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Abstract The Leland strategy of approximate hedging of the call-option un-
der proportional transaction costs prescribes to use, at equidistant instants
of portfolio revisions, the classical Black–Scholes formula but with a suitably
enlarged volatility. An appropriate mathematical framework is a scheme of
series, i.e. a sequence of models Mn with the transaction costs coefficients kn

depending on n, the number of the revision intervals. The enlarged volatility
σ̂n, in general, also depends on n. Lott investigated in detail the particular
case where the transaction costs coefficients decrease as n−1/2 and where the
Leland formula yields σ̂n not depending on n. He proved that the terminal
value of the portfolio converges in probability to the pay-off g(ST ) where
G(x) = (x − K)+. In the present note we consider the case of much more
general convex piecewise smooth pay-off functions G. We show that the con-
vergence holds also in L2 and find the first order term of asymptotics for the
mean square error. We are working in the setting with non-uniform revision
intervals and establish the asymptotic expansion when the revision dates are
tni = g(i/n) where the strictly increasing scale function g : [0, 1] → [0, 1] and
its inverse f are continuous with their first and second derivatives on the
whole interval or g(t) = 1− (1− t)β , β ≥ 1.
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1 Introduction

1. Formulation of the main result. To fix the notation we consider the
classical Black–Scholes model, already under the martingale measure and
with the maturity T = 1. So, let S = (St), t ∈ [0, 1], be a geometric Brownian
motion given by the formula

St = S0e
σWt− 1

2 σ2t

and satisfying the linear equation

dSt = σStdWt

with a standard Wiener process W and a strictly positive constants S0, σ.
The problem is to hedge an option with the pay-off G(S1) where G is a
continuous (or even Borel) function of polynomial growth. Its solution is the
following. Let

C(t, x) = EG(xeξσ
√

1−t− 1
2 σ2(1−t)), t ∈ [0, 1], x > 0,

where ξ ∼ N(0, 1). Then C(t, x) = C(t, x, σ) is the solution, in the domain
[0, 1]×]0,∞[, of the Cauchy problem

Ct(t, x) +
1
2
σ2x2Cxx(t, x) = 0, C(1, x) = G(x). (1.1)

In the particular case, where G(x) = (x − K)+, K > 0, the function
C(t, x) admits an explicit expression and this is the famous Black–Scholes
formula:

C(t, x) = C(t, x, σ) = xΦ(d)−KΦ(d− σ
√

1− t), t < 1, (1.2)

where Φ is the Gaussian distribution function with the density ϕ,

d = d(t, x) = d(t, x, σ) =
1

σ
√

1− t
ln

x

K
+

1
2
σ
√

1− t. (1.3)

Define the process

Vt = C(0, S0) +
∫ t

0

Cx(u, Su)dSu. (1.4)

In the Ito formula for C(t, St) the integral over dt vanishes and, therefore,
Vt = C(t, St) for all t ∈ [0, 1]. In particular, V1 = G(S1): at maturity the
value process V replicates the terminal pay-off of the option.

Modelling assumptions of the above formulation are, between others: fric-
tionless market and continuous trading. The latter is a purely theoretical
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invention. Practically, an investor revises the portfolio at certain dates ti and
keeps Cx(ti, Sti) units of the stock until the next revision date ti+1. The
model becomes more realistic if the transactions are charged proportionally
to their volume. The portfolio strategy suggested by Leland [6] for asymptotic
hedging of the call option generates the value process

V n
t = Ĉ(0, S0)+

∫ t

0

n∑

i=1

Hn
ti−1

I]ti−1,ti](u)dSu−
∑
ti<t

knSti |Hn
ti
−Hn

ti−1
|, (1.5)

where Hn
ti

= Ĉx(ti, Sti
), ti = i/n, the positive parameter kn = k0n

−1/2 is
the transaction costs coefficient, and Ĉ(t, x) is the solution of (1.1) with σ
replaced by σ̂ > 0 such that

σ̂2 = σ2 + σk0

√
8/π. (1.6)

That is Ĉ(t, x) = C(t, x, σ̂) and for such a strategy there is no need in a new
software: traders can use their old one, changing only one input parameter,
the volatility.

In his paper Leland studied the call option and claimed, without providing
arguments, that V n

1 converges to V1 = (S1 −K)+ in probability as n →∞.
This assertion was proven by Lott in his thesis [8] and we believe that the
result could be referred to as the Leland–Lott theorem. In fact, V n

1 converges
also in L2 and the following statement gives the rate of convergence:

Theorem 1.1 The mean square approximation error of the Leland–Lott strat-
egy for hedging the European call option with equidistant revision dates has
the following asymptotics:

E(V n
1 − V1)2 = A1n

−1 + o(n−1), n →∞, (1.7)

where the coefficient

A1 =
∫ 1

0

[
σ4

2
+ σ3k0

√
2
π

+ k2
0σ

2

(
1− 2

π

)]
Λtdt (1.8)

with Λt = ES4
t Ĉ2

xx(t, St). Explicitly,

Λt =
K2

2πσ̂
√

1− t
√

2σ2t + σ̂2(1− t)
exp

{
−

(
ln S0

K − 1
2σ2t− 1

2 σ̂2(1− t)
)2

2σ2t + σ̂2(1− t)

}
.

(1.9)

Following [3] we consider a slightly more general hedging strategy with a
non-uniform revision grid defined by a smooth transformation of the uniform
one.

Let f be a strictly increasing differentiable function on [0, 1] such that
f(0) = 0, f(1) = 1 and let g := f−1 denote its inverse. For each fixed n we
define the revision dates ti = tni = g(i/n), 1, ..., n. The enlarged volatility
now depends on t and is given by the formula

σ̂2
t = σ2 + σk0

√
8/π

√
f ′(t). (1.10)
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The pricing function

Ĉ(t, x) = E(xeξρt− 1
2 ρ2

t −K)+, t ∈ [0, 1], x > 0,

where

ρ2
t =

∫ 1

t

σ̂2
sds

admits the explicit expression

Ĉ(t, x) = xΦ(ρ−1
t ln(x/K) + ρt/2)−KΦ(ρ−1

t ln(x/K)− ρt/2), t < 1.

The function ρt decreases from ρ0 to 0. The following bounds are obvious:

σ2(1− t) ≤ ρ2
t ≤ σ2(1− t) + σk0

√
8/π(1− t)1/2(1− f(t))1/2.

Assumption 1: g, f ∈ C2([0, 1]).
Assumption 2: g(t) = 1− (1− t)β , β ≥ 1.

Note that in the second case where f(t) = 1− (1− t)1/β the derivative f ′

for β > 1 explodes at the maturity date and so does the enlarged volatility.
The notation C2([0, 1]) is used for the function which are continuous with
their two derivatives on the closed interval [0, 1].

Theorem 1.2 Under any of the above assumptions the mean square approx-
imation error for hedging the European call option has the following asymp-
totics:

E(V n
1 − V1)2 = A1(f)n−1 + o(n−1), n →∞, (1.11)

where the coefficient

A1(f) =
∫ 1

0

[
σ4

2
1

f ′(t)
+ k0σ

3

√
2
π

1√
f ′(t)

+ k2
0σ

2

(
1− 2

π

)]
Λtdt, (1.12)

with Λt = ES4
t Ĉ2

xx(t, St). Explicitly,

Λt =
1

2πρt

K2

√
2σ2t + ρ2

t

exp

{
−

(
ln S0

K − 1
2σ2t− 1

2ρ2
t

)2

2σ2t + ρ2
t

}
. (1.13)

The case f(t) = t corresponds to the model with the uniform grid and
A1 = A1(f).

We formulated Theorems 1.1 and 1.3 for convenience of references. The
main result of this note is more general. It covers not only models with non-
uniform grids but also models with pay-off functions satisfying the following
Assumption 3: G : R+ → R is a convex function such that G|Ij ∈ C2(Ij),
where the intervals Ij := [Kj−1,Kj ], j = 1, ..., N , IN+1 := [KN ,∞[ with
0 = K0 < K1 < ... < KN < ∞, and G′′(x) ≤ κ(1 + xm) for some constants
m,M > 0.
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The pricing function

Ĉ(t, x) = EG(xeξρt− 1
2 ρ2

t ), t ∈ [0, 1], x > 0, (1.14)

solves the Cauchy problem

Ĉt(t, x) +
1
2
σ̂2

t x2Ĉxx(t, x) = 0, Ĉ(1, x) = G(x). (1.15)

Theorem 1.3 Suppose that for the scale function one of the Assumptions 1
or 2 is fulfilled and the pay-off function satisfies Assumption 3. Then

E(V n
1 − V1)2 = A1(f)n−1 + o(n−1), n →∞, (1.16)

where A1(f) is given by the formula (1.12) with Λt = ES4
t Ĉ2

xx(t, St).

The above result makes plausible the conjecture that the normalized dif-
ference n1/2(V n

1 − V1) converges in law. Indeed, this is the case, see [4].
2. A point on the Grannan–Swindle paper. The Leland method

based on the Black–Scholes formula is amongst a few practical recipes how to
price options under transaction costs. It has an advantage to rely upon well-
known and well-understood formulae from the theory of frictionless markets.
The method gave rise to a variety of other schemes. Of course, the precision
of the resulting approximate hedging is an important issue, see [5], [2], [9],
[11] and a survey [12] for related development.

The idea to parameterize the non-uniform grids by increasing functions
and consider the family of strategies with the enlarged volatilities given by
(1.10) is due to Grannan and Swindle, [3]. The mentioned paper claims that
the asymptotics (1.16) holds for a general option with the pay-off of the
form G(S1). In such a case the function Ĉ(t, x) is the solution of the Cauchy
problem

Ĉt(t, x) +
1
2
σ̂2

t x2Ĉxx(t, x) = 0, Ĉ(1, x) = G(x).

To our opinion, the formulations and arguments given in [3] are not satisfac-
tory. In particular, the hypothesis that for any nonnegative integers m,n, p

||Ĉ||m,n,p = sup
x>0, t∈[0,1]

[
xm ∂n+pĈ(t, x)

∂xn∂tp

]
< ∞

is not fulfilled for the call-option with G(x) = (x−K)+ (even for the uniform
grid): explicit formulae show that derivatives of Ĉ(t, x) have singularities at
the point (1, K). So, the mathematical results of the original paper [3] do
not cover practically interesting cases. Nevertheless, the formula for A1(f) is
used in numerical analysis of the approximate hedging error of call-options.
Note also that the authors of [3] do not care about the eventual divergence
of the integral (1.12) due to singularities of 1/f ′ which are not excluded
by their assumptions. Neglecting the singularities may lead to an erroneous
answer (recall the unfortunate error in Leland’s paper corrected in [5] and
which numerical aspects were discussed in [13], [14], [7]). That is why we
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are looking here for a rigorous proof to built a platform for further studies.
The asymptotic analysis happens to be more involved comparatively with the
arguments in [3]. Note that our assumption includes the case of the classical
call-option.

The paper [3] contains another interesting idea: to minimize the functional
A1(f) with respect to the scale f in a hope to improve the performance of
the strategy by an appropriate choice of the revision dates1. We alert the
reader that the reduction to a classical variational problem is not correct as
well as the derived Euler–Lagrange equation. That is why the whole paper
[3] can be considered only as one giving useful heuristics but leaving open
mathematical problems of practical importance.

3. Structure of the proof. The proof of Theorem 1.3 requires some
preliminary work. In Section 2 we consider the process V n

s − Ĉ(s, Ss) which
can be interpreted as a running deviation of the approximating portfolio
process from the ”theoretical“ option price in the presence of transaction
costs and which terminal value is the hedging error. We extract from this
process a principal part which is the sum of two martingales M1n and M2n

of a particular simple structure and a residual part split for convenience
into sum of two processes R1n and R2n. To prove the theorem it is suffi-
cient to show that

√
n||M1n

1 + M2n
1 − A1(f)||L2(Ω) → 0 (Proposition 2.2)

and
√

n||Rjn
1 ||L2(Ω) → 0 as n → ∞. However, having in mind applications

to limit theorems for the residual we announce in Propositions 2.3 and 2.4
stronger results, namely, that

√
n|| sups Rjn

s ||L2(Ω) → 0. Proofs of these three
propositions are given in Sections 5–7. Section 3 is devoted to derivation of
estimates of partial derivatives of Ĉ(t, x). Some auxiliary results are recalled
in Section 4. The concluding Section 8 contains estimates of some Gaussian
functionals.

We use the French-style terminology: ”positive“ – ”strictly positive“; κ
stands for a constant which value is of no importance.

2 Preparatory Manipulations

First of all, we represent the deviation of the approximating portfolio from
the pay-off in an integral form which is instructive how to proceed further.

In the sequel we need to define a number of stochastic processes. Since the
terminal date plays a particular role (we do not include the final transaction),
they will be defined on the interval [0, 1[ with an extension by continuity to its
right extremity. With such a convention the identity in the following lemma
holds also for s = 1.
Lemma 2.1 We have the representation V n

s − V̂s = F 1n
s + F 2n

s , s ∈ [0, 1[,
where V̂s = Ĉ(s, Ss),

F 1n
s := σ

∫ s

0

St

n∑

i=1

(Ĉx(ti−1, Sti−1)− Ĉx(t, St))I[ti−1,ti[(t)dWt,

1 Even in the frictionless case the choice of an optimal scale to minimize the
hedging error is an important and nontrivial problem, especially, for irregular pay-
off functions, see, e.g., [1] and references wherein.
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F 2n
s := k0

√
2
π

σ

∫ s

0

S2
t Ĉxx(t, St)

√
f ′(t)dt− k0√

n

∑

ti≤s

|∆Ĉx(ti)|Sti
,

with the abbreviation ∆Ĉx(ti) := Ĉx(ti, Sti
)− Ĉx(ti−1, Sti−1).

Proof. Using the expression (1.5) and applying the Ito formula to the incre-
ment Ĉ(0, S0)− Ĉ(s, Ss) we get that the difference V n

s − V̂s is equal to

F 1n
s −

∫ s

0

(
Ĉt(t, St) +

1
2
σ2S2

t Ĉxx(t, St)
)
dt− k0√

n

∑

ti≤s

|∆Ĉx(ti).|Sti

Since Ĉ(t, x) solves the Cauchy problem (1.15), the integrand above is equal
to (1/2)(σ2 − σ̂2

t )S2
t Ĉxx(t, St). We conclude by substituting the expression

(1.10) for σ̂2
t . 2

Put (for s ∈ [0, 1[)

M1n
s :=

1
2
σ2

∑

ti≤s

Ĉxx(ti−1, Sti−1)S
2
ti−1

[
∆ti − (∆Wti)

2
]
,

M2n
s := σ

k0√
n

∑

ti≤s

Ĉxx(ti−1, Sti−1)S
2
ti−1

[√
2/π

√
∆ti − |∆Wti |

]

where ∆ti := ti − ti−1 and ∆Wti := Wti −Wti−1 .
We introduce also two residual processes Rjn

s := F jn
s −M jn

s , j = 1, 2.
Since V̂1 = G(S1), Theorem 1.3 follows from the following two assertions:

Proposition 2.2 nE(M1n
1 + M2n

1 −A1(f))2 → 0 as n →∞.

Proposition 2.3 nE sups≤1(R1n
s )2 → 0 as n →∞.

Proposition 2.4 nE sups≤1(R2n
s )2 → 0 as n →∞.

Remark. In fact, to prove the theorem, it would be sufficient to show that
nE(Rjn

1 )2 → 0. However, the stronger property claimed above happens to be
useful in a study of more delicate results on the asymptotic behavior of the
hedging error.

For a process X = (Xt) we denote by X∗ its maximal process. That is
X∗

t = supu≤t |Xu|. In this (standard) notation the claims of Propositions 2.3
and 2.4 can be written as n1/2||Rjn∗

1 ||L2(Ω) → 0, j = 1, 2.

Note that the sum in the expression for Fn2
1 = Fn2

1− does not include the
term with i = n. Having in mind singularities of derivatives at the maturity,
it is convenient to isolate the last summands also in other sums and treat
them separately.

Now we analyze the expressions for F 1n
s and F 1n

s by applying the Taylor
expansion of the first order to the differences Ĉx(ti−1, Sti−1)− Ĉx(t, St) and
Ĉx(ti, Sti) − Ĉx(ti−1, Sti−1) at the point (ti−1, Sti−1). A short inspection of
the resulting formulae using the helpful heuristics ∆St ≈ σSt∆Wt ≈ σSt

√
dt
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reveals that the main contributions in the first order Taylor approximations
of increments originate from the derivatives of Ĉx(t, x) in x. That is the
principal terms of asymptotics are

P 1n
s := σ

Z s

0

n−1X
i=1

bCxx(ti−1, Sti−1)S
2
ti−1(1− St/Sti−1)St/Sti−1I[ti−1,ti[(t)dWt,

P 2n
s := k0

X

ti≤s

bCxx(ti−1, Sti−1)S
2
ti−1

»
σ
p

2/π
p

f ′(ti−1)∆ti − |Sti/Sti−1 − 1|/√n

–
,

where s ∈ [0, 1[.
We write the first residual term R1n

s = (P 1n
s −M1n

s )+(F 1n
s −P 1n

s ) in the
following form:

R1n
s :=

(
R1Mn

s + R1nn
s −R1tn

s − (1/2)R̃1n
s

)
σ, (2.1)

where

R1Mn
s := (P 1n

s −M1n
s )/σ,

R1nn
s := I[tn−1,tn](s)

∫ s

tn−1

(Ĉx(tn−1, Stn−1)− Ĉx(t, St))StdWt,

R1tn
s :=

∫ s

0

n−1∑

i=1

Ĉxt(ti−1, Sti−1)(t− ti−1)StI[ti−1,ti[(t)dWt,

R̃1n
s :=

∫ s

0

n−1∑

i=1

Ũ i
t I[ti−1,ti[(t)dWt

with

Ũ i
t = Ĉxxx(t̃i−1, S̃ti−1)(St − Sti−1)

2St + Ĉxtt(t̃i−1, S̃ti−1)(t− ti−1)2St

+2Ĉxxt(t̃i−1, S̃ti−1)(t− ti−1)(St − Sti−1)St.

The intermediate point (t̃i−1, S̃ti−1) in the interval connecting (ti−1, Sti−1)
and (ti, Sti) can be chosen in such a way that the mapping ω 7→ (t̃i−1, S̃ti−1)
is an Fti-measurable random variable (for example, one cane take the first
point on this interval for which the Taylor formula holds).

Notice that t̃i−1 ∈ [ti−1, ti] and S̃ti−1 ∈ [Sti−1 , St].
The structure of the above representation of R1n is clear: the term R1nn

corresponds to the n-th revision interval (it will be treated separately because
of singularities at the left extremity of the time interval), the term R1tn

involving the first derivatives of Ĉx in t at points (ti−1, Sti−1) comes from
the Taylor formula, and the “tilde” term is due to the remainder of latter.

It is important to note that the integrals involving in the definition of
P 1n depend only on the increments of the Wiener process on the intervals
[ti−1, ti] and, therefore, are independent on the σ-algebras Fti−1 . This helps
to calculate the expectation of the squared sum: according to Lemma 4.1
below it is the sum of expectations of the squared terms. We define P 2n

in a way to enjoy the same property. The second residual term includes
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the term R2nn corresponding to the last revision interval; the term R21n

represents the approximation error arising from replacement of the integral
by the Riemann sum; the remaining part of the residual we split in a natural
way into summands Rn

22 and Rn
23. After these explanations we write the

second residual term as follows:
We “telescope” the residual term R2n

s = (P 2n
s −M2n

s ) + (F 2n
s − P 2n

s ) in
the following way:

R2n
s =

(
R2Mn

s +σ
√

2/πR2nn
s +σ

√
2/πR21n

s +R22n
s +R23n

s +R24n
s

)
k0, (2.2)

with

R2Mn
s = (P 2n

s −M2n
s )/k0,

R2nn
s = I[tn−1,tn](s)

∫ s

tn−1

S2
t Ĉxx(t, St)

√
f ′(t)dt,

R21n
s =

n−1∑

i=1

∫ ti

ti−1

(
S2

t Ĉxx(t, St)
√

f ′(t)− S2
ti−1

Ĉxx(ti−1, Sti−1)
√

f ′(ti−1)
)
dt,

R22n
s =

1√
n

∑

ti≤s

Ĉxx(ti−1, Sti−1)|Sti−1 − Sti |(Sti−1 − Sti),

R23n
s =

1√
n

∑

ti≤s

[...]i(Sti − Sti−1),

R24n
s =

1√
n

∑

ti≤s

[...]iSti−1 ,

where

[...]i = Ĉxx(ti−1, Sti−1)|Sti − Sti−1 | − |Ĉx(ti, Sti)− Ĉx(ti−1, Sti−1)|. (2.3)

3 Convenient Representations, Explicit Formulae and Useful
Bounds

3.1 Representations of Derivatives in x

We consider the function Ĉ(t, x) defined by the formula (1.14), i.e.

Ĉ(t, x) =
∫ ∞

−∞
G(xeρty− 1

2 ρ2
t )ϕ(y) dy. (3.1)

To ensure that the integral is finite we suppose that G : R+ → R is of poly-
nomial growth. We assume also that G is a convex function. Automatically,
G, being locally Liptsitz, admits a positive Radon-Nikodym derivative G′.
One can choose as G′ the right derivative of G which is increasing and has
only a countable set of discontinuities.
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Our aim is to get appropriate estimates of partial derivatives of Ĉ(t, x).
To this end we introduce the function

C̄(x; ρ) =
∫ ∞

−∞
G(xeρy− 1

2 ρ2
)ϕ(y) dy. (3.2)

Lemma 3.1 Suppose that G is a convex function which Radon–Nikodym
derivative G′ has a polynomial growth. Then for n = 1, 2, 3, 4 we have the
following representation:

∂n

∂xn
C̄(x; ρ) =

1
ρn−1xn−1

∫ ∞

−∞
G′(xeρy+ 1

2 ρ2
)Pn−1(y)ϕ(y) dy (3.3)

where

P0(y) := 1,

P1(y) := y,

P2(y) := y2 − ρy − 1,

P3(y) := y3 − 3ρy2 + (2ρ2 − 3)y + 3ρ.

Proof. Let us introduce the function

Ḡ(u; ρ) := G(e−ρu− 1
2 ρ2

), u ∈ R, ρ > 0.

Recall that the convolution of Ḡ and ϕ is defined by the formula

Ḡ ∗ ϕ(z; ρ) :=
∫ ∞

−∞
Ḡ(z − y; ρ)ϕ(y) dy.

The representation C̄(x; ρ) = Ḡ∗ϕ(−ρ−1 ln x; ρ) allows us to calculate easily
the derivatives in x.

Differentiating the convolution we get that

∂n

∂zn
Ḡ ∗ ϕ(z; ρ) = Ḡ ∗ ϕ(n)(z; ρ) = Ḡ′ ∗ ϕ(n−1)(z; ρ).

Recalling that ϕ(n)(y) = (−1)nHn(y)ϕ(y) where Hn is the Hermite polyno-
mial of order n we obtain the representations

∂n

∂zn
Ḡ∗ϕ(z; ρ) = (−1)nρ

∫ ∞

−∞
G′(e−ρ(z−y)− 1

2 ρ2
)e−ρ(z−y)− 1

2 ρ2
Hn−1(y)ϕ(y) dy

and

∂n

∂zn
Ḡ∗ϕ(−ρ−1 ln x; ρ) = (−1)nρx

∫ ∞

−∞
G′(xeρy− 1

2 ρ2
)eρy− 1

2 ρ2
Hn−1(y)ϕ(y) dy.

Changing the variable, we rewrite the last formula as

∂n

∂zn
Ḡ ∗ ϕ(−ρ−1 ln x; ρ) = (−1)nρx

∫ ∞

−∞
G′(xeρy+ 1

2 ρ2
)Hn−1(y + ρ)ϕ(y) dy.

(3.4)
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The first four derivatives of the function f(g(.)) at the point x are given
by the formulae

d

dx
f(g(x)) = f ′g(x)g′(x),

d2

dx2
f(g(x)) = f ′′g (x)(g′(x))2 + f ′g(x)g′′(x),

d3

dx3
f(g(x)) = f (3)

g (x)(g′(x))3 + 3f ′′g (x)g′′(x)g′(x) + f ′g(x)g(3)(x),

d4

dx4
f(g(x)) = f (4)

g (x)(g′(x))4 + 6f (3)
g (x)g′′(x)(g′(x))2 + 3f ′′g (x)(g′′(x))2

+4f ′′g (x)g(3)(x)g′(x) + f ′g(x)g(4)(x),

where we use the abbreviations f ′g(x) := f ′(g(x)), f ′′g (x) := f ′′(g(x)) etc.
For g(x) = −ρ−1 ln x the m-th derivative g(m)(x) = (−1)m(m−1)!ρ−1x−m.

Applying the above formulae with f = Ḡ ∗ϕ and f
(n)
g (x) given by the right-

hand side of (3.4) we obtain the assertion of the lemma with

P0(y) = H0(y + ρ),
P1(y) = H1(y + ρ)− ρH0(y + ρ),
P2(y) = H2(y + ρ)− 3ρH1(y + ρ) + 2ρ2H0(y + ρ),
P3(y) = H3(y + ρ)− 6ρH2(y + ρ) + 11ρ2H1(y + ρ) + 6ρ3H0(y + ρ).

Since H0(y) = 1, H1(y) = y, H2(y) = y2−1, H3(y) = y3−3y, these formulae
can be re-written as in the statement of the lemma. 2

Remark. Using the well-known combinatorial formula for the n-th derivative
of f(g(x)) (see, e.g., Th. III.21 in the textbook [10]) one can check easily that
the representation (3.3) holds for each n with a certain polynomial Pn−1 of
two variables, y and ρ, of order n − 1 and the coefficient at yn−1 equal to
unit.

It follows from the above lemma and accompanying remark that in the
case where G′(x) ≤ κ(1 + xp)

∂n

∂xn
Ĉ(t, x) ≤ κn

(1 + xp)
xn−1(1− t)(n−1)/2

. (3.5)

In particular, if G′ is bounded we have that

∂n

∂xn
Ĉ(t, x) ≤ κn

1
xn−1(1− t)(n−1)/2

. (3.6)

Lemma 3.2 Suppose that G is a convex function which Radon–Nikodym
derivative G′ has a polynomial growth. Then Ĉx(t, St) → G′(S1) as t → 1
almost surely and in any Lp(Ω), p < ∞.

Proof. From the representation (3.3) with n = 1 it follows that

Ĉx(t, St) =
∫ ∞

−∞
G′(Ste

ρty+ 1
2 ρ2

t )ϕ(y) dy.
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Since the distribution of S1 is continuous, the set Ω0 of ω for which S1(ω)
belongs to the (countable) set of discontinuities of G′ has zero probability.
Outside Ω0 we apply to the integral the Lebesgue theorem on dominated
convergence using the assumption that G′ has a polynomial growth. To get
the convergence in Lp(Ω) we also apply the Lebesgue theorem but now to
the expectation. Its condition holds because S∗1 is integrable in any power. 2

3.2 Representations of Mixed Derivatives

Explicit formulae for derivatives involving the variable t are more cumber-
some but also easy to obtain.

Let us define the operator T transforming the polynomial P (y; ρ) into the
polynomial

TP (y; ρ) =
(
yP (y; ρ)− Py(y; ρ)

)
(y + ρ) + ρPρ(y; ρ)− P (y; ρ).

Lemma 3.3 Suppose that G is an increasing convex function which Radon–
Nikodym derivative G′ has a polynomial growth. Then we have the following
formulae:

Ĉt(t, x) = − σ̂2
t x

2ρt

∫ ∞

−∞
G′(xeρty+ 1

2 ρ2
t )P1(y)ϕ(y) dy,

Ĉxt(t, x) = − σ̂2
t

2ρ2
t

∫ ∞

−∞
G′(xeρty+ 1

2 ρ2
t )TP0(y; ρt)ϕ(y) dy,

Ĉxxt(t, x) = − σ̂2
t

2ρ3
t x

∫ ∞

−∞
G′(xeρty+ 1

2 ρ3
t x)

(
TP1(y; ρt) + P1(y)

)
ϕ(y) dy,

Ĉtt(t, x) = −
( (σ̂2

t )′

2ρt
+

σ̂4
t

4ρ3
t

)
x

∫ ∞

−∞
G′(xeρty+ 1

2 ρ2
t )P1(y)ϕ(y) dy

+
σ̂4

t x

4ρ3
t

∫ ∞

−∞
G′(xeρty+ 1

2 ρ2
t )TP1(y; ρt)(y)ϕ(y) dy,

Ĉxtt(t, x) = −
( (σ̂2

t )′

2ρ2
t

+
σ̂4

t

2ρ4
t

) ∫ ∞

−∞
G′(xeρty+ 1

2 ρ2
t )TP0(y; ρt)ϕ(y) dy

+
σ̂4

t

2ρ4
t

∫ ∞

−∞
G′(xeρty+ 1

2 ρ2
t )T 2P0(y; ρt)ϕ(y) dy,

where Pj(y) are polynomials defined in Lemma 3.3. In accordance to the
definition of the operator T ,

TP0(y) = y2 + ρy − 1,

TP1(y) = y3 + ρy2 − 2y − ρ.

Proof. Differentiating under the sign of integral in (3.2) and making a linear
change of variables we obtain the representation

C̄ρ(x; ρ) = x

∫ ∞

−∞
G′(xeρy+ 1

2 ρ2
)yϕ(y) dy.
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Since ρ′t = −σ2
t /(2ρt), the formula for Ĉt(t, x) follows obviously.

Using the change of variable

z(y; x, ρ) = xeρy+ 1
2 ρ2

with the inverse

y(z; x, ρ) =
1
ρ

ln
z

x
− 1

2
ρ

and differentiating under the sign of integral we get that

∂

∂ρ

∫ ∞

−∞
G′(xeρy+ 1

2 ρ2
)P (y; ρ)ϕ(y) dy =

1
ρ

∫ ∞

−∞
G′(xeρy+ 1

2 ρ2
)TP (y; ρ)ϕ(y) dy.

This identity help us to derive the formulae for Ĉxt(t, x) and Ĉxxt(t, x) from
the representation (3.3) and also get the formulae for Ĉtt(t, x) and Ĉxtt(t, x)
by differentiation of those for Ĉt(t, x) and Ĉxt(t, x). 2

From the above lemma we have the following bounds:

Lemma 3.4 Suppose that one of the Assumptions 1 or 2 is fulfilled and G′

has a polynomial growth. Then

|Ĉxt(t, x)| ≤ κ
1

1− t
(1 + xm), (3.7)

|Ĉxxt(t, x)| ≤ κ
1

(1− t)3/2

1
x

(1 + xm), (3.8)

|Ĉxtt(t, x)| ≤ κ
1

(1− t)2
(1 + xm). (3.9)

Proof. Under the Assumption 1 both σ̂2
t and |(σ̂2

t )′| = κ|f ′′(t)|/
√

f ′(t) are
bounded and the statement is obvious. Under the Assumption 2, i.e. when
f(t) = 1− (1− t)1/β , β > 1, direct calculations lead to the bounds

σ̂2
t

ρ2
t

≤ κ
1

1− t
,

|(σ̂2
t )′|

ρ2
t

≤ κ
1

(1− t)2
, (3.10)

implying required estimates. 2

3.3 Sharper Estimates of Partial Derivatives

For our analysis we need also more precise estimates requiring further hy-
potheses on G.

Put

ΣN (x, ρ) :=
N∑

j=1

exp
{
−1

2
ln2(Kj/x)

ρ2

}
(3.11)

with the convention Σ0(x, ρ) := 0.
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Lemma 3.5 Under Assumption 3 there is a constant κ such that for any
ρ ∈ [0, σ]

0 ≤ C̄xx(x, ρ) ≤ κ
1

ρx3/2
ΣN (x, ρ) + κ(1 + xm). (3.12)

Proof. Put

δj :=
1
ρ

ln
Kj

x
− 1

2
ρ.

Integrating by parts on the closed intervals with the extremities δj we obtain
that

∫ ∞

0

G′(xeρy+ 1
2 ρ2

)yϕ(y) dy = −
N∑

j=0

G′(xeρy+ 1
2 ρ2

)ϕ(y)
∣∣∣
δj+1−

δj+

+ρx

∫ ∞

−∞
G′′(xeρy+ 1

2 ρ2
)eρy+ 1

2 ρ2
ϕ(y)dy.

Clearly,

−
N∑

j=0

G′(xeρy+ 1
2 ρ2

)ϕ(y)
∣∣∣
δj+1−

δj+
=

N∑

j=1

(
G′(Kj+)− (G′(Kj−)

)
ϕ(δj).

Due to assumed convexity of G the summands in the right-hand side are
positive and dominated by

G′(KN+)ϕ(δj) = G′(KN+)
1√
2π

e−ρ2/8 Kj
1/2

x1/2
exp

{
−1

2
ln2(Kj/x)

ρ2

}
.

Due to the polynomial growth condition on G′′ in the Assumption 3
∫ ∞

−∞
G′′(xeρy+ 1

2 ρ2
)eρy+ 1

2 ρ2
ϕ(y)dy ≤ κ(1 + xm).

Combining the above estimates we infer that

0 ≤
∫ ∞

0

G′(xeρy+ 1
2 ρ2

)yϕ(y) dy ≤ κ

x1/2

N∑

j=1

exp
{
−1

2
ln2(Kj/x)

ρ2

}
+κρx(1+xm).

The claim follows now from the representation (3.3) for n = 2. 2

Lemma 3.6 Under Assumption 3 there is a constant κ such that for any
ρ ∈]0, σ]

|C̄xxx(x, ρ)| ≤ κ
1

ρ2x5/2
ΣN (x, ρ) + κ

1
ρx

(1 + xm),

|C̄xxxx(x, ρ)| ≤ κ
1

ρ3x7/2
ΣN (x, ρ) + κ

1
ρ2x2

(1 + xm),
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Proof. For Qn(y) = Hn(y) the estimate
∣∣∣∣
∫ ∞

0

G′(xeρy+ 1
2 ρ2

)Qn(y)ϕ(y) dy

∣∣∣∣ ≤ κ
1

x1/2
ΣN (x, ρ) + κρx(1 + xm) (3.13)

can be obtained by the same argument as above. The Hermite polynomials
Hn(y) form a basis in the linear space of polynomials in y. It follows that
this estimate holds when Qn(y) = yn and, hence, for any polynomial which
coefficients are functions of ρ bounded on [0, σ]. With this we conclude using
the representation (3.3). 2

Using the estimate (3.13) we obtain from Lemma 3.3 the following:

Lemma 3.7 Under Assumption 3 on the pay-off function G there is a con-
stant κ such that for any t ∈ [0, 1[

|Ĉt(t, x)| ≤ κ
σ̂2

t x1/2

ρt
ΣN (x, ρt) + κσ̂2

t x2(1 + xm),

|Ĉxt(t, x)| ≤ κ
σ̂2

t

ρ2
t x

1/2
ΣN (x, ρt) + κ

σ̂2
t

ρt
x(1 + xm),

|Ĉxxt(t, x)| ≤ κ
σ̂2

t

ρ3
t x

3/2
ΣN (x, ρt) + κ

σ̂2
t

ρ2
t

(1 + xm),

|Ĉtt(t, x)| ≤ κ
( (σ̂2

t )′

2ρt
+

σ̂4
t

4ρ3
t

)(
x1/2ΣN (x, ρt) + ρtx

2(1 + xm)
)
,

|Ĉxtt(t, x)| ≤ κ
( (σ̂2

t )′

2ρt
+

σ̂4
t

2ρ4
t

)( 1
x1/2

ΣN (x, ρt) + ρtx(1 + xm)
)
.

3.4 Call Option: Explicit Formulae

For the classical call option with G(x) = (x −K)+ the derivatives we need
can be given explicitly. In particular,

Ĉx(t, x) = Φ(d̂(t, x)),

Ĉxx(t, x) =
1

xρt
ϕ(d̂(t, x)),

where
d̂(t, x) :=

1
ρt

ln
x

K
+

1
2
ρt. (3.14)

To get the expression for the function Λt = ES4
t Ĉ2

xx(t, St) from Theorem
1.11 we use the following easily verified formula.

Let ξ ∈ N (0, 1) and let a 6= 0, b, c be arbitrary constants. Then

Eecξe−(aξ+b)2 =
1√

2a2 + 1
exp

{
− b̃2

2a2 + 1
+ b̃2 − b2

}
. (3.15)

where b̃ := b− c/(2a).
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The distribution of the random variable 2πSp
t Ĉ2

xx(t, St) is the same as of

Sp−2
0 e−

1
2 (p−2)σ2tρ−2

t ectξe−(atξ+bt)
2

where ct = (p− 2)σt1/2, at = 1
ρt

σt1/2,

bt =
1
ρt

(
ln

S0

K
− 1

2
σ2t

)
+

1
2
ρt, b̃t = bt − 1

2
(p− 2)ρt.

Since

b̃2
t − b2

t = −(p− 2)
[(

ln
S0

K
− 1

2
σ2t

)
+ ρ2

t −
1
4
pρ2

t

]
,

we obtain from above that

ESp
t Ĉ2

xx(t, St) =
1

2πρt

Kp−2

√
2σ2t + ρ2

t

e−Bt , (3.16)

where

Bt :=

(
ln S0

K − 1
2σ2t− 1

2 (p− 3)ρ2
t

)2

2σ2t + ρ2
t

− (p− 2)(p− 4)
4

ρ2
t . (3.17)

In particular, with p = 4, we have:

Λt =
1

2πρt

K2

√
2σ2t + ρ2

t

exp

{
−

(
ln S0

K − 1
2σ2t− 1

2ρ2
t

)2

2σ2t + ρ2
t

}
. (3.18)

3.5 Bounds for Expectations

Using (3.15) we obtain from Lemma 3.5 – 3.7 and (3.10) the bounds which
will be used in the proof of the main theorem.

Lemma 3.8 Suppose that one of the Assumptions 1 or 2 is fulfilled and G
satisfies the Assumption 3. Then

ESp
t Ĉ2m

xx (t, St) ≤ κ
1

(1− t)m−1/2
, (3.19)

ESp
t Ĉ2m

xt (t, St) ≤ κ
1

(1− t)2m−1/2
, (3.20)

ESp
t Ĉ2m

xxx(t, St) ≤ κ
1

(1− t)2m−1/2
, (3.21)

ESp
t Ĉ2m

xxt(t, St) ≤ κ
1

(1− t)3m−1/2
, (3.22)

ESp
t Ĉ2m

xxxx(t, St) ≤ κ
1

(1− t)3m−1/2
, (3.23)

where the constant κ depends on p and m. In particular,

Λt ≤ κ
1√

1− t
. (3.24)
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4 Tools

In our computations we shall use frequently the following two assertions. The
first one is a standard fact on square integrable martingales in discrete time.

Lemma 4.1 Let M = (Mi) be a square-integrable martingale with respect to
a filtration (Gi), i = 0, ..., k, and let X = (Xi) be a predictable process with
EX2 · 〈M〉k < ∞. Then

E(X ·Mk)2 = EX2 · 〈M〉k =
k∑

i=1

EX2
i (∆Mi)2,

where, as usual, ∆〈M〉i := E((∆Mi)2|Gi−1),

X ·Mk :=
k∑

i=1

Xi∆Mi, X2 · 〈M〉k :=
k∑

i=1

X2
i 〈M〉i.

Lemma 4.2 Suppose that g′, f ′ ∈ C([0, 1]). Let p > 0 and a ≥ 0. Then

n−1∑

i=1

(∆ti)p+a

(1− ti)p
=





O(n1−p−a), p < 1,
O(n−a ln n), p = 1,
O(n−a), p > 1.

If g(t) = 1− (1− t)β, β ≥ 1, then

n−1∑

i=1

(∆ti)p+a

(1− ti)p
=





O(n1−p−a), p < 1 + a(β − 1),
O(n−aβ ln n), p = 1 + a(β − 1),
O(n−a), p > 1 + a(β − 1).

Proof. We consider first the case where g′, f ′ ∈ C([0, 1]), i.e. g′ is not only
bounded but also bounded away from zero. By the finite increments formula
∆ti = g′(xi)n−1 where xi ∈ [(i − 1)/n, i/n] and, hence, ∆ti ≤ constn−1.
Applying again the finite increments formula and taking into account that
min g′(t) > 0, it is easy to check that there is a constant c such that

1− ti−1

1− ti
≤ c, 1 ≤ i ≤ n− 1.

Thus,
n−1∑

i=1

∆ti
(1− ti)p

≤ c

n−1∑

i=1

∆ti
(1− ti−1)p

≤ c

∫ tn−1

0

dt

(1− t)p
.

Since
n−1 min g′(t) ≤ 1− g(1− 1/n) ≤ n−1 max g′(t),

the asymptotic of the last integral is O(1), if p < 1 (the integral converges),
O(ln n), if p = 1, and O(np−1), if p > 1,. This implies the claimed property.

In the second case where g(t) = 1− (1− t)β , β ≥ 1, we have

n−1∑

i=1

(∆ti)p+a

(1− ti)p
=

βp+a

np−1+a

n−1∑

i=1

(1− xi)(β−1)(p+a)

(1− i/n)βp

1
n

.
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The sum in the right-hand side is dominated, up to a multiplicative constant,
by

n−1∑

i=1

1
(1− (i− 1)/n)p+a−βa

1
n
≤

∫ 1−1/n

0

dt

(1− t)p+a−βa
.

Using the explicit formulae for the integral we infer that the required property
holds whatever are the parameters p > 0, a ≥ 0, and β ≥ 1. 2

5 Analysis of the Principal Terms: Proof of Proposition 2.2

Since E(M1n
1 +M2n

1 ) = 0, we need to verify that nE(M1n
1 +M2n

1 )2 → A1(f)
as n →∞.

Recall that E(ξ2 − 1)2 = 2 and E|ξ|3 = 2E|ξ| = 2
√

2/π for ξ ∈ N (0, 1).
Using Lemma 4.1 we obtain the representation

nE(M1n
1 + M2n

1 )2 =
σ4

2
n

n−1∑

i=1

Λti−1(∆ti)2 + k0σ
3

√
2
π

n1/2
n−1∑

i=1

Λti−1(∆ti)3/2

+k2
0σ

2
(
1− 2

π

) n−1∑

i=1

Λti−1∆ti.

By the finite increments formula ∆ti = g(i/n)−g((i−1)/n) = g′(xi)/n where
xi ∈ [(i− 1)/n, i/n]. We substitute this expression into the sums above. Let
us introduce the function Fn (depending on p) by the formula

Fn(t) :=
n−1∑

i=1

Λg((i−1)/n)[g′(xi)]pI[(i−1)/n,i/n[(t).

For p ≥ 1 we have:

n−1∑

i=1

Λg((i−1)/n)[g′(xi)]p
1
n

=
∫ 1

0

Fn(t)dt →
∫ 1

0

Λg(t)[g′(t)]pdt.

The needed uniform integrability of the sequence {Fn} with respect to the
Lebesgue measure follows from the de la Vallée-Poussin criterion because the
estimate Λt ≤ κ(1− t)−1/2 and the boundedness of g′ imply that

∫ 1

0

F 3/2
n (t)dt ≤ const

∫ 1

0

dg(t)
(1− g(t))3/4

= const
∫ 1

0

ds

(1− s)3/4
< ∞.

By the change of variable, taking into account that g′(t) = 1/f ′(g(t)), we
transform the limiting integral into the form used in the formulations of the
theorem:

∫ 1

0

Λg(t)[g′(t)]pdt =
∫ 1

0

Λg(t)[g′(t)]p−1dg(t) =
∫ 1

0

Λt[f ′(t)]1−pdt.

The claimed property on the convergence of n1/2(M1n
1 + M2n

1 ) to A1(f) in
L2-norm is verified. 2
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6 Analysis of the Residual R1n

In this subsection we give a proof of Proposition 2.3.
1. To check the convergence of the sequence n1/2R1Mn∗

1 to zero in L2 it
is convenient to introduce the “intermediate” process

M̄1n
s := σ2

∫ s

0

n−1∑

i=1

Ĉxx(ti−1, Sti−1)S
2
ti−1

(Wti−1 −Wt)I[ti−1,ti[(t)dWt.

The difference P 1n − M̄1n is a square integrable martingale and

E(P 1n
1 −M̄1n

1 )2 = σ2
n−1∑

i=1

Λti−1

∫ ti

ti−1

E
[( St

Sti−1

−1
) St

Sti−1

−σ(Wt−Wti−1)
]2

dt.

It is a simple exercise to check that

E((euξ− 1
2 u2 − 1)euξ− 1

2 u2 − uξ)2 = O(u4), u → 0.

Hence, we can dominate the expectations in the integrals by a quadratic
function and obtain that

nE(P 1n
1 − M̄1n

1 )2 ≤ constn

n−1∑

i=1

Λti−1(∆ti)3 → 0, n → 0.

By virtue of the Doob inequality also nE sups(P 1n
s − M̄1n

s )2 → 0.
Note that M̄1n

ti−1
= M1n

ti−1
, the process M1n is constant on the interval

[ti−1, ti[ while

M̄1n
s − M̄1n

ti−1
= σ2Ĉxx(ti−1, Sti−1)S

2
ti−1

∫ s

ti−1

(Wti−1 −Wt)dWt.

It follows that

n sup
s

(M1n
s − M̄1n

s )2 = nσ4 max
i≤n−1

Ĉ2
xx(ti−1, Sti−1)S

4
ti−1

η2
i

where
ηi :=

1
2

sup
s∈[ti−1,ti]

|(Ws −Wti−1)
2 − (s− ti−i)|.

Let m ∈]1, 3/2[. Using the elementary inequality maxi |ai| ≤
∑

i |ai|, the
independence of increments of the Wiener process from the past, the bound
(3.19), and the estimate E|ηi|2m ≤ κ(∆ti)2m we obtain that

nmE sup
s

(M1n
s −M̄1n

s )2m ≤ κnm
n−1∑

i=1

(∆ti)2m

(1− ti−1)m−1/2
= O(nm−1), n →∞.

The sequence n sups(M1n
s − M̄1n

s )2 converges to zero in Lm, hence, in L1.
Summarizing, we conclude that n1/2||R1Mn∗

1 ||L2 → 0 as n →∞.
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2. The residual process R1nn is a martingale and by the Doob inequality
E(R1nn∗

1 )2 ≤ 4E(R1nn
1 )2. We have:

E(R1nn
1 )2 =

∫ 1

tn−1

E(Ĉx(tn−1, Stn−1)− Ĉx(t, St))2S2
t dt ≤ κn(1− tn−1),

where κn is the supremum of the integrand over [tn−1, 1]. By virtue of Lemma
3.2 κn → 0. Since 1−tn−1 ≤ κn−1 (due to the boundedness of g′), we conclude
that nE(R1nn

1 )2 → 0.
3. By the Doob inequality asymptotic analysis of the sequence R1tn∗

1 can
be reduced to that of

R1tn
1 =

n−1∑

i=1

Ĉxt(ti−1, Sti−1)
∫ ti

ti−1

(t− ti−1)StdWt.

According to (3.20)

EĈ2
xt(t, St)S2

t ≤ κ
1

(1− t)3/2
.

Therefore,

E(R1tn
1 )2 =

n−1∑

i=1

EĈ2
xt(ti−1, Sti−1)S

2
ti−1

∫ ti

ti−1

(t− ti−1)2E(St/Sti−1)
2dt

≤ const
n−1∑

i=1

(∆ti)3

(1− ti−1)3/2
= O(n−3/2), n →∞,

in virtue of Lemma 4.2. Hence, E(R1tn
1 )2 → 0.

4. Now we estimate the expectation E(R̃1n
1 )2 corresponding to the ter-

minal value of the martingale arising from the remainder term in the Taylor
formula for Ĉx. We have:

E(R̃1n
1 )2 =

n−1∑

i=1

∫ ti

ti−1

E(Ũ i
t )

2dt.

Since (a + b + c)2 ≤ 3(a2 + b2 + c2), it is sufficient to check that each of the
following sums converge to zero as o(n−1):

Σn
1 =

n−1∑

i=1

∫ ti

ti−1

EĈ2
xxx(t̃i−1, S̃ti−1)(St − Sti−1)

4S2
t dt,

Σn
2 :=

n−1∑

i=1

∫ ti

ti−1

EĈ2
xtt(t̃i−1, S̃ti−1)(t− ti−1)4S2

t dt,

Σn
3 :=

n−1∑

i=1

∫ ti

ti−1

EĈ2
xxt(t̃i−1, S̃ti−1)(t− ti−1)2(St − Sti−1)

2S2
t dt.
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Using the continuity of the process St we obtain from the formula (3.11)
that

lim
t→1

sup
r≥t

ΣN (Sr, ρt) = 0 a.s.

Applying Lemma 3.6 we infer that for any ε > 0, m ≥ 1, there exists a ∈]0, 1[
such that

E|Ĉxxx(t̃i−1, S̃ti−1)|2m ≤ ε
1

(1− ti)2m
(6.1)

for every ti−1 ≥ a. For ti−1 < a the above expectation is bounded by a
constant which does not on n.

Let ξ ∼ N(0, 1) and let b ∈ [0, 1]. Using the elementary bound

|ebx − 1| ≤ b(e|x| − 1)

which follows from the Taylor expansion, we obtain, for m ≥ 1, the estimate

E(euσξ−(1/2)σ2u2 − 1)2m ≤ κu2m

where the constant κ depends on m and σ. Applying the Cauchy–Schwarz
inequality and this estimate we get that

E(St − Sti−1)
2mSp

t ≤ κ(t− ti−1)m.

Manipulating again with the Cauchy–Schwarz inequality we obtain with the
help of the above bounds that

Σn
1 ≤ κ

∑
ti−1<a

(∆ti)3 + κε

n−1∑

i=1

(∆ti)3

(1− ti)2
.

The first sum in the right-hand side is of order O(n−2). According to Lemma
4.2 the second one is of order O(n−1). Since ε > 0 is arbitrary, it follows that
limn nΣn

1 = 0.

Similarly to the bound (6.1) but referring now to Lemma 3.7, we can
establish that for any ε > 0 there is a threshold a ∈]0, 1] such that for any
ti−1 ≥ a the following inequalities hold:

E|Ĉxxt(t̃i−1, S̃ti−1)|2m ≤ ε
1

(1− ti)3m
(6.2)

and

E|Ĉxtt(t̃i−1, S̃ti−1)|2m ≤ ε
1

(1− ti)4m
. (6.3)

With these bounds we prove, making obvious changes in arguments, that
limn nΣn

2 = 0 and limn nΣn
3 = 0. Thus, nE(R̃1n∗

1 )2 → 0. 2
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7 Analysis of the Residual R2n

Now we give a proof of Proposition 2.4.
1. Put (for s < 1)

P̄ 2n
s = k0

1√
n

∑

ti≤s

Ĉxx(ti−1, Sti−1)S
2
ti−1

[
E|Sti

/Sti−1 − 1| − |Sti
/Sti−1 − 1|

]
.

The processes P 2n, P̄ 2n, and M2n have piecewise constant trajectories jump-
ing at the moments ti, i ≤ n− 1. Thus,

||sups|P 2n
s −M2n

s |||L2 ≤ ||supi|P 2n
ti
− P̄ 2n

ti
|||L2 + ||supi|P̄ 2n

ti
−M2n

ti
|||L2 .

We have:

n1/2||supi|P 2n
ti
− P̄ 2n

ti
|||L2 ≤ k0

n−1∑

i=1

Λ
1/2
ti−1

Bi,

where
Bi :=

∣∣∣σ
√

2/π
√

nf ′(ti−1)∆ti − E|Sti
/Sti−1 − 1|

∣∣∣.
Using the Taylor formula it is easy to verify that for u > 0

E|euξ− 1
2 u2 − 1| = 2[Φ(u/2)− Φ(−u/2)] =

√
2/πu + O(u3), u → 0,

It follows that

Bi = σ
√

2/π(∆ti)1/2
∣∣∣
√

nf ′(ti−1)∆ti − 1|+ O((∆ti)3/2).

By the Taylor formula

∆ti = g(i/n)− g((i− 1)/n) = g′((i− 1)/n)
1
n

+
1
2
g′′(yi)

1
n2

,

where the point yi ∈ [(i − 1)/n, i/n]. Since f is the inverse of g we have
f ′(ti−1) = 1/g′((i−1)/n). Using these identities and the elementary inequal-
ity |√1 + a− 1| ≤ |a| for a ≥ −1 we obtain that

Bi ≤ const
|g′′(yi)|

g′((i− 1)/n)
(∆ti)1/2 1

n
+ O((∆ti)3/2).

Fix ε ∈]0, 1/4[. Substituting the finite increments formula ∆ti = g′(xi)/n
with an intermediate point xi in [(i− 1)/n, i/n], we infer that

Bi ≤ const an
g′(xi)

[1− g((i− 1)/n)]3/4−ε

1
n

+ O((∆ti)3/2).

where

an =
1

n1/2
sup

i≤n−1
sup
xi,yi

|g′′(yi)|[1− g((i− 1)/n)]3/4−ε

g′((i− 1)/n)(g′(xi))1/2
.
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Recall that
n−1∑

i=1

g′(xi)
[1− g((i− 1)/n)]1−ε

1
n
→

∫ 1

0

dg(t)
[1− g(t)]1−ε

=
∫ 1

0

dt

(1− t)1−ε
< ∞

and an → 0 under each of our assumptions. These observations lead to the
conclusion that

n−1∑

i=1

Λ
1/2
ti−1

Bi → 0.

Noticing that

E(|euξ− 1
2 u2 − 1| − u|ξ|)2 = O(u4), u → 0,

we infer that

E
[(

E|Sti
/Sti−1−1|−|Sti

/Sti−1−1|
)
−σ

(
E|∆Wti

|−|∆Wti
|
)]2

= O((∆ti)2).

Applying Lemma 4.1 and the Doob inequality to the discrete-time square-
integrable martingale (P̄ 2n

ti
−M2n

ti
,Fti

), we get that

nEsupi|P̄ 2n
ti
−M2n

ti
|2 ≤ const

n−1∑

i=1

Λti−1(∆ti)2 → 0, n →∞.

We conclude that n1/2||R2Mn∗
1 ||L2 → 0 as n →∞.

2. Noting that ||S2
t Ĉxx(t, St)||L2 = Λ

1/2
t , we have:

||R2nn
1 ||L2 ≤

∫ 1

tn−1

Λ
1/2
t

√
f ′(t)dt ≤

(∫ 1

tn−1

Λtdt

)1/2

(1− f(tn−1))1/2.

Since f(tn−1) = f(g((n− 1)/n)) = 1− 1/n and the function Λ is integrable,
it follows that nE(R2nn

1 )2 → 0.
3. The process R21n describes the error in approximation of an integral by

the Riemann sums. To analyze the approximation rate we need the following
auxiliary result.
Lemma 7.1 Let X = (Xt)t∈[0,T ] be a process with

dXt = µtdt + ϑtdWt, X0 = 0,

where µ = (µt)t∈[0,T ] and ϑ = (ϑt)t∈[0,T ] are predictable processes such that
∫ T

0

(|µt|+ ϑ2
t )dt < ∞.

Let Xn
t :=

∑n
i=1 Xti−1I]ti−1,ti](t). Then

E sup
s∈[0,T ]

(∫ s

0

(Xt −Xn
t )dt

)2

≤ 8
∫ T

0

n∑

i=1

(ti − u)2I]ti−1,ti](u)Eϑ2
udu

+2

(∫ T

0

n∑

i=1

(ti − u)I]ti−1,ti](u)(Eµ2
u)1/2du

)2

.
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Proof. It is sufficient to work assuming that the right-hand side of the in-
equality is finite. Having in mind that (a + b)2 ≤ 2a2 + 2b2, we may consider
separately the cases where one of the coefficients is zero. Let us start with
the case where µ = 0. For v ∈ [ti−1, ti[ we have, using the stochastic Fubini
theorem:
∫ v

ti−1

(Xt −Xti−1)dt =
∫ v

ti−1

∫ v

ti−1

ϑuI]ti−1,t](u)dWudt =
∫ v

ti−1

(v − u)ϑudWu.

Thus,
∫ s

0

(Xt −Xn
t )dt =

∫ s

0

n∑

i=1

(ti − u)I]ti−1,ti](u)ϑudWu.

The right-hand side is a local martingale and we obtain from the Doob in-
equality

E sup
s∈[0,T ]

(∫ s

0

(Xt −Xn
t )dt

)2

≤ 4
∫ T

0

n∑

i=1

(ti − u)2I]ti−1,ti](u)Eϑ2
udu.

In the case where ϑ = 0 we have, this time by the ordinary Fubini theorem,
that ∫ v

ti−1

(Xt −Xti−1)dt =
∫ v

ti−1

(v − u)µudu, v ∈ [ti−1, ti[,

and this representation allows us to transform the squared process of interest
to the following form:

∫ s

0

∫ s

0

n∑

i,j=1

(ti − u)(tj − r)I]ti−1,ti](u)I]tj−1,tj ](r)µuµrdudr.

Its expectation can be dominated by

∫ s

0

∫ s

0

n∑

i,j=1

(ti − u)(tj − r)I]ti−1,ti](u)I]tj−1,tj ](r)E|µuµr|dudr.

Using the Cauchy–Schwarz inequality E|µuµr| ≤ (Eµ2
u)1/2(Eµ2

r)1/2 and once
again by the Fubini theorem we obtain the needed bound. 2

Let Xt := S2
t Ĉxx(t, St)

√
f ′(t)I[0,tn−1]. Then

R21n
s = Y n

s +
∫ s

0

Xn
t dt−

∑

ti≤s

Ĉxx(ti−1, Sti−1)S
2
ti−1

√
f ′(ti−1)∆ti, s < 1,

where

Y n
s :=

∫ s

0

(Xt −Xn
t )dt.
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The process X on the interval [0, tn−1] admits the representation of the above
lemma with the coefficients

ϑt =
[
2StĈxx(t, St) + S2

t Ĉxxx(t, St)
]√

f ′(t)σSt,

µt =
1
2

[
2Ĉxx(t, St) + 4StĈxxx(t, St) + S2

t Ĉxxxx(t, St)
]√

f ′(t)σ2S2
t

+
1
2
S2

t Ĉxx(t, St)
f ′′(t)√
f ′(t)

+ S2
t Ĉxxt(t, St)

√
f ′(t).

In the case where g′ is bounded away from zero (hence, f ′ is bounded),
the estimates (3.16) and (3.21) imply that Eϑ2

t ≤ κ/(1 − t)3/2. If also f ′′ is
bounded, then the estimates (3.16) and (3.21) – (3.23) ensure that Eµ2

t ≤
κ/(1− t)5/2.

Applying the lemma we have:

E sup
s∈[0,1]

|Y n
s |2 ≤ κ

n−1∑

i=1

(∆ti)3

(1− ti)3/2
+ κ

(
n−1∑

i=1

(∆ti)2

(1− ti)5/4

)2

.

According to Lemma 4.2 the right-hand side is O(n−3/2) as n →∞.
In the case where g(t) = 1− (1− t)β , β > 1, we obtain in the same way

that Eϑ2
t ≤ κ/(1− t)5/2−1/β , Eµ2

t ≤ κ/(1− t)7/2−1/β , and

E sup
s∈[0,1]

|Y n
s |2 ≤ κ

n−1∑

i=1

(∆ti)3

(1− ti)5/2−1/β
+ κ

(
n−1∑

i=1

(∆ti)2

(1− ti)7/4−1/(2β)

)2

.

By Lemma 4.2 the first sum in the right-hand side can be of order O(n−2),
O(n−2 ln n), or O(n−(β/2+1)), that is o(n−1) as n → ∞. The second sum
can be O(n−1), O(n−1 ln n), or O(n−(β/4+1/2)), i.e. o(n−1/2). In all cases
nE sups |Y n

s |2 → 0.
The process R21n − Y n vanishes in the revision dates and

sup
s∈[0,1]

|R21n
s − Y n

s | ≤ κ max
i≤n−1

∫ ti

ti−1

Ĉxx(t, St)S2
t

√
f ′(t)dt

By the Cauchy–Schwarz inequality

∫ ti

ti−1

Ĉxx(t, St)S2
t

√
f ′(t)dt ≤

(∫ ti

ti−1

Ĉ2
xx(t, St)S4

t dt

)1/2 (∫ ti

ti−1

f ′(t)dt

)1/2

.

Note that the second integral in the right-hand side is equal to 1/n.
Using the bound maxi |ai| ≤

∑
i |ai|, the Jensen inequality, and the esti-

mate (3.19) we obtain from here that for m ≥ 3/2

nmE sup
s∈[0,1]

|R21n
s − Y n

s |2m ≤ κE


 ∑

i≤n−1

∫ ti

ti−1

Ĉ2
xx(t, St)S4

t dt




m
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≤ κ
∑

i≤n−1

(∆ti)m−1

∫ ti

ti−1

EĈ2m
xx (t, St)S4m

t dt

≤ κ
∑

i≤n−1

(∆ti)m

(1− ti)m−1/2
= O(n−1/2)

by virtue of Lemma 4.2. That is, n sups∈[0,1] |R21n
s − Y n

s |2 tends to zero in
Lm and, hence, in L1.

4. The residual processes R22n
s have piecewise constant trajectories and

the analysis of the asymptotic behavior is reduced to the discrete-time scheme.
Let

ξn
i := (Sti

/Sti−1 − 1)2sign (Sti
/Sti−1 − 1),

∆Mn
i := ξn

i − Eξn
i , and Xn

i := Ĉxx(ti−1, Sti−1)S
2
ti−1

. With this notation we
have the representation

n1/2R22n
tk

= Xn ·Mn
k + An

k , k ≤ n− 1,

where
An

k :=
∑

i≤k

Xn
i Eξn

i .

Note that
E

(
euξ− 1

2 u2 − 1
)4 = O(u4), u → 0.

Applying the Doob inequality and Lemma 4.1 we obtain that

E sup
i≤n−1

(Xn ·Mn
n−1)

2 ≤ 4E(Xn ·Mn
n−1)

2 ≤ 4
∑

i≤n−1

Λti−1(Sti/Sti−1 − 1)4

≤ κ
∑

i≤n−1

(∆ti)2

(1− ti−1)1/2
= O(n−1)

according to Lemma 4.2.
By virtue of Lemma 8.1 given below in the section on asymptotics of

Gaussian integrals for sufficiently large n we have the inequalities

0 ≤ Eξn
i ≤ κ(∆ti)3/2

implying that the discrete-time process A is increasing and

||An
n−1||L2 ≤

∑

i≤n−1

||Xn
i ||L2Eξn

i ≤ κ
∑

i≤n−1

Λ
1/2
ti−1

(∆ti)3/2

≤ κ
∑

i≤n−1

(∆ti)3/2

(1− ti−1)1/4
= O(n−1)

again according to Lemma 4.2.
It follows that nE(R22n∗

1 )2 → 0.
5. We verify now that nE(R23n∗

1 )2 → 0. Recall that

E(Sti − Sti−1)
2m ≤ cm(∆ti)m.
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Using (3.20) we obtain the bound

EĈ2
xt(ti−1, Sti−1)(∆ti)2(Sti − Sti−1)

2 ≤ κ
(∆ti)3

(1− ti−1)3/2
.

To estimate the terms coming from the residual term of the Taylor expansion
we use the Cauchy–Schwarz inequality and the bounds (3.5), (3.8), (3.9). This
yields in the following:

EĈ2
xxx(t̃i−1, S̃ti−1)(Sti − Sti−1)

6 ≤ κ
(∆ti)3

(1− ti)2
,

EĈ2
xxt(t̃i−1, S̃ti−1)(Sti

− Sti−1)
4(∆ti)2 ≤ κ

(∆ti)4

(1− ti)3
,

EĈ2
xtt(t̃i−1, S̃ti−1)(∆ti)4(Sti

− Sti−1)
2 ≤ κ

(∆ti)5

(1− ti)4
.

Obviously,

n1/2||R23n∗
1 ||L2 ≤

∑

i≤n−1

||[...]i(Sti − Sti−1)||L2

where [...]i is defined in (2.3). Taking into account that Ĉxx(t, x) ≥ 0 and
using the inequality ||a| − |b|| ≤ |a− b| we can write that

||[...]i(Sti − Sti−1)||L2 ≤ κ
(
||Ĉxt(ti−1, Sti−1)(ti − ti−1)(Sti − Sti−1)||L2 + ...

)

where we denote by dots the L2-norms of the residual term in the first order
Taylor expansion of the difference Ĉx(ti, Sti)− Ĉx(ti−1, Sti−1). Summing up
and using the above estimates we conclude, applying Lemma 4.2, that the
right-hand side of the above inequality tends to zero as n → ∞ and we
conclude.

6. It remains to check that nE(R24n
1 )2 → 0 and this happens to be the

most delicate part of the proof. Again the analysis can be reduced to the
discrete-time case. We note that

nE(R24n
1 )2 ≤

∑

i≤n−1

ES2
ti−1

[...]2i + 2
∑

i<j

E|Sti−1 [...]iStj−1 [...]j |

The estimation of the first sum is rather straightforward. Applying the Ito
formula to the function Ĉx(t, x) and using the positivity of Ĉxx(t, x) and
the inequality ||a| − |b|| ≤ |a− b| we dominate the absolute value of random
variable denoted by [...]i, see the formula (2.3), by the absolute value of

∫ ti

ti−1

(Ĉxx(ti−1, Sti−1)−Ĉxx(t, St))dSt−
∫ ti

ti−1

(
Ĉxt(t, St)+

σ2

2
S2

t Ĉxxx(t, St)
)
dt.
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We check that

n−1∑

i=1

ES2
ti−1

∫ ti

ti−1

(Ĉxx(ti−1, Sti−1)− Ĉxx(t, St))2S2
t dt = O(n−1/4), (7.1)

n−1∑

i=1

∆tiES2
ti−1

∫ ti

ti−1

(Ĉ2
xt(t, St) + S4

t Ĉ2
xxx(t, St))dt = O(n−1/2). (7.2)

A generic term of the first sum is dominated by

∆tiE sup
t≤1

S4
t sup

ti−1≤t≤ti

(Ĉxx(t, St)− Ĉxx(ti−1, Sti−1))
2.

The Cauchy–Schwarz inequality allows us to separate the terms under the
sign of expectation and reduce the problem to the estimation of the forth
power of the difference Ĉxx(t, St) − Ĉxx(ti−1, Sti−1). The Ito formula trans-
forms this difference into the sum of a stochastic integral and an ordinary
integral. Using consecutively the Burkholder and Cauchy–Schwarz inequali-
ties and the bound (3.21) we have:

E sup
t∈[ti−1,ti]

[∫ t

ti−1

Ĉxxx(u, Su)SudSu

]4

≤ c4E

[∫ ti

ti−1

Ĉ2
xxx(u, Su)S4

udu

]2

≤ c4∆tiE

∫ ti

ti−1

Ĉ4
xxx(u, Su)S8

udu

≤ κ
(∆ti)2

(1− ti)7/2
.

To estimate the ordinary integral we use the Jensen inequality for f(x) = x4

and the bounds (3.22) and (3.23) and get that

E sup
t∈[ti−1,ti]

[∫ t

ti−1

(
Ĉxxt(u, Su) +

1
2
σ2S2

uĈxxxx(u, Su)
)
du

]4

≤ κ
(∆ti)4

(1− ti)11/2
.

Using these estimates we obtain that the sum in (7.1) is dominated, up
to a multiplicative constant, by

n−1∑

i=1

[
(∆ti)2

(1− ti)7/4
+

(∆ti)3

(1− ti)11/4

]

and the claimed asymptotics follows from Lemma 4.2.
Similar arguments, but using the inequalities (3.20) and (3.21), give us

the second asymptotic formula.
From the same estimates we obtain that

n−1∑

i=1

(
ES2

ti−1
[...]2i

)1/2 ≤ κ

n−1∑

i=1

∆ti
(1− ti)7/8

+ κ

n−1∑

i=1

(∆ti)3/2

(1− ti)11/8
.
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The second sum in the right-hand side converges to zero while for the first
one we can say only that it is dominated by a convergent integral. Using
this observation we conclude that the sum of expectations of cross terms
over indices i, j with i < j and tj > a also can be done arbitrary small by
choosing a sufficiently close to one.

Unexpectedly, the most difficult part of the proof is in establishing the
convergence to zero of the sum of cross terms corresponding to the dates of
revisions before a < 1, i.e. bounded away from the singularity.

To formulate the claim we introduce “reasonable” notations. Put

αi := Ĉxx(Sti−1 , ti−1)S2
ti−1

( Sti

Sti−1

− 1
)
,

βi := Sti−1Ĉxt(Sti−1 , ti−1)∆ti +
1
2
S3

ti−1
Ĉxxx(Sti−1 , ti−1)

( Sti

Sti−1

− 1
)2

,

γi := |αi +βi| − |αi|. Let us define also the random variable χi := sign (αiβi)
and the set Ai := {|βi| < |αi|}.

Now we have the identity

Sti−1 [...]i = −γi + ζi

where the expression [...]i given in (2.3) and

ζi := |α + β| − |Ĉx(ti, Sti)− Ĉx(ti−1, Sti−1)|Sti−1 .

Using the first order Taylor expansion of Ĉx(t, x) and estimates of the higher
order derivatives we get the bound

|ζi| ≤ κaη(|∆Sti |2 + |∆Sti |∆ti + (∆ti)2)|∆Sti |
where η is a power of the random variable supt≤1 St having moments of any
order. It follows that

E|ζi|2 ≤ κ(∆ti)3.
For By the Cauchy–Schwarz inequality we infer from here that

∑

ti≤a,tj≤a

E|ζiζj | ≤
∑

ti≤a

.E|ζi|2 = O(n−2), n →∞.

For γi the straightforward estimate is worse: E|γi|2 ≤ κ∆ti. Nevertheless,

∑

ti≤a,tj≤a

E|γiζj | ≤

∑

ti≤a

E|γi|2



1/2 
∑

ti≤a

E|ζi|2



1/2

= O(n−1), n →∞.

The assertion needed to conclude is the lemma below. It is based on
asymptotic analysis of expectations of some Gaussian integrals which are
given in the next section and the following identities:

|α + β| − |α| = |β|χIA + |β|I{χ>0}IAc + (|β| − 2|α|)I{χ≤0}IAc

= |β|χ + 2(|β| − |α|)I{χ≤0}IAc − |β|I{χ=0}IAc

where α, β are arbitrary random variables, χ := sign (αβ), A := {|β| < |α|}.
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Lemma 7.2 For every fixed a ∈]0, 1[
∣∣∣

∑

i<j, tj≤a

Eγiγj

∣∣∣ = o(1), n →∞.

Proof. The routine estimation |Eγiγj | ≤ E|γi||γj | does not work in our case.
But for i < j

|Eγiγj | = |E(γiE(γj |Ftj−1))| ≤ E
(|γi||E(γj |Ftj−1)|

) ≤ E
(|βi||E(γj |Ftj−1)|

)
.

According to the above identity,

|E(γj |Ftj−1)| ≤ |E(|βj |χj |Ftj−1)|+ 2E(|βj |IAc
j
|Ftj−1).

Using Lemma 8.2 of the next section with ηu = Stj
/Stj−1 − 1, u = (∆tj)1/2,

we dominate the first term in the right-hand side by

κ
(
Sti−1 |Ĉxt(Sti−1 , ti−1)|+ S3

ti−1
|Ĉxxx(Sti−1 , ti−1)|

)
(∆tj)3/2

It is easily seen from the explicit formulae that the coefficients above when
tj ≤ a can be dominated uniformly by ca(1+supt≤1 St), i.e. by a random vari-
able having all moments. In the same range of indices we have also the bound
E(β2

i |Fti−1) ≤ ζa(∆ti)2 where ζa a random variable having all moments. It
follows from here that

∑

i<j, tj≤a

E
(|βi||E(|βj |χj |Ftj−1)|

)
= O(n−1/2).

We estimate P (Ac
j |Ftj−1) applying Lemma 8.3 of the next section with

c1(tj−1) :=
S3

tj−1
Ĉxxx(Stj−1 , tj−1)

S2
tj−1

Ĉxx(Stj−1 , tj−1)
, c2(tj−1) :=

Stj−1Ĉxt(Stj−1 , tj−1)

S2
tj−1

Ĉxx(Stj−1 , tj−1)
,

and c(tj−1) := 2
(|c1(tj−1)|+ |c2(tj−1)|+1

)
. On the interval [0, a] the contin-

uous process c(t) can be dominated by a random variable ξa. Fix ε > 0 and
choose N such that P (ξa > N) < ε. Lemma 8.3 implies that

P (Ac
j |Ftj−1) ≤ LN (∆tj)1/2I{c(tj−1})≤N + I{c(tj−1)>N}

and, therefore, P (Ac
j) ≤ LN (∆tj)1/2 + ε ≤ 2ε when n is large enough. Using

the Cauchy–Schwarz and Jensen inequalities we get that
∑

i<j, tj≤a

E
(|βi||E(|βj |IAc

j
|Ftj−1)||

) ≤
∑

ti≤a

(Eβ2
i )1/2

∑

tj≤a

(Eβ4
i )1/4(P (Ac

j))
1/4

≤ (2ε)1/4
∑

ti≤a

(Eβ2
i )1/2

∑

tj≤a

(Eβ4
j )1/4.

Both sums in the right-hand side are bounded because Eβ2
j ≤ κ(∆ti)2 and

Eβ4
j ≤ κ(∆ti)4. By the choice of ε the right-hand side can be made arbitrarily

small. Thus, nE(R24n∗
1 )2 → 0. 2
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8 Asymptotics of Gaussian Integrals

Let ξ ∈ N (0, 1) and let ηu := euξ− 1
2 u2 − 1, u ∈ [0, 1].

Lemma 8.1 The following asymptotical formulae holds as u → 0:

E[η2
u − η2

−u]I{ηu>0} =
2√
2π

u3 + O(u4),

Eη2
usign ηu =

2√
2π

u3 + O(u4),

Esign ηu = − 1√
2π

u + O(u3).

Proof. Put
Z(u) := (euξ− 1

2 u2 − 1)2 − (e−uξ− 1
2 u2 − 1)2.

Then Z(0) = Z ′(0) = Z ′′(0) = 0, Z ′′′(0) = 12(ξ3 − ξ), and the function
Z(4)(u) is bounded by a random variable having moments of any order. Using
the Taylor formula we obtain that

EZ(u)I{ξ≥ 1
2 u} = 2u3E(ξ3 − ξ)I{ξ≥ 1

2 u} + O(u4), u → 0,

and we obtain the first formula. The second formula is a corollary of the first
one since

Eη2
usign ηu = EZ(u)I{ξ≥ 1

2 u} − Eη2
uI{|ξ|≤ 1

2 u}

and the last term is O(u4) as u → 0. Finally,

Esign ηu = P (ξ > u/2)− P (ξ < u/2) = 2(Φ(0)− Φ(u/2))

= − 1√
2π

u +
1
4
ϕ(ũ)ũu2,

where ũ ∈ [0, u/2]. 2

Lemma 8.2 There exists a constant κ such that for any A ∈ R
∣∣E|η2

u −Au2|sign(η2
u −Au2)ηu

∣∣ ≤ κ(1 + |A|)u3. (8.1)

Proof. Note that |x| signxy = x sign y. Therefore the left-hand side of (8.1)
is dominated by ∣∣Eη2

usign ηu

∣∣ + |A|u2
∣∣Esign ηu

∣∣
and the result holds by virtue of the previous lemma. 2

Lemma 8.3 For every N > 0 there is a constant LN such that for all u ∈
[0, 1]

P (|c1η
2
u + c2u

2| > |ηu|) ≤ LNI{c≤N}u + I{c>N}.

for any constants c1, c2 and c := 2(|c1|+ |c2|+ 1).
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Proof. Suppose that N ≥ c > 2, the only case where the work is needed. It
is easy to see that

P (|c1η
2
u + c2u

2| > |ηu|) ≤ P ((c/2)η2
u + (c/2)u2 > |ηu|)

≤ P (c|ηu| > 1) + P (|ηu| < cu2).

The probabilities in the right-hand side as functions of c are increasing and
it remains to dominate their values at the point c = N . The required bound
holds for the first probability in the right-hand side (and even with a constant
which does not depend on N). Indeed, using the Chebyshev inequality, finite
increments formula, and the bound ϕ(x) ≤ 1/

√
2π we have:

P (N |ηu| > 1) ≤ 1
N

E|ηu| ≤ 1
2
E|ηu| = Φ(u/2)− Φ(−u/2) ≤ 1√

2π
u.

For u ≥ 1/
√

2N the second probability is dominated by linear functions with
LN ≥ √

2N . For u < 1/
√

2N we write it as

P (u/2 ≤ ξ < (1/u) ln(1+Nu2)+u/2)+P ((1/u) ln(1−Nu2)+u/2 < ξ < u/2).

Using again the finite increments formula we obtain that

P (u/2 ≤ ξ < (1/u) ln(1 + Nu2) + u/2) ≤ 1√
2π

Nu.

On the interval ]0, 1/
√

2N [ we have the bound (1/u) ln(1 − Nu2) ≥ −κNu
where κ > 0 is the maximum of the function − ln(1 − x)/x on the interval
]0, 1/2]. It follows that

P ((1/u) ln(1−Nu2) + u/2 < ξ < u/2) ≤ 1√
2π

κNu.

Thus, the second probability also admits a linear majorant on the whole
interval [0, 1]. 2
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