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COINTEGRATION TESTING UNDER STRUCTURAL 
BREAKS: A ROBUST EXTENDED ERROR 

CORRECTION MODEL 

Miguel A. Arranz and Alvaro Escribano 

I. INTRODUCTION 

The properties of the cointegration tests based on single equation error 
correction models (ECM test) are well known. The dependence of critical 
values, and the power of the test on nuisance parameters are documented in 
Banerjee et al. (1986), Engle and Granger (1987), Kremers et al. (1992), 
Park and Phillips (1988, 1989), and Banerjee et al. (1993). 

From the univariate point of view, the effects of having breaks when 
applying unit root test, like Dickey and Fuller (1979) test, are well known, 
and Perron (1989) is a good starting point to see those impacts. From 
Hendry (1996), a structural break essentially corresponds to an intermittent 
shock with a permanent effect on the series. If this shock is not explicit1y 
taken into account, standard unit root tests would in general mistake the 
structural break for a unit root. Leyboume et al. (1998) indicate that the 
opposite can also happen if the break occurs at the beginning of the sample. 
The results of Hendry and Neale (1990) and Perron and Vogelsang (1992) 
indicate that a neglected shift in the mean also leads to spurious unit roots. 
Rappoport and Reichlin (1989) is probably the first reference to deal with 
the impact ofhaving segmented trends as an altemative to a unit root model, 
and Andrés et al. (1990) extended the analysis to more that one break point 
in the trend. 

The main drawback with this literature, that has expanded dramatically 
since then, is that we always have to add dummy variables to capture the 
structural breaks in order to correctly apply unit root tests. Therefore the 
critical values obtained depend on the size and on the timing of the break. 
Again, a vast literature emerged searching for unknown break points using 
recursive or sequential tests. See, for example, Banerjee et al. (1992), Zivot 
and Andrews (1992), Andrews (1993). Andrews et al. (1996), Bai (1997), 
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Vogelsang (1997), Bai and Perron (1998), and Banerjee, Lazarova and Urga 
(1998). 

Another class of unusual events are additive outliers. These are events 
with large, but temporary effects on the series. In certain cases, those effects 
dominate the remaining information contained in the series and biases unit 
root inference towards rejection of the unit root hypothesis even if the null 
hypothesis of a unit root is correct, as reported in Franses and Haldrup 
(1994) and Lucas (1995a,b). 

With multivariate time series the situation could be worse, since we need 
to decide on the type of mode1s that generate the anomalous observations 
(breaking trends, additive outliers, ... ) taking into account that those 
irregularities need not occur simultaneously or on all of the variables. 
Therefore, the multivariate analysis is generally more difficult but in sorne 
cases could be easier as it will be explained later on. 

In empirical applications it is more the rule than the exception to include 
dummy variables in order to obtain parameter constant ECM models. The 
effects of including dummy variables to capture structural breaks in ECM 
models have been analyzed in Kremers et al. (1992), and Campos et al. 
(1996). 

The fact that critical values (C.Y.) depend on the particular type of 
dummy variable included is a nuisance when doing applied work. However, 
we could avoid the use of dummy variables applying robust estimation 
techniques. This is the approach taken by Lucas (1995a,b) in the univariate 
case and by Lucas (1997) and Frances and Lucas (1997a,b) in a multivariate 
framework. 

In this paper we follow a different route. We want to find robust modeling 
procedures to test for unit roots in the presence of structural breaks in an 
ECM context. Instead of including dummy variables in ECM methods, we 
allow to approximate those breaks by adding extra dynamic terms, as 
determined by the SBlC criterion, or by including sorne extra lags of the 
error correction term (extended ECM model). In particular, we look at the 
critical values obtained from the overparameterized models, we study the 
power and the size of the test under different MA( 1) errors by Monte Carlo 
simulations. 

The structure of the paper is as follows. In section 11 we analyze the 
effects of having deterministic elements (constant terms, deterministic 
trends, dummy variables, segmented trends, etc.) on alternative specifica­
tions of the ECM models, and in particular on the cointegrating errors. 
Three types of deterministic possibilities are studied in detail: simultaneous 
co-breaking, co-breaking in levels (not in differences) and co-breaking in 
differences (not in levels). The Monte Carlo experiments are introduced in 
Section 111, and results of the usual ECM tests are analyzed in detail. 
Section IV shows the Monte Carlo results based on the extended ECM 
model. Section V presents sorne conclusions. The different co-breaking 
possibilities are analyzed in Appendix A. 
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n. ERROR CORRECTION MODELS WITH AND WITHOUT SIMULTANE~~,$ 
CO-BREAKING 

Consider the following conditional error correction model (ECM) 

~(yt - fly,t) = a~(Zt - flz,t) + b[(Yt-l - fly,t-l) - a(Zt-l - flz,t-l)] + Ult 

(2.la) 

(2. lb) 

Assume that ... , Y_¡, Yo = O and ... , Z-l, Zo = O, let fly,t = E(Yt), 
flz,t = E(Zt) be the corresponding unobserved unconditional means, based 
on the validity ofthe initial parameterization at too Those means include all 
possible deterministic elements like: constant terms, deterministic trends, 
dummy variables, segmented trends, outliers, etc. Define B as the back-shift 
operator, BkYt = Yt-k, ~ = (1 - B) is the first differencing operator, and 
let (1, -a) be the cointegrating vector. The stochastic errors Ul t and U2t are 
jointly, and serially uncorrelated with zero mean, and constant variances 
var(ult) = ai and var(u2t) = a~. Those conditions of the errors can be 
relaxed to allow for sorne serial dependence and joint dependence as long 
as ~Zt is weakly exogenous for the parameters ofthe model (2.la). To make 
the analysis clear, we keep the same assumptions as those used in our Monte 
Carlo experiment. 

Model (2.1a)-(2.lb) can be written in terms of the observable variables 
Yt and Zt as follows, 

~Zt = ~flz,t + U2t 

et == ~fly,t - a~flz,t - b(¡ty,t-l - aflz,t-l) 

(2.2a) 

(2.2b) 

(2.2c) 

In this paper we investigate the effects of having altemative models for the 
intercept et on the ECM test for non-cointegration (b = O) of(2.2a). 

The cointegrating errors in terms of the observable variables are obtained 
from (2.2a)-(2.2c) 

1 a-a a-a 
Yt - aZt = 1 _ (b + 1 )B et + 1 _ (b + l)B llflz, t + 1 _ (b + l)B U2, t 

1 
+l_(b+l)BU1,t (2.3) 

and we would need to include many deterministic regressors to approximate 
the first two elements of the RHS of (2.3), et and ~flz,t. Therefore, the 
cointegrating regression requires the following set of regressors 
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1 a-a 
Yt = aZt + 1 _ (b + I)B Ct + 1 _ (b + I)B llflz,t + Vt· (2.4) 

Notice that the problem of having to add arbitrary and influential determi­
nistic regressors is reduced, but not solved by conditioning on I':l.Zt, 
I':l.Zt-l ... 

a-a 1 
Yt = aZt + 1 _ (b + I)B llZt + 1- (b + I)B Ct + Wt (2.5) 

where Wt = 1/[1 - (b + I)B]Ul,t, and we still have to approximate the 
dynamic deterministic effects of Ct. 

Definition 2.1. Given valid initial conditons, let E(Yt) = fly,t and 
E(Zt) = flz,t, we say that the time series Yt and Zt have co-breaks in 
differences if I':l.fly,t - allflz,t = Cd, where Cd is afinite constant parameter. 

Definition 2.2. Given valid initial conditions, let E(Yt) = fly,t and 
E(Zt) = flz,t, we say that the time series Yt and Zt have co-breaks in levels if 
fly,t - aflz,t = CI, where CI is afinite constant parameter. 

Several possible intermediate cases are of interest in empirical applica­
tions and will be considered in the the simulation experiments later on. 

Case 2.1. Co-break in differences but not in levels. 
Co-break in differences: I':l.fly,t - al':l.flz,t = Cd implies that llfly,t­

allfly,t = (a - a)llflz,t + Cd· From recursive substitution fly,t - aflz,t = 
(flyO - aflzO) + Cd t + (a - a)flz,t, and Ct becomes 

Ct = Cd - b(fly,o - aflz,o) - bCd(t - 1) - b(a - a)flzt-! (2.6) 

and equation (2.2a) becomes 

llYt = Cm + bCdt - b(a - a)flz,t-l + allzt + b(Yt-l - aZt-l) + Ul,t, 

(2.7) 

where Cm is a constant equal to Cm = Cd - b(fly,o - aflz,o) + bCd. 
Remark: Assuming that fly,o - aflz,o = constant, co-break in differen­

ces::::} co-break in leve1s if a = a (COMFAC) and Cd = O. 

Case 2.2. Co-break in levels but not in differences. 
Co-break in levels (fly,t - aflz,t = CI). Taking first differences, we have 

I':l.fly,t - allflz,t = O. But from equation (2.2c) 

Ct = I':l.fly,t - al':l.flz,t - bCI = (a - a)llflz,t - bCI, (2.8) 

and equation (2.2a) becomes 

I':l.Yt = -bCI + (a - a)llflz,t + allzt + b(Yt-l - aZt-l) + Ul,t (2.9) 
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Remark: Co-break in levels ::::} co-break in differences if a = a (COM­
FAC restriction). 

Definition 2.3 Given valid initial conditions, let E(Yt) = fly,t and E(zt) = 
flz,t, we say that the time series Yt and Zt have simultaneous co-breaks if 
I:!.fly,t - al:!.flz,t - b(fly,t - aflz,t) = cs, where Cs is a finite constant para­
meter. 

It is c1ear that when Yt and Zt have co-breaks in levels and in differences 
(full co-break), this is a particular case of simultaneous co-breaking. In the 
case of simultaneous co-breaking, the intercept Ct from (2.2c) is constant, 
Ct = c and the error correction model from (2.2a) becomes the standard 
conditional ECM model where the only deterministic regressor is the 
constant term, c. 

(2.10) 

On the other hand, even if Ct = e, the cointegration regression (2.4) has a 
constant term, say e = 1/[1 - (b + l)B]c, and also lags of I:!.flz,t 

a-a 
Yt = e + aZt + 1 _ (b + l)Bl:!.flz,t + Vt· (2.11) 

Therefore, we would have to add a complicated dynamic structure of 
dummy variables when I:!.flz,t has structural breaks. This prob1em is solved 
now by conditioning on I:!.Zt, I:!.z t-1, ... , since (2.11) becomes 

a-a 
Yt = e + aZt + 1 _ (b + l)BI:!.Zt + Wt· (2.12) 

This regression is simplified if there is a common factor restriction, a = a 
(COMFAC restriction), since then I:!.flz,t has no effect on the cointegrating 
regression (2.11). From equation (2.4), it is c1ear that to have a = a 
(COMFAC restriction) is not a universal solution because the cointegration 
regression takes the form, 

1 
(2.13) Yt = aZt + 1 _ (b + l)B Ct + Ut 

and we have a strange cointegrating regression with a complicated structure 
through the 1agged deterministic e1ements of Ct. 

In general, without having any co-break in leve1s or in differences, the 
most parisimonious representation is the conditional ECM model (2.1a), 
and in terms of observable variables is representation (2.2a), because it only 
requires to add the deterministic regressors coming from the contempora­
neous values of Ct. Clear1y, ifwe are interested in estimating the parameters 
a, a and b, it is much easier and more parsimonious to estimate them by 1-
step procedures (OLS or NLS) in ECM representations (2.1a) or (2.2a) than 
in any other of the representations discussed. However, to do that in (2.1a) 
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we need to know or to estimate first the unconditional means fiy,t and fiz,t 
and this generally incorporates arbitrary information about unknown 
events. 

Error correction models with simultaneous co-breaking 

From equations (2.2a)-(2.2c) and the analysis of Escribano (1987) and 
Andrés et al. (1990), it is c1ear that any error correction model in terms of 
the observable variables should account for the joint effects ofthe following 
elements: ~fiy,t, ~fiz,t, fiy,t-1 and fiz,t-1. 

Previous error correction models with co-breaks have be en treated in 
Campos et al. (1996) and Hendry (1996). In this section we consider 
deterministic segmented trends in Yt and Zt that have simultaneous co­
breaks (see Definition 2.3), where Cs = O. The segmented trend in Zt is 
generated by ~fiz, t = sDj, ¡, where s is a parameter that measures the size of 
the break, and Dj,t is a dummy variable that takes the value O before the 
break and the value 1 at the break and afier the break, see section 3.1 for 
details. In this case, (2.2a) and (2.2b) can be simplified to 

~Yt = a&t + b(Yt-1 - aZt-¡) + U1t 

~Zt = ~fiz, t + U2, t 

(2. 14a) 

(2. 14b) 

~fiz,t = sDj,t (2. 14c) 

where (2.14a) has the form of the usual single equation error correction 
without a constant term since Ct = O. 

Consider the DGP given by (2.14a) and (2.14b) with ~fiz,t = O. The 
distribution of the t-ratio of the parameter b under the null hypothesis that 
b = O (no cointegration) was analyzed by Banerjee et al. (1986), Kremers et 
al. (1992), Park and Phillips (1988, 1989) and Banerjee et al. (1993). 

Assuming that a is known and equal to 1, a = 1 one could consistendy 
estimate the parameters of equation (2. 14a) by OLS, 

(2.15) 

and obtain the asymptotic distribution of the t-ratio of h under Ho: b = O. 
tb = (h/ab) is the ECM test and 

(a - 1) f BU2 dBul + r-1 f BUl dBul 
tb'* (2.16) 

(a - 1)2 f B~2 + 2(a - l)r-1 J BU2 Bul + r-2 J B~l 
where ',*' denotes weak convergence, BUl and BU2 are independent 
Brownian motions and r = a1/a2. In terms of the 'signal to noise ratio', 
a = -(a - l)r = [-(a - 1)ad/a2, 
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(2.17) 

Notice that when q = O (or a = 1, COMFAC restriction) (2.16) is reduced 
to 

JBU,dBu, _ 

tb => JIB;, ~ DF 
(2.18) 

where DF is the Dickey-Fuller distribution, (see Dickey and Fuller, 1979), 
of the t-ratio of b from the OLS regression (2.20), which is the non­
cointegration D-F test of Engle and Granger (1987) when the cointegration 
vector is known. From (2.17) and for large q 

J BU2 dBu, 

lb => JIB;, + Op(q-l) 
(2.19) 

Since BU, and BU2 are independent Brownian motions, the leading term in 
the right hand side follows a standard Normal distribution (Park and 
Phillips, 1988). 

When a = a, and a is known, a = 1, equation (2. 14a) can be written as 

8(Yt - Zt) = b(Yt-1 - Zt-I) + Ult (2.20) 

which is a standard Dickey - Fuller equation. If we estimate the unrestricted 
equation (2.14a) with a = 1, then the t-ratio tb --+ DF distribution, see 
equation (2.l3). 

When 811zt = O, the distribution of the t-ratio of the parameter b in (2.15) 
under a local altemative hypothesis, b = h / T, h < O was derived by 
Kremers et al. (1992) following Phillips (1987), 

tb =? h(1 + q2)1/2 (J K; ) 1/2 

(a - 1) J KU2 dBu, + r- I J KU, dBu, 
+-r====~==========~======~~ 

(a - 1)2 J K~2 + 2(a - l)r-1 J KU2 Ku, + r-2 J K~, 
(2.21) 

where et = (a - 1)8zt + Ult and Ke is a diffusion process. Notice that for 
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h = O, Ki = Bi (a Brownian motion), and (2.21) coincides with (2.16). 
Therefore, the power of tb should increase with h for a given T, or increase 
with the absolute value of b, since the distribution of tb under HI is shifted 
to the left of tb under Ho. 

When a = 1, COMFAC restriction, the t-ratio of b in (2.15) 

(J 2) 1/2 J KUl dBu1 

ti=<-c K, + JJK:, (2.22) 

which is the distribution ofthe DF statistic under the local altemative. 
For a =1- 1 and a large q, (2.21) is approximately Normal conditional on 

U2t, 

(2.23) 

The unconditional mean of tb is approximately E(tb) ~ e(1 + 
q)2)1/2(1jV2"). Therefore, increasing a, since e is negative, the distribution 
of tb under the local altemative can arbitrarily be shifted towards the left 
and hence the power of the test can be made arbitrari1y c10se to 100%. 

However, in small samples the power of tb in (2.14a) with a = 1 can be 
lower than the power of tb in (2.20) since the estimation ofthe unrestricted 
model (2. 14a) is less efficient, therefore generating smaller t-ratios than the 
asymptotic ones in absolute values. 

From equations (2.14a)-(2.14c) it is c1ear that Yt rv l( 1), and Zt rv 1(1) 
with segmented trends, and they are cointegrated with cointegration vector 
equal to (1, -a). Furthermore, the segmented trend in the 'exogenous' 
variable Zt simultaneously co-breaks (es = O) with the endogenous variables 
Yt and therefore the cointegrating relationship can explicitly be written as in 
equation (2.5) with et = O. Therefore, from model (2.14a)-(2.14c), it is 
c1ear that if -2 < b < 01 the variables are cointegrated, that is, 
(Yt - aZt) rv 1(0) but with nonstationary errors due to the structural breaks 
in !:1Zt, and if b = O, the variables are not cointegrated, (Yt - azt) rv 1(1) 
with segmented trends. 

Substituting equations (2.14b) and (2. 14c) in (2.3) and under simultane­
ous co-breaking with et = O, we get an interesting relationship expression 
for the cointegrating errors, 

1 It is not uncornmon to find the cointegration condition to be -1 < b < O. See for example 
Kremers et al. (1992) and Campos et al. (1996). 
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a-a a-a 1 
Yt - aZt = 1 _ (b + 1)B SDj,t + 1 _ (b + 1)B U2t + 1 _ (b + 1)B Ult· 

(2.24) 

It is c1ear that to estimate the cointegrating parameter a in (2.24) we need to 
inc1ude lags of the dummy variables Dj,t unless the common factor 
restriction, a = a, holds. Hence in general it is better to estimate (2.5) 
without using any dummy variable. These conc1usions are valid for most 
cointegrating static regression models that use parametric or non-para­
metric procedures to estimate a in the cointegrating regression Yt = 
aZt + ft, such as OLS (Engle and Granger, 1987), FM-OLS (Phillips and 
Hansen, 1990) or canonical cointegration (Park, 1992). The solution is 
simple when /).!lz,t is a constant or a trend, but it is not that simple, see 
equation (2.24) when /).!lz,t has level shifts, segmented trends or other types 
of unknown structural breaks that occur with economic data. 

In the simultaneous co-breaking case, there is a c1ear advantage with the 
conditional dynamic model (2.14a) because the cointegrating parameter can 
efficiently be estimated by OLS without needing to use any deterministic 
explanatory variables. 

In summary, dynamic conditional error correction models based on 
economic variables that have simultaneous co-breaks do not require the use 
of dummy variables. On the other hand, static cointegrating regressions 
need to explicitly incorporate dummy variables when the contemporaneous 
short run parameters differ from the cointegrating parameter a =1 a (no 
COMFAC). Notice that a =1 a is the most common case in empirical 
applications. 

Error correction models without simultaneous co-breaking 

In the previous section we have discussed the of ECM formulations in the 
presence of simultaneous co-breaking. Our purpose now is to discuss 
several interesting altemative cases. 

Case 2.1. Co-breaking in differences, but not co-breaking in levels. 
From equation (2.7), (2.14b) and (2.14c), we have that 

/).Yt = Cm + bCd t - b(a - a)!lz,t-l + a/).Zt + b(Yt-l - aZt-l) + Ul,t (2.25a) 

t 

!lz,t = !lz,o + s L Dj,i 
i=l 

(2.25b) 

(2.25c) 

Therefore, depending on the type of dummy variable, Dj,t we could have 
segmented trends with one or several breaking points in !lz,t see section 3. 
Under Ho: b = O, equation (2.25a) becomes 
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(2.26) 

Cases 2.2. Co-breaking in levels, but not eo-breaking in differenees. 
From equations (2.9), (2.14b) and (2.14c) we have 

AYt = -be¡ + (a - a)sDj,t + aAzt + b(Yt-l - aZt-l) + Ul,t (2.27) 

Therefore the breaks in the marginal process of Azt , (2.l4b), affects the 
error correction model unless the COMFAC restriction is satisfied (a - a). 
Under Ho: b = O, equation (2.27) becomes 

AYt = (a - a)sDj,t + aAzt + Ult (2.28) 

Case 2.3. No eo-breaking in differenees nor in levels. 
This likely empirical situation is the result of joining equations (2.27) and 

(2.25a)-(2.25c) and it is a particular case ofthe general equation (2.2a). 
However, for the purpose of the next section it is enough to show that for 

cases (2.27) anbd (2.25a) the situations one has to face in practice are 
complicated in the presence of structural breaks. In particular we analyze 
the impact of having different structural breaks in terms of the empirical 
critical values (C.Y.) and on the size and the power of the ECM test for 
b = O obtained from (2.10). 

III. MONTE CARLO SIMULATION EXPERIMENT 

The data generating process (DGP) is based on several extensions of the 
one used by Kremers et al. (1992) and Campos et al. (1996). It is a linear 
first-order vector autoregression with Normal disturbances, Granger caus­
ality in one direction (z ----+ y), and structural breaks in the strongly 
exogenous variables (Azt ) for the parameters of interest, a, b, and a. 

where 

AYt = et + aAzt + b(Yt-l - aZt-l) + Ult (3.1a) 

et = A!1y,t - aA!1z,t - b(f1y,t-l - a!1z,t-l) 

A!1z,t = sDj,t 

(3.lb) 

(3.lc) 

(3.ld) 

(3.1e) 

We alllow three kinds of dummy variables (Dj,t, j = 1,2, 3) in order to 
simulate either a single break in the deterministic trend (segmented trends), 
at two different break points (T / 4 or T /2 where T is the sample size), 
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~,~ {~ t;;,: T/4 t;;,: T/2 

otherwise otherwise 

and a double break at points T / 4 and 3 T / 4, 

{ 

1 T /4 "-S t"-S 3T /4 
~t= 

O otherwise. 

Without loss of generality, we take ay = 1, and a = 1. Thus, the 
experimental design variables are the parameters a, b, s where a2 = s, and 
the sample size T. 

The experiment is a full factorial design with: 

a = 0.0.0.5, 1 (contemporaneous correlation in first differences) 
b = 0.0 (no integration), -0.05, -0.1, -0.25, -0.5, -0.75 

( cointegration) 
s = 1,6, 16 (size ofthe breaks) 
T= 25, 50,100,200,500,1000 (sample size)2 

and allowing the possibilities of no breaks (NO), single breaks at T / 4 or 
T/2 (DI and D2) or a double-break at T/4 and 3T/4 (~) where all ofthe 
breaks considered are jumps in the slope of flz,t of size s. This represents 
216 experiments for each value of b. Remember that when a = 1 there is a 
common (COMFAC) restriction in the error correction model since a = 1. 

The Monte Carlo experiments are based on 2000 replications of each 
experiment where the first 50 observations of the simulated series are 
dropped to consider random initial conditions. 

To obtain the empirical critical values we generated the Yt and Zt series 
following the DGP (3.1a)-(3.1e) under Ho: b = O and we estimated the 
equations 

/).Yt = e + a/).Zt + b(Yt-1 - Zt-l) + Ult (3.2) 

ifJ(B)/).Yt = e + 8(B)/).Zt + b(Yt-1 - Zt-l) + Ult (3.3) 

where we have imposed a = 1. The orders of the polynomials ifJ( B) and 
8(B) are chosen following the SBIC qiterion.3 The lower 5% tail of the 
empirical distribution of the t-ratio, t(b) statistic under Ho is the critical 
value. The empirical size of the test is analyzed by adding a MA( 1) to the 
errors UI,t, i.e., UI,t + 8fll,t-1 = v t with parameter values (8 = ±0.5). The 
empirical power of the test is calculated analogously by simulating the DGP 
(3.1a)-(3.1e) under HI : b 1- O, and computing the percentages of rejec-

2Full set oftables are available in Arranz and Escribano (1998b). 
3In order to choose the maximum number of lags of each variable included in the regression, 

we allow from O to 10 lags of each variable and search all possible 121 possibilities, except in the 
case T = 25, in which we allow no more than 4 lags of each variable. 
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tions obtained from models (3.2) and (3.3) using the previous empirical 
critical values (size-corrected critical values). 

Simultaneous co-breaking is imposed by making Ct = !!"Jly,t - a!!"Jlz,t -
b(Jly,t - aJlz,t) = O. In order to get only co-breaks in differences, we impose 
that !!"Jly,t - a!!"Jlz,t = Cd = 0.5. On the other hand, to simulate a set of 
series with only co-breaks in levels, we impose !!"Jly,t - a!!"Jlz,t = O, see 
Appendix for a detailed derivation. 

Notice that if we had set Cd = O, the critical values would be the ones 
obtained for the simultaneous co-breaking case, since under Ho: b = O we 
would have simultaneous co-breaking with Cs = O. Furthermore, when 
a = a = 1, co-breaks in differences would imply co-breaks in levels (full 
co-breaking). Under the COMFAC restriction, co-breakinbg in levels imply 
co-breaks in differences (full co-break), see Appendix. 

Monte Cario simulation experiment: ECM with simultaneous co-breaking 
Critical values 01 the ECM test with simultaneous co-breaking. 
The 5 percent critical values from the left tail of the empirical distribution 
of the t-ratio of b are given in Table 1.1. Table 1.1 is generated by making 
a~, see (3.1e), equal to the jump size (s) for s = 1,6, 16. We also fixed the 
variance of U2,t( a~ = 1) and changed s = 1, 6, and 16 to make the jump in 
!!..Zt to be more pronounced, and the obtained empirical C.v. were very 
similar.4 

Several comments are worth making: 

Remark 1. When there is no COMFAC (a =1= 1), the distribution of the t­
ratio (tl,) is shifted to the right as the jump size (s) increases. Therefore, the 
large the jump in !!..Zt, the more likely that we under-reject the null 
hypothesis of non-cointegration with the usual C.v. for non-cointegration 
tests (too many unit roots in the cointegrating errors). However, those shifts 
of the distribution are not very pronounced since the critical values are 
similar for different types of jumps (DI, D2 , and D3). For example, for 
T = 100 and a = 0.5 the 5 percent C.v.'s are between -1.6 (s = 16) and 
-2.2 (s = 1). For larger samples (T = 1000), the 5 percent c.v.'s are stable 
around -1.7. Therefore, increasing s is like increasing q in (2.17) and tl, is 
approaching the standard normal distribution (2.19). 

The main impact on the empirical distribution is obtained while changing 
the short-run parameter a(a = O, 0.5, 1). This is not a surprise as it is clear 
from equations (2.16)-(2.18) where the limiting distribution is given for 
different parameter values. Equation (2.16) makes explicit that the asympto­
tic critical values ofthe t-ratio, tl" depend on the short run parameter a. 

Remark 2. When a = 1 (COMFAC restriction) q = -(a - l)al/a2 is zero 
and the limit distribution coincides with the one obtained by Dickey-Fuller, 

4Results are available upon request. 
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see equation (2.18). Therefore, one should expect that going from a = O to 
a = 1, the empirical distribution be shifted to the left, creating higher 
critical values in absolute values, see Table 1.1.5 When there is a COMFAC 
(a = 1) restriction, the C.v. obtained are those ofthe DF distribution when 
the DGP is apure random walk and the regression is estimated with a 
constant termo Notice that the C.v.'S. do not depend the break size 
(s = 1, 6, 16) or on the type ofthe break (DI, [Jz, D3) either. The 5 percent 
C.v. is around -3.0 for T = 25 and for T = 100 and T = 1000 is around 
-2.9, which is a good result for empirical applications, since we are not 
imposing the COMFAC restriction in the regression test. 

Remark 3. We also obtained the Critical Values allowing for uncertainty in 
the dynamics of the model, unknown lags. The maximum lag s were 
estimated by using the SBIC order selection criterion. Our conclusions 
remain unchanged for sample sizes 100 and 1000. However, as expected, 
for T = 25 the distribution is shifted towards the left with the 5 percent c.v. 
between -3.2 and -4.9. 

Empirical Size of the ECM test with Simulatneous Co-breaking. 
In order to assess the validity of our test we analyzed the empirical size of 
the test by using the previous critical values obtained under the null but with 
longer dynamics generated by a MA(1) process on the errors. In particular, 
we simulated our data with the following DGP: 8Yt = Ct + a8zt + 
Ult + eUI,t-l, where () is equal to 0.5 and -0.5. We found a dramatic size 
distortion depending on the sign of e when we do not include the relevant 
dynamic terms, see model (3.2). For positive MA(l) parameters, e = 0.5, 
the largest size distortions are for a i= 1, and for negative MA(l) para­
meters, e = -0.5, the largest distortions are for a = 1. This problem is 
mitigated if we add dynamic terms, model (3.3), as selected by SBIC 
criterion, but the size of the test still depends on the sign of e, see Arranz 
and Escribano (l998b). Therefore, the empirical critical values obtained are 
not reliable under MA(l) errors and especially when e = -0.5. More 
reliable critical values could be obtained by using bootstrap techniques, see 
Arranz and Escribano (1998a), but this is out ofthe scope ofthis paper. 

Power of the ECM test with Simulatneous Co-breaking. 
The power of the ECM-test (tb) is analyzed by generating data from the 
DGP under HI for values of b that satisfy -2 < b < O. Several parameter 
values for b are considered, b = -0.05, -O.l, -0.25, -0.5, and -0.75. 
Remember from equation (2.4) that the cointegrating error has an autore­
gressive representation that depends on the parameter b. If we call PI the 
first order autoregressive parameter, PI = b + 1, then PI = 0.95, 0.9, 0.75, 

5Notice that when a = O the critical values for NO, DI, ~, D3 do not coincide since in the 
regression under H¡ we are inc1uding ¡'j,Zt, which depends on Dj,t and that marginally affects the 
critical values obtained. 
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TABLE 1: CRITIAL VALUES OF t(h) 
Estimated model ~Yt = e + a~Zt + b(Yt-1 - Zt-I) + Ut 

Simultaneous Cobreaking (Ct = O). 

a=O a = 0.5 a=1 

T DUM s=1 s=6 s = 16 s=1 s=6 s = 16 s=1 s= 6 s = 16 

25 NO -2.678 -1.912 -1.814 -2.831 -2.134 -1.877 -3.027 -2.994 -2.991 
DI -2.118 -1.833 -1.716 -2.648 -1.828 -1.801 -3.026 -3.088 -2.985 
D2 -2.284 -1.828 -1.813 -2.723 -2.010 -1.817 -3.069 -2.950 -3.095 
D3 -2.213 -1.818 -1.760 -2.662 -1.835 -1.720 -2.976 -3.071 -3.012 

100 NO -2.590 -1.921 -1.795 -2.811 -2.156 -1.796 -2.854 -2.852 -2.898 
DI -1.187 -1.649 -1.633 -2.048 -1.632 -1.649 -2.892 -2.996 -2.925 
Dz -1.942 -1.723 -1.700 -2.268 -1.772 -1.801 -2.907 -2.954 -2.956 
~ -1.795 -1.738 -1.641 -2.252 -1.788 -1.730 -2.954 -2.937 -2.889 

1000 NO -2.632 -1.880 -1.745 -2.797 -2.150 -1.856 -2.794 -2.872 -2.857 
DI -1.696 -1.730 -1.653 -1.759 -1.609 -1.700 -2.901 -2.903 -2.984 
Dz -1.741 -1.639 -1.577 -1.771 -1.651 -1.735 -2.887 -2.887 -2.908 
D3 -1.722 -1.740 -1.602 -1.854 -1.696 -1.654 -2.906 -2.983 -2.900 

Cobreaking in Differences, Not in Levels (~fly,t - a~flz,t = 0.5). 

a=O a = 0.5 a=1 

T DUM s=1 s=6 s = 16 s=1 s=6 s = 16 s=1 s=6 s = 16 

25 NO -2.447 -1.913 -1.825 -2.483 -2.046 -1.882 -2.560 -2.391 -2.480 
DI -2.478 -1.837 -1.713 -2.836 -1.850 -1.804 -2.460 -2.430 -2.469 
D2 -2.551 -1.824 -1.807 -2.879 -2.051 -1.836 -2.581 -2.582 -2.493 
~ -2.550 -1.848 -1.754 -2.802 -1.934 -1.714 -2.538 -2.488 -2.410 
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100 NO -2.012 -1.900 -1.824 -2.060 -2.066 -1.851 -2.039 -2.034 -1.964 
DI -2.141 -1.649 -1.632 -2.662 -1.668 -1.644 -2.023 -2.060 -1.994 
~ -2.189 -1.742 -1.677 -2.369 -1.814 -1.779 -1.997 -2.040 -2.053 
~ -2.292 -1.739 -1.639 -2.567 -1.833 -1.737 -1.954 -2.018 -2.022 

1000 NO -1.796 -1.681 -1.757 -1.685 -1.691 -1.793 -1.664 -1.711 -1.775 
DI -1.777 -1.737 -1.659 -1.969 -1.637 -1.689 -1.661 -1.735 -1.747 
~ -1.965 -1.652 -1.588 -1.862 -1.683 -1.744 -1.741 -1.769 -1.746 
~ -1.833 -1.754 -1.598 -1.911 -1.678 -1.645 -1.802 -1.704 -1.736 

Cobreaking in Levels, Not in Differences {-ty,t - {-tz,t = O). 

a=O a = 0.5 a=1 

T DUM s=1 s=6 s = 16 s=1 s=6 s = 16 s=1 s=6 s = 16 

25 NO -2.768 -1.912 -1.814 -2.831 -2.134 -1.877 -3.027 -2.994 -2.991 
DI -3.397 -5.771 -6.252 -3.163 -4.458 -6.466 -3.026 -3.088 -2.985 
~ -3.694 -6.894 -7.923 -3.375 -5.662 -7.692 -3.069 -2.950 -3.095 
~ -3.299 -4.424 -4.583 -3.063 -4.044 -4.575 -2.976 -3.071 -3.012 

100 NO -2.590 -1.921 -1.795 -2.811 -2.156 -1.796 -2.854 -2.852 -2.898 
DI -4.704 -11.035 -12.270 -3.558 -8.148 -11.497 -2.892 -2.996 -2.925 
~ -4.998 -13.150 -15.340 -3.725 -9.686 -13.783 -2.907 -2.954 -2.956 
~ -4.096 -7.876 -8.296 -3.391 -6.668 -8.135 -2.954 -2.937 -2.889 

1000 NO -2.632 -1.880 -1.745 -2.797 -2.150 -1.856 -2.794 -2.872 -2.857 
DI -10.546 -32.748 -37.437 -6.432 -23.787 -34.546 -2.091 -2.903 -2.984 
~ -12.429 -38.894 -43.772 -7.134 -28.103 -42.559 -2.887 -2.887 -2.908 
~ -9.038 -23.042 -23.910 -5.894 -18.265 -23.635 -2.906 -2.983 -2.900 

The DGP is generated under Ho : l1y, = c, + al1z, + U¡" I1z, = sDj, + U2" where c, = l1!1y., - al1!1z,,, ai = var(u¡,) = 1, and a~ = var(u2,) = S2. 
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0.5, and 0.25, corresponding to the previous values of the parameter b. 
Therefore, for b = -0.05 we would expect to have low power against 
stationary altematives, since the AR(1) parameter, 0.95, is close to the unit 
root. This intuition can be explained by using (2.21). When b increases is 
like increasing h relative to T. Therefore, from equation (2.22) we should 
expect to obtain a reduction in power when the COMFAC restriction 
(a = 1) is satisfied. 

In general, under simultaneous co-breaking, the size-adjusted power of 
the test given in Table 2.1 is high for all possible jump sizes (s = 1, 6, 16) 
and for all sample sizes. The lowest power of the ECM test occurs for values 
of a = 1 (COMFAC restriction) and especially for small sample sizes 
(T = 25) with small absolute values of b. Remember that a = 1 corre­
sponds to q = O, see equation (2.18), and in that case the limiting distribu­
tion of the test is the Dickey and Fuller distribution. This fact motivated 
Kremers et al. (1992), Hansen (1995), and Banerjee, Dolado and Mestre 
(1998) to suggest the addition of variables like !:!J.zt in the test regression 
equation to increase the power of the test for non-cointegration, b = O, or 
for a unit in the univariate context. 

In summary, under structural simultaneous co-breaks, the approach based 
on testing for non-cointegration (tl,) in an error correction model is 
remarkably robust when there is no COMFAC (a =1= 1) and when 02 is large 
relative to o ¡. When a = 1 the power is low for T = 25 and 100 and for 
values -0.5 < b :::; O, but increases when T = 1000. Similar results are 
obtained for a =1= 1 and s = 1. Yet, the power increases with the sample size 
and the size of the breaks, s = 6, 16, see Table 2.1. The problem remains 
when the variables are not co-breaking in levels and/or in differences, and 
the analysis of this question is the main purpose of the following section. 

Monte CarIo simulation experiment: ECM without simultaneous co­
breaking. 
Critical Values of the ECM test. 
Critical values are obtained for different breaks, when we ignore that those 
breaks have occurred and we run the ECM-test on the usual error correction 
equation (2.2a) assuming that Ct is constant (misspecified model). 

Remark 1. Co-breaks in difJerences but not in levels: In this case, under the 
null of b = O there is a constant term, Cd, in the DGp, see equation (2.26), 
and therefore, since in the estimation equations (3.2)-(3.3) there is no trend, 
the t-ratio, tl" has a Normallimiting distribution, see Table 1.2. Notice that 
for T = 1000, the 5 percent C.v. is stable around -1.7, and robust to s, the 
type ofbreak (D¡, D2 , D3 ), and the value ofthe parameter a. 

Remark 2. Co-breaks in levels but not in difJerences: When a = 1 co­
breaking in levels implies co-breaking in differences, and therefore the 
comments made for simultaneous co-break case apply. However, the results 
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change dramatically for other values of a, a i= 1. Under Ho: b = O the 
durnmies, DI, D2 and D3 affect the DGP, see equation (2.28) and therfore 
the C.v.'s are very unstable. For example, when T = 1000, a = 0.5 and D3, 

the c.v. is -5.9 when s = 1, and -23.6 when s = 16. Therefore, this type 
of misspecification creates the most unstable critical values. 

This result complicates testing for cointegration from an empirical point 
of view since we have to generate C. v.'s for every particular break and for 
every particular jump size (s), as well as for any value of a. 

Remark 3. Our comments made on the C.v. remain valid even when we try 
to approximate the misspecification of the break by adding dynamic terms 
to the model, see equation (3.3). This conc1usion based in misspecified 
ECM models make the empirical analysis even more dependable on the use 
of correct C. v.'s, which in fact depend on the particular type of level shift 
that occurred. 

Empirical Size of the ECM test without Simultaneous Co-breaking 
We obtained that the ECM test has wrong empirical size under dynamic 
misspecification, especially when there is no co-break in levels, and not co­
breaking in differences and the parameter of the MA(1) is () = -0.5, see 
Arranz and Escribano (1998b). However, those negative conc1usions are 
tempered when we add dynamic terms because now the size distortion is 
not affected so much be the sign of the MA(1) parameter, (), although it is 
far from the desired level of 5 percent. 

Power of the ECM test without Simultaneous Co-breaking 
Table 2.2 presents the results of the power of the ECM-test (tb) when there 
is only co-breaking in differences but not in levels and we ignore them by 
proceeding as if no breaks occurred in the dynamic ECM model. Similar 
situations could be analyzed by introducing dummy variables for the breaks 
at the wrong unknown date. The results indicate that the ECM-test based on 
an equation that misspecifies the deterministic breaks in leve1s has no power 
for any parameter value analyzed or for any sample sizes considered. 

Higher power of the ECM test is obtained for the altemative extreme 
case. Consider that there is only co-breaking in levels but not in 
differences.6 Then, the size-adjusted power of the test is higher than before, 
but it is sti11low when there is a break for a i= 1 and if -0.5 < b < O, see 
Table 2.3. In this case, the size-adjusted power of the test is highly affected 
by the jump size. The power is reasonably good for parameter values of b 
larger or equal to 0.5 in absolute value. Our conc1usions remain when 
inc1uded extra dynamic terms in our model, see equation (3.3). 

In surnmary, these results are not satisfactory for applied work since we 
are never certain whether there is no cointegration or whether there is 

6Remember that when a = 1 co-breaking in levels implies co-breaking in differences, and that 
is the reason why the power ofthe ECM test improves so much in Table 2.3. 
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TABLE 2: SIZE ADruSTMENT POWER OF TEST 
Estimated model ~Yt = e + a~Zt + h(Yt-l - Zt-l) + Ut· 

Simultaneous cobreaking 

NO D3 

T a b -0.05 -0.1 -0.25 -0.5 -0.75 -0.05 -0.1 -0.25 -0.5 -0.75 

25 0.5 s=l 7.70 10.70 26.05 69.40 95.20 11.20 17.55 43.10 82.10 98.25 
s=6 32.55 64.55 98.60 100.00 100.00 79.65 96.35 99.90 100.00 100.00 
s = 16 83.30 98.70 100.00 100.00 100.00 99.25 100.00 100.00 100.00 100.00 

1.0 s=l 4.65 7.45 14.85 48.05 83.00 6.70 8.90 16.80 50.20 86.00 
s=6 4.90 8.00 14.25 48.45 86.05 5.30 7.70 14.10 48.15 82.60 
s= 16 4.75 7.70 15.80 48.55 84.75 6.10 7.75 16.05 48.55 85.15 

100 0.5 s = 1 18.35 47.45 99.60 100.00 100.00 71.50 95.40 100.00 100.00 100.00 
s=6 95.25 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
s = 16 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

1.0 s = 1 13.90 35.85 97.65 100.00 100.00 12.80 31.55 96.05 100.00 100.00 
s=6 13.40 33.80 97.70 100.00 100.00 12.40 34.15 96.25 100.00 100.00 
s = 16 11.65 31.20 97.45 100.00 100.00 14.05 34.15 97.75 100.00 100.00 

Cobreaking in Differences, not in Levels 

NO D3 

T a b -0.05 -0.1 -0.25 -0.5 -0.75 -0.05 -0.1 -0.25 -0.5 -0.75 

25 0.5 s = 1 4.80 3.55 1.60 1.35 0.95 5.90 7.70 11.20 17.35 28.55 
s=6 28.00 48.50 78.80 87.75 91.60 12/50 22.65 31.50 30.90 26.20 
s = 16 80.20 97.20 100.00 100.00 100.00 32.65 40.05 39.85 34.00 29.85 

1.0 s = 1 3.50 2.60 1.05 0.20 0.05 3.50 2.50 0.60 0.15 0.00 
s=6 6.10 3.80 1.20 0.10 0.10 4.60 3.50 0.35 0.45 0.05 
s = 16 3.85 2.65 1.00 0.20 0.25 4.75 3.30 1.10 0.15 0.10 
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100 0.5 s=l 1.50 1.05 0.20 0.10 0.00 3.70 2.85 1.45 1.75 1.45 
s=6 41.80 50.05 53.75 51.60 48.90 26.90 31.40 29.80 20.00 15.50 
s = 16 99.20 99.75 99.80 99.70 99.80 43.05 41.95 34.55 25.75 18.55 

1.0 s=l 0.75 0.10 0.00 0.00 0.00 1.25 0.20 0.00 0.00 0.00 
s=6 1.20 0.00 0.00 0.00 0.00 1.55 0.05 0.00 0.00 0.00 
s = 16 1.60 0.20 0.00 0.00 0.00 0.85 0.05 0.00 0.00 0.00 

1000 0.5 s=l 0.15 0.20 0.00 0.10 0.00 0.45 0.30 0.10 0.00 0.00 
s=6 39.10 37.55 33.85 23.15 17.40 28.60 28.15 22.35 16.90 10.45 
s = 16 69.50 66.45 61.80 54.55 49.40 39.65 36.65 28.70 19.25 11.70 

1.0 s = 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
s=6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
s = 16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cobreaking in Levels, Not in Differences 

NO D3 

T a b -0.05 -0.1 -0.25 -0.5 -0.75 -0.05 -0.1 -0.25 -0.5 -0.75 

25 0.5 s=l 7.70 10.70 26.05 69.40 95.20 7.80 10.15 20.30 55.90 89.25 
s=6 32.55 64.55 98.60 100.00 100.00 9.25 16.25 35.65 72.80 96.55 
s = 16 83.30 98.70 100.00 100.00 100.00 10.05 16.85 32.95 71.30 97.15 

1.0 s=l 4.65 7.45 14.85 48.05 83.00 6.70 8.90 16.80 50.20 86.00 
s=6 4.90 8.00 14.25 48.85 86.05 5.30 7.70 14.10 48.15 82.60 
s = 16 4.75 7.70 15.80 48.55 84.75 6.10 7.75 16.05 48.55 85.15 

100 0.5 s=l 18.35 47.45 99.60 100.00 100.00 13.75 28.00 85.90 100.00 100.00 
s=6 95.25 100.00 100.00 100.00 100.00 13.40 22.05 52.90 99.60 100.00 
s = 16 100.00 100.00 100.00 100.00 100.00 12.55 18.70 45.80 98.35 100.00 

1.0 s=l 13.90 35.85 97.65 100.00 100.00 12.80 31.55 96.05 100.00 100.00 
s=6 13.40 33.80 97.70 100.00 100.00 12.40 34.15 96.25 100.00 100.00 
s = 16 11.65 31.20 97.45 100.00 100.00 14.05 34.15 97.75 100.00 100.00 

The DGP is generated under HI : b < O, óYt = Ct + aÓzt + b(Yt-1 - Zt-I) + UI,t, Ct = Ófly,t - aÓflz,t - b(fly,t-I - flz,t-d, óZt = sDj , + U2,t, where ar = 
var(uI,t) = 1, and aª = var(u2,t) = s2 
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cointegration but without co-breaking in levels or in differences. Since the 
critical values and the size-adjusted power of the ECM-test depend on the 
type of structural break considered, there are many possible alternative 
combintions of breaks that could change completely the results on coin­
tegration testing. In the following section we analyze whether this problem 
could be solved or reduced by using extended ECM models. 

IV EXTENDED ERROR CORRECTION MODELS 

This section extends the implications of Toda and Yamamoto (1995) and 
Dolado and Lutkepohl (1996). They suggested to add an extra lag of the 
error correction term in order to get standard inference results even with 
nonstationary variables. In model (3.2), we just have to inc1ude an extra lag 
of the error correction term in the regression to obtain the following 
extended ECM model, 

~Yt = e + a~Zt + b(Yt-l - aZt-l) + d(Yt-2 - aZt-2) + Ut. (4.1) 

The t-ratio ofthe parameter b in (4.1), tb does not converge to the limiting 
distribution given in (2.16) or (2.17) but to the standard Normal distribution. 
This result not only simplifies the empirical work but also reduces, as we 
will see in this section, the unstability of the critical values due to structural 
breaks. 

The intuition is the following. Consider the error correction model intro­
duced in equations (2.2a) (2.2c) and compare the formulation with equation 
(4.1). Both are equivalent if the following condition is satisfied 

(4.2) 

or if 

~Py,t - a~pz,t - b(¡ty,t-l - apz,t-l) = e + d(Yt-2 - aZt-2). (4.3) 

In general, this condition is not satisfied when there is no co-break in 
levels neither in differences. However, in the case of co-break in differences 
(not in levels), the term (Yt-2 - aZt-2) will also have a break in levels that 
will approximate the ornmited term (¡ty,t-l - apz,t-¡). That is, 

(¡ty,t-l - -aflz,t-l) ~ e + d(Yt-2 - aZt-2). (4.4) 

On the other hand, if there is co-break in levels (not in differences), the 
term (Yt-2 - aZt-2) has a break that can approximate the effect of 
(~fly,t - a~flz,t). Therefore, 

~fly,t - a~flz,t ~ e + d(Yt-2 - aZt-2). (4.5) 

When there are extra dynamic regressors in the overparameterized model, 
as in (3.3), the extended equation ofthe ECM test becomes 
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cjJ(B)!:l.Yt = e + O(B)!:l.Zt + b(Yt_¡ - aZt-¡) + d(Yt-k-2 - aZt-k-2) + Ut, 

(4.6) 

where the polynomials in B, cjJ(B) and O(B) are 

2 * <P(B) = 1 - cjJ¡B - cjJ2B - ... - cjJp*BP 

O(B) = a - (hB - 02B2 - ... - Oq*Bq* 

and where k = max {p*, q*} is selected by using the SBIC selection 
criterion. 

In this section we analyze the behavior of the critical values and the 
power of the ECM test (tb) with and without simultaneous co-breaking 
when using the extended ECM mode1s, of equation (4.1) and (4.6). 

As can be seen from Table 3, when we estimate Model (4.1), we get very 
stable critical values in aH three co-breaking cases analyzed. It is important 
to notice that the critical values are not close to those obtained by Dickey 
and FuHer, but close to -1.8, which is similar to the Gaussian 5 percent 
critical value. The largest difference is found in the case of co-break in 
levels but not in differences, where critical values range from -1.67 to 
-2.5. 

As usual, the critical values of Table 3 depend on the sample size. Only 
for sample size T = 25 and T = 100 the C. v.'s increase in absolute value 
when the common factor restriction holds (a = 1). For example, for 
T = 100, a = 0.5, s = 16, and D3, the critical values is -1.7 and when 
a = 1 critical value is -2.04. 

In summary, for reasonable sample sizes (T > 100) we could use standard 
N(O, 1) critical values for any value ofthe parameter a, for any jump size 
(s), and for any type of segmented trend (D¡, J)z, D3). We think that this is 
a very use fuI (robust) result for applied econometricians. Furthermore the 
power of the test is very good in aH the three cases analyzed: simultaneous 
co-breaking, co-breaking in differences but not in levels, and co-breaking in 
levels but not in differences. 

Remark 1. As expected, in the situation when there is no co-break in 
differences nor in levels the extended ECM model is not robust to structural 
changes. But even in this extreme case, the extended error correction critical 
values are more robust than those obtained with the usual error correction 
model. 

Remark 2. The behaviour of the test when we include extra dynamic terms 
in the estimated model by means of the SBIC criterion is similar in terms of 
the critical values. However, the size-adjusted power of the test is reduced, 
especiaHy in the case of co-breaks in differences but not in leve1s, see 
Arranz and Escribano (1998b). 
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TABLE 3: CRITICAL VALUES OF t(h) 
A A 

Estimated model'ó'Yt = e + a'ó'Zt + b(Yt-1 - Zt-l)d(Yt-2 - Zt-2) + Ut· 

Simultaneous Cobreaking (Ct = O). 

a=O a = 0.5 a=1 

T DUM s=1 s=6 s = 16 s=1 s=6 s = 16 s=1 s=6 s = 16 

25 NO -2.500 -1.869 -1.806 -2.425 -2.076 -1.787 -2.614 -2.661 -2.635 
DI -1.953 -1.731 -1.703 -2.372 -1.814 -1.764 -2.658 -2.698 -2.607 
D2 -1.948 -1.792 -1.761 -2.187 -1.796 -1.782 -2.594 -2.599 -2.517 
D; -2.000 -1.877 -1.735 -2.190 -1.797 -1.734 -2.660 -2.566 -2.719 

100 NO -2.006 -1.737 -1.582 -2.094 -1.800 -1.729 -2.133 -2.057 -2.107 
DI -1.796 -1.722 -1.727 -1.783 -1.623 -1.603 -2.105 -2.114 -2.150 
D2 -1.737 -1.620 -1.704 -1.757 -1.735 -1.730 -2.069 -2.100 -2.069 
D; -1.704 -1.722 -1.762 -1.823 -1.701 -1.697 -2.162 -2.063 -2.046 

1000 NO -1.691 -1.672 -1.636 -1.871 -1.704 -1.757 -1.733 -1.673 -1.838 
DI -1.696 -1.664 -1.720 -1.701 -1.574 -1.672 -1.813 -1.749 -1.777 
D2 -1.650 -1.624 -1.557 -1.735 -1.619 -1.675 -1.809 -1.822 -1.739 
D3 -1.796 -1.608 -1.634 -1.727 -1.673 -1.637 -1.834 -1.810 -1.827 

Cobreaking in differences, not cobreaking in levels ('ó'{ly,t - a'ó'{lz,t = 0.5). 

a=O a = 0.5 a=1 

T DUM s=1 s=6 s = 16 s=1 s=6 s = 16 s=1 s=6 s = 16 

25 NO -2.230 -1.843 -1.817 -2.215 -1.993 -1.775 -2.113 -2.187 -2.119 
DI -2.173 -1.726 -1.705 -2.670 -1.829 -1.762 -2.217 -2.121 -2.121 
D2 -2.135 -1.790 -1.762 -2.347 -1.799 -1.806 -2.176 -2.112 -2.043 
D; -2.135 -1.881 -1.735 -2.386 -1.787 -1.735 -2.203 -2.205 -2.342 
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100 NO -1.848 -1.752 -1.584 -1.855 -1.787 -1.731 -1.848 -1.776 -1.830 
DI -1.810 -1.726 -1.723 -2.064 -1.628 -1.598 -1.831 -1.857 -1.808 
Dz -1.787 -1.620 -1.700 -1.936 -1.732 -1.725 -1.830 -1.826 -1.799 
D3 -1.715 -1.726 -1.764 -1.873 -1.711 -1.700 -1.873 -1.810 -1.780 

1000 NO -1.639 -1.669 -1.625 -1.785 -1.707 -1.728 -1.670 -1.659 -1.742 
DI -1.682 -1.662 -1.722 -1.774 -1.570 -1.672 -1.764 -1.664 -1.686 
D2 -1.673 -1.635 -1.558 -1.784 -1.609 -1.670 -1.715 -1.737 -1.677 
D3 -1.778 -1.608 -1.634 -1.734 -1.672 -1.635 -1.756 -1.665 -1.748 

Cobreaking in leve/s, not cobreaking in differences (¡.iy,t - f-tz,t = 0.5). 

a=O a = 0.5 a=1 

T DUM s=1 s=6 s = 16 s=1 s=6 s = 16 s=1 s=6 s = 16 

25 NO -2.500 -1.869 -1.806 -2.425 -2.076 -1.787 -2.614 -2.661 -2.635 
DI -2.474 -2.716 -2.852 -2.695 -2.470 -2.784 -2.658 -2.698 -2.607 
Dz -2.535 -3.054 -2.380 -2.582 -2.770 -3.080 -2.594 -2.599 -2.517 
D3 -2.555 -2.801 -2.873 -2.537 -2.602 -2.737 -2.660 -2.566 -2.719 

100 NO -2.006 -1.737 -1.582 -2.094 -1.800 -1.729 -2.133 -2.057 -2.107 
DI -2.165 -2.397 -2.519 -2.112 -2.181 -2.453 -2.105 -2.114 -2.150 
Dz -2.081 -2.625 -2.849 -2.198 -2.373 -2.602 -2.069 -2.100 -2.069 
D3 -2.045 -2.402 -2.403 -2.081 -2.250 -2.371 -2.162 -2.063 -2.046 

1000 NO -1.691 -1.672 -1.636 -1.871 -1.704 -1.757 -1.733 -1.673 -1.838 
DI -1.826 -2.225 -2.412 -1.792 -2.133 -2.363 -1.813 -1.749 -1.777 
Dz -1.907 -2.388 -2.510 -1.912 -2.169 -2.591 -1.809 -1.822 -1.739 
D3 -1.819 -2.112 -2.297 -1.789 -2.059 -2.088 -1.834 -1.810 -1.827 

The DGP is generated under Ho : ~YI = C, + a~zl + Ul" ~, = sDj , + U2" where C, = ~fly,1 - a~flz,t, a¡ = var(ul,) = 1, and a~ = var(u2,) = S2. 
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TABLE 4: SIZE ADruSTMENT POWER OF THE TEST. 

Estimated model ~Yt = e + a~Zt + h(Yt-l - Zt-l)d(Yt-2 - Zt-2) + Ut· 

Simultaneous cobreaking 

NO D3 

T a b -0.05 -0.1 -0.25 -0.5 -0.75 -0.05 -0.1 -0.25 -0.5 -0.75 

25 0.5 s=l 7.25 9.95 22.15 62.50 92.75 9.80 12.05 30.95 73.45 97.15 
s=6 12.60 29.90 91.60 100.00 100.00 20.70 46.25 96.50 100.00 100.00 
s = 16 50.85 93.25 100.00 100.00 100.00 62.10 97.15 100.00 100.00 100.00 

1.0 s=l 5.80 7.80 15.85 48.75 81.30 6.00 7.60 15.70 46.15 82.90 
s=6 4.05 6.65 13.35 45.50 82.35 6.40 9.20 16.60 52.40 84.60 
s = 16 5.05 6.55 14.35 45.60 82.20 4.40 5.35 14.25 42.95 81.50 

100 0.5 s = 1 9.45 21.65 78.25 99.95 100.00 13.55 29.35 86.65 100.00 100.00 
s=6 43.50 90.70 100.00 100.00 100.00 50.75 94.00 100.00 100.00 100.00 
s = 16 98.25 100.00 100.00 100.00 100.00 99.50 100.00 100.00 100.00 100.00 

1.0 s = 1 8.80 16.90 67.85 99.90 100.00 9.60 17.60 68.40 99.80 100.00 
s=6 9.95 19.10 70.20 99.85 100.00 10.10 20.75 70.95 99.75 100.00 
s = 16 8.45 17.30 68.45 100.00 100.00 10.75 20.20 72.75 99.85 100.0 

Cobreaking in Differences, Not in Levels 

NO D3 

T a b -0.05 -0.1 -0.25 -0.5 -0.75 -0.05 -0.1 -0.25 -0.5 -0.75 

25 0.5 s = 1 4.75 5.20 6.95 19.10 44.05 6.30 7.60 14.35 31.80 59.50 
s=6 12.80 24.40 67.70 93.25 99.05 10.25 17.45 42.20 74.25 90.90 
s = 16 49.50 89.70 100.00 100.00 100.00 23.80 43.50 67.15 86.75 95.30 

1.0 s = 1 5.30 6.25 7.30 17.85 39.25 5.00 4.80 7.50 16.45 34.15 
s=6 4.65 4.75 6.55 16.30 34.80 4.90 4.60 6.40 15.55 35.25 
s = 16 6.20 5.40 7.35 17.95 37.25 3.15 3.05 5.55 12.60 30.80 
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100 0.5 s = 1 6.45 9.65 28.95 84.20 99.65 8.05 11.65 34.00 84.25 99.60 
s=6 19.45 40.15 94.00 100.00 100.00 20.00 38.05 84.70 99.75 100.00 
s = 16 88.00 99.70 100.00 100.00 100.00 48.55 67.85 93.75 99.95 100.00 

1.0 s=l 5.70 8.20 26.30 74.55 99.10 5.85 8.70 26.50 75.00 99.20 
s=6 6.45 9.65 28.50 78.95 99.05 6.45 9.70 26.65 76.55 98.65 
s = 16 5.70 8.60 24.80 75.60 98.95 7.30 10.20 29.40 79.40 99.45 

Cobreaking in Levels, Not in Differences 

NO DJ 

T a b -0.05 -0.1 -0.25 -0.5 -0.75 -0.05 -0.1 -0.25 -0.5 -0.75 

25 0.5 s = 1 7.25 9.95 22.15 62.50 92.75 8.10 9.15 19.80 56.95 90.60 
s=6 12.60 29.90 91.60 100.00 100.00 9.25 15.70 42.65 90.30 99.65 
s = 16 50.85 93.35 100.00 100.00 100.00 11.10 17.75 44.70 94.50 100.00 

1.0 s = 1 5.80 7.80 15.85 48.75 81.30 6.00 7.60 15.70 46.15 82.90 
s=6 4.05 6.65 13.35 45.50 82.35 6.40 9.20 16.60 52.40 84.60 
s = 16 5.05 6.55 14.35 45.60 82.20 4.40 5.35 14.25 42.95 81.50 

100 0.5 s = 1 9.45 21.65 78.25 99.95 100.00 10.70 21.90 78.55 99.95 100.00 
s=6 43.50 90.70 100.00 100.00 100.00 17.55 41.10 98.95 100.00 100.00 
s = 16 98.25 100.00 100.00 100.00 100.00 19.75 44.15 100.00 100.00 100.00 

1.0 s = 1 8.80 16.90 67.85 99.90 100.00 9.60 17.60 68.40 99.80 100.00 
s=6 9.95 19.10 70.20 99.85 100.00 10.10 20.75 70.95 99.75 100.00 
s = 16 8.45 17.30 68.45 100.00 100.00 10.75 20.20 72.25 99.85 100.00 

The DGP is generated under Hl : b < 0, ~Yt = et + a~Zt + b(Yt-l - Zt-l) + Ult, et = ~Ilz,t - a~llz,t - b{fly,t-l -Ilz,t-l), ~Zt = sDj , + U2,t, where a~ = 
var(ul,t) = 1, anda~ = var(u2,t) = s2. 



26

We tried sorne other specifications, such as 

cjJ(B)!:l.Yt = e + (}(B)!:l.Zt + b(Yt-1 - Zt-I) + d(Yt-2 - Zt-2) + Ut 

cjJ(B)!:l.Yt = e + a!:l.Zt + (}(B)(Yt-1 - Zt-I) + Ut 

!:l.Yt = e + (}(B)!:l.Zt + cjJ(B)(Yt-1 - Zt-I) + Ut 

but we did not get better results. Therefore, with overparameterized models 
like (4.6), we found that there is a trade-offbetween critical values stability 
and power of the test. 

Final remark. We also analyzed the ECM model of the trend components 
of Yt, and Zt, where the trend components were obtained by applying the 
Hodrick and Prescott (1980, 1997), and the Baxter and King (1995) filters. 
The experimental results are similar to the ones obtained with the observed 
series, but the power of the test is lower, see Arranz and Escribano (1998b). 

V CONCLUSIONS 

We have analyzed the effects of different structural breaks on the ECM test 
for non-cointegration when no dummy variables are included in the model. 
It is well known that critical values (C.Y.) depend on the type of break and 
other nuisance parameters (constant, trends, etc.). In particular, we have 
analyzed the dependence of the critical values on the different timing of the 
break, (DI, D2), different sizes ofthe break, (s = 1,6,16), and even allow 
for the possibility of having two breaks (D3) on the first difference of the 
mean (segmented trends in levels). 

The fact that critical values depend on nuisance parameters and that the 
usual ECM test has very low power under misspecification of the co-breaks 
in the level of the series, opens the possibility of improving the robustness 
of the results by using extended ECM models. The most simple extended 
model is the one that adds an extra lag ofthe ECM term, (Yt-2 - aZt-2), to 
the usual error correction model. Our Monte Carlo experiments show that 
the critical values ofthe extended ECM test are very stable (robust), follow 
a standard distribution and, when no extra dynamic terms are included, the 
power of the extended ECM test is excellent under any partial co-breaking 
circumstances. Clearly those results are not robust when there is no co­
breaks in levels nor in differences either. Therefore, extended ECM models 
represent a simple robust testing technique in the presence of structural co­
breaks. 

Universidad Carlos JI! de Madrid 
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APPENDIX A. CO-BREAKS IN LEVELS AND DIFFERENCES 

Consider the DGP given by (2.2a)-(2.2c). There are four cases of interest 

1. 8fly,t - a8flz,t = Cd and fly,t - aflz,t-l i- constant, co-break in dif­
ferences. 

2. 8fly,t - a8flz,t i- constant and fly,t-l - aflz,t-l = cl, co-break in 
levels. 

3. 8fly,t - a8flz,t i- constant and fly,t-l - aflz,t-l i- constant, no co­
break. 

4. 8fly,t - a8flz,t = Cd and fly,t-l - aflz,t-l = cl, co-break in levels and 
differences. 

Remark 1. When the slopes of the deterministic trends are constant, say 
8flz = gz and 8fly = gy, then 

fly,t-l - aflz,t-l = fl~ - afl~ + (gy - agz)(t - 1) 

Ct = (gy - agz) - b(fl~ - afl~) - b(gy - agz)(t - 1) 

(A. la) 

(A.lb) 

For co-breaking in levels, the necessary condition is gy - agz = O, but 
that implies that 8fly,t - a8flz,t - (a - a)gz, which is constant, and the co­
break in differences condition is met. Therefore, in the case of constant 
slopes of the trend (no breaks), co-break in leve1s implies co-break in 
differences. 

On the other hand, in the case of co-break in differences, it must be 
8fly,t - a8flz,t = gy - agz = Cd and hence 

fly,t-l - aflz,t-l = fly,o - aflz,o + Cd(t - 1) + gz(a - a)(t - 1). 

Thus, co-break in differences implies co-break in leve1s only when Cd = O 
and a = a (COMFAC restriction). 

Remark 2. Assume that there is a break, so that 8flz,t = gz + szDt and 
8fly = gy + SyDt, then 

fly,t-l - aflz,t-l = fl~ - afl~ + (gy - agz)(t - 1) 

+ (Sy - asz)(t - 1 - tl)Dt- 1 (A.2a) 

Ct = (gy - agz) + (Sy - asz)Dt - b(fl~ - afl~) 

- b(gy - agz)(t - 1) - b(sy - aSz)(t - 1 - tl)Dt-l 

(A.2b) 

The necessary conditions to have co-breaks m differences are g y -

agz = Cd and Sy - asz = O. In that case 
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fly,t-l - aflz,t-l = fl~ - afl~ + Cd(t - 1) + (a - a)gz(t - 1) 

+ (a - a)sz(t - 1 - tl)Dt- 1 

and co-breaks in differences implies co-break in levels only when a = a 
(COMFAC restriction) and Cd = O. 

Conversely, the necessary conditions to have co-breaks in levels, from 
equation (A.2a), are gy - agz = O and Sy - asz = O. Therefore, when 
a = a, these conditions are the ones required for co-break in differences 
taking Cd = O. In effect, under co-breaks in levels 

/').fly,t - a/').flz,t = (a - a)gz + (a - a)szDt, 

and in the case that a = a (COMFAC restriction), there would be co-break 
in differences too. 
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