosenblatt 1974) and near-epoch dependence (NED) (Wooldridge 1986).
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Figure 2
Two simulated nonlinearly cointegrated series (a), and their scatter plot (b). The upper series was obtained as xt = wt + ξt ,
where wt = wt−1 + εt with w0 = 0, and the lower series corresponds to yt = 2wt − 0.05w2

t + vt . The errors εt , vt , and ξt are
independent sequences of iid Gaussian random variables.
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Figure 3
Two apparently nonlinearly cointegrated time series of stock prices from a Japanese food company, Ajinomoto (a). Clearly,
the strength of attraction varies across time, as shown in the scatter plot (b).
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Definition 8 (Escribano and Mira 1997). A pair of series xt , yt are nonlinear cointegrated with cointegration
function g(·, ·, γ ) (where γ is a parameter), if g(yt , xt , γ

∗) is NED (α-mixing) on some α-mixing series, but
g(yt , xt , γ ) is not NED (α-mixing) for any γ 6= γ ∗.

The main drawbacks of this definition are that it relies on concepts of dependence that are usually difficult
to test in practice, and that it requires the consistent estimation of nonlinear functions of nonstationary
variables.

We propose now an alternative definition by looking at the relative asymptotic behavior of our general
measure of serial dependence, ix,y(τ, t), and that of a general measure of serial cross-dependence, say
ix,y(τ, t), between a pair of series xt , yt . This latter measure reduces to ix(τ, t) when yt = xt .

Definition 9. A pair of time series xt , yt that are long memory in information are said to be cointegrated in
information (in short, C I I ) if

lim
τ→∞

ix,y(τ, t)

ix(τ, t)
= 1, ∀ > τ. (4)

Intuitively, the definition states that under cointegration, the remote past of yt should be as useful as the
remote past of xt in the long-term forecasting of xt .

Remark 4. This more general characterization of cointegration relies on the different limit behavior of
ix(τ, t) and ix,y(τ, t), under noncointegration. Notice that when cointegration holds, we cannot have different
convergence rates for ix(τ, t) and for ix,y(τ, t). The possibly different rates of convergence could be used to
construct a measure of the degree of noncointegration. Suppose that ix(τ, t) ∼ τ−α, and that ix,y(τ, t) ∼ τ−β
for τ large enough. In numerical applications we may find that neither ix,y(τ, t) nor ix(τ, t) is either infinite or
zero for any finite τ . So we may safely take the logarithm of the ratio ix(τ, t)/ix,y(τ, t) and plot it as a function
of log τ . This function will tend toward an asymptote as τ grows to infinity. The slope of this asymptote is
given by α − β, and it is always non-negative, since we expect that α ≤ β. Thus the larger its value and the
more unlikely the hypothesis of information cointegratedness between the series.

Remark 5. If we replace ix(τ, t) by the ACF of xt , and ix,y(τ, t) by the cross-correlation function between xt

and yt , say ρx,y(τ, t), then our definition amounts to comparing the behavior at the origin of the spectral
densities of the series (Aparicio and Escribano 1998).3

Let S (x,y)n =∑n
τ=1 ix,y(τ, t). A necessary condition for cointegration in information is:

Proposition 1. If the series yt , xt are cointegrated in information, then the sequence of partial sums S (x,y)n

diverges as n→∞.

Proof. Suppose the series are cointegrated in information. Then from our definition, it follows that there
exists a finite real number C such that limn→∞ S (x,y)n = limn→∞ S (x,x)n + C . Also, the divergence of S (x,y)n follows
from the divergence of S (x,x)n , since xt has long memory in information.

3 Some Information-Theoretic Measures of Data Variability and Dependence

In this section, we present the information-theoretic concepts that form the basis of our new characterization
of the relationship between integrated time series.

3.1 Information-theoretic measures for partitions
A most basic problem in information theory is that of assigning a measure of uncertainty to the occurrence or
nonoccurrence of any event in a partition P of the set of outcomes of an underlying experiment. We call this
measure of uncertainty the entropy of the partition, and denote it by H (P). The construction of this functional
stems from some postulates which must be satisfied in order to provide such a measure of uncertainty.

3The limit number 1 in Equation 4 could be changed into a constant value b 6= 0, as discussed by Aparicio and Escribano (1999). The
appropriate value of b depends on the particular concept of dependence used in each case.

F. M. Aparicio and A. Escribano 125

http://www.bepress.com/snde/vol3/iss3/art1



Suppose now that we have a partition of a sample space S with M events Ai , i = 1, . . . ,M , and that the event
Ai occurs with probability pi . It can be shown that the convex functional

H (P) = −
M∑

i=1

pi log(pi) (5)

yields a proper measure of average uncertainty in the partition P .
Similarly, when we know about the occurrence of a subsetM of events from a different partition, Q of S,

the remaining uncertainty in the partition P can be measured by the non-negative functional

H (P |M) = −
M∑

i=1

P(Ai |M) log P(Ai |M), (6)

which is called the conditional entropy of P givenM. Notice that if the events in P are independent of those
inM, then H (P |M) = H (P). In general,M may convey information about the events in P , and this mutual
information can be quantified by the functional

I (P,M) = H (P)− H (P |M). (7)

That is, the observation ofM reduces the uncertainty about P from H (P) to H (P |M), so the information
thatM conveys about P is just I (P,M). Notice thatM can convey at most H (P) bits of information about
the events in P , and since H (P |M) < H (P), I (P,M) must also be non-negative.

Now let us denote by H (P,Q) the joint entropy functional for the partition whose events are the
intersections of the events in P and Q. The resulting partition is called a refinement of both P and Q. Notice
that to observe the joint partition we must observe both P and Q. It follows that the uncertainty in the joint
partition must be at least equal to that of the elementary partitions. Rigorously speaking, by convexity of the
entropy functional it is easy to show that H (P,Q) ≥ H (P) and that H (P,Q) ≥ H (Q) (i.e., Papoulis [1991]). In
fact, we have

H (P,Q) = H (Q)+ H (P | Q)
= H (P)+ H (Q | P) (8)

≤ H (P)+ H (Q). (9)

Clearly, the maximum value of H (P,Q) is attained when P and Q are independent. Also, by manipulating
Equations 7 and 8, we obtain

I (P,M) = H (P)+ H (Q)− H (P,Q). (10)

3.2 Information-theoretic measures for random variables
So far we have introduced the concept of entropy of a given partition of the sample space of an experiment.
It is possible to define the entropy of a random variable by forming a suitable partition. This is straightforward
for discrete-valued random variables. For example, if a random variable X takes a countable set of values {xi},
i = 1, 2, . . . , with probabilities pi , we can form the partition in which each event corresponds to a different
value of X . Thus the definition of entropy as given in the previous paragraph also applies here, and we can
define the entropy of the random variable X as

H (X ) = −
∑

i

pi log(pi). (11)

The definitions for the rest of the uncertainty measures discussed in the preceeding paragraph, such as
conditional and joint entropies and the mutual information, also remain valid in this case.

When dealing with continuous-valued random variables, the extension of these concepts is not immediate.
The difficulty here is that the events {X = xi} no longer form a partition, since they are not countable.
Therefore, to define the entropy we must first convert X into a discrete-valued random variable. That is, we
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can define the entropy of a quantized version of X given by Xδ = mδ if X ∈ (mδ − δ,mδ]. If we assume that
X has a probability density function (pdf), fx() is then easy to show as

lim
δ→0

[
H (Xδ)+ log δ

] = − ∫ ∞
−∞

fx(X ) log fx(X )dX . (12)

We remark that limδ→0 H (Xδ) = ∞. However, in practice, we can only observe X with finite accuracy
because of noise and quantification errors from the measurement instrument. Since the term − log δ only
reflects this lack of observation accuracy (which is instrument-dependent), we may define an uncertainty
measure intrinsic to the variable, by leaving this term out:

h(X ) = −
∫ ∞
−∞

fx(X ) log fx(X )dX . (13)

However, contrary to the entropy of a partition, the latter measure can take negative values, and thus it does
only have sense when used to measure changes in uncertainty. This is why it is often referred to as
differential entropy. In the same way, we may define joint and conditional differential entropies for any two
continuous random variables, X ,Y :

h(X ,Y ) = −E (log fx,y(X ,Y )), (14)

h(X | Y ) = −E (log fx |y(X )), (15)

where fx,y( , ) and fx |y( ) denote the joint and conditional pdfs of the variables (respectively), and E (.) is the
expectation operator. Clearly, when X is independent of Y , we have h(X ,Y ) = h(X )+ h(Y ), and
h(X | Y ) = h(X ). The previous expressions generalize straightforwardly to more than two variables.

In general, the different information-theoretic concepts discussed for partitions also apply to
continuous-valued random variables as long as they only refer to differences of entropies. Thus the mutual
information for continuous random variables, defined as

I (X ,Y ) = h(X )+ h(Y )− h(X ,Y ), (16)

= E

[
log

fx,y(X ,Y )

fx(X ) fy(Y )

]
, (17)

conveys the same idea of dependence among the variables as for partitions.
For the purpose of illustration, we give the values of these information-theoretic quantities for Gaussian

random variables.
Let X ,Y be two jointly Gaussian random variables, such that X ∼ N (µx , σ

2
x ) and Y ∼ N (µy , σ

2
y ), and

suppose that their joint pdf is given by

fx,y(X ,Y ) = 1√
2π(1− ρ2)σxσy

e−((X−µx )
2/σ 2

x+(Y−µy )
2/σ 2

y−2ρ(X−µx )(Y−µy )/(σxσy )), (18)

where ρ is the correlation coefficient between the X and Y variables. Then the following can be shown (i.e.,
as by Papoulis [1991]):

h(X ) = log(σx

√
2πe), (19)

h(Y ) = log(σy

√
2πe), (20)

h(X ,Y ) = log(2πe)+ log(
√
1), (21)

h(X | Y ) = log(σx

√
2πe)+ 1

2
log(1− ρ2), (22)

I (X ,Y ) = −1

2
log(1− ρ2), (23)

where 1 is the determinant of the variance-covariance matrix of the variables, that is, 1 = σ 2
x σ

2
y (1− ρ2). In

general, given n jointly Gaussian random variables, X1, . . . ,Xn, with variance-covariance matrix 6, the joint
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differential entropy is given by

h(X1, . . . ,Xn) = n

2
log(2πe)+ log(

√
1), (24)

where 1 is the determinant of 6.

3.3 Information-theoretic measures for stochastic processes
Stochastic processes are defined in terms of the joint distributions for all subsets of their random variables. In
particular, the information gained when the m random variables Xt1, . . . ,Xtm of a continuous-valued stochastic
process xt are observed, is given by their mth-order joint-differential entropy, defined as

h(Xt1, . . . ,Xtm ) = −E
(
log ft1,...,tm (Xt1, . . . ,Xtm )

)
. (25)

Obviously, the uncertainty about the values of xt on any finite interval of t is infinite. However, if xt can be
expressed in terms of its samples on a countable set of sampling instants {ti}i (i.e., to the extent that xt can be
approximated by a narrow-band process), it may be possible to define entropy measures. Henceforth we will
assume that this is the case. Now, if there exists a conditional stationary pdf for xt , we can define a measure
of the uncertainty about any variable of the process, when its most recent values are known. For example, the
mth-order (differential) conditional entropy of xt , h(Xn | Xn−1, . . . ,Xn−m), captures the remaining uncertainty
about any random variable from xt , when information about its mth history has been collected. This functional
is, obviously, decreasing in m, and its rate of decay contains important information about the type of serial
dependence in the process. For m→∞ we obtain a measure of the unknown information about any variable
Xn once we know its entire past. Clearly, for a deterministic process, this measure, call it
hr (x) = limm→∞ h(Xn | Xn−1, . . . ,Xn−m), equals zero. It is customary to call hr (x) the entropy rate of the
process xt . This name acknowledges the fact that when xt is stationary, we can write

hr (x) = lim
m→∞

1

m
h(X1, . . . ,Xm). (26)

Clearly, the limit on the right of the previous equality measures the speed at which the uncertainty grows as
we try to guess at the values of an ever-increasing number of random variables from the process.

As a way of illustration, for a wide-sense stationary Gaussian process, xt , we have

hr (x) = log(
√

2πe)+ 1

2
lim

m→∞
log

(
1m+1

1m

)
, (27)

where 1m is the determinant of the mth-order variance-covariance matrix of the process.

4 An Information-Theoretic Characterization of Memory

In the previous section, we saw that the mutual information in a pair of random variables could be interpreted
as a measure of general dependence between them, in contrast with their correlation, which only measures
the adequacy of any variable for linearly predicting the other. Similarly, we can establish the serial
dependence and cross-dependence properties of wide-sense stationary stochastic processes, in terms of a
mutual information function (MIF), which generalizes the standard autocorrelation function (ACF). However,
in order to extend the new characterization to processes having stochastic trends, we must again allow some
scope for heterogeneity, and thus our measures will in general depend on time. Let the MIF of xt be
ix(τ, t) = I (Xt ,Xt−τ ). Our information-theoretic characterization of mean reversion and of short and long
memory follows from the definitions in Section 2.1. Correspondingly, we will say that a series is either mean
reverting, short memory, long memory, or integrated in information.

Remark 6. In the Gaussian case, ix(τ, t) is related to the ACF, and thus for a Gaussian short-memory
process, ix(τ, t) must converge exponentially fast to zero. For a Gaussian long-memory process, this
convergence must be slower (typically, hyperbolically fast).

Remark 7. The information quantities can be rewritten as (differential) entropy changes. That is,

ix(τ, t) = h(Xt )− h(Xt | Xt−τ ). (28)
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This supports our intuition that entropy differences are most useful for characterizing the dependence
properties of a process.

Remark 8. There are some connections between Granger’s most general definition of mean reversion
(introduced in a previous paragraph) and the MIF. This can be seen by reinterpreting the latter as some sort of
mixing of coefficients. Given a stochastic process xt , the standard α-mixing coefficients are given by
(Rosenblatt 1974)

α(τ, t) = sup
t

sup
X∈F−∞,tx ;X ∗∈F t+τ,∞

x

|P(X ∗,X )− P(X ∗)P(X )|, (29)

where P(.) is a probability measure defined on the Borel σ -field of xt . In contrast, the information-mixing
coefficients ix(τ, t) can be expressed as

ix(τ, t) = E
(
log fx,x(Xt ,Xt−τ )− log fx(Xt ) fx(Xt−τ )

)
, (30)

where fx,x( , ) and fx(.) denote the bivariate and univariate pdf for xt . We remark that both types of mixing
coefficients allow for heterogeneity in the process.

Remark 9. An alternative characterization could be made in terms of the conditional densities. Let
F t−τ−1,t−1
−∞,t−τ+1 denote the σ -field generated by the random variables Xt−1, . . . ,Xt−τ+1;Xt−τ−1, . . .. A generally

nonstationary time series of xt can be said to be conditionally short memory in information, if the sequence of
partial sums R (x)n =

∑n
τ>0 I (Xt ,Xt−τ | F t−τ−1,t−1

−∞,t−τ+1) converges as n grows to infinity. If, on the contrary, R (x)n
diverges, then xt can be said to be conditionally long memory in information. These alternative definitions
rephrase the former ones in terms of a partial serial-dependence measure, which can be regarded as a
generalization of the concept of the partial autocorrelation function (PACF) in the linear context. However,
when working with conditional densities, we may encounter severe computational difficulties (i.e., the need
for very large data sets, the curse of dimensionality, etc.), which make us prefer the former approach, despite
that the marginal densities are not well defined in the nonstationary context.

A few examples may help to illustrate the behavior of the new unconditional dependence measures.
Consider the following cases:

• Let xt = axt−1 + εt , where εt is an iid sequence of Gaussian random variables with zero mean and
variance σ 2; in short, εt ∼ N (0, σ 2), and |a| < 1. This model generates a stationary Gaussian Markov
process, for which cov(xt , xt−τ ) = σ 2aτ , which converges to zero exponentially fast as τ →∞. The
information-mixing coefficients, defined for τ > 0, are given in this case by

ix(τ, t) = ix(τ ) = −1

2
log(1− a2τ ), (31)

which clearly converges exponentially fast to zero as τ grows to ∞, thus implying that
∑

τ>0 ix(τ, t) <∞.
We may therefore conclude that xt is both I (0) and I I (0). On the contrary, if a = 1, we have a nonmixing
process with a unit root, for which corr(xt , xt−τ ) = 1, and ix(τ, t) = ∞ for any τ and any t . Therefore, we
may classify this I (1) process as I I (1).

• Let xt be a Gaussian stationary long-memory process with long-memory parameter d (0 < d < 0.5); that
is, (1− B)dxt = εt , with εt representing a stationary zero-mean short-memory Gaussian process. This
mean-reverting process is characterized by an ACF which decays hyperbolically fast, that is,
cov(xt , xt−τ ) ∼ τ 2d−1 for large τ (e.g., Hosking 1981), and thus we write xt ∼ I (d). On the other hand,
we obtain the following approximation for large τ :

ix(τ, t) = ix(τ ) ∼ −1

2
log(1− cdτ

4d−2), (32)

where cd is a constant depending only on d . Clearly, ix(τ ) also converges to zero, but this time the
convergence is only hyperbolically fast. Noting that log(1− cdτ

4d−2) ≈ cdτ
4d−2 for sufficiently large τ , the

divergence of
∑

τ>0 ix(τ, t) follows inmediately. Therefore, xt is long memory in information.

F. M. Aparicio and A. Escribano 129

http://www.bepress.com/snde/vol3/iss3/art1



Now let us look at these measures from the viewpoint of the conditional (differential) entropies. Let
hc,τ (Xt ) = h(Xt | Xt−1, . . . ,Xt−τ ), or equivalently, h∗c,τ (Xt ) = h(Xt | Xt−τ , . . . ,Xt−∞). Notice that
h∗cτ (Xt ) ≤ h(Xt ).

Proposition 2. If h∗c,τ (Xt ) < h(Xt ) ∀τ and ∀t , then the process is neither mean reverting nor short memory
in information.

Proof. Let I (Xt ;Xt−τ ,Xt−τ−1, . . . ,Xt−∞) denote the information on Xt conveyed by the variables
Xt−τ ,Xt−τ−1, . . .. We can write

I (Xt ,Xt−τ ) ≥ I (Xt ;Xt−τ ,Xt−τ−1, . . . ,Xt−∞) = h(Xt )− h(Xt | Xt−τ ,Xt−τ−1, . . . ,Xt−∞) (33)

≥ 0, (34)

If h∗c,τ (Xt ) < h(Xt ), the inequality holds strictly and thus limτ→∞ I (Xt ,Xt−τ ) > 0, implying that xt is neither
mean reverting nor short memory in information.

We shall assume in the following examples that our processes are Gaussian. Therefore, recalling
Equation 27, the τ th-order conditional (differential) entropy for a Gaussian process xt is

hc,τ (Xt ) = log(
√

2πe)+ 1

2
log

(
1τ+1,t

1τ,t

)
, (35)

where 1τ,t is the determinant of the τ th-order variance-covariance matrix of xt .
In the following, we will determine the conditional entropies and some implications for the classes of

processes previously characterized in terms of the MIF.

• Let xt = axt−1 + εt where εt ∼ N (0, σ 2). If |a| < 1, then we can write
hc,τ (Xt ) = h(Xt | Xt−1) = log

(
σ
√

2πe
)

for any τ > 0. It follows that
I (Xt ;Xt−1, . . . ,Xt−τ ) = I (Xt ,Xt−1) = h(Xt )− hc,τ (Xt ) = − 1

2 log(1− |a|2) <∞, for any τ > 0. On the
contrary, if a = 1, then I (Xt ;Xt−1, . . . ,Xt−τ ) is infinity for any τ > 0.

• Let xt be a stationary autoregressive process of order p; in short, xt ∼ AR(p). If xt is Gaussian, then we
have the following result from Kay (1988, pp. 169–178):

1τ+1,t

1τ,t
= 1τ+1

1τ

= σ 2
τ∏

k=1

(1− |rk |2), (36)

where rk is the partial autocorrelation at lag k. Thus, at long lags,

1τ+1

1τ

= σ 2
p∏

k=1

(1− |rk |2), (37)

since rk = 0 for k > p. Now, since |rk | < 1, ∀k, it follows from Equation 27 that hr (x) is bounded, and
that I (Xt ;Xt−1, . . . ,Xt−∞) <∞.

• Suppose xt is a Gaussian stationary long-memory process with long-memory parameter d (0 < d < 0.5).
Then, since the partial autocorrelations of this process rk satisfy 0 < rk < 1 for any finite k (Hosking
1981), then

lim
τ→∞

1τ+1

1τ

= σ 2 lim
τ→∞

τ∏
k=1

(1− |rk |2)

= 0. (38)

The latter implies that hr (x) = −∞, which in turns leads to an infinite value for the mutual information
between Xt and its infinite history; that is, I (Xt ;Xt−1, . . . ,Xt−∞) = ∞.
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These examples show that the persistence of the shocks in a process results in its entire past containing an
infinite amount of information about its present. On the contrary, this amount of information is bounded for
mixing processes.

The connection of the latter discussion with our characterization of dependence in terms of the
information-mixing numbers ix(τ ) appears by noticing that each variable from the past contributes a small
portion of information about the present variable, Xt . In other words, we must have

I (Xt ;Xt−1, . . . ,Xt−∞) ≤
∞∑
τ=1

ix(τ, t). (39)

Now, the fact that I (Xt ;Xt−1, . . . ,Xt−∞) = ∞ for persistent Gaussian processes implies that ix(τ, t) cannot
decrease with τ faster than O(τ−2+δ) for some δ > 0. Alternatively, for stationary Gaussian processes, we
obtained I (Xt ;Xt−1, . . . ,Xt−∞) <∞, which is consistent with an exponentially fast decay of ix(τ, t) for
growing τ .

4.1 Some implementation issues
We briefly explain how the mutual-information quantities were estimated in the experiments that follow. The
MIF, ix(τ ), was evaluated using the following estimator, where N is the sample size,

î(N )x (τ ) = N −1
N∑

t=1

îx(τ, t)

≈ N −1
γ

∑
t∈S

ct (γ ) log

(
f̂x,x(Xt ,Xt−τ )

f̂x(Xt ) f̂x(Xt−τ )

)
, (40)

with

ct (γ ) =
{
1+ γ, for t odd,
1− γ, for t even,

where γ ≥ 0, Nγ = N for N even, and Nγ = N + γ for N odd. Here Xt represents a generic vector variable,

f̂x,x( , ), and f̂x( ) are estimators of the bivariate and univariate pdfs (which may be time varying),
respectively and the set S is introduced to make explicit the exclusion of certain inocuous summands, which
can occur, for example, when f̂x,x( , ) ≤ 0 or f̂x( ) ≤ 0, or when logarithms cannot be taken. The densities
can be estimated using kernel smoothers (Breiman, Meisel, and Purcell 1977). In general, given a set of N − n
n-dimensional vectors {Xt }t=1,N−n, a kernel-density estimator with kernel K and bandwidth α of their
unconditional pdf, say f , has the form

f̂ (X ) = (N − n)−1 α−1
N−n∑
t=1

K [α−1(X − Xt )], (41)

where the kernel K is a function verifying
∫

Rn K (Y )dY = 1. Robinson (1991) proved the consistency of a
similar estimator under the assumption of stationarity in the series and for n = 1. For the experiments, we
choose Gaussian kernels, that is

K (X ) = (2π)−n/2 exp(−X ′X /2). (42)

Even though the form of the kernel is not critical to the results, the bandwidth is. We can deal with this
problem by means of adaptive bandwidths. This technique consists of allowing the kernels to shrink in rather
densely populated regions of the n-dimensional embedding space, and to widen in regions with few data
points. The likelihood of introducing important biases is greatly reduced in this way, since the smoothing
becomes only important at those regions of the embedding space containing a large number of points.
Initially, we took a fixed bandwidth for the kernels, say α, and the initial density estimates were subsequently
plugged in to obtain locally adapted bandwidths, say β(X ), according to

β(X ) ∝ 1/ f̂α(X ), (43)

where f̂α(X ) denotes a rough estimate of the pdf at X using a kernel estimator with the fixed bandwidth, α.
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4.2 Information-theoretic characterization of cointegration
Let xt , yt be long memory in information. The concept of cointegration in information arises when letting
ix,y(τ, t) = I (Xt ,Yt−τ ) in the characterization of cointegration proposed in Section 2.2 (see Definition 9). The
information-cointegratedness concept states that for any long-run predictor of Xt based on Xt−τ , we can find a
predictor based on Yt−τ which conveys exactly the same information about Xt .

Remark 10. Our characterization applies to both integer and fractionally integrated processes. Also, the
processes involved are not required to have the same integration order. For instance, consider the case in
which xt ∼ I I (dx), yt ∼ I I (dy), with dx 6= dy , and φ( , ) is a nonlinear one-to-one transformation such that
zt = φ(yt ) ∼ I I (dz ) with dz = dx . This situation can be understood noting that both the entropy and the
mutual information of the variables in a process are invariant to one-to-one transformations of the latter (see,
for instance, the work by Papoulis [1991, p. 565]).

An alternative condition for the information-cointegratedness of (xt , yt ) can be given using conditional
entropies,

lim
τ→∞

h(Yt | F−∞,t−τx )

h(Yt | F−∞,t−τy )
6= 0, ∀t, (44)

lim
τ→∞

h(Xt | F−∞,t−τy )

h(Xt | F−∞,t−τx )
6= 0, ∀t . (45)

Remark 11. The information-cointegration definition can equally handle multivariate processes, which enter
naturally as arguments of the information measures.

Example 2. Consider the following linear common factor model:(
yt

xt

)
=
(

a
1

)
wt +

(
vt

ξt

)
, (46)

where a 6= 0, wt = wt−1 + εt with w0 = 0, and (vt , ξt , εt ) are independent sequences of independent and
identically normally distributed random variables with zero mean and joint-covariance matrix equal to the
identity matrix. If we now define zt = yt − axt , and

ρx(τ, t) = cov(xt xt−τ )
σxtσxt−τ

, (47)

ρx,y(τ, t) = cov(yt xt−τ )
σxtσxt−τ

, (48)

after some algebra, we obtain

ρx(τ, t) = (t − τ)σ 2
ε√

(tσ 2
ε + σ 2

ξ )
√
((t − τ)σ 2

ε + σ 2
ξ )
, (49)

ρx,y(τ, t) = a(t − τ)σ 2
ε√

(a2(tσ 2
ε + σ 2

ξ )+ σ 2
z )
√
((t − τ)σ 2

ε + σ 2
ξ )
. (50)

It follows that for sufficiently large t , ρx,y(τ, t) ≈ ρx(τ, t).
Now, since ix,y(τ, t) = − 1

2 log(1− ρ2
x,y(τ, t)), and ix(τ, t) = − 1

2 log(1− ρ2
x(τ, t)), it follows that

ix,y(τ, t)/ix(τ, t) ≈ 1 for any τ .

In Figure 4, we compare the behavior of a normalized version of the generalized sample correlations,
î(N )x,y (τ )/î

(N )
x (1) and î(N )x (τ )/î(N )x (1) as functions of τ , by means of Monte Carlo simulations. Here î(N )x,y (τ ) is

given by

î(N )x,y (τ ) = N −1
N∑

t=1

îx,y(τ, t)

≈ N −1
γ

∑
t∈S

ct (γ ) log

(
f̂x,y(Xt ,Yt−τ )

f̂x(Xt ) f̂x(Yt−τ )

)
, (51)
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Figure 4
Plots of the generalized correlations î(N )x,y (τ )/î

(N )
x (1) and î(N )x (τ )/î(N )x (1) (vertical axes) versus τ+1 (horizontal axes) for linearly (a),

nonlinearly (b), and noncointegrated (c) series. The plots show the average curves obtained from 20 Monte Carlo simulations.
The nonlinearly cointegrated series were generated by applying third-order polynomial transformations to a common random-
walk component. The noncointegrated series were independent random walks.

and the coefficients ct (γ ) and γ are as in the previous section. The curves shown in the figure represent
statistical averages computed from 20 simulated pairs of series. Plots (a), (b), and (c) correspond to linearly
cointegrated, nonlinearly cointegrated, and noncointegrated series, respectively. The horizontal scale shows
τ + 1. The linear cointegrated series were generated as those in Figure 1, while the nonlinearly cointegrated
ones were obtained by applying third-order polynomial transformations to a common random-walk
component.

5 Testing for Cointegration in Information

Testing for a cointegrating relationship usually involves two steps: (1) a test for long memory in the series;
and (2) a test for a relation between the long-memory series. Long-memory and cointegration tests are
commonly used to study the dynamics of financial time series. Most of the empirical work in this area has
been based on classical methods. However, there is a growing consensus among econometricians and
time-series analysts on the poor power properties of these methods in nonlinear settings.

In this section, we first present a long-memory testing device involving the MIF, which is potentially able to
deal succesfully with nonlinearly generated time series. Then, we propose a statistic, that also involves the
MIF, for testing the hypothesis of a relation in the series. Some simulation experiments suggest the possibility
of doing general cointegration testing using only this statistic.

5.1 Long-memory testing
Evidence of the presence of long memory in stock price and in exchange-rate series has been reported many
times (see, for instance, the works of Baillie and Bollerslev [1989]; Berg and Lyhagen [1998]; Cerchi and
Havenner [1988]; DeJong and Whiteman [1991]; Greene and Fielitz [1977]; Koop [1994]; Lo [1991]) and has
important implications in financial economics. For example, portfolio decisions become, under long memory,
extremely sensitive to the investment horizon.
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Most existing approaches to long-memory testing use linear analysis tools such as the ACF, and therefore,
their results could be misleading when the series-generating mechanism is nonlinear. The older range-scale
analysis (see Mandelbrot’s [1972] work for a discussion), based on the R/S statistic proposed by Hurst (1951),
and its subsequent modifications, led to some long-memory tests not involving the ACF (Davies and Harte
1987; Lo 1991). An alternative test for long memory in information for a time-series variable can be obtained
by working out our characterization of short and long memory in information, as in the previous sections.

Recall that for xt to be short memory in information we must have
∑

τ>0 ix(τ, t) <∞, which implies that
for any δ > 0 and any t , ix(τ, t) = o(τ−2+δ); that is, there exist positive real numbers τ0 and b such that
ix(τ, t) < bτ−2 ∀τ > τ0 and ∀t . On the contrary, if xt is long memory in information, then there exist positive
real numbers τ1, ct , and 2 > r > 0 such that ix(τ, t) ≈ ctτ

−r ∀τ > τ1. Or taking logs,

log ix(τ, t) ≈ log ct − r log τ + ξτ,t , ∀τ À τ1, (52)

where ξτ,t is an error sequence. Therefore, we could check the property of short memory in information by
testing the null hypothesis, H0: r ≥ 2, against the alternative H1: r < 2.

A frequency-domain version of this testing device, similar in spirit to the one proposed by Geweke and
Porter-Hudak (1983), allows us to do the analysis at low frequencies (λ→ 0) instead of at very long lags
(τ →∞). For this, let us first define a generalized periodogram as

G (N )
x (λ, t) =

N∑
τ=1

wτ ix(τ, t) exp(− j2πλτ), (53)

where j2 = −1, wτ is a spectral window, and N is the sample size. Now, if xt is long memory in information,
we should have

G (N )
x (λ, t) ≈ ux(λ, t)λ

−2d , (54)

for small λs where d > 0 and ux(τ, t) is a slowly varying function of τ ; that is, limλ→a ux(cλ, t)/ux(λ, t) = 1
∀c, for a = 0 and a = ∞.

Again, taking logs we obtain

log G (N )
x (λ, t) = log ux(λ, t)− 2d log λ+ υλ,t , (55)

for small λs and with υλ,t representing an error sequence. Now we can test the null hypothesis of short
memory in information, H0: d = 0, once we have an estimate of the slope of the previous regression line.

Different procedures for estimating the parameter d in the information-integrated time-series model could
be borrowed, for example, from the works of Geweke and Porter-Hudak (1983), and Robinson (1995).

5.2 Cointegration testing
Common stochastic trends in financial time series, such as interest rates, stock prices, commodity prices from
goods that are close substitutes, purchasing-power parity (PPP), and cross-country exchange rates, point to
common underlying factors driving them. If exchange rates and/or stock prices from different countries are
found to move together in the long run, that suggests an increasing degree of international integration of
capital markets. Moreover, the finding that stock prices are cointegrated allows us the possibility of rejecting
the hypothesis of strong-market efficiency (see the work of Escribano and Granger [1998] for a recent
application of nonlinear models).

The following sets of financial time series (among many others) have been found to be linearly
cointegrated: exchange rates (Baillie and Bollerslev 1989); interest rates of different maturities (Engle and
Granger 1987); interest rates in different countries (Akella and Patel 1991); foreign currency spot and forward
rates (Barnhart and Szakmary 1991); dividends and prices (Campbell and Shiller 1987); equity markets in
different countries (Taylor and Tonks 1989); stock prices within a given industry (Cerchi and Havenner 1988);
and size-ranked portfolios (Bossaerts 1988). Interestingly, other sets have been found not to be linearly
cointegrated, such as commodity spot and futures prices (Baillie and Myers 1991) and purchasing-power
parity relationships (Corbae and Ouliaris 1988; Enders 1988).

The standard definitions and tests of cointegration assume a uniform and smooth tendency for the series to
move toward a unique long-run equilibrium. This is in contrast to the behavior of many pairs of economic
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variables. In fact, economic agents will adjust continuously only as far as their adjustment benefits exceed
their costs (Balke and Fomby 1997). For example, transaction costs in financial markets allow for a band to
appear in which returns can diverge, thereby introducing inefficiencies and the possibility of arbitrage. Policy
interventions such as exchange-rate management via the central banks, and commodity-price stabilization
through government intervention by buying or selling stocks, may also induce nonuniformities in the
adjustment of agents. These nonuniformities could translate into departures from the linear-cointegration
hypothesis, or into nonlinear error-correction models (Escribano and Mira 1997; Escribano and Pfann 1998),
and could eventually mask the existence of a long-run equilibrium in standard cointegration tests. Meese and
Rose (1991) found that linear cointegration between exchange rates and the fundamentals of four different
structural models was rejected, and suggested that this could be traced to the existence of unsuspected
nonlinearities. Therefore, a cointegration-testing device contemplating the possibility of a nonlinear attractor
could be an interesting alternative.

Definition 9 suggests the following test statistic, which measures the strength of the relation between a pair
of series xt , yt :

cm,q(x, y) = N −1
N∑

t=1

m+q∑
τ=m

(
1− îx,y(τ, t)/îx(τ, t)

)
, (56)

where m is supposed to be sufficiently large so as to capture as little as possible of the short-run
dependencies,4 and q is supposed to be such that m + q < N , where N is the sample size.

As we pointed out in the preceding section, under cointegration ix,y(τ, t) will be of the same order of
magnitude as ix(τ, t) for sufficiently large τ . On the contrary, under noncointegration, ix,y(τ, t)¿ ix(τ, t) > 0
for sufficiently large τ . This implies a tendency for the values of cm,q(x, y) to cluster around 1 under
noncointegration.

The limiting distribution of our statistic is difficult to obtain since we are dealing with nonmixing processes,
and its formal derivation is beyond the scope of this paper. However, we suggest to test the null hypothesis of
cointegration by constructing an empirical confidence interval for the test statistic. That is, for fixed values of
m and q, we estimate the empirical critical value bα such that P

(
cm,q(x, y) > bα

) = α under the assumption
of information cointegratedness, for the given significance level, α. Therefore, this hypothesis will be rejected
at this level when cm,q(x, y) > bα.

To assess the potentialities of the statistic cm,q(x, y) in Equation 56 as a general cointegration-testing device,
we did a small Monte Carlo experiment involving 100 pairs of linearly cointegrated, nonlinearly cointegrated,
and noncointegrated series. The data-generating mechanism for the linearly cointegrated series was the same
as for the series in Figure 1. The nonlinearly cointegrated series were computed by applying third-order
polynomial transformations to a common random-walk component. The coefficients of these polynomials
were chosen at random (the program randomly selected a set of coefficients each time it generated a pair of
time series). Finally, the noncointegrated series were either pairs of independent random walks (H2,1) or
mutually dependent short-memory series (H2,2). In the latter case, the series were generated according to the
model yt = xt + εt , where xt = a4et−2et−1 + et , εt , et are mutually independent iid sequences, and the ai were
chosen at random. For the experiment, we selected q = 0,m = 10, and a sample size of N = 1,000. In the
1,000 replications done, the value of c10,0(x, y) was comparatively large and positive under noncointegration,
but small and with varying sign under cointegration, both in the linear and the nonlinear cases. Table 1 shows
the mean, standard deviation, and mean absolute value of c10,0(x, y) obtained in the experiment, and the
histogram plots of c10,0(x, y) for the different cases are given in Figure 5. Using the 5% empirical critical
values of this statistic under H2,1, estimated from 1,000 Monte Carlo replicas, the power of the test (percentage
rejection) approached 85% of the simulated cointegrated pairs. This is in contrast with the low-power results
of standard cointegration tests when applied to nonlinearly related integrated time series, as reported in many
empirical studies (DeJong 1992; Granger and Hallman 1991; Schotman and Van Dijk 1991; Sims 1988).

The comparatively large values taken by our test statistic on pairs of mutually dependent short-memory

4A criterion for selecting m in the linear case is suggested by the theory of filter design, and consists of choosing for this parameter the value

m∗ satisfying
∫ ∞

m∗ |ρx (τ, t)|dτ < δ, where δ is a real number arbitrarily close to zero. In fact, m∗ is related to the bandwidth of an optimally

designed low-pass filter. This criterion can be extended straightforwardly to the more general nonlinear case by replacing ρx (τ, t) with ix (τ, t).
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Table 1
Mean, standard deviation, and absolute mean values of c10,0(x, y) for linearly cointegrated, nonlinearly cointegrated,
and noncointegrated series.

Test Statistic Linear Cointegration Nonlinear Cointegration Noncointegration (H2,1) Noncointegration (H2,2)

E (c10,0(x, y)) 0.0619 0.0189 0.2953 0.8307
std(c10,0(x, y)) 0.117 0.061 0.12 0.07
E (|c10,0(x, y)|) 0.0718 0.0434 0.2953 0.8307
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Figure 5
Histogram plots of c10,0(x, y), where (x, y) represents linearly (a), nonlinearly (b), and noncointegrated (c), (d) pairs of
series. Plots (c) and (d) correspond to noncointegrated series from the alternative hypotheses H2,1 and H2,2, respectively. The
nonlinearly cointegrated series were obtained as in Figure 2.

time series could be explained by the smaller values of their mutual information, as compared with those for
pairs of independent random walks (this may be a consequence of the spurious regressions problem5).

As a simple empirical illustration, we used our cointegration-testing device based on the mutual information
to investigate the joint properties of certain stock prices and cross-country exchange-rate series. The interest in
these types of series is clear from an economic point of view, following our previous discussion.

First, we considered two pairs of cross-country exchange-rate series (Figure 7), namely, those of the U.S.
dollar (EXRPD), the Deutsch mark (EXRPM), and the Japanese yen (EXRPY), against the Spanish peseta. A
sample size of N = 1,000 daily observations was taken for these series, starting from the date of January 1,
1987. We also considered a pair of series of stock prices (STR1, STR2) from the Japanese food company
Ajinomoto (Figure 6). The data records were chosen on the basis of the sample period for which these data
were available, and on the absence of gross disparities appearing in plots of the series.

Under the absolute version of the PPP, the exchange rate is cointegrated (with cointegration coefficient 1)
with the ratio of the relative prices of the same goods in two different countries. If this also happens pairwise
with another country, those exchange rates should as well be cointegrated with their relative prices. However,
following Meese and Rose (1991), most cointegration relationships could be nonlinear. In our analysis, we
found that for all series and for the given sample sizes, with the critical values given by MacKinnon (1990),
the hypothesis of a unit root could not be rejected by an augmented Dickey-Fuller (ADF) test at the 10%

5We agree with an anonymous referee that this problem is hard to discard, and thus this topic deserves further attention in a nonlinear context.
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Figure 6
Two stock-price series from the Japanese food company, Ajinomoto.
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Figure 7
Daily foreign exchange-rate series from January 1987: EXRPD (peseta/U.S. dollar), EXRPY (peseta/100 yen), and EXRPM
(peseta/Deutsch mark).

significance level. Performing this same test on the cointegration residuals led to rejection of the null
hypothesis of noncointegration in all cases except for the pair of stock prices (STR1, STR2). On the other
hand, the values of the test statistic c10,0(x, y) of Equation 56, shown in Table 2, suggest evidence of
cointegration in both (EXRPD, EXRPY) and (STR1, STR2), when using a one-standard-deviation empirical
confidence interval. These findings point to a certain robustness of our test to departures from linearity of the
cointegration relationship.
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Table 2
Values taken by the cointegration test statistic c10,0(x, y) on
two pairs of foreign exchange-rate series and a pair of stock-
return series.

Series EXRPY/EXRPD EXRPM/EXRPD STR1/STR2

c10,0(x, y) −0.0113 0.257 0.1169

6 Conclusions

Long memory and cointegration are two important features of many economic variables. Usual testing
techniques for those features are not robust to the presence of eventual nonlinearities, either in the univariate
data-generating process or in the cointegrating relationship. In this paper, we have proposed an alternative
methodology for measuring dependence and memory, based on the concepts of entropy and mutual
information. We showed by some algebraic examples that this approach works well in a linear context, when
the variables are I (1) and I (0), and also with certain fractional differencing models. We suggest a testing
device for the null hypothesis of cointegration (either linear or not), and show, by a small Monte Carlo
experiment and by an empirical application, that this test statistic could be promising in detecting nonlinear
cointegrating relationships. In particular, we found that even though the peseta/dollar and the peseta/yen
exchange rates are not (linearly) cointegrated, they seem to be nonlinearly cointegrated. This means that if the
absolute PPP hypothesis holds, then the relative prices of those countries move together in a nonlinear way,
and they might have eventual departures from the linear equilibrium along the business cycles.
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