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Chapter 1

Tick-by-tick data and ACD models

1.1 Introduction

The introduction of automated electronic systems of trading allows the keeping of precise
records of a vector of characteristics of all the quotes posted and all the trades executed in a
regulated market1. The availability of such an exhaustive set of data is fairly recent, dating
back to the early nineties. Its introduction has stimulated the development of a lively field
of econometric analysis, focusing on the trading mechanisms, the intraday characteristics
of the markets and the price formation process. The data used in this work are extracted
from the Trade And Quote (TAQ) database, which provides intraday information on prices
and quotes for stocks traded on the NYSE and on the NASDAQ regulated markets. It
is worth remarking that these intraday databases are now available for a large number of
exchanges and that in the recent literature, the analytical framework employed here has
been extended to tick-by-tick data from regulated markets of various countries.

The availability of a complete set of information about the exact (down to the second or
even less) timing of trades and quotes allows the consideration of the duration between
two financial events as a random variable, that can be studied by employing the tools of
duration analysis. Different kinds of financial events can be defined, such as trade and
quote formation, price evolution and accumulation of traded volume, in order to study the
process followed by their durations.

Once these financial events have been defined and their durations have been computed
from the tick-by-tick database, it is possible to conduct a statistical analysis of their char-
acteristics. The main tools that have been used in the literature so far have been the one of

1In the literature, different terms have been used to indicate this kind of data sets. Some authors call
them ”high frequency data”, others ”ultra high frequency data”, others ”tick-by-tick data”. Throughout
this work, the last denomination will be mostly used.
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transition and of time series analysis. Most of the works on the duration of tick-by-tick data
are in fact characterized by the direct specification of the density of the duration between
events augmented by the introduction of an autoregressive component. In principle, other
frameworks of analysis are possible (which can employ, for instance, a perspective based
on counting or on intensity) and are being explored by the literature. In this work, though,
these last methods will not be considered, even if their development is very interesting.
Instead, the work concentrates on the duration density specification.

The statistical models used to describe the point process followed by events defined on the
basis of tick-by-tick data can also be seen as a part of a larger analytical framework, whose
aim is to jointly describe various dynamics, such as, for instance, price evolution, liquidity
or strategic interaction of different agents.

1.2 Tick-by-tick financial data

The data we employ in the essays in the following chapters have a great deal of com-
mon features. They consist in tick-by-tick observations from the Trade and Quote (TAQ)
database produced by the New York Stock Exchange (NYSE). The data are first filtered
to eliminate possible errors in recording or minor discretization problems (durations of
zero seconds) and then aggregated to compute trade, price and volume durations, after
controlling for daily and weekly seasonality.

A precise account of how these data are treated is provided by Bauwens and Giot (2001), in
the next subsections we only provide a quick introduction of how these steps are performed.

1.2.1 Common features of Tick-by-Tick data

A first common characteristic of tick-by-tick data is that they consist in all trades executed
and quotes posted in a specific market, that is for a specific traded asset in a specific
exchange. Tick-by-tick data therefore represent the richest possible set of information
about the trading activity of an asset, with the possible exception of the complete list
of all book entries and their variations (which would contain more information about the
behavior of offer and demand).

Given that trade completions and quote postings happen irregularly, tick-by-tick are not
uniformly spaced in time. This is probably the most significant difference with the data
that are most commonly used in financial econometrics, where equally spaced observations
(daily, weekly, monthly...) are considered. The effect of irregular timing of the data on
the scope and methodology of statistical analysis are of course numerous. In this thesis we
will concentrate on the consideration that the timing itself of trades and quote postings
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can now be object of statistical analysis using as a starting point the tools provided by the
theory of point processes. This approach has a long tradition in statistics, and we suggest
as an introduction to the subject the manuals of Lancaster (1990) and Cox and Isham
(1980) A further step could be to consider the new information provided by timing in an
analysis of other processes, like return volatility or trading volume dynamics, but we will
not explore these problems further here, leaving these subjects to further research.

It is important to notice that in the dataset used in the next chapters of this thesis (com-
posed of observations on stocks traded on NYSE and AMEX), the timing of trades and
quote postings is recorded with a rounding of a second. This degree of precision is usually
enough to observe and detail the behavior of the point process under analysis, but can
sometimes lead to attributing the same time of several trades/quotes to the same second,
even if they are separated by some fractions. This can especially happen in periods of
fast market for heavily traded stocks and unfortunately in these cases some aggregation is
necessary to avoid durations of zero.

Before moving to the statistical analysis of the data, it is important to introduce some
relevant features of durations between trades and/or quote postings in tick-by-tick data.
These feature appear to be common to durations of various stocks and exchanges and are
denoted therefore as ”stylized facts” (in pretty much the same way common features of
return volatility have been singled out and studied in ARCH literature).

The main stylized facts of durations in financial tick-by-tick data can be considered to be
the following:

• Autocorrelation. There is an extremely clear evidence of the presence of significant
positive autocorrelation in the process of durations. This rules out the possibility of
limiting ourselves to the basic Poisson or any iid process (even if the density of the
durations is richer than the negative exponential of the Poisson case).

• Long memory. The pattern of autocorrelations seems to have a slow rate of decay.
The persistence of (relatively low but significant) autocorrelations even at high orders
is denoted as ”long memory”.

• Overdispersion. This stylized fact can be somehow considered as the counterpart
in the realm of durations of the presence of fat tails in the distribution of returns.
The observed ratio between standard deviation to the mean (dispersion index) is
larger than the benchmark value of one implied by an exponential distribution.

• Nonlinearities. There is some evidence of switching regimes, characterized by tran-
sitions in the mean and variance of durations.

• Seasonality. Durations appear to be strongly dependent on seasonal factors such
as the time of the day and in less marked way, also the day of the week. A typical
inverted ”U” shape is observed in the means of durations, with more frequent trading
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happening after the opening and before the closing of trading sessions, while times
between trades tend to widen in the middle of the trading day. Informational issues
could be suggested as an explanation of this phenomenon (new information needs to
be incorporated at opening and discounted before closing), but we will not deal with
a thorough analysis of this issue and simply will consider data deseasonalized by a
nonparametric regression of durations on time.

1.2.2 The TAQ database

The data we used for the empirical parts of the following chapters are drawn from the
Trade and Quote (TAQ) database, which provides the full record of transactions for stocks
on NYSE and NASDAQ markets.

The database has information both about actual trades (informations about prices and
size) and about best bid-ask posted quoted, with details on price, size and of course the
time of the trade or the bid-ask. Unfortunately, no further data on the book is available
at least in the version we used. Another piece of information that is not offered is the one
about the direction of the trading and the regime of a trade (large trades have a special
procedure, called ”upstairs trading”).

A further characteristic of these data that must be remarked is that a degree of discretiza-
tion in the recorded traded time is present. The precision is in fact down to a second
which in the case of heavily traded stocks, could lead to several trades sharing the same
timestamp. In treating the data we chose to merge these trades, therefore eliminating zero
durations.

1.2.3 Durations

Once the raw data are treated in order to deal with the discretization effect and with
other technical issues like recording errors or trades registered out of the official opening
hours of the market (9:30-16:30 for our data), we can aggregate the quotes and the trades
information on the basis of the time of their execution or posting and define other kind of
durations. In the next chapters we will in particular use three types of durations: trade,
price and volume durations.

• Trade durations are defined as the time between two consecutive trades. The
presence of discretization could lead to durations of zero, which are eliminated.

• Price durations are defined as the time necessary to the price to abandon a pre-
defined range. To compute them we select a price threshold, say cp and we record
that it took to the price to get out of the interval [Xp ± cp] where Xp is the price
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corresponding to the end of the previous price duration. In order to avoid the effect
of bid-ask bounce, we usually use the average between the best bid and ask quotes
rather than the realized price.

• An analogous approach is used to define and compute volume durations. This
time we consider the volume of trades and register the time needed to accumulate in
excess of a predefined volume range. Volume durations are less sensitive to bid-ask
spread, so they are computed on the basis of realized trades.

1.2.4 The issue of seasonality

An important feature of the trade and quote data is a marked seasonal pattern observed
both on a daily basis and inside the trading day.

Intraday seasonality tends to manifest itself with a stronger trading activity after the
opening and before the closing of the market. This results in an ”inverse-U” shape in
both trade, price and volume durations, which are longer in the central hours of the day.
Explanations of this phenomenon vary, here we simply mention the possibility that lunch
affects the presence of operators and the idea that in the morning the information that
reached the market overnight is factored in and that traders often balance or close their
positions towards the end of the day.

A similar, though definitely less marked, effect is observable on Mondays and Fridays,
which usually register a highly trading activity than days in the middle of the week.

Bid-ask spreads too appear to display a similar seasonal behavior. They in fact result
larger in times of fast trading while they restrict in the middle of the day and of the week.

In order to take into account the effect of seasonality, we compute adjusted durations
xi by dividing the raw durations Xi by a seasonality index φ(tij) which represents the
time-of-day or the time-of-week effect at time ti:

xi = Xi/φ(tij). (1.1)

The seasonality index φ(tij) is computed in two slightly different ways in this thesis.

• In chapters 2 and 4, we used the average-and-spline method, which consists in cal-
culating the average duration over 30 minutes intervals for each day of the week and
joining their midpoints with cubic splines.

• In chapter 3, data are deseasonalized by performing a Nadaraya-Watson estimation
with a quartic kernel and a bandwidth computed with normal reference.
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An example comparison of the values of the seasonality indices calculated by kernel regres-
sion and average-and-spline method for the same data is presented in figure 1.1. The kernel
based methods seems to provide smoother estimates. However, the general shape and the
magnitude of the seasonal effect are strictly comparable between the two approaches.

1.3 ACD family models

The family of parametric extensions of the original ACD model has been steadily growing
since its introduction. In this subsection, some of the models that are more relevant or
more useful in order to read the rest of the work will be introduced.

1.3.1 Autocorrelated Conditional Duration

The ACD model, introduced by Engle and Russell (1998a) belongs to the class of acceler-
ated time (also called time deformation) models of the form

x = x0 g(z, β), (1.2)

where durations x are specified as the product of a baseline duration x0 and a function
g(z, β) of exogenous variables z and a vector of parameters β. If the expectation E(x0) = 1
and x is independent on g(z, β), the second term can be seen as the conditional expectation
E(x|z) of x given z.

In the ACD framework, the i-th duration between two financial events, can be modeled as
the product

xi = Ψiεi, (1.3)

of a baseline duration εi, positive and independent and identically distributed2 and the
time deformation factor Ψt. The baseline duration εt is usually parametrized in order to
have an unconditional mean of 1, so that the conditional duration is E(x|Ii) = Ψi.

In the original ACD specification by Engle and Russell (1998a) the conditional duration
Ψi is specified as an autoregressive model

Ψi = ω + αxi−1 + βΨi−1 (1.4)

with the constraints ω > 0, α ≥ 0, β ≥ 0 (with β = 0 if α = 0), to ensure the positivity of
the conditional durations and α + β < 1 to ensure stationarity.3

2Several different distribution are commonly employed in the ACD literature: exponential, Weibull,
Gamma, Burr, Generalized Gamma, for a detailed explanation of their characteristics see Bauwens and
Giot(2000).

3Formula 1.4 corresponds to an ACD(1,1) specification. The presence of more lags in x and Ψ are
defined as higher order ACD(p, q) models.
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Figure 1.1: Nonparametrically and average-and-spline computed tod-tow for trade dura-
tions of Disney stock in the period January-May 1997.
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The ACD specification is able to render a number of relevant stylized facts displayed by
durations in tick-by-tick financial data, such as autocorrelation, overdispersion and, to
some degree, long memory.

Estimation of the ACD model can easily be performed by maximum likelihood. If fε(εi; θ2)
stands for the density function of εi, which can depend on some parameters θ2, the density
function of xi given Hi is

fx(xi|Hi; θ) = fε(
xi
Ψi

; θ2) Ψ−1
i , (1.5)

so that the log-likelihood function for the parameter θ = (θ1, θ2) where θ1 corresponds to
the parameters of the autoregressive equation (typically ω, α, and β) is

l(θ) =
n∑
i=1

ln fx(xi|Hi; θ) =
n∑
i=1

[
ln fε(

xi
Ψi

; θ2)− ln Ψi

]
. (1.6)

In this expression, Ψi can be also be any of the alternative specifications proposed in the
literature, some of which are introduced below.

The log-likelihood function can be maximized by a standard numerical algorithm, which
at convergence delivers the maximum likelihood estimate (MLE) θ̂.

When using a precise hypothesis about the distribution of εi, one runs the risk of making
a mistake, in which case the MLE is not even consistent. A simple alternative is to rely on
the quasi-maximum likelihood estimate (QML) θ̃1. The appropriate quasi-log-likelihood
function is obtained by proceeding as if the distribution of εi were exponential. Of course,
the QML approach is robust to misspecification of the baseline distribution, but it does
not provide an estimate of the parameter set θ2.

1.3.2 Logarithmic ACD

The ACD formulation for the conditional duration requires positivity constraints on the
parameters in (1.4) to avoid negative durations. The consequences of imposing these re-
strictions are particularly troublesome when we introduce additional explanatory variables.
For this reason, Bauwens and Giot (2000) introduced a logarithmic version of the ACD
model.
In Log-ACD models, equation (1.3) is written as

xi = exp(ψi)εi, (1.7)

such that ψi is the logarithm of the conditional duration Ψi = exp(ψi). The difference with
ACD models is that the autoregressive equation bears on the logarithm of the conditional
duration, rather than on the conditional duration itself. In the simple Log-ACD(1, 1)
specification, two possible specifications of this equations are

ψi = ω + α log εi−1 + βψi−1 (Type I) (1.8)
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and
ψi = ω + αεi−1 + βψi−1 (Type II). (1.9)

Here, no sign restrictions are needed on the parameters to ensure the positivity of the
conditional duration. The hypotheses about εi are the same as in ACD models, as well
as the possible probability distributions. Like in the ACD case, the estimation for the
Log-ACD can easily be performed by quasi-maximum likelihood.

In the following chapter, we will further detail the properties of Log-ACD models is be pro-
vided in the following chapter. The chapter will introduce the more general Log-ACD(p, p)
and derive analytical expressions for moments and autocorrelation function, performing an
empirical comparison with other specification.

1.3.3 Stochastic Conditional Duration

Like in the case of GARCH literature, upon which the research on ACD heavily relies, the
introduction of a second element of randomness appears to be a valid tool for the treatment
of the dynamics of the data.

Bauwens and Veredas (2004) suggest that durations are driven by a stochastic dynamic
latent factor, which can be interpreted as inversely related to the information dynamically
and randomly reaching the market. The authors assume that the latent variable follows
the first order autoregressive process

ψi = ω + βψi−1 + ui, (1.10)

where ui is independently normally distributed with zero mean and variance σ2. Combining
(1.10) with (1.7) yields a state space model where (1.7) is transformed in logarithm. Given
this structure, the latent factor Ψi = exp(ψi) is lognormally distributed, both conditionally
on the past durations and unconditionally. Notice that even if εi is assumed to follow a
standard distributions for durations (like those used for ACD models), the conditional
distribution of xi is the mixture of the assumed distribution of εi and the conditional
lognormal of Ψi. The authors compute these mixture distributions by unidimensional
numerical integration and illustrate the wide range of shapes of the hazard function that can
be obtained depending on the distribution specified for εi. For example, if εi is distributed
as a Weibull, the shape of the hazard function varies form that of the Weibull distribution
for very small values of σ2 to humped shapes for large values of σ2.

Estimation of the parameters of the SCD model can be done in several ways. Since the
model is a nonlinear space state model, due to the non-normality of the distribution of ln εi
(unless εi is itself assumed to be lognormal), simulation-based methods are required for
ML estimation, such as it is done in Chapter 3. The approach followed by Bauwens and
Veredas (2004) consists in approximating the distribution of ln εi by a normal distribution
with mean and variance that depend on the parameters of the assumed true distribution.
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A consistent (albeit inefficient) estimator of all the parameters can then be obtained by
quasi-maximum likelihood using the Kalman filter and the prediction error decomposition.

In the third chapter of this thesis we sill instead propose to use the an importance sam-
pling algorithm to numerically compute the multidimensional integral that is necessary to
calculate the likelihood without approximations.

1.3.4 A short review of other ACD family specifications

This subsection presents a very short review of the alternative specifications of the ACD
models. Some of these models represent a parametric extension of the original framework,
while others try to analyze the dynamics of financial durations with a slightly different
perspective.

Threshold ACD

In the standard ACD framework, the conditional mean dynamics are determined by the
simple linear specifications (1.3)-(1.4). argue that financial duration processes require a
more flexible specification. In the threshold ACD (TACD) model, proposed by Zhang et al.
(1999), conditional duration Psii is modeled as a three regime model where the regimes
are allowed to have different duration persistence and error distribution:

Ψi = ω
(j)
i + α

(j)
i xi−1 + β

(j)
i Ψi−1 if xi−1 ∈ Rj, (1.11)

with Rj = [rj−1, rj), j = 1, 2, . . . , J , where the positive integer J is the number of regimes
and 0 = r0 < r1 < . . . < rJ = ∞ are the threshold values. The TACD model can be
estimated by QML.

Meitz and Terasvirta (2006) propose a generalization of this specification, characterized by
the presence of a smooth transition between regimes.

A generalization based on Box-Cox transformation

Fernandes and Grammig (2006) develop a family of ACD models encompassing many
existing formulations existing in the literature. The nesting relies on a Box and Cox
(see Box and Cox (1964)) transformation with shape parameter λ ≥ 0 to the conditional
duration process and on an asymmetric response to shocks, giving way to:

Ψλ
i − 1

λ
= ω∗ + α∗Ψ

λ
i−1[|εi−1 − b| − c(εi− 1− b)]v + β

Ψλ
i−1 − 1

λ
. (1.12)
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The shape parameter λ determines whether the Box-Cox transformation is concave (λ ≤ 1)
or convex (λ ≥ 1). The augmented autoregressive conditional duration (AACD) then
ensues by rewriting (1.4) as

Ψλ
i = ω + αΨλ

i−1 [|εi−1 − b| − c(εi−1 − b)]v + βΨλ
i−1, (1.13)

where ω = λω∗ − β + 1 and α = λα∗. The AACD model provides a flexible functional
form that permits the conditional duration process {Ψi} to respond in distinct manners to
small and large shocks. The shocks impact curve g(εi) = [|εi − b|+ c(εi − b)]v incorporates
such asymmetric responses through the shift and rotation parameters b and c, respectively.

The original ACD model is recovered by imposing λ = v = 1 and b = c = 0, whereas letting
λ→ 0 and b = c = 0 renders another simpler Box-Cox specification put forward by Dufour
and Engle (2000). Further (1.12) reduces to the Log-ACD models either if λ → 0, v = 1
and b = c = 0 (Type I) or if λ, v → 0 and b = c = 0 (Type II). Other conditional duration
models may be built by imposing restrictions on (1.12). Some examples considered by
Fernandes and Grammig include the asymmetric Log-ACD (λ→ 0 and v = 1), asymmetric
power ACD (λ = v), asymmetric ACD (λ = v = 1), and power ACD (λ = v and b = c = 0).
The specifications here found can be estimated by maximum likelihood and are compared
by the authors, who argue that both concavity in the shocks impact curve and asymmetric
response are useful in tracking the behavior of the data.

Fractionally integrated ACD

Empirically, the evidence for a long range of time dependence intertrade duration is revealed
by a highly persistent pattern of the autocorrelations, displaying a slow, hyperbolic rate of
decay. The ACD model and most of its derivations account for short serial dependence in
expected durations and thus impose an exponential decline pattern on the autocorrelation
function. In empirical application of ACD models, the estimated coefficients on lagged
variables often sum up nearly to one. Such evidence may indicate a potential misspeci-
fication that arises when an exponential decay pattern is fitted to a process showing an
hyperbolic rate of decay. This could suggest that a more flexible structure allowing for
longer term dependencies might improve the fit. This is the motivation of the introduction
by Jasiak (1998) of a class of fractionally integrated ACD models (FIACD).

Considering lag operators, equation (1.4) for a generic ACD(p, q) model can be rewritten
as:

Ψi = ω + α(L)xi + β(L)Ψi, (1.14)

where α(L) = α1L + α2L
2 + . . . + αpL

p, and β(L) = β1L + β2L
2 + . . . + βqL

q. This
specification implies that the effect of past durations on the current conditional expected
value decays exponentially with the lag length. Indeed, the ACD(p, q) can be rewritten as
an ARMA (m,m) process in xi, where m = max(p, q), and

[1− φ(L)]xi = ω + [1− β(L)]vi, (1.15)
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where φ(L) = α(L) + β(L) = φ1L + φ2L
2 + . . . + φmL

m, and vi = xi − Ψi is the linear
innovation of the duration process. The stationarity and invertibility conditions require
that the roots of [1− φ(L)] and 1− β(L) lie outside the unit circle in the complex space.
The corresponding fractionally integrated process is obtained by introducing the fractional
differencing operator

[1− φ(L)](1− L)xi = ω + [1− β(L)]vi. (1.16)

with 0 ≤ d ≤ 1. By substituting xi −Ψi for vi, one can obtain the FIACD(p, d, q) model:

[1− β(L)]Ψi = ω + [1− β(L)− [1− φ(L)](1− L)d]xi

= ω + λ(L)xi
(1.17)

where λ(L) = λ1L + λ2L
2 + . . ., a polynomial of infinite order (in estimation it is ap-

proximated by truncating after 1000 lags). In order to guarantee the positive sign of the
expected duration, all coefficients in the last equation have to be nonnegative. It is remark-
able that, when d = 0, the FIACD is led back to an ACD, while for d = 1 an integrated
ACD is obtained.

If durations follow a FIACD process, the first unconditional moment of xi is infinite and the
process is not weakly stationary. However, it can be shown that under some conditions this
process can be strictly stationary and ergodic. The parameters of the FIACD specification
can be consistently estimated by QML once a viable probability density function is specified
for the baseline duration εi. A small set of estimations on empirical samples appear to
deliver significant estimates for the fractional parameter of the FIACD model, which seems
to reveal a persistence phenomenon and to suggest a misspecification of the ACD model.

Models for the distribution for the baseline duration

The alternative specifications described so far were related to the functional form of the
conditional duration. The ACD model can be further articulated by considering various
forms for the distribution of the baseline duration. A series of ”standard” distributional
models are employed in the literature on ACD models. These distributions (Exponential,
which is nested by all others, Weibull, Burr, Gamma, Generalized Gamma, Generalized
F...) are usually derived from the usual toolbox of duration analysis and can allow for
different dynamics of the hazard function (see Pacurar (2008) for an account of these
distributions).

An interesting generalization of the distributional law of the conditional duration is pro-
vided by DeLuca and Gallo (2009) and DeLuca and Gallo (2004). In the second and
more general work, the authors adopt a mixture of exponentials with time-varying mix-
ing weights, maintaining the hypothesis that the innovation process has unit expected
value. The fact that mixing weights depend on time is suggested to be the effect of dif-
ferent regimes in intensity in trading. These weights can be also be directly modeled as
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depending on some indicators of market activity, allowing for a market microstructure
interpretation of their evolution in time.

Multivariate duration models

While the literature on volatility processes (GARCH, SV,. . . ), abounds with multivariate
specifications, in the ACD analysis of point processes the extensions in this direction are still
a limited number and this seems to be the most promising field of research. The difficulties
inherent to this analysis are mainly due to the fact that the components of the vectors of
processes that are to be jointly analyzed (trades of different stocks, quote adjustments,
financial events defined on the basis of price or volume. . . ) do not necessarily occur at
regularly spaced time intervals, which makes traditional time series analysis impossible.
As spells in different processes overlap and have different mean durations, it is difficult to
retrieve a good set of variables to condition the distribution of the durations between events.
In general, it is difficult to model the distribution of a duration when new information can
arrive within the duration itself. Furthermore, in an univariate point process durations
can be easily ordered, so that only the duration of the spells and their relative positions
need to be considered, while in a multivariate setup a clear ordering of the durations of
different processes is difficult to obtain and the study of the density of durations needs
to be performed conditionally to the clock time too. As it is pointed out in Cox and
Isham (1980), a point process can be analyzed under three main different perspectives:
distribution of the duration between events, instantaneous probability of an occurrence
(termed as intensity of the process) and distribution of the number of occurrence in an
arbitrarily fixed span of time. The attempts to obtain a joint model of financial point
processes have followed these three lines of research.

For what concerns the direct study of the distribution of the durations between events
(the very same perspective employed in the most of the literature on univariate processes),
Engle and Lunde (2003) propose a censored bivariate ACD model. The goal of their work
us to assess how quickly information in the transaction process impacts the prices via
quote adjustments. Their primary interest lies therefore in the time between transactions,
considered a the ”driving process”, and subsequent quote revisions. The two processes are
not treated symmetrically and some information is lost if multiple quote revisions occur
without intervening transactions. This asymmetry is overcome by Mosconi and Olivetti
(2005) who propose a bivariate competing risk model, where the transaction and the quote
revision processes can be considered to be collapsed into a single marked point process.
Contrarily to the model of Engle and Lunde, the latter could be in principle extended to
a multivariate case.

The intensity of the multivariate process is the object of the analysis of Russell (1999), who
proposes to model the instantaneous arrival rate conditionally of the multivariate filtration
of arrival times and associated marks. Though the ensuing Autocorrelated Conditional
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Intensity (ACI) model is conceptually simple and appealing, it is analytically difficult and
its estimation requires a great amount of computations. An interesting extension of this
approach is provided by Bauwens and Hautsch (2002) who, in the Stochastic Conditional
Intensity (SCI) model, add a latent factor to the specification of the conditional intensity
function. This stochastic parametrization seems to improve the descriptive power of the
model, though it obliges to recur to numerical methods in order to study the likelihood.

the Multivariate Autoregressive Conditional Poisson (MACP) model, a multivariate count-
ing specification is proposed by Heinen and Rengifo (2003), who employ a Poisson and a
double Poisson (with an additional parameter) distributions to model the number of finan-
cial events that take place during a fixed span of time. Conditionally on past observations,
the vector of the means of the occurrences follow a VAR process. The interdependence
between the different univariate processes is further modeled via a multivariate normal
copula, which introduces contemporaneous correlation between the series. The model can
be estimated by maximum likelihood. This framework of analysis seems to be very flexible,
as it can be applied to a series of point processes representing in principle any financial
event.

1.4 Empirical applications of the ACD models

The models of the ACD family have found their place in the literature also as a component
of a set of more general models, that jointly consider price dynamics and duration between
financial events. This subsection will hint at some of the most relevant contributions,
without going too deeply in the usually analytically involved details of these interesting
models.

The field where this class of models has been used the earliest and most frequently is the
one of microstructure of financial markets. The hypotheses on the presence of different
types of agents and their impact on the trading activity on the market (see for instance
Admati and Pfeiderer (1988), Diamond and Verrecchia (1987), Easley and O’Hara (1992)
or O’Hara (2000)) require to analyze irregularly spaced data whose frequency of arrival
matters, a task the ACD model is very well suited for.

Models for the study of market microstructure usually rely on the mix between a model
for the evolution of returns (usually a GARCH or a VAR) and an ACD which function is
to account for the changes in frequency of transactions (and therefore, in the context of
tick-by-tick data, the frequency of arrival of observations).

Engle and Russell (1998b) employ in transaction arrival times and accompanying measures
of price, volume and bid-ask spread to develop a marked point process, i.e. a point process
where each occurrence is associated with a vector of marks. The authors propose to
decompose the joint distributions of arrival times and price changes into the products of

14



the conditional distribution of price changes and the marginal distribution of arrival time.
The latter is modeled an ACD. The distribution of changes in price is instead described
with of a multi-state transition model, by specifying the vector of probabilities of being in
each state. These probabilities obviously need to sum up to one and are considered to be
conditional to the durations of past transactions and to a set of other covariates, such as
volume and spread of past transactions. The process is defined Autoregressive Conditional
Multinomial (ACM) and can be estimated by maximizing the joint likelihood.

Engle (2000) applies the ACD model to IBM transaction arrival times to develop semi-
parametric hazard estimates and conditional intensities. Combining these intensities with
a GARCH model of prices gives rise to the UHF-GARCH model, where the dynamics of
volatility are conditioned on transaction times. Evidence is found for both short and long
run components of volatility and that longer duration and longer expected durations are
associated with lower volatilities, coherently with the main results in market microstructure
theory.

Ghysels and Jasiak (1998) develop a class of ARCH models for series sampled at unequal
time intervals set by trade or quote arrivals. The class of models they introduce is called
ACD-GARCH and can be described as a random coefficient GARCH, or doubly stochas-
tic GARCH, where the durations between transaction determine the parameter dynamics.
The ACD-GARCH model becomes genuinely bivariate when past asset return volatilities
are allowed to affect transaction durations and vice versa. In a different perspective, the
spacings between trades can be considered exogenous to the volatility dynamics. This
assumption is required in a two-step estimation procedure. The bivariate setup enables
to test for Granger causality between volatility and intra-trade durations. Under general
conditions, the authors propose several GMM estimation procedures, some having a QML
interpretation. As illustration, an empirical study of the IBM tick-by-tick data is presented,
where it is argued that the volatility of IBM stock prices Granger causes intra-trade du-
rations and that the persistence in GARCH drops dramatically once intra-trade durations
are taken into account.

Dufour and Engle (2000) use an ACD model to study the effect of trading intensity in the
price formation process. The authors augment by an ACD Hasbrouck’s (see Hasbrouck
(1991)) vector autoregressive model for the dynamics of price variations measured on quotes
and trades. The coefficients of this model pertaining to trades are allowed to vary with
time, with the objective to investigate if the time between trades (modeled by an ACD
process) affects the price adjustment to trades and the correlation between current and past
trades. As a result of the empirical analysis, the authors find that as time duration between
transactions decreases, the price impact of trades, the speed of price adjustment to trade-
related information and the positive autocorrelation of trades all increase. This paper was
successfully extended both by Spierdijk (2004) and Manganelli (2005) who further augment
the original model to include the effect of volume, volatility and classes of frequently and
infrequently traded stocks.
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Wang (2004) develops an asymmetric variant of the ACD-GARCH model that attempts to
capture the asymmetric effect of good news and bad news on intertrade durations. From
the analysis it emerges that good-news-based trading will generally lead to increased trad-
ing intensity, while bad-news-based trading will generally contribute to longer durations
and that that long durations tend to lead to declining prices and low volatility. Notic-
ing that most financial markets allow investors to submit both limit and market orders
but it is not always clear why agents choose one over the other, Lo and Sapp (2008) em-
pirically investigate how several microstructure factors influence the choice and timing of
submissions and specifically the expected time (duration) between successive orders using
an ACD model. The authors find that the order submission process is not symmetric for
market and limit orders. For example, only the lagged average volume seems to affects the
expected duration of market orders while the lagged market imbalance, quote intensity, av-
erage volume and bid-ask spread all shorten the expected duration of limit orders. ACD is
finally used as a component of the interdependent model for volatility and inter-transaction
duration processes proposed by Grammig and Wellner (2002). The authors overcome the
estimation problems (the parameters for the equations of volatility and trade frequency
are to be estimated simultaneously) by using a GMM procedure. This model allows to
indirectly test the common microstructure hypothesis that volatility is caused by private
information affecting prices when informed investors are active.

Not limited to market microstructure, ACD models are a useful tool in other fields of
financial economics where the object of analysis is the frequency of a recurring phenomenon.
Ivanov and Lewis (2008) for instance examine the determinants of issue cycles for initial
public offerings by modeling the time between IPO’s with an ACD model. By including
proxies for different explanations of issue activity, they evaluate whether the data support
the business conditions, time varying adverse selection costs, or sentiment hypotheses.
Focardi and Fabozzi (2005) discuss a ACD based theoretical model for explaining credit-
risk contagion in credit portfolios. Another example of the flexibility of the ACD framework
is provided by Christoffersen and Pelletier (2004) who employ an ACD model to build
tests for the evaluation of VaR models based on the dynamics of the violations. Finally,
Fischer and Zurlinden (2004), noticing that the timing of interventions offers important
information for central bank watchers, consider whether the duration intervals of past
interventions matter for future interventions by modeling them as an ACD and applying it
to the persistence of interventions by the Federal Reserve, the Bundesbank and the Swiss
National Bank.

The Conditional Autoregressive Range (CARR) model, developed by Chou (2005) can be
considered an application of the analytics of the ACD model, in that it adapts the ACD
equations to describe the evolution of he high/low range of asset prices within fixed time
intervals, providing an efficient estimator of local volatility. Though the two models (ACD
and CARR) basically share the same functional and statistical forms, there is an essential
distinctions between them in that while duration is measured at some random intervals,
range is measured at fixed intervals; hence, the natures of the variables of interest are
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different although they share the common property that all observations are positively
valued. Extensions of the CARR model are proposed by Chou and Wang (2007), who
include exogenous explanatory variable such as lagged return and lagged trading volume,
and by Brunetti and Lidholdt (2002) who develop a fractionally integrated version of the
model (FICARR) to accommodate for long memory in the range of log-prices and test it
to a database of exchange rates.

1.5 Overview of the following chapters

In chapter 2, we provide existence conditions and analytical expressions of the moments
of logarithmic autoregressive conditional duration (Log-ACD) models. We focus on the
dispersion index and the autocorrelation function and compare them with those of ACD
and SCD models. Using duration data for several stocks traded on the New York Stock
Exchange, we compare the models in terms of their ability at fitting some stylized facts.

Moving from the fact that the evaluation of the likelihood function of the SCD model
requires to compute an integral that has the dimension of the sample size. In chapter 3, we
apply the efficient importance sampling method for computing this integral. We compare
EIS-based ML estimation with QML estimation based on the Kalman filter. We find that
EIS-ML estimation is more precise statistically, at a cost of an acceptable loss of quickness
of computations. We illustrate this with simulated and real data. We show also that the
EIS-ML method is easy to apply to extensions of the SCD model.

Finally, the aim of chapter 4 is to carry out a nonparametric analysis of financial durations.
We make use of an existing algorithm to describe nonparametrically the dynamics of the
process in terms of its lagged realizations and of a latent variable, its conditional mean. The
devices needed to effectively apply the algorithm to our dataset are presented. On simulated
data, the nonparametric procedure yields better estimates than the ones delivered by an
incorrectly specified parametric method. On a real dataset, the nonparametric analysis can
convey information on the nature of the data generating process that may not be captured
by the parametric specication. In this view, the nonparametric method proposed can be a
valuable preliminary analysis able to suggest the choice of a good parametric specication,
or a complement of a parametric estimation.
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Chapter 2

The moments of Log-ACD models

2.1 Introduction

Until the present contribution, one drawback of the Log-ACD model, was that its uncondi-
tional moments were not available analytically. Bauwens and Giot (2000) relied therefore
on numerical simulations to compute the moments of several Log-ACD models, in partic-
ular their autocorrelation function (ACF) and dispersion index (i.e. the ratio of standard
deviation to mean). This led them to conclude that Log-ACD models were able to fit the
stylized facts of stock market durations ‘as well’ as ACD models. These facts are a rather
slowly decreasing ACF that starts from a relatively low positive value, a consequence of the
clustering of activity, and overdispersion. The latter implies that very small and very large
durations occur in higher proportions than is compatible with an exponential distribution.

In this chapter1 we thus provide analytical expressions for the unconditional moments
and ACF for the models belonging to the Log-ACD class as defined in Bauwens and
Giot (2000), focusing on its most general parametrization. The results of this work are
proved using the method that has been proposed by He et al. (2002) and He (2000) for
the moments of exponential GARCH models. We also provide an empirical application
in which we compute the unconditional moments and ACF for the ACD and Log-ACD
models estimated on financial durations for several stocks traded on the New York Stock
Exchange.

The chapter is organized as follows. In Section 2, we detail the class of Log-ACD models,
introduced in the previous chapter, and provide the conditions of existence and the general
formulae of the moments. In Section 3, we look at the properties of the dispersion index and

1This chapter is the result of a joint work with Luc Bauwens (Université Catholique de Louvain,
Louvain-la-Neuve) and Pierre Giot (Facultés Universitaires Notre-Dame de la Paix, Namur), published on
Quantitative and Qualitative Analysis in Social Sciences, 2008-1.
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the ACF. In Section 4, a comparison between the conditions for the existence of moments
and autocorrelations is carried out between Log-ACD, ACD and SCD models. Section 5
presents the comparison using real data. Section 6 concludes. Proofs are relegated in an
appendix.

2.2 Log-ACD(r, q) models: definition and moments

An outline of the main characteristics of the Log-ACD model is provided in the introduc-
tion. Here we introduce its more general (r, q) form, which will be the object of the analysis
of this chapter.

We denote by xi the duration between two events that happened at times ti−1 and ti, i.e.
xi = ti − ti−1. We assume that the stochastic process {xi} generating the durations is
doubly infinite (i goes from −∞ to +∞).

A Log-ACD model specifies the observed duration as the mixing process

xi = eψiεi, (2.1)

where the εi are independent and identically distributed, with

E εi = µ (2.2)

Var εi = σ2, (2.3)

so that E(xi|Hi) = µ exp(ψi), where Hi denotes the information set available at time ti−1

(the beginning of the duration xi), which includes the past durations.

The important assumption, which is the same as for ACD models (see Engle and Russell
1998), is that the dependence in the duration process can be subsumed in the conditional
expectation E(xi|Hi), in such a way that xi/E(xi|Hi) is IID. For further reference, we
define

Ψi = exp(ψi). (2.4)

To introduce dependence in the process, which can produce a clustering of durations, ψi is
specified as an autoregressive equation,2 which in its most general form (in this chapter)
is written as

ψi = ω +

p∑
j=1

αjg(εi−j) +

p∑
j=1

βjψi−j, (2.5)

2The results derived for the Log-ACD(p, p) can be directly applied to any Log-ACD(r, q) model with
r 6= q, as the latter specification can always be nested in the former by simply choosing p = max{r, q}.
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which is equivalent to

Ψi = eω
p∏
j=1

eαjg(εi−j)
p∏
j=1

Ψ
βj
i−j. (2.6)

Two choices of the function g(εi−j) are ln εi−j or εi−j. The first one corresponds to the
Log-ACD1 model, in which (2.5) becomes

ψi = ω +
∑p

j=1 αj ln εi−j +
∑p

j=1 βjψi−j

= ω +
∑p

j=1 αj lnxi−j +
∑p

j=1 (βj − αj)ψi−j,
(2.7)

and the second one to the Log-ACD2 model, for which

ψi = ω +
∑p

j=1 αjεi−j +
∑p

j=1 βjψi−j

= ω +
∑p

j=1 αj(xi−j/ expψi−j) +
∑p

j=1 βjψi−j.
(2.8)

As it was already remarked in the introduction, several choices are available for the distri-
bution of εi: exponential, gamma, generalized gamma, Weibull, Burr, lognormal, Pareto...,
in principle any distribution with positive support. The choice of a particular distribution
should be guided by the desire of having a ‘correct’ specification, and perhaps by its con-
venience for estimation. Among the distributions cited above, the Burr and the Pareto
do not necessarily have finite moments, so that restrictions on their parameters must be
imposed to ensure that the variance and the mean exist. The Burr family includes the
Weibull (and the exponential) as a particular case, while the generalized gamma includes
the gamma and the Weibull (hence the exponential). All these distributions depend on
a scale parameter that we normalize at 1. For distributions that are indexed by a single
shape parameter (gamma, Weibull), µ and σ2 are linked through that parameter. For the
exponential distribution, the parameter is fixed to 1 so that µ = σ2 = 1. The Burr and
generalized gamma depend on two shape parameters, and are therefore more flexible, in
particular they can have a non-monotonous hazard function. The moments of a Log-ACD
model depend of course on the moments of εi.
In order to proceed, let us introduce the matrix

Ω =



β1 β2 β3 . . . βp−1 βp

1 0 0 . . . 0 0

0 1 0 . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . 1 0


, (2.9)

and the coefficients

φk = β′Ωk−p−1φ k > p (2.10)
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where β = (β1, . . . , βp)
′, and φ = (φ1, . . . , φp) such that

φ0 = 1

φ1 = β1

φs =
∑s

j=1 βjφs−j s = 2, . . . , p

φs =
∑p

j=1 βjφs−j s > p.

(2.11)

Let λ(Ω) be the absolute value of the maximum eigenvalue of the matrix Ω. The uncon-
ditional moments of xi exist and are independent of i as k → ∞ if and only if λ(Ω) < 1.
In this case, Ωk → 0 and

∑k
j=0 Ωj → (I − Ω)−1 as k → ∞, which is necessary for the

sequence {φi} to converge to a finite value (see for example Hamilton (1994) page 20).

Theorem 1 Assume that E exp[mθjg(εi)] and µm = E|εi|mexist for an arbitrary m ∈ R+.
For the Log-ACD process defined by (2.1)-(2.5), the condition λ(Ω) < 1 is necessary and
sufficient for the existence of the m-th moment Exmi . Under this condition,

Exmi = µm exp

[
mω(1−

p∑
j=1

βj)
−1

]
∞∏
j=1

E exp [mθjg(εi)]), (2.12)

where

θ1 = α1

θs =


∑s

j=1 αjφs−j, s = 2, ..., p∑p
j=1 αjφs−j, s > p

(2.13)

In the following corollary, we adapt this result to the Log-ACD (1,1) case.

Corollary 1 For the Log-ACD (1,1), the hypotheses of Theorem 1 reduce to be the follow-
ing: E exp[{mαβj−1g(εi)}] <∞, µm <∞ for an arbitrary positive integer m and |β| < 1.
Under these conditions,

Exmi = µm exp(
mω

1− β
)
∞∏
j=1

E exp[mαβj−1g(εi)]. (2.14)

For the practical computation of (2.12), the infinite product that appears in the moment
expression can be truncated after a sufficiently large number of terms since βj tends to 0.3

3In practice, we found that for first and second-order moments, truncation after 1000 terms was more
than sufficient to get a high accuracy.
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For example, if we use an exponential distribution, E(εαβ
j
) = Γ(1+αβj) and E exp (εαβj) =

1/(1− αβj), so that both expectations tend to 1 when j tends to infinity.

If α and β are both positive (as is practically always the case), computing the moment
given in the previous theorem requires to know E(εp) for any positive p (not necessarily
integer) in the Log-ACD1 case, and E exp(pε) in the Log-ACD2 case. The (non-integer)
moments E(εp) are available for the generalized gamma and Burr distributions, and all
their particular cases. The moment generating function which provides E exp(pε) is only
available analytically for the gamma distribution (including the exponential).

To be able to obtain an approximation of the moment generating function for the other
distributions considered, namely the Weibull, the Burr and the generalized gamma, one
can notice that the following Taylor expansion can be used:

E exp(pε) =
∞∑
k=0

pk

k!
Eεk. (2.15)

For any of the p-th order moments E exp(pε) to exist, the infinite series of integer moments
Eεk must converge to a finite value. In the Burr case, this condition is never satisfied, as the
maximum fractional finite moment is determined by the ratio of its two shape parameters.
For the Weibull and the generalized gamma instead, the infinite moment series converges
only if the shape parameter common to the two distributions is larger than one. In this
case, it is possible to truncate the infinite sum and obtain an approximation of the p-th
moment E exp(pε).

2.3 Dispersion and autocorrelation function

Durations between stock market events are often characterized by overdispersion, meaning
that the standard deviation of the data is larger than their mean (see Section 5). Another
important stylized fact is the shape of the ACF, which usually decreases slowly from a
relatively low positive first-order autocorrelation. It is therefore essential that Log-ACD
models be able to fit such stylized facts, for some parameter values.

Let us measure the degree of dispersion of the random variable x by the variation coefficient,
or its square root (= standard deviation/mean) that we call the dispersion index and we
denote by δx. This ratio is larger than 1 in the case of overdispersion. This measure is a
direct by-product of Theorem 1, and we have the following result:

Corollary 2 For the Log-ACD process defined by (2.1)-(2.5), assume that the hypotheses
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Figure 2.1: Dispersion Index of Log-ACD1 Model (Exponential Distribution)

of Theorem 1 hold for m = 1, 2. Then

1 + δ2
x =

(
1 + δ2

) ∏∞
j=1 Ee2θjg(εi)[∏∞
j=1 Eeθjg(εi)

]2 ≥ 1 + δ2 (2.16)

where δ = σ/µ is the dispersion index of εi..

The dispersion index of xi cannot be smaller than that of εi. Thus, it suffices that εi be
equidispersed (δ = 1) for xi to be overdispersed, as long as α 6= 0. Figure 2.1 illustrates
the variation of δx as a function of α (from 0 to 0.2) and β (from 0.8 to 0.98) when εi is
exponential (so that δ = 1) and the model is a Log-ACD1(1,1). For the Log-ACD2(1,1)
model, the figure is almost identical, the difference being that the values of δx are slighlty
smaller (except for the combinations α = 0.2 and 0.8 < β < 0.94).

The next theorem provides the autocorrelation function.

Theorem 2 For the Log-ACD process defined by (2.1)-(2.5), assume that µ <∞, λ(Ω) <
1, Eeδg(εi) <∞ for any δ ∈ R, Eεi−n exp[θng(εi−n)] <∞ for any n ∈ N+, and E exp[(φn−jαj+h+
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θ∗hn)g(εi−n−h)] <∞ for j and h such that n ≥ 1. Then, for n ≥ 1, the n-th order autocor-
relation of {xi} has the form

ρn =
µEεie

θng(εi)
∏n−1

j=1 Eeθjg(εi)
∏∞

j=p E(eθ
∗
jng(εi))Mn,p − µ2[

∏∞
j=1 Eeθjg(εi)]2

µ2

∏∞
j=1 Ee2θjg(εi) − µ2[

∏∞
j=1 Eeθjg(εi)]2

, (2.17)

where

Mn,p =


=
∏p−n

h=1 Ee(
Pn
j=1 φn−jαh+j+θ

∗
hn)g(εi−n−h)

·
∏n−1

h=1 Ee(
Ph
j=1 φn−jαp−h+j+θ

∗
p−h,n)g(εi−n−h) for 1 ≤ n ≤ p

=
∏p−1

h=1 Ee(
Pp−h
j=1 φn−jαh+j+θ

∗
hn)g(εi−n−h) for n > p,

(2.18)

θ∗jn is defined in (2.54), and µ2 = σ2 + µ2.

The following corollary specializes the previous to the Log-ACD (1,1) case.

Corollary 3 For the Log-ACD (1,1) process, the hypotheses of Theorem 2 reduce to be the
following: |β| < 1 and E exp[2αg(εi)] <∞. Under these conditions

ρn =

µE
[
εie

αβn−1g(εi)
] n−1∏
j=1

Eeαβ
j−1g(εi)

∞∏
j=1

Eeα(1+βn)βj−1g(εi) − µ2

[
∞∏
j=1

Eeαβ
j−1g(εi)

]2

µ2

∞∏
j=1

Ee2αβj−1g(εi) − µ2

[
∞∏
j=1

Eeαβ
j−1g(εi)

]2 . (2.19)

Some remarks can be made on the features of the autocorrelation function provided by
Theorem 2.

First, it is worthwhile to notice that limn→∞ ρn = 0. This can be easily seen, in the
Log-ACD(p,p) instance, by considering that, as n→∞,

E
[
εi−ne

θng(εi−n)
]
→ µ,∏n−1

j=1 Eeθjg(εi)
∏∞

j=p Eeθ
∗
jng(εi) →

[∏n−1
j=1 Eeθjg(εi)

]2

, and

Mn,p → 1.

(2.20)

Hence, the numerator of (2.17) tends to zero.

Another remark is that the shape of ρn as a function of n in Theorem 2 is determined by
the absolute value of the maximum eigenvalue of the Ω matrix. The closer λ(Ω) to 1, the
more persistent the autocorrelation. Notice that λ(Ω) = β in the Log-ACD1 case.
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Figure 2.2: First Autocorrelation of Log-ACD2 Model (Exponential Distribution)

Figure 2.2 illustrates the variation of ρ1 in the same setup as in Figure 2.1 (again with εi
exponential, so that µ = σ = 1). For the Log-ACD1(1,1) model, the figure is almost the
same, but the value od ρ1 in the Log-ACD1(1,1) case is larger than in the Log-ACD2(1,1)
whenever α < 0.08 and smaller whenever α > 0.14, while in the intermediate cases it is
larger when β > 0.9 (approximately). However, the differences are never larger than 0.04.
These features are not necessarily the same for other distributions of εi. From this Figure,
we see that for α < 0.10, ρ1 does not exceed 0.20 (roughly) when β is smaller than 0.96.

Another feature of interest is the rate of decrease of the ACF. We assume that 0 < β < 1
to avoid oscillation of the signs of the autocorrelations. If we consider for example the
Log-ACD1(1,1) model, it can be written as the ARMA(1,1) process

lnxi = ω + β lnxi−1 + ui − (β − α)ui−1 (2.21)

where ui = lnxi − ψi is a martingale difference. The autocorrelations of the logarithm of
the duration therefore decrease geometrically at the rate β. However, by computing (2.19)
for many parameter configurations, we found that the autocorrelations of the duration
decrease at the above rate only after a ‘large’ lag. For small lags, the rate of decrease is
less than β, although not much. Table 2.1 provides, for several parameter values, the value
of ρ1, the ratio ρ2/ρ1, and the value of n from which the rate of decrease is equal to β (for
a precision of 4 decimal digits). The results in the table show that i) for fixed β, the larger

26



Table 2.1: Properties of the ACF of Log-ACD2 Model (Exponential Distribution )

(Exponential Distribution)

β
0.800 0.840 0.880 0.920 0.960 0.980

α
0.04 0.045 0.046 0.048 0.051 0.061 0.079

0.793 0.834 0.875 0.917 0.958 0.979
24 30 38 53 93 162

0.08 0.100 0.104 0.111 0.123 0.157 0.213
0.785 0.827 0.869 0.912 0.955 0.976

28 34 44 63 115 212
0.12 0.164 0.172 0.185 0.209 0.270 0.353

0.775 0.818 0.861 0.905 0.950 0.972
30 37 48 69 129 244

0.16 0.234 0.247 0.267 0.302 0.380 0.467
0.763 0.807 0.851 0.896 0.942 0.965

31 39 51 74 140 268
0.20 0.306 0.324 0.350 0.392 0.474 0.548

0.749 0.793 0.838 0.885 0.932 0.955
33 41 53 78 149 288

In each cell, from top to bottom, one finds the value
of ρ1, the ratio ρ2/ρ1, and the value of n from which
ρn+1/ρn = β to four decimal places.

α, the larger the difference β − ρ2/ρ1 and the value of n, and ii) for fixed α, the larger β,
the smaller the difference β − ρ2/ρ1 but the larger the value of n.

From Figure 2.2 and Table 2.1, we see that there is a region of parameter values for which
the autocorrelation function starts at a low positive value (say less than about 0.2) and
decreases ”slowly” (see the italicized entries of Table 2.1)
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2.4 Comparison with ACD and SCD models

The ACD model, introduced by Engle and Russell (1998a), is defined by the following
equations:

xi = Ψiεi

Ψi = ω + αxi−1 + βΨi−1

ω > 0, α ≥ 0, β ≥ 0, β = 0 if α = 0,

(2.22)

where the baseline duration εi follows the same assumptions as in the Log-ACD case and
(α+ β) in the ACD conditional duration Ψi is analogous to the β term in the logarithmic
specification.

For this class of models, computing moments and autocorrelation functions is easy and one
can obtain the following simple expression in the ACD (1,1) instance:

µx = Ex =
µω

1− µα− β
if 0 ≤ µ and (α + β) < 1,

δ2
x =

σ2
x

µ2
x

=
σ2

µ2

1− β2 − 2µαβ

1− (µα + β)2 − (ασ)2
≥ δ2,

ρ1 =
α(1− β2 − αβ)

1− β2 − 2αβ
,

ρn = (α + β)ρn−1 (n > 1).

(2.23)

It must be however noticed that the conditions for the existence of the moments of higher
order becomes involve the parameters α and β in the formula for the conditional duration,
which is not the case for the Log-ACD model, where conditions on β do not change.
Furthermore, the ACF of the durations decreases geometrically at the rate α+β, since the
ACD can be rewritten as an ARMA model with AR parameter α + β.

Like the Log-ACD model, the SCD model (SCD), Bauwens and Veredas (2004), has a non
linear expression for the conditional duration Ψi. The model has the following specification:

xi = Ψi εi = eψi εi

ψi = ω + βψi−1 + ηi, |β| < 1,
(2.24)

where again the baseline duration term follows the same assumptions as in the Log-ACD
case, but is independent of ηi, the other random term present in the model, characterized
by an IID normal distribution with mean 0 and variance σ2.
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Table 2.2: Point Estimates

expon. Weibull gamma Burr gen. gamma
ACD
ω 0.063 0.062 0.063 0.089 0.112
α 0.098 0.097 0.098 0.114 0.128
β 0.840 0.842 0.840 0.803 0.760
Log-ACD1

ω 0.042 0.042 0.042 0.057 0.050
α 0.090 0.089 0.090 0.109 0.108
β 0.928 0.929 0.928 0.900 0.900
Log-ACD2

ω -0.084 -0.083 -0.084 -0.087 -0.089
α 0.082 0.082 0.082 0.089 0.087
β 0.938 0.939 0.938 0.920 0.919
Maximum likelihood estimates of the parameters of the ACD, Log-
ACD1 and Log-ACD2 models, assuming various distributions for
εi. Data: price durations (at $1/8) for IBM, january-april 1997,
18878 observations.

The SCD model allows for a simple structure for moments and ACF, which is

µx = µe
ω

1−β+ 1
2

σ2

1−β2

1 + δ2
x = (1 + δ2) e

σ2

1−β2 ≥ 1 + δ2

ρk =
e
σ2βk

1−β2 − 1

(1 + δ2) (e
σ2

1−β2 − 1)
≈

σ2βk/(1− β2)

(1 + δ2) (e
σ2

1−β2 − 1)
≈ βρk−1.

(2.25)

A relevant remark is that, like in the Log-ACD case, the autocorrelation function ρk ge-
ometrically decreases at rate β only asymptotically, while for small k the decrease rate is
smaller.

2.5 Fitting the stylized facts

In this section, we consider an application to financial durations for stocks traded on the
NYSE. The objective of this empirical application is to provide an illustrative example
of the use of the formulae derived in the previous section. The possibility of calculating
the moments that are implied by the estimated parameters allows us also to compare
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various specifications (ACD, Log-ACD1 and Log-ACD2) and distributions for the baseline
durations in their ability to ”fit” the sample moments of the data.

As reviewed by Giot (2000), while durations can simply be defined as the time elapsed
between two market events, by judiciously defining the notion of market event one can
highlight several important features of intraday market activity. For example, a duration
between two quotes is a quote duration and the modeling of these using ACD or Log-
ACD type models can quantify the notion of quoting activity, i.e. the rate at which the
specialists post quotes.

Important extensions related to the quote process are the notions of price and volume
durations. Price durations are defined as the minimum time for the stock price to escape
from a given price interval. In our application, we focus on the mid-price of the specialist
quote, i.e., the average of the bid and ask prices, and the price interval considered is
$0.125. It can be shown (see Giot 2000) that there is a relationship between the volatility
of the price process and the conditional hazard of the ACD or Log-ACD model. Thus this
provides a strong motivation for the use of such high frequency duration models in the
modeling of intraday volatility. A volume duration is defined as the time required for total
traded volume to cumulate until a given amount (25000 shares in our application). This
duration can be considered as a partial measure of market liquidity, as it indicates the time
needed to trade a given amount of shares.

The data set considered in the empirical evaluation consists of series of price and volume
durations of five stocks (Boeing, Coca Cola, Disney, Exxon and Ibm) taken from the Trade
and Quote (TAQ) database of the New York Stock Exchange. For each stock, we have
considered two periods. The first period ranges from september to november 1996, while
the second goes from january to april 1997.

To take into account the known seasonal effects, we followed Engle and Russell (1998a) in
computing adjusted durations as

xi = Xi/φ(ti, j) (2.26)

where Xi is the original duration (extracted from the data base) and φ(ti, j) is the seasonal
effect, considered as the function of the time (ti) and the day of the week (j) of the
transaction. The function φ(ti, j) is estimated by averaging over thirty minute intervals
for each day of the week and smoothing with a cubic spline. The resulting time-of-day and
time-of-week adjusted duration is denoted by xi.

Each deseasonalized sequence of data has been estimated by ACD(1,1), Log-ACD1(1,1)
and Log-ACD2(1,1), and for each one of these models we have considered a series of distri-
butions for the conditional durations, namely: exponential (0 shape parameters), Weibull
and gamma (1 shape parameter), and Burr and generalized gamma (2 shape parameters).
In all these distributions, a further parameter, the scale one, is present. We have chosen
to constrain this parameter to the value such that the expectation of the baseline duration
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εi equals 1 in order to avoid an identification problem with the parameters of the autore-
gressive factor (another possible choice could have been to fix it to 1). The number of
observations is different in each sequence of data, ranging from a minimum of 1609 (for the
Coca Cola price durations of 1996) to a maximum of 19680 (for the Ibm price durations of
1996). Table 2.2 reports the ML estimates for the case of Ibm price durations in the 1997
data set.4 The ML estimates for each model, distribution and data sequence were then
used to compute the analytical expressions for the unconditional moments and autocorre-
lation functions. The results based on the analytical expressions were then compared with
the empirical (unconditional) moments and ACF.

Tables 2.4 and 2.5 (at the end of the chapter) report the first two empirical moments
and the dispersion indices resulting from the analytical expressions for the three models.
Broadly speaking, the unconditional moments computed from the analytical formulae.
As one can see from the first moment, the second and the dispersion index, the models
are quite capable of reproducing the empirical moments in the fitted distribution of the
unconditional durations. The first moment and the dispersion ratio, in particular, seem to
be the ones that can be better matched by the analytical values. Of course, some extreme
cases arise, in which the estimation can not really catch much of the features of the data or
the estimated parameters are very close to some conditions for the existence of moments in
the conditional distribution (as it can be the case for the Burr). The analytical (estimated)
moments for the Log-ACD2 model are not reported for the Burr and generalized gamma
distribution. The reason is that the conditions on the convergence of the series in (2.15) to
a finite value are never satisfied in the Burr case and were not satisfied by the parameters
resulting from the estimations with the generalized gamma Log-ACD2 model. Figure 2.3
reports as a graphical example the empirical ACF of a series of data (Ibm price durations
for the january-april 1997 period) and the ACF computed from the estimated parameters
of various models.

In order to summarize the large amount of empirical results obtained, we make a ranking
of models. The results of this ranking may serve as a guide for the interpretation of the
results. The steps followed have been kept as simple as possible. First, for each stock,
period and distribution we computed the percentage difference between the empirical and
the theoretical (i.e. resulting from the estimated parameters) first moment and dispersion
index (which is also a function of the second moment). We also computed a weighted
sum of the absolute difference between the values taken by the empirical and theoretical
autocorrelations. Only the first 50 first values were considered and we assigned decreasing
weights (0.975n to the n-th autocorrelation, which assignes a weight of 0.28 to the 50-
th lag). Second, the stocks, for each period, were then ranked for each one of the three
considered criteria (deviation of the first moment, dispersion and autocorrelations) and the
numbers denoting their positions in the rankings were added to provide a global ranking.
Third, the resulting ranks were finally added for all the stocks and periods, keeping the
distinction between price and volume durations. In the resulting ranks, the models and

4We do not report standard errors since they are not needed in the following discussion.
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distributions with the lowest values are the ones that better perform globally on the three
criteria together.

Table 2.3: Ranking results

Price Volume
Model sum of ranks Model sum of ranks
eLACD2 24 ggLACD1 33
ggLACD1 27 wLACD1 36
ggACD 38 bLACD1 38
gLACD2 46 gLACD1 46
gLACD1 57 ggACD 49
wLACD2 57 gACD 58
wACD 58 wACD 63
eACD 66 bACD 79
wLACD2 67 eLACD2 79
eLACD1 76 gLACD2 80
gACD 86 wLACD2 82
bLACD1 105 eLACD1 83
bACD 112 eACD 93
Sum of rank points for first moment, dispersion and autocorrelation
for all the stocks and periods. A lower value of the sum indicates
a better performance. The capital letters denote the model (ACD,
Log-ACD1 or Log-ACD2) while the small ones denote the condi-
tional distribution (e for exponential, w for Weibull, g for gamma,
b for Burr and gg for generalized gamma).

Table 2.3 displays the results of the rank computation. It is quite evident that the perfor-
mance of the models and distributions considered varies with the kind of duration, price or
volume, that we fitted. For price durations, the generalized gamma seems to be the best
distribution, followed by the Weibull. The Burr is strongly penalized by its constraint on
the number of existing moments, often failing to correctly model the second moment, which
reflects in a poorly fitted dispersion index and ACF. The ranking does not seem to give
many hints about what specification (ACD, Log-ACD1 or Log-ACD2) may be preferable,
though the exponential Log-ACD2 is the model that performs the best. The results on vol-
ume durations lead instead to markedly prefer the Log-ACD1 specification, followed by the
ACD one. Here again, one can see that the generalized gamma seems to grant a significant
gain over other distributions. This should not come as a surprise, as its parametrization is
richer than the one of Weibull and gamma and it does not suffer from the constraints for
the existence of moments that characterize the Burr.
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2.6 Conclusion

We provide analytical formulae for the moments of Log-ACD(p,p) models. The formulae
are more complex than for the ACD model, since the ACD model is actually a linear
process (ARMA) whereas the Log-ACD is non-linear. We have shown that the shape of
the autocorrelation function of Log-ACD models is different from the shape of the ACF
of the ACD model. The formulae can be used to check implied moments from parameter
estimates, as in the illustration of this chapter. They could also be used to select parameter
values in order to match desired moments (e.g. for designing a Monte Carlo experiment).
In an empirical analysis, we tried to illustrate the different aptitudes of various models and
distributions in estimating the empirical moments.

Appendix

Proof: [Theorem1]

(i)
For simplicity in the notation, let us define the vectors α = (α1, ..., αp)

′, gi = (g(εi−1), ..., g(εi−p))
′.

Suppose that 1 ≤ k ≤ p. If we apply the definition of Ψi in (2.6) to Ψi−1 in (2.6), after
rearranging and substituting with φ1 we can write

Ψi = exp{ω(1 + φ1)} · exp{α′gi + φ1α
′gi−1} ·

p−1∏
j=1

Ψ
φ1βj+βj+1

i−j−1 ·Ψφ1βp
i−p−1 . (2.27)

If we apply it again to Ψi−2 in (2.27) and substitute with φ2, we get

Ψi = exp{ω(1 + φ1 + φ2)} · exp{α′gi + φ1α
′gi−1 + φ2α

′gi−2}

·
∏p−2

j=1 Ψ
βjφ2+(βj+1φ1+βj+2)
i−j−2 · Ψ

βp−1φ2+βpφ1

i−p−1 · Ψ
βpφ2

i−p−2.
(2.28)

Continuing applying the definition given in (2.6) and substituting with φk until k = p,
yields

Ψi =

p∏
j=0

eωφj
p∏
j=0

eφjα
′gi−j ·Ψ

Pp
j=1 βjφp−j+1

i−p−1 ·Ψ
Pp
j=2 βjφp−j+2

i−p−2 · ... ·Ψβp−1φp+βpφp−1

i−p−p−1 ·Ψβpφp
i−p−p. (2.29)

In order to be able to iterate further, we need to derive an expression of φk when k > p,
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given (2.9), (2.10) and (2.11). This can be done by noticing that the following equalities

Ωp [φ0, 0, 0, ..., 0]′ = Ωp−1 [φ1, φ0, 0, . . . , 0]′

= . . .

= Ω [φp−1, φp−2, . . . , φ1, φ0]′

= [φp, φp−1, . . . , φ2, φ1]′

(2.30)

hold and by applying them to (2.10), to show that

φk = β′Ωk−p−2Ω [φp, φp−1, . . . , φ2, φ1]′

= β1β
′Ωk−p−2 [φp, φp−1, . . . , φ2, φ1] +

β2β
′Ωk−p−2 [φp−1, φp−2, . . . , φ1, φ0] +

. . .+

βpβ
′Ωk−p−2 [φ1, φ0, 0, . . . , 0, ]

= β1φk−1 + β2φk−2 + ...+ βpφk−p

=
∑p

j=1 βjφk−j.

(2.31)

Let us consider the case k = p + 1. Applying the definition of Ψi in (2.6) to Ψi−p−1 in

(2.29), we get

Ψi =
∏p+1

j=0 e
ωφj
∏p+1

j=0 e
φjα
′gi−j ·

Ψ
Pp
j=1 βjφp−j+2

i−p−2 ·Ψ
Pp
j=2 βjφp−j+3

i−p−3 · . . . ·Ψβp−1φp+1+βpφp
i−p−p ·Ψβpφp+1

i−p−p−1.
(2.32)

For notational simplicity again, let us define the the parameters

ξk+1 = φk+1

ξk+2 = β2φk + ...+ βpφk−p+2

ξk+3 = β3φk + ...+ βpφk−p+3

· · ·

ξk+p = βpφk

(2.33)

which enable us to write (2.32) as

Ψi =

p+1∏
j=0

exp{ωφj} ·
p+1∏
j=0

exp{φjα′gi−j} ·
p∏
j=1

Ψ
ξp+1+j

i−j−p−1. (2.34)
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Let us consider now the case k = m > p + 1. By recursively applying the definition of Ψi

in (2.6) to Ψi−p−1, · · · ,Ψi−m+1, Ψi−m, and substituting with the ξj’s we can write

Ψi =
m∏
j=0

exp{ωφj} ·
m∏
j=0

exp{φjα′gi−j} ·
p∏
j=1

Ψ
ξm+j

i−j−m. (2.35)

So, if k > p, we can use the following general form to express Ψi:

Ψi =
k∏
j=0

exp{ωφj} ·
k∏
j=0

exp{φjα′gi−j} ·
p∏
j=1

Ψ
ξk+j
i−j−k. (2.36)

(ii) In order to compute the first unconditional moment of xi, we can multiply (2.36) by
εi and take expectations on both sides, which yields:

E(xi) = µ1 exp{ω
k∑
j=0

φj} · E

[
k∏
j=0

exp{φjα′gi−j} ·
p∏
j=1

Ψ
ξk+j
i−j−k

]
. (2.37)

As k →∞, noting that limk→∞ ξk+i = 0, if and only if λ(Ω) < 1, and that the εi’s are iid,
we obtain

E(xi) = µ1 exp{ω
∑∞

j=0 φj} · E
[∏∞

j=0 exp{φjα′gi−j}
]

=

= µ1 exp{ω
∑∞

j=0 φj} · [E(exp{α1φ0g(εi−1)}·

E(exp{(α1φ1 + α2φ0)g(εi−2)}) · ... · E(exp{(
∑p

j=1 αjφs−j)g(εi−j)}) · ...].

(2.38)

If we define θj, j ≥ 1 as the coefficients of g(εi−j) in (2.38), we can see that (2.13) holds
and that the first moment of xi can be written as

E(xi) = µ1 exp{ω
∞∑
j=0

φj} ·
∞∏
j=0

E exp{θjg(εi−j)} (2.39)

In order to complete the proof, we must show that, from (2.9) and (2.10)
∑∞

j=0 φj =

(1−
∑p

j=1 βj)
−1 if and only if λ(Ω) < 1. In fact, from (2.10) it follows that

∑∞
j=0 φj =

∑p
j=0 φj +

∑∞
j=p+1 φj =

∑p
j=0 φj + β′

∑∞
j=p+1 Ωj−p−1φ =

=
∑p

j=0 φj + β′(I −Ω)−1φ = (1−
∑p

j=1 βj)
−1,

(2.40)

35



if and only if λ(Ω) < 1, since

(I −Ω)−1 = (1−
p∑
j=1

βj)
−1



1
∑p

j=2 βj
∑p

j=3 βj ... βp−1 βp

1 1− β1

∑p
j=3 βj ... ... ...

1 1− β1 1− β1 − β2 ... ... ...

... ... ... ... ... ...

... ... ... ... βp−1 + βp βp

1 1− β1 1− β1 − β2 ... 1−
∑p−2

j=1 βj βp

1 1− β1 1− β1 − β2 ... 1−
∑p−2

j=1 βj 1−
∑p−1

j=1 βj


.

(2.41)
As the proof was given for m = 1, it must be noted that the same results for m > 1 can
be derived by raising both sides of (2.37) to the power m.

�

Proof: [Corollary 1]

In the Log-ACD (1,1), βs =

 β s = 1

0 1 < s ≤ p
and αs =

 α s = 1

0 1 < s ≤ p
.

Then λ(Ω) = |β|.
Furthermore, (2.14) implies that in (2.31)

φk = βφk−1 = β2φk−2 = · · · = βk−1φ1 = βk, (2.42)

therefore, in (2.13), θs reduces to

θs = αφs−1 = αβs−1. (2.43)

�

Proof: [Corollary 2]
(2.16) follows directly from (2.12). Since Ey2 ≥ (Ey)2, defining y as exp[αβj−1g(εi)], we
see that each term of the infinite product in (2.16) is not smaller than 1, and equal to 1 if
α = 0. This implies that δx ≥ δ. �

36



Proof: [Theorem 2]

(i)
For notational simplicity, let us define the following parameters

β∗1n = φn + 1 for n ≥ 1,

β∗jn =
∑n

h=1 βh+j−1φn−h for 1 ≤ n ≤ p− j + 1and 2 ≤ j ≤ p− 1,

β∗jn =
∑p

h=j βhφn+j−1−h for p− j + 2 ≤ n ≤ pand 2 ≤ j ≤ p− 1,

β∗pn = βpφn+1 for 1 ≤ n ≤ p,

β∗jn =
∑p+1−j

h=1 βj+h−1φn−h forn ≥ pand 2 ≤ j ≤ p.

(2.44)

and show how they are determined.
We can start by considering the product (ΨiΨi−n) for 1 ≤ n ≤ p. If we apply (2.6) to Ψi

in the product and make use of the results of the first part of the proof of Theorem 1, we
obtain

ΨiΨi−n =
n−1∏
j=0

exp{ωφjα′gi−j} ·
p−n+1∏
h=1

Ψ
Pn
j=1 βh+j−1φn−j

i−j−n+1 ·
n−1∏
h=1

Ψ
Ph
j=1 βp−h+jφn−j

i−p−h Ψi−n. (2.45)

If we suppose that h = 1 in the second product term of (2.45) If we multiply by Ψi−n, it
takes the form

Ψ
Pn
j=1 βjφn−j+1

i−n (2.46)

which implies

β∗1n =
n∑
j=1

βjφn−j + 1 = φn + 1 for 1 ≤ n ≤ p, (2.47)

which shows how the first expression of (2.44) is determined.

If we suppose that h = 1 in the third product term of (2.45), which yields Ψ
βpφn−1

i−p−1 . So,

β∗pn = βpφn−1 for 1 ≤ n ≤ p. (2.48)

This shows how the fourth expression of (2.44) is determined.
If we consider the remaining cases, defined by h = 2, ..., p − n + 1 in the second product
term and h = 2, ..., n− 1 in the third. Thus

Ψ
Pn
j=1 βh+jφn−j

i−h−n+1 for 2 ≤ h ≤ p− n+ 1

Ψ
Ph
j=1 βp−hφn−j

i−p−h for 2 ≤ h ≤ n− 1.
(2.49)

(2.49) indicates that β∗jn, j = 2, ..., p− n+ 1 can be defined by setting h = 2, ..., p− n+ 1
in the first expression of (2.49) and β∗jn, p − n − 2 ≤ j ≤ p − 1 can be defined by setting
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h = n− 1, ..., 2 in the second. Analogously, for 2 ≤ j ≤ p− 1

β∗jn =


∑n

h=1 βh+j−1φn−h 1 ≤ n ≤ p− j + 1∑p
h=1 βhφn+j−h−1 p− j + 2 ≤ n ≤ p.

(2.50)

Thus the second and the third expressions of (2.44) are derived.
If we finally consider the case of n > p. If we set k = n− 1 in (2.27) and (2.28), we obtain
a corresponding representation of (ΨiΨi−n) which reads:

ΨiΨi−n = (
n−1∏
j=0

exp{ωφjα′gi−j}) · (
p∏
j=1

Ψ
ξn+j−1

i−j−n+1Ψi−n) (2.51)

where

ξn = φn = β∗1n

ξn+1 = β2φn−1 + ...+ βpφn−p+1 = β∗2n

ξn+2 = β3φn−1 + ...+ βpφn−p+2 = β∗2n

...

ξn+p−1 = βpφn−1 = β∗pn.

(2.52)

This shows how the first expression for n ≥ p + 1 and the fifth for n > p of (2.44) are
determined.

If now we substitute βj with β∗jn in (2.31), and suppose

φ∗0n = 1,

φ∗1n = β∗1 ,

φ∗kn =
∑j−1

j=1 βjφ
∗
k−1,n + β∗kn j = 2, · · · , p, and

φ∗k = β′Γk−p−1φ∗ j > p,

(2.53)

we obtain an analogous expression for the parameter φ∗jn.
Let us then define the following parameters, which will be useful in the remainder of the
proof:

θ∗hn =


∑h

j=1 αjφ
∗
h+1−j,n h = 1, ..., p∑p

j=1 αjφ
∗
h+1−j,n h > p

. (2.54)

(ii)
We now take the expected value of xixi−n, and we obtain the following expression:

E(xixi−n) = E(εiεi−nΨiΨi−n) =

= E(εiεi−n
∏n−1

j=0 exp{ωφj} ·
∏n−1

j=0 exp{φjα′gi−j} ·
∏p

j=1 Ψ
β∗jn
i−j−n+1).

(2.55)
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If n ≥ p+ 1 we can write (2.55) as

E(xixi−n) = E(εiεi−nΨiΨi−n)

= µ
∏n−1

j=0 exp{ωφj}E(εi−n
∏n

j=1 exp{φjg(εi−j)}·

·
∏p−1

j=1 exp{(
∑p−h

j=1 φn−jαh+j)g(εi−n−h)} ·
∏p

j=1 Ψ
β∗jn
i−j−n+1).

(2.56)

If we apply the result in (2.36) to the last two products of the right hand side of (2.56)
and let k →∞, we obtain that

E
[∏p−1

h=1 exp{(
∑p−h

j=1 φn−jαh+j)g(εi−n−j)}
]
· (
∏p

j=1 Ψ
β∗jn
i−j−n+1) =

= (
∏∞

j=1 exp{ωφ∗jn})·

· E
[(∏P−1

h=1 exp{(
∑p−h

j=1 φn−jαh+j)g(εi−n−j)}
)
· (
∏p

j=1 exp{φ∗jng(εi−n−j)})
]
·

· E
[
(
∏∞

j=p exp{φ∗jng(εi−n−j)})
]

= (
∏∞

j=1 exp{ωφ∗jn}) · E
[(∏P−1

h=1 exp{(
∑p−h

j=1 φn−jαh+j + θ∗hn)g(εi−n−j)}
)]
·

· E
[
(
∏∞

j=p exp{φ∗jng(εi−n−j)})
]

= (
∏∞

j=1 exp{ωφ∗jn}) · E(
∏∞

j=p exp{θ∗jng(εi)})·

· E[
∏p−1

h=1 exp{(
∑p−h

j=1 φn−jαh+j + θ∗hn)g(εi−n−h)}].
(2.57)

Hence, we can rewrite (2.56) in the following form:

E(xixi−n) = µE[εi−n exp{θng(εi−n)}] · (
∏∞

j=1 exp{ωφ∗jn}) · (
∏n−1

j=1 exp{ωφj})·

·E(
∏n−1

j=1 exp{θjg(εi)}) · E(
∏∞

j=p exp{θ∗jng(εi)})·

·E[
∏p−1

h=1 exp{(
∑p−h

j=1 φn−jαh+j + θ∗hn)g(εi−n−h)}].

(2.58)

If 1 ≤ n ≤ p (2.55) reads

E(xixi−n) = E(εiεi−nΨiΨi−n) =

= µ
∏n−1

j=0 exp{ωφj}E[εi−n
∏n

j=1 exp{φjg(εi−j)}·

·
∏n

h=1 exp{(φn−h
∑p−h

j=1 αh+j)g(εi−n−j)} ·
∏p

j=1 Ψ
β∗jn
i−j−n+1].

(2.59)

If again we apply the result in (2.36) to the last two products of the left hand side of (2.59)
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and let k →∞, we obtain

E
(∏n

h=1 exp{(φn−h
∑p−h

j=1 αh+j)g(εi−n−j)}
)
· (
∏p

j=1 Ψ
β∗jn
i−j−n+1) =

= (
∏∞

j=1 exp{ωφ∗jn}) · E(
∏p−n

h=1 exp{(
∑n

j=1 φn−jαh+j + θ∗hn)g(εi−n−j)})·

· E(
∏n−1

h=1 exp{(eg,
∑h

j=1 φn−jαp−h+j + θ∗p−h,n)g(εi−n−j)})·

· E(
∏∞

j=p exp(θ∗jng(εi)}).

(2.60)

Hence, we get the following expression for (2.59)

E(xixi−n) = µE[εi−n exp{θng(εi−n)}]) · (
∏∞

j=1 exp{ωφ∗jn}) · (
∏n−1

j=1 exp{ωφj})·

·E(
∏n−1

j=1 exp{θjg(εi)}) · E(
∏∞

j=p exp(θ∗jng(εi)})·

·E(
∏p−n

h=1 exp{(
∑n

j=1 φn−jαh+j + θ∗hn)g(εi−n−j)})·

·E(
∏n−1

h=1 exp{(
∑h

j=1 φn−jαp−h+j + θ∗p−h,n)g(εi−n−j)}).

(2.61)

(iii)
Finally, to be able to simplify and derive expressions (2.17)-(2.18), we need to show that,
for any n ≥ 1

n−1∏
j=0

exp{ωφj}
∞∏
j=1

exp{ωφ∗jn} = exp{2ω(1−
p∑
j=1

βj)
−1} (2.62)

holds. To do so, we can first show that

∞∑
j=1

φ∗jn = (

p∑
j=1

β∗jn)(1−
p∑
j=1

βj)
−1. (2.63)

Let us consider ∑∞
j=1 φ

∗
jn =

∑p
j=1 φ

∗
jn +

∑∞
j=p+1 φ

∗
jn

=
∑p

j=1 φ
∗
jn + β′

∑∞
j=p+1 Ωj−p−1φ∗n

=
∑p

j=1 φ
∗
jn + β′(I − Ω)−1φ∗n.

(2.64)

Since (I−Ω)−1 is known from (2.41), it is sufficient to consider the case p = 2. Then (2.64)
becomes,

∑∞
j=1 φ

∗
jn = φ∗1n + φ∗2n + 1

1−β1−β2

(
β1 β2

) 1 β2

1 1− β1

 φ∗1n

φ∗2n

 =

=
φ∗1n+φ∗2n−β1φ∗1n

1−β1−β2
=

=
β∗1n+β∗2n
1−β1−β2

.

(2.65)
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Next, we can show that (2.62) holds for any n ≥ 1.
Let n = 1, then (2.62) has the form

exp{ω}
∞∏
j=1

exp{ωφ∗j1} = exp{ω} exp{ω β∗11 + β∗21

1− β1 − β2

} = exp{ 2ω

1− β1 − β2

}. (2.66)

Similarly, we can check for n = 2.
Assume now that (2.62) holds for n = m > 2, that is,

m−1∏
j=0

exp{ωφj}
∞∏
j=1

exp{ωφ∗jm} = exp{2ω(1−
2∑
j=1

βj)
−1}, (2.67)

we can show that it holds for n = m+ 1. From (2.67) we have∑m
j=0 φj +

∑∞
j=1 φ

∗
j,m+1

=
∑m−1

j=0 φj + φm +
β∗1,m+1+β∗2,m+1

1−β1−β2

=
∑m−1

j=0 φj +
β∗1m+β∗2m
1−β1−β2

+
(
φm +

β∗1,m+1+β∗2,m+1

1−β1−β2
− β∗1m+β∗2m

1−β1−β2

)
= 2ω(1−

∑p
j=1 βj)

−1 +
(
φm +

β∗1,m+1+β∗2,m+1

1−β1−β2
− β∗1m+β∗2m

1−β1−β2

)
.

(2.68)

Now, the second term on the right-hand of (2.68) equals zero, because β∗1,m+1 = φm+1 + 1,
β∗2,m+1 = β2φm and φm+1 = β1φm + β2φm+1. Thus, (2.62) holds for any n ≥ 1.

�

Proof: [Corollary 3]
As in Corollary 1, if p = 1, then λ(Ω) = |β| and θs = αβs−1. Hence E(εie

θng(εi)) in
(2.17) reduces to E(εie

αβn−1g(εi)), which is finite if E(εie
αg(εi)) < ∞. For the same reason

E(eθjg(εi)) reduces to E(eαβj−1g(εi)), which is finite if E(e2αg(εi)) < ∞. This last condition
also ensures the existence of the second moment of xi.

Then, as

θ∗jn =
αφ∗1n = α(φn + 1) = αβj−1(βn + 1) j = 1

αφ∗j = αβj−1φ∗1n = αβj−1(βn + 1) j > 1,
(2.69)

the factor
∞∏
j=p

E(eθ
∗
jng(εi)) reduces to

∞∏
j=1

E(eαβ
j−1(βn+1)g(εi)), which is finite if E(e2αg(εi)) <∞,

as limj→∞ β
j−1 = 0.

Noticing that the products of Mn,p reduce to 1 if p = 1 completes the proof. �
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Table 2.4: Volume durations - Moments Implied by Point Estimates
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Table 2.5: Price durations - Moments Implied by Point Estimates
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Figure 2.3: ACF for the ACD (top), Log-ACD1 and Log-ACD2 (bottom) models with var-
ious conditional distributions (using the analytical expressions computed for the estimated
parameters) and empirical data (price duration at $1/8 for IBM, data 1997).
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Chapter 3

EIS for the estimation of SCD models

3.1 Introduction

As it was described in the introduction, the SCD model, proposed by Bauwens and Veredas
(2004), is based on the assumption that a second stochastic component is present and it
takes the form of a latent variable driving the dynamics of the process. The gain in
flexibility granted by the presence of a latent variable in the conditional duration the SCD
specification, however, comes at a cost. The fact that the latent conditional duration enters
the model nonlinearly leads to the necessity to perform a high-dimensional integral if we
want to base our estimation on the exact likelihood.

The solution proposed by Bauwens and Veredas in their original paper was a direct estima-
tion by means of quasi-maximum likelihood (QML) based on the approximation of model
with a linear space state representation and the application of the Kalman filter. This
method has the advantage of being simple in terms of numerical computation (therefore,
fast) and of providing consistent and asymptotically normal estimators, but it is suboptimal
in finite samples.

To avoid approximations, in the literature on Stochastic Volatility models a series of es-
timation procedures have been proposed, for instance GMM, EMM, bayesian estimation
based on MCMC sampling. For a survey of these procedures see Ghysels et al. (1996).
Some of these solutions have been extended to the estimation of SCD models. Knight and
Ning (2008) proposes to estimate SCD models via the Empirical Characteristic Function
(ECF) and the Generalized Method of Moments (GMM). Maximum likelihood estimation
based on Monte Carlo Markov chain (MCMC) integration of the latent variable is instead
adopted by Feng et al. (2004) to estimate both an SCD model in the form proposed by
Bauwens and Veredas (2004) and an extended version with a leverage effect determined
by the presence of past durations in the mean of the latent variable. MCMC is used also
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by Strickland, Forbes and Martin (2006), in the context of a Bayesian analysis of the SCD
model.

A relatively new method for the estimation of models with latent variables consists in the
efficient importance sampling (EIS) procedure, recently developed by Richard and Zhang
(2007). This method consists in an extension of the well known importance sampling tech-
nique and seems to be particularly well suited for the evaluation of the multidimensional
and relatively well behaved integrals of the SCD likelihood. An application to an extended
family of SV models is provided in Liesenfeld and Richard (2003) and it well illustrates the
flexibility of this algorithm, as well as its speed (particularly if compared to Markov chain
methods).

The purpose of this chapter1 is to apply to an SCD framework the EIS method of numerical
sampling, and to use it in order to analyze some extensions of the original specification
proposed by Bauwens and Veredas (2004).

The chapter is organized in the following way. In section 2 the main features of the SCD
model which are functional to the subsequent analysis will be presented. Section 3 will
detail the ML-EIS numeric integration method employed. In section 4 an example with
a simulated series of duration data is provided. In section 5 the ML-EIS technique of
estimation is applied to the same dataset used in sBauwensVeredas2004 and a comparison
is drawn. Section 6 concludes.

3.2 SCD models: main features

In this section, we present briefly the SCD model. A more detailed description can be found
in Bauwens and Veredas (2004). If we denote by xi the duration between two events that
happened at times ti−1 and ti, and assume that the stochastic process {xi} generating the
durations is doubly infinite (i goes from −∞ to +∞), the stochastic conditional duration
model can be written as

xi = eψiεi, (3.1)

with

ψi = ω + βψi−1 + ui, (3.2)

where |β| < 1 to ensure the stationarity of the process, and

ui ∼ iid N (0, σ2), (3.3)

and

εi ∼ iid p(εi), (3.4)

1This chapter is the result of a joint work with Luc Bauwens (Université Catholique de Louvain,
published as CORE DP 2007/53, et accepted for publication in Computational Statistics and Data Analysis
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with p(.) a distribution with positive support, and uj independent of εi, ∀i, j.

The moments and autocorrelation function of this process are

E(xi) = µe
ω

1−β+ 1
2

σ2

1−β2 ,

1 + δ2
x = (1 + δ2) e

σ2

1−β2

and

ρk = e
σ2βk

1−β2 −1

(1+δ2) (e
σ2

1−β2 −1)

≈ σ2βk/(1−β2)

(1+δ2) (e
σ2

1−β2 −1)

≈ βρk−1,

(3.5)

where µ stands for E(εi), δx for the dispersion index (i.e. the standard deviation to
mean ratio) of xi, and δ for the dispersion index of εi. The autocorrelation function ρk
geometrically decreases at rate β only asymptotically with respect to k, while for small k
the decrease rate is smaller.

Given a sequence x of n realizations of the process, with density g(x|ψ, θ1) indexed by the
parameter vector θ1, conditional on a vector ψ of latent variables of the same dimension
as x, and given the density h(ψ|θ2) indexed by the parameter θ2, the likelihood function
of x can be written as:

L(θ;x) = L(θ1, θ2;x) =

∫
g(x|ψ, θ1)h(ψ|θ2)dψ. (3.6)

Actually, the integrand in the previous equation is the joint density f(x, ψ|θ1, θ2). Given
the assumptions we made, it can be sequentially decomposed as

f(x, ψ|θ1, θ2) =
n∏
i=1

p(xi|ψi, θ1)q(ψi|ψi−1, θ2), (3.7)

where p(xi|ψi, θ1) is obtained from p(εi) using the change of variable in (3.1) (so that θ1

corresponds to the parameters of p(.)), and q(ψi|ψi−1, θ2) is the Gaussian density N (ω +
βψi−1, σ

2) (so that θ2 includes ω, β and σ2). Given the functional form usually adopted
for p(εi) (Weibull, gamma, generalized gamma...), the multidimensional integral in (3.6)
cannot be solved analytically and must be computed numerically by simulation.

To perform a QML estimation, one can use the following transformation of the model:

lnxi = η + ψi + ξi

and

ψi = ω + βψi−1 + ui,

where ξi = ln εi − η and η = E(ln εi). This puts the model in state space form with zero
mean errors. The ensuing distribution of ξi can be approximated by a Gaussian one, and
the Kalman filter applied to compute the approximate likelihood.
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3.3 EIS based ML estimation

Alternative approaches to QML inference for the SCD model can be based on Monte Carlo
methods. These methods are widely used in Bayesian inference to evaluate moments of
high-dimensional posterior densities when they are not known analytically. One reason
for their success is the relative ease with which they can be applied. EIS, in particular,
allows a very accurate evaluation of the likelihood function and has been shown to be quite
reliable for the estimation of SV models and of latent factor intensity models, see Bauwens
and Hautsch (2006). Another advantage of this algorithm is that its basic structure does
not depend on a specific model. This renders changes in the distributional assumptions
for the underlying random variables rather simple.

For a detailed presentation of the algorithm, we refer the reader to Richard and Zhang
(2007). In this section, we present the basics of its motivation and functioning and we
detail its implementation in the context of the ML estimation of SCD models.

Assume one has to evaluate a unidimensional functional integral of the form

G(y) =

∫
Λ

g(y, λ)p(λ)dλ, (3.8)

where g is an integrable function with respect to a density p(λ) with support Λ. The
vector y denotes an observed data vector, which in our context corresponds to the observed
durations.

A Monte Carlo (MC) estimate of (3.8) is

ḠS(y) =
1

S

S∑
i=1

g(y, λ̃i), (3.9)

where the λ̃i’s are draws from p and S is the number of draws. In cases where one
cannot generate directly draws from p(λ), one can resort to importance sampling (IS).
The IS principle consists of replacing the initial sampler p(λ) with an auxiliary parametric
importance sampler m(λ, a), which is an easy-to-simulate density for λ, indexed by the
parameter vector a. To apply importance sampling, equation (3.8) is transformed into

G(y) =

∫
Λ

g(y, λ)
p(λ)

m(λ, a)
m(λ, a)dλ, (3.10)

and the corresponding IS-MC estimate of G(y) is

ḠS,m(y, a) =
1

S

S∑
i=1

g(y, λ̃i)
p(λ̃i)

m(λ̃i, a)
, (3.11)

where the λ̃i’s now denote draws from the IS density m.
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The aim of efficient importance sampling (EIS) is to minimize the MC variance of the
estimator in (3.11) by selecting optimally the parameters a of the importance function
density m given a functional form for m (for instance the Gaussian density).

Given independent draws λ̃i’s, the sampling variance of ḠS,m(y, a) is given by

Var(ḠS,m(y, a)) = G(y)V (a, y), (3.12)

where

V (a, y) =
1

G(y)

∫
Λ

[
g(y, λ)p(λ)

m(λ, a)
−G(y)

]2

m(λ, a)dλ. (3.13)

If we denote by k(λ, a) the density kernel of the IS sampler m(λ, a) and by χ(a) its integral,

such that m(y, a) = k(λ,a)
χ(a)

, V (a, y) in (3.13) can be rewritten as

V (a, y) =

∫
Λ

h(d2(y, a, λ))g(y, λ)p(λ)dλ, (3.14)

where

d(y, a, λ) = ln g(y, λ)− ln p(λ)− ln k(λ, a)− lnG(y)− lnχ(a), (3.15)

and

h(c) = e
√
c + e−

√
c − 2 = 2

∞∑
i=1

ci

(2i)!
. (3.16)

Noting that the term d(y, a, λ) is supposed to be small if an efficient sampler is used, the
function h(c) can be approximated by its leading term c to get

V (a, y) ≈ Ṽ (a, y) =

∫
Λ

d2(y, a, λ)g(y, λ)p(λ)dλ. (3.17)

Minimizing the MC variance amounts then to minimizing the quadratic term d2(y, a, λ).
It can be shown that if the importance sampler m belongs to the exponential family, the
problem remarkably simplifies to a least squares minimization problem for the components
of the vector of auxiliary parameters a.

Extending the EIS approach to the case where λ is of high dimension, like in the SCD model
(where λ corresponds to the ψ vector), requires that we can decompose the minimization
problem in a series of unidimensional subproblems.

A natural MC estimate of the likelihood function in (3.7), which is of the type of (3.9), is
given by

L̃(θ;x) =
1

S

S∑
j=1

[
n∏
i=1

p(xi|ψ̃(j)
i , θ1)

]
, (3.18)
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where ψ̃
(j)
i denotes a draw from the density q(ψi|ψ(j)

i−1, θ2). This approach bases itself only
on the information provided by the distributional assumptions of the model and does not
consider the information that comes from the observed sample. It turns out that this
estimator is highly inefficient since its sampling variance rapidly increases with the sample
size. In any practical case of a duration data set, where the sample size n lies between 500
and 50000 observations, the Monte Carlo sampling size S required to give precise enough
estimates of L(θ;x) would be too high to be affordable and it turns out that this estimator
cannot be relied on practically.

EIS tries to make use of the information provided by the observed data in order to
come to a reasonably fast and reliable numerical approximation. Let {m(ψi|ψi−1, ai)}ni=1

be a sequence of auxiliary samplers indexed by the set of auxiliary parameter vectors
{ai}ni=1. These densities can be defined as a parametric extension of the natural samplers
{q(ψi|ψi−1, θ2)}ni=1. We rewrite the likelihood function as

L(θ;x) =

∫ [ n∏
i=1

f(xi, ψi|xi−1, ψi−1, θ)

m(ψi|ψi−1, ai)

n∏
i=1

m(ψi|ψi−1, ai)

]
dψ. (3.19)

Then, its corresponding IS-MC estimator (the equivalent of (3.11)) is given by

L̃(θ;x, a) =
1

S

S∑
j=1

[
n∏
i=1

f(xi, ψ̃
(j)
i (ai)|xi−1, ψ̃

(j)
i−1(ai−1), θ)

m(ψ̃
(j)
i (ai)|ψ̃(j)

i−1(ai−1), ai)

]
. (3.20)

where {(ψ̃(j)
i (ai)}ni=1 are trajectories drawn from the auxiliary samplers.

Relying on the factorized expression of the likelihood, the MC variance minimization prob-
lem can be decomposed in a sequence of subproblems for each element i of the sequence
of observations, provided that the elements depending on the lagged values ψi−1 are trans-
ferred back to the (i− 1)-th minimization subproblem. More precisely, if we decompose m
in the product of a function of ψi and ψi−1 and one of ψi−1 only, such that

m(ψi|ψi−1, ai) =
k(ψi, ai)

χ(ψi−1, ai)
=

k(ψi, ai)∫
k(ψi, ai)dψi

, (3.21)

we can set up the following minimization problem:

âi(θ) = arg min
ai

S∑
j=1

{ln
[
f(xi, ψ̃

(j)
i |ψ̃

(j)
i−1, xi−1, θ)χ(ψ̃

(j)
i , âi+1)

]
− ci− ln(k(ψ̃

(j)
i , ai))}2, (3.22)

where ci is constant that must be estimated along with ai. If the density kernel k(ψi, ai)
belongs to the exponential family of distributions, the problem becomes linear in ai, and
this greatly improves the speed of the algorithm, as a least squares formula can be employed
instead of an iterative routine.
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The estimated âi are then substituted in (3.20) to obtain the EIS estimate of the likelihood.
The EIS algorithm can be initialized by direct sampling, as in equation (3.18), to obtain

a first series of ψ̃i
(j)

and then iterated to allow the convergence of the sequences of {ai},
which is usually obtained after 3 to 5 iterations. EIS-ML estimates are finally obtained by
maximizing L̃(θ;x, a) with respect to θ.

If we adopt a Weibull distribution for εi with parameter γ (=θ1) and a N(0, σ2) one for ui,
we come up with the following expressions:

p(xi|ψi−1, γ) =
γ

eψi

( xi
eψi

)γ−1

exp
{
−
( xi
eψi

)γ}
(3.23)

and

q(ψi|ψi−1, θ2) =
1

σ
√

2π
exp

{
− 1

2σ2
(ψi − ω − βψi−1)2

}
. (3.24)

A convenient choice for the auxiliary sampler m(ψi, ai) is a parametric extension of the
natural sampler q(ψi|ψi−1, θ2), in order to obtain a good approximation of the integrand
without too heavy a cost in terms of analytical complexity. Following Liesenfeld and
Richard (2003), we can start by the following specification of the function k(ψi, ai):

k(ψi, ai) = q(ψi|ψi−1, θ2)ζ(ψi, ai), (3.25)

where ζ(ψi, ai) = exp{a1,iψi + a2,iψ
2
i } and ai = (a1,i a2,i). This specification is rather

straightforward and has two advantages. Firstly, as q(ψi|ψi−1, θ2) is present in a multi-
plicative form, it cancels out in the objective function in (3.22), which becomes a least
squares problem with ln ζ(ψi, ai) that serves to approximate ln p(xi|ψi, θ1) + lnχ(ψi, ai).
Secondly, such a functional form for k leads to a distribution of the auxiliary sampler
m(ψi, ai) that remains Gaussian, as stated in the following theorem, whose proof is given
in the appendix.

Theorem 3 If the functional forms for q(ψi|ψi−1, θ2) and k(ψi, ai) are as in equations

(3.24) and (3.25) respectively, then the auxiliary density m(ψi|ψi−1, ai) = k(ψi,ai)
χ(ψi−1,ai)

is Gaus-

sian, with conditional mean and variance given by:

µi = v2
i (
ω+βψi−1

σ2 + a1,i)

and

v2
i = σ2

1−2σ2a2,i
,

(3.26)

and the function χ(ψi−1, ai) is given by

1√
1− 2σ2a2,i

exp

{
σ2

2(1− 2σ2a2,i)

(
ω + βψi−1

σ2
+ a1,i

)2

− 1

2

(
ω + βψi−1

σ

)2
}
. (3.27)
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By applying these results, it is possible to compute the likelihood function of the SCD
model for a given value of θ, based upon the following steps:

Step 1. Use the natural sampler q(ψi|ψi−1, θ2) to draw S trajectories of the latent variable{
ψ̃

(j)
i

}n
i=1

, as in (3.18).

Step 2. The draws obtained in step 1 are used to solve for each i (in the order from n to 1)
the least squares problems described in (3.22), which takes the form of the auxiliary
linear regression:

ln γ − γψ̃(j)
i + (γ − 1) lnxi −

(
xi

eψ̃
(j)
i

)γ
+ lnχ(ψ̃

(j)
i , âi+1) =

a0,i + a1,iψ̃
(j)
i + a2,i(ψ̃

(j)
i )2 + ε

(i)
i , j = 1, ..., S,

where ε
(i)
i is the error term, a0,i is a constant term, and χ(ψ̃

(j)
i , âi+1) is set equal to 1

for i = n and defined by (3.27) for i < n.

Step 3. Use the estimated auxiliary parameters âi to obtain S trajectories
{
ψ̃

(j)
i (âi)

}N
i=1

from

the auxiliary sampler m(ψi|ψi−1, âi), applying the result of theorem 3.

Step 4. Return to step 2, this time using the draws obtained with the auxiliary sampler.
Steps 2, 3 and 4 are usually iterated a small number of times (from 3 to 5), until a
reasonable convergence of the parameters âi is obtained.

Once the auxiliary trajectories have attained a reasonable degree of convergence, the simu-
lated samples can be plugged in formula (3.20) to obtain an EIS estimate of the likelihood.
This procedure is embedded in a numerical maximization algorithm that converges to a
maximum of the likelihood function. After convergence, we compute the standard errors
from the Hessian matrix.

Throughout the EIS steps described above and their iterations, we employed a single set of
simulated random numbers to obtain the draws from the auxiliary sampler. This technique,
known as common random numbers, is motivated in Richard and Zhang (2007). The same
random numbers were also employed for each of the likelihood evaluations required by the
maximization algorithm.

The number of draws used (S in equation 3.20) for all estimations in this article is equal
to 50.
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3.4 Simulation results

In order to assess the gain in performance allowed by EIS-ML estimation in comparison
with QML, we conducted several repeated simulation experiments with different parameter
configurations. As the QML estimator should be consistent but inefficient in relatively
small samples, trajectories of 250, 500, 1000, 5000 and 10000 observations form a SCD
data generating process (DGP) were simulated 1000 times and the model was estimated
both by EIS-ML and by QML. The idea to use as much as 10000 observations comes from
the wish to judge the loss of efficiency of QML relative to EIS-ML. Moreover, such sample
sizes are far from unusual for real data sets of durations.

The estimations were performed using the MaxSQP maximization function of Ox console
3.40, under Windows XP with a dual core Intel 2.0 Gb processor. The speed of QML
estimation with Kalman filter varies from an average of 0.25 seconds for a series of 250
data to an average of 7.5 seconds for a 10000 data one. EIS-ML estimation is much slower,
with a average computing time of respectively 2.5 (250 data) and 144 seconds (10000 data).
This should not come as a surprise and we suspect that alternative estimation strategies,
such as Bayesian MCMC, would be even slower than EIS-ML, as the results of Bauwens
and Rombouts (2004) for the SV model clearly show.

The DGP is defined by equations (3.1)-(3.2), plus formula (3.23). The parameter values
used in the simulations of the DGP were the following:

• ω = 0.0,

• β = 0.9,

• σ = 0.05 and 0.2,

• γ = 0.8 and 1.1,

thus leading to four combinations. The starting values for likelihood optimizations were
set for all estimations to ω = 0.0, β = 0.85, σ = 0.15 and γ = 1.05, but we checked that
other reasonable starting values provided quite similar results to those discussed below.

Tables 3.1 to 3.5 contain the means, standard deviations and mean-squared errors of the
1000 estimates for each experiment, and figures 3.1 to 3.4 display the corresponding sam-
pling densities (obtained by kernel based smoothing). As a first remark, it can be noticed
that in both estimation methods there is a tendency to underestimate the autoregressive
parameter β and to overestimate the parameter σ, especially when the latter takes the low
value of 0.05. Anyway, also in these cases the EIS-ML method provides estimates which
in mean are closer to the DGP parameters than the QML one. The most striking result
concerns the efficiency of the estimators: the EIS-ML estimated standard deviations of
the estimates are always remarkably smaller than the QML ones, in particular when the
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Table 3.1: Sampling means, standard deviations and mean-squared errors of 1000 estimates
of the SCD model parameters for simulated series of 250 observations

250
DGP Mean EIS Mean QML StDev EIS StDev QML MSE EIS MSE QML

ω 0.0000 0.0064 0.0000 0.0325 0.0649 0.0010 0.0042
β 0.9000 0.8262 0.7601 0.1482 0.2958 0.0274 0.1071
σ 0.2000 0.2431 0.2771 0.1073 0.1939 0.0133 0.0435
γ 1.1000 1.1261 1.1823 0.0792 0.4732 0.0069 0.2307

ω 0.0000 0.0083 -0.0332 0.0381 0.1373 0.0015 0.0199
β 0.9000 0.5963 0.0941 0.2784 0.5847 0.1697 0.9912
σ 0.0500 0.1703 0.3521 0.1384 0.3583 0.0336 0.2197
γ 1.1000 1.1415 1.5280 0.0801 1.2059 0.0081 1.6373

ω 0.0000 0.01471 -0.0729 0.0534 0.2164 0.0030 0.0521
β 0.9000 0.62392 -0.0906 0.2828 0.5489 0.1562 1.2827
σ 0.0500 0.18714 0.5391 0.1982 0.5122 0.0581 0.5016
γ 0.8000 0.83921 1.3096 0.0779 1.4544 0.0076 2.3752

ω 0.0000 0.0042 -0.0235 0.0482 0.1411 0.0023 0.0204
β 0.9000 0.7804 0.4938 0.2092 0.5288 0.0580 0.4446
σ 0.2000 0.2734 0.4394 0.1657 0.3681 0.0328 0.1928
γ 0.8000 0.8261 0.9536 0.0634 0.6779 0.0047 0.4831

parameter σ is equal to 0.05. The combination of smaller bias and variance is reflected
clearly in the mean-squared errors, which are sensibly lower across the board for the EIS-
ML method. The better general performance of the EIS-ML estimator can be appreciated
also by a visual inspection of the sampling densities.

Looking at the tables and at figures 3.2 and 3.3 it is easy to remark how poor the perfor-
mance of the QML estimator is when the parameter σ is small. To better illustrate the
issue, Figure 3.5 shows for each parameter the graph of the estimated standard deviations
against the value of σ in the DGP, for a sample size of 1000. These results are based on
additional simulations (for values of σ ranging from 0.02 to 0.7). This figure shows that
for small values of σ in the DGP, both estimation methods tend to be imprecise. This
is understandable, since as σ tends to 0, the parameter β becomes unidentified, so that
the likelihood function becomes flat. We also see in figures 3.2 and 3.3 that the sampling
distribution of the estimates of β has a mode at (or close to) zero. However, this problem
of is far more pronounced for QML than for EIS-ML.

In order to dispel the doubt that the QML estimator might not be consistent (or that
the computer program is poorly written) we present in table 3.6 the results based on ten
QML estimations with one million data. From all this evidence we conclude that when the
sample size is not very large (of the order of hundreds of thousands), QML estimation can
be extremely inefficient if the latent factor variance is small.

54



Table 3.2: Sampling means, standard deviations and mean-squared errors of 1000 estimates
of the SCD model parameters for simulated series of 500 observations

500
DGP Mean EIS Mean QML StDev EIS StDev QML MSE EIS MSE QML

ω 0.0000 0.0038 -0.0021 0.0146 0.0255 0.0002 0.0006
β 0.9000 0.8699 0.8467 0.0770 0.1476 0.0068 0.0246
σ 0.2000 0.2186 0.2357 0.0706 0.1149 0.0053 0.0144
γ 1.1000 1.1089 1.1202 0.0535 0.0778 0.0029 0.0064

ω 0.0000 0.0043 -0.0433 0.0255 0.1190 0.0006 0.0160
β 0.9000 0.6200 0.0981 0.2776 0.5902 0.1554 0.9913
σ 0.0500 0.1430 0.3270 0.1132 0.3392 0.0214 0.1918
γ 1.1000 1.1254 1.4719 0.0562 1.1315 0.0038 1.4187

ω 0.0000 0.0068 -0.0701 0.0368 0.1831 0.0014 0.0384
β 0.9000 0.6602 -0.0944 0.2700 0.5288 0.1303 1.2686
σ 0.0500 0.1483 0.4989 0.1534 0.4563 0.0332 0.4098
γ 0.8000 0.8224 1.2012 0.0584 1.2614 0.0039 1.7521

ω 0.0000 0.0035 -0.0221 0.0261 0.0994 0.0006 0.0103
β 0.9000 0.8442 0.6473 0.1308 0.4308 0.0202 0.2494
σ 0.2000 0.2372 0.3708 0.1119 0.3157 0.0139 0.1289
γ 0.8000 0.8109 0.8863 0.0428 0.4887 0.0019 0.2462

Table 3.3: Sampling means, standard deviations and mean-squared errors of 1000 estimates
of the SCD model parameters for simulated series of 1000 observations

1000
DGP Mean EIS Mean QML StDev EIS StDev QML MSE EIS MSE QML

ω 0.0000 0.0019 0.0001 0.0090 0.0101 0.0000 0.0001
β 0.9000 0.8859 0.8803 0.0423 0.0626 0.0019 0.0043
σ 0.2000 0.2099 0.2147 0.0428 0.0674 0.0019 0.0047
γ 1.1000 1.1037 1.1098 0.0352 0.0414 0.0012 0.0018

ω 0.0000 0.0012 -0.0516 0.0166 0.1122 0.0002 0.0152
β 0.9000 0.6883 0.1722 0.2571 0.5722 0.1109 0.8570
σ 0.0500 0.1074 0.3315 0.0882 0.3381 0.0110 0.1935
γ 1.1000 1.1133 1.4830 0.0365 1.1450 0.0015 1.4579

ω 0.0000 0.0018 -0.0915 0.0198 0.1822 0.0003 0.0415
β 0.9000 0.7376 -0.0241 0.2367 0.5091 0.0823 1.1131
σ 0.0500 0.1056 0.5402 0.1166 0.4680 0.0167 0.4594
γ 0.8000 0.8111 1.2733 0.0383 1.3596 0.0015 2.0726

ω 0.0000 0.0016 -0.009 0.0187 0.0514 0.0003 0.0027
β 0.9000 0.8712 0.7818 0.0957 0.2838 0.0100 0.0945
σ 0.2000 0.2183 0.2974 0.0718 0.2360 0.0055 0.0652
γ 0.8000 0.8043 0.8285 0.0300 0.1498 0.0009 0.0232
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Table 3.4: Sampling means, standard deviations and mean-squared errors of 1000 estimates
of the SCD model parameters for simulated series of 5000 observations

5000
DGP Mean EIS Mean QML StDev EIS StDev QML MSE EIS MSE QML

ω 0.0000 0.0005 0.0002 0.0031 0.0034 0.0000 0.0000
β 0.9000 0.8982 0.8959 0.0152 0.0201 0.0002 0.0004
σ 0.2000 0.1999 0.2035 0.0175 0.0263 0.0003 0.0007
γ 1.1000 1.0994 1.1026 0.0146 0.0173 0.0002 0.0003

ω 0.0000 -0.0002 -0.0302 0.0052 0.0703 0.0000 0.0058
β 0.9000 0.7793 0.3099 0.2142 0.4937 0.0604 0.5919
σ 0.0500 0.0785 0.2934 0.0522 0.2516 0.0035 0.1225
γ 1.1000 1.1048 1.2761 0.0162 0.7875 0.0002 0.6512

ω 0.0000 -0.0003 -0.0767 0.0068 0.1265 0.0000 0.0219
β 0.9000 0.7893 0.0781 0.2135 0.3672 0.0578 0.8103
σ 0.0500 0.0786 0.5901 0.0755 0.3513 0.0065 0.4152
γ 0.8000 0.8033 1.0754 0.0154 1.0024 0.0002 1.0807

ω 0.0000 0.0003 -0.0001 0.0047 0.0069 0.0000 0.0000
β 0.9000 0.8931 0.8909 0.0380 0.0536 0.0014 0.0029
σ 0.2000 0.2024 0.2086 0.0295 0.0612 0.0008 0.0038
γ 0.8000 0.8001 0.8023 0.0109 0.0158 0.0001 0.0002

Table 3.5: Sampling means, standard deviations and mean-squared errors of 1000 estimates
of the SCD model parameters for simulated series of 10000 observations

10000
DGP Mean EIS Mean QML StDev EIS StDev QML MSE EIS MSE QML

ω 0.0000 <0.0001 0.0001 0.0021 0.0024 <0.0000 <0.0000
β 0.9000 0.9005 0.8999 0.0119 0.0139 0.0001 0.0002
σ 0.2000 0.1981 0.1986 0.0134 0.0192 0.0002 0.0004
γ 1.1000 1.0999 1.1002 0.0098 0.0114 <0.0000 0.0001

ω 0.0000 -0.0002 -0.0307 0.0021 0.0278 <0.0000 0.0044
β 0.9000 0.8561 0.2351 0.1145 0.3954 0.0150 0.5985
σ 0.0500 0.0615 0.3606 0.0299 0.1944 0.0010 0.1342
γ 1.1000 1.1018 1.1761 0.0092 0.0701 <0.0000 0.0107

ω 0.0000 -0.0001 -0.0867 0.0024 0.1213 <0.0000 0.0222
β 0.9000 0.8411 0.0522 0.1481 0.3294 0.0254 0.8273
σ 0.0500 0.0624 0.6381 0.0432 0.3477 0.0020 0.4668
γ 0.8000 0.8013 1.0656 0.0068 0.8636 <0.0000 0.8164

ω 0.0000 -0.0003 <0.0001 0.0025 0.0027 <0.0000 <0.0000
β 0.9000 0.8981 0.9001 0.0154 0.0221 0.0002 0.0005
σ 0.2000 0.2010 0.1992 0.0190 0.0307 0.0004 0.0009
γ 0.8000 0.8005 0.7994 0.0069 0.0081 <0.0000 <0.0000
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Table 3.6: Sampling means, standard deviations and mean-squared errors of 1000 estimates
of the SCD model parameters for simulated series of one million observations

1000000
DGP Mean QML StDev QML Min QML Max QML

ω 0.0000 -0.0001 0.0002 -0.0004 0.0003
β 0.9000 0.9001 0.0007 0.8989 0.9012
σ 0.2000 0.1996 0.0013 0.1979 0.2013
γ 1.1000 1.1009 0.0008 1.0992 1.1022

ω 0.0000 -0.0001 0.0001 -0.0002 0.0002
β 0.9000 0.8997 0.0078 0.8875 0.9125
σ 0.0500 0.0496 0.0031 0.0445 0.0549
γ 1.1000 1.1008 0.0011 1.0985 1.1025

ω 0.0000 0.0000 0.0001 -0.0003 0.0002
β 0.9000 0.9006 0.0129 0.8787 0.9201
σ 0.0500 0.04911 0.0053 0.0413 0.0581
γ 0.8000 0.8007 0.0007 0.7993 0.8018

ω 0.0000 0.0000 0.0003 -0.0004 0.0004
β 0.9000 0.9002 0.0012 0.8985 0.9018
σ 0.2000 0.1993 0.0020 0.1966 0.2027
γ 0.8000 0.8007 0.0006 0.7994 0.8017

3.5 Estimation results for real data

In this section, we apply EIS-ML estimation to some data sets used by Bauwens and
Veredas (2004) for QML estimation, and we compare the results. The SCD model is
exactly the same as in the previous section, and as in these authors’ article.

The considered data sets correspond to five stocks traded at the New York Stock Exchange
(NYSE): Boeing, Coca Cola, Disney, Exxon and Ibm (the last one was not used by Bauwens
and Veredas). The data were extracted from the trades and quotes database (TAQ) of the
NYSE and are relative to the months of September, October and November, 1996. From
the original trade and quote durations, price and volume duration were computed. Price
durations measure the amount of time before observing a given cumulated variation (up or
down) of the price (in this case, $1/8). Analogously, volume durations measure the amount
of time necessary to observe a cumulative traded volume of a given amount (25000 shares).
As it is customary in the literature on financial durations, the durations have been purged
of their seasonal component. An important feature of the trade and quote data is in fact
the strong seasonality featured, both on a daily and a weekly basis, by key characteristics
of the duration processes. Price and volume durations feature a strong intra-day effect,
being smaller at the start and at the end of the trading day than around lunch time.
Moreover, this effect may depend on the day of the week. These deterministic time-of-day
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Figure 3.1: Sampling densities of 1000 EIS-ML (dashed) and QML (full) estimates of the
parameters of an SCD model with parameters ω = 0.0, β = 0.9, σ = 0.2, γ = 1.1.

and day-of-the week effect are controlled by regressing with a Nadaraya-Watson estimator
the observed durations of each day of the week on the time of the day, and by defining the
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Figure 3.2: Sampling densities of 1000 EIS-ML (dashed) and QML (full) estimates of the
parameters of an SCD model with parameters ω = 0.0, β = 0.9, σ = 0.05, γ = 1.1.

deseasonalized durations as the original ones divided by the fitted values of the regression.
For further details of the treatment of raw data, the reader can refer to the corresponding
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Figure 3.3: Sampling densities of 1000 EIS-ML (dashed) and QML (full) estimates of the
parameters of an SCD model with parameters ω = 0.0, β = 0.9, σ = 0.05, γ = 0.8.

section in Bauwens and Veredas (2004).
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Figure 3.4: Sampling densities of 1000 EIS-ML (dashed) and QML (full) estimates of the
parameters of an SCD model with parameters ω = 0.0, β = 0.9, σ = 0.2, γ = 0.8.

In tables 3.7 and 3.8 we present the estimated parameters of the QML and EIS-ML estima-
tions. For volume duration, even if the values taken by the estimates of the parameters for
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Figure 3.5: Standard errors of 1000 estimates of the SCD model parameters as a function
of the DGP value of σ. Case of 1000 observations simulated from the DGP with parameters
ω = 0.0, β = 0.9, γ = 1.1.
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the two methods considered are substantially the same, it is noticeable that the standard
errors of EIS-QML are generally lower, sometimes substantially, than the QML ones. We
also report in the table the computed dispersion index (δ̃x) of the durations implied by
the estimates. This is computed by plugging in formula (3.2) the point estimates. We see
that the data dispersion index is better approximated if we estimate with the EIS-ML al-
gorithm. The estimates and standard errors for the price duration data are more markedly
different between the two methods than for volume durations. Moreover, the improved
match between the data dispersion index and the implied one of the EIS-ML estimates is
even more striking in this case. To draw a conclusion, provided that the model is correctly
specified, by using EIS-ML estimation rather than QML, the estimates one gets are more
precise.

Finally, in both tables, in square brackets, we present the MC standard deviations of
the EIS estimates. These standard deviations are calculated from ten different estimates
obtained by running the algorithm using each time a different random seed for the common
random numbers employed in the EIS evaluation of the likelihood. The resulting dispersion
of the estimates is extremely low, which suggests that EIS is a rather robust method in
this respect.
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Table 3.7: Results for volume durations for an SCD model

VOLUME Boeing Coca Cola Disney Exxon Ibm

obs. 1576 3022 1778 2045 4305

ω qml 0.002 -0.001 0.000 0.007 0.000
(0.0037) (0.0053) (0.0029) (0.0044) (0.0016)

eis 0.002 0.002 0.002 0.006 -0.002
(0.0026) (0.0021) (0.0018) (0.0030) (0.0010)

[<0.0001] [<0.0001] [0.0001] [<0.0001] [0.0001]

β qml 0.921 0.865 0.976 0.901 0.982
(0.0129) (0.0276) (0.0074) (0.0237) (0.0044)

eis 0.961 0.950 0.981 0.925 0.982
(0.0116) (0.0129) (0.0061) (0.0218) (0.0032)

[<0.0001] [<0.0001] [<0.0001] [<0.0001] [0.0005]

σ qml 0.116 0.209 0.102 0.133 0.101
(0.0168) (0.0278) (0.0117) (0.0206) (0.0020)

eis 0.101 0.109 0.088 0.102 0.112
(0.0143) (0.0159) (0.0101) (0.0181) (0.0081)

[<0.0001] [<0.0001] [<0.0001] [<0.0001] [0.0002]

γ qml 1.698 1.401 1.767 1.812 1.892
(0.0288) (0.0219) (0.0259) (0.0310) (0.0238)

eis 1.713 1.310 1.777 1.764 1.837
(0.0384) (0.0215) (0.0368) (0.0375) (0.0266)
[0.0001] [<0.0001] [0.0006] [<0.0001] [0.0005]

eis log lik -1303.51 -2843.79 -1381.95 -1682.94 -3158.13
[0.0186] [0.0062] [0.0450] [0.0116] [0.5885]

δ̃x data 0.70 0.88 0.72 0.65 0.80
qml 0.76 0.90 0.82 0.67 0.86
eis 0.74 0.89 0.80 0.66 0.94

QML and EIS-ML estimates and standard errors in parentheses. MC
standard deviations for the EIS estimates are in square parentheses. δ̃x
denotes the dispersion index. The estimated model is defined by (3.1)-
(3.4) and (3.23).
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Table 3.8: Results for price durations for an SCD model

PRICE Boeing Coca Cola Disney Exxon Ibm

obs. 2620 1609 2160 2717 6728

ω qml -0.026 -0.035 -0.005 0.008 -0.005
(0.0081) (0.0166) (0.0030) (0.0047) (0.0020)

eis -0.023 -0.027 -0.002 -0.127 -0.006
(0.0097) (0.0154) (0.0033) (0.0243) (0.0028)
[0.0001] [<0.0001] [<0.0001] [<0.0001] [<0.0001]

β qml 0.896 (0.774) 0.967 0.921 0.977
(0.0194) (0.0770) (0.0103) (0.0356) (0.0051)

eis 0.876 0.733 0.960 0.179 0.962
(0.0302) (0.0731) (0.0134) (0.0564) (0.0074)
[0.0004] [0.0006] [<0.0001] [0.0005] [<0.0001]

σ qml 0.286 0.292 0.108 0.100 0.135
(0.0301) (0.0739) (0.0181) (0.0320) (0.0041)

eis 0.332 0.377 0.136 0.674 0.192
(0.0487) (0.0698) (0.0247) (0.0344) (0.0197)
[0.0008] [0.0006] [<0.0001] [0.0002] [0.0002]

γ qml 1.149 1.113 1.177 1.161 1.244
(0.0200) (0.0308) (0.0192) (0.0175) (0.0131)

eis 1.067 1.113 1.056 1.344 1.130
(0.0284) (0.0402) (0.0208) (0.0493) (0.0159)
[0.0004] [0.0003] [<0.0001] [0.0003] [<0.0001]

eis log lik -2371.96 -1561.44 -2056.21 -2635.10 -5760.00
[0.0336] [0.0192] [0.0041] [0.0663] [0.0404]

δ̃x data 1.36 1.21 1.23 1.23 1.43
qml 1.29 1.07 1.03 0.93 1.21
eis 1.42 1.21 1.19 1.23 1.40

QML and EIS-ML estimates and standard errors in parentheses. MC
standard deviations for the EIS estimates are in square parentheses. δ̃x
denotes the dispersion index. The estimated model is defined by (3.1)-
(3.4) and (3.23).
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3.6 Extensions

In order to illustrate the flexibility of EIS-ML as a numerical tool, we estimate two exten-
sions of the SCD model described and used in the previous sections. The first extension
consists in the introduction of a “leverage” term in the mean of the latent factor. For a
motivation of this effect, we refer the reader to Feng et al. (2004), but we slightly differ
from these authors by letting the value of ψi to depend on the lagged duration xi−1 (rather
than εi−1), such that equation (3.2) becomes

ψi = ω + βψi−1 + αxi−1 + ui. (3.28)

The introduction of the lagged observed duration requires just a slight modification of the
code and the effect on the speed of the algorithm is negligible: the EIS based computation
of the likelihood takes almost exactly the same time while of course the introduction of
an extra parameter slows down the maximization routine. Table 3.9 presents the results
of the estimation with the data sets employed in the previous section. The introduction
of the lagged duration as an explanatory variable can be tested by the likelihood ratio for
the null hypothesis α = 0. The p-values are reported in the table in curled brackets before
the value of the likelihood at its maximum.

For volume durations, the estimated leverage coefficients do not display a clear sign pattern.
Moreover, the results of the LR tests are mixed: we clearly reject the null only for Exxon,
with a positive leverage effect, while in three other cases the evidence is mixed (p-value
around 0.05) and the effect is negative. In the case of Boeing, the leverage effect is clearly
not significant. For price durations the results are clearly in favor of a negative leverage
effect, except for the puzzling case of the Exxon stock, where the estimates are somewhat
unusual (low β and high σ).

In the second variant of the model we change the distribution of variable εi, representing
the baseline duration. The Weibull distribution is replaced by a generalized gamma one
with parameters (ν, γ, c). The third parameter is a location parameter and, like in the case
of the Weibull, it is chosen so that the random variable has a unitary mean (so that c is
a function of ν and γ and therefore does not appear in the parameters to estimate). The
density function of the generalized gamma is as follows:

fGG(ε) =
γ

cνγΓ(ν)
ενγ−1 exp

[
−
(ε
c

)γ]
, (3.29)

and it can be easily seen that the Weibull density is a particular case, arising when ν = 1.
Further information about this distribution is available in Bauwens and Giot (2001), who
provide a detailed description of its characteristics.

The modifications in the computer code that were required to use this extension were even
simpler than in the case of the leverage effect. We did not observe any speed impact on
the likelihood computation, while, of course, its maximization was a tad slower because of
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the introduction of an extra parameter. The estimation results are available in table 3.10.
Volume durations modeling does not appear to improve consistently with the introduction
of this richer baseline density. The p-values of the LR tests for the null hypothesis ν = 1
are seldom low (except for Ibm) as the values taken by the parameter ν tend to be rather
close to 1. Different results are obtained with price durations. A significant departure
from the Weibull is observed (estimates of ν are between 4.7 to 7.2) and gains in likelihood
are consistent, to the point that the p-values of the LR tests for ν = 1 are always smaller
than 0.001. For the price durations of the Exxon stock the EIS-ML algorithm delivers a
value for the likelihood but the maximization routine failed to achieve strong convergence,
regardless of the vector of initial parameters chosen as a starting point.
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Table 3.9: Results for volume and price durations for an SCD model with leverage

VOLUME Boeing Coca Cola Disney Exxon Ibm

obs. 1576 3022 1778 2045 4305

ω -0.008 0.028 0.012 -0.065 0.004
(0.009) (0.016) (0.007) (0.021) (0.002)

β 0.954 0.972 0.991 0.867 0.988
(0.016) (0.014) (0.005) (0.031) (0.002)

σ 0.096 0.117 0.088 0.043 0.115
(0.014) (0.018) (0.010) (0.030) (0.010)

γ 1.700 1.330 1.78 1.674 1.847
(0.039) (0.025) (0.037) (0.040) (0.028)

α 0.011 -0.028 -0.013 0.079 -0.007
(0.010) (0.016) (0.007) (0.024) (0.002)

LR p-value 0.289 0.068 0.041 <0.001 0.049

EIS log-lik -1302.96 -2842.12 -1379.86 -1676.29 -3156.17

PRICE Boeing Coca Cola Disney Exxon Ibm

obs. 2620 1609 2160 2717 6728

ω 0.049 0.119 0.041 -0.120 0.009
(0.011) (0.034) (0.007) (0.077) (0.002)

β 0.937 0.883 0.986 0.193 0.971
(0.023) (0.055) (0.005) (0.153) (0.006)

σ 0.331 0.392 0.166 0.673 0.205
(0.043) (0.056) (0.038) (0.038) (0.018)

γ 1.098 1.192 1.095 1.344 1.143
(0.027) (0.042) (0.022) (0.050) (0.015)

α -0.063 -0.133 -0.048 -0.005 -0.016
(0.011) (0.029) (0.009) (0.049) (0.003)

LR p-value <0.001 <0.001 <0.001 0.924 <0.001

EIS log-lik -2361.79 -1552.83 -2041.77 -2635.10 -5748.14

EIS-ML estimates of the parameters and standard errors in
parentheses. The LR p-value is for the hypothesis α = 0. The
estimated model is defined by (3.1), (3.28), (3.3), (3.4) and
(3.23).
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Table 3.10: Results for volume and price durations for an SCD model with a generalized
gamma baseline duration

VOLUME Boeing Coca Cola Disney Exxon Ibm

obs. 1576 3022 1778 2045 4305

ω 0.006 -0.011 0.002 -0.001 -0.006
(0.005) (0.008) (0.002) (0.008) (0.002)

β 0.960 0.953 0.981 0.930 0.982
(0.012) (0.012) (0.006) (0.021) (0.004)

σ 0.104 0.104 0.089 0.098 0.104
(0.016) (0.016) (0.010) (0.018) (0.008)

γ 1.900 1.126 1.819 1.633 1.437
(0.198) (0.092) (0.163) (0.155) (0.088)

ν 0.854 1.274 0.964 1.128 1.489
(0.130) (0.166) (0.133) (0.165) (0.149)

LR p-value 0.307 0.054 0.792 0.405 <0.001

EIS log-lik -1302.99 -2841.94 -1381.92 -1682.59 -3149.46

δx data 0.70 0.88 0.72 0.65 0.80
δx eis 0.74 0.91 0.81 0.67 0.90

PRICE Boeing Coca Cola Disney Exxon Ibm

obs. 2620 1609 2160 2717 6728

ω -0.377 -0.666 -0.170 na -0.105
(0.151) (0.292) (0.077) (0.029)

β 0.923 0.828 0.970 na 0.982
(0.020) (0.044) (0.010) (0.004)

σ 0.235 0.250 0.106 na 0.123
(0.367) (0.046) (0.019) (0.013)

γ 0.389 0.440 0.0365 na 0.373
(0.061) (0.080) (0.057) (0.031)

ν 5.631 4.717 6.894 na 7.167
(1.665) (1.583) (2.058) (1.151)

LR p-value <0.001 <0.001 <0.001 na <0.001

EIS log-lik -2335.20 -1542.15 -2009.12 na -5617.91

δx data 1.36 1.21 1.23 1.23 1.43
δx eis 1.57 1.32 1.33 na 1.52

EIS-ML estimates of the parameters and standard errors in
parentheses. The LR p-value is for the hypothesis ν = 1.
The estimated model is defined by (3.1)-(3.4) and (3.29). For
Exxon price durations, results are not available (na).
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3.7 Conclusion

This paper describes a new approach, the EIS-ML, for the numerical estimation of SCD
models, showing its capability to deliver more precise estimates than the approximate QML
method. The performance EIS-ML is tested both in a simulated and a real case, giving
good results in terms of precision of estimation at a cost of an acceptable loss in rapidity
of the computation. The evidence from the estimation of simulated series suggests an
uncomfortably poor performance of the QML estimator when the latent factor variance
is low, while EIS-ML appears to be much more robust. The algorithm is applied to the
estimation of a set of volume and price durations showing a remarkably low MC variance.
Moreover, we observed a significant gain in the capability of the SCD model in reproducing
the first two empirical moments of the data when QML is replaced by EIS-ML estimation.
Further interesting extensions are explored in the use of EIS-ML for the estimation of richer
specifications, such as the presence of a leverage effect in the autoregressive component or
a more flexible distribution for the baseline duration.
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3.8 Appendix

Proof: [Theorem 3]
Given (3.24) and (3.25), the function k(ψi, ai) can be written as follows.

k(ψi, ai) = p(ψi|ψi−1, ai)ζ(ψi, ai)

=
1

σ
√

2π
exp

{
− 1

2

[( 1

σ2
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)
ψ2
i − 2

(
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σ2
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σ

)2 ]}
.

(3.30)

Integrating k(ψi, ai) with respect to ψi, we obtain the function χ(ψi−1, ai), as in (3.21).

χ(ψi−1, ai) =

∫ ∞
−∞

k(ψi, ai)dψi

=
1√

1− 2σ2a2,i

exp
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σ2
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} (3.31)

If we combine (3.30) and (3.31), as in (3.21) again, we can find the functional form for
m(ψi|ψi−1, ai), that can be easily rewritten as a normal with mean and variance equal to
µi and v2

i as in (3.26).

m(ψi|ψi−1, ai) =
k(ψi, ai)
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Chapter 4

A Nonparametric ACD Model

4.1 Introduction

In the ACD literature, the variety of parametric specifications has not been matched, so far,
by any attempt to provide a generic form for the autocorrelated factor, which would have
the advantage to be robust to misspecification and to be able to provide an estimation which
is sufficiently reliable in most cases. The aim of the work in this chapter is to introduce
a generic form for the ACD family model, where the autocorrelated factor is expressed as
a function of the lagged observation and of the factor itself, and it is nonparametrically
estimated. Moreover, the hypotheses of the model that we propose are not particularly
strict even on the functional form of the distribution of the conditional duration, that
is implicitly estimated in a non parametric way, yielding a more generic form than any
parametric one employed in the literature. This could be helpful because, as it has been
noticed by Bauwens et al. (2004), more complex specifications of the autocorrelated factor
do not seem to provide substantial improvements in the goodness of fit, raising therefore
the suspicion that it is in the conditional duration that improvements could be sought for.

Up to the our, the ACD literature does not provide examples of semi or nonparametric
analysis. Departures from a full parametric specification exist instead in the literature
about ARCH processes, whose modeling shares a great deal of commonalities with the ACD
framework. Engle and Gonzalez-Rivera (1991), for instance, propose a semiparametric
estimation of GARCH models, and the autocorrelated component retains its linear original
form.

The main difficulty of estimating GARCH or ACD models in a fully nonparametric way
resides in the unobservability of one or some regressors. In order to overcome this difficulty,
various solutions have been proposed. Hafner (1997), proposes to replace the unobservable
regressor with a function of several lagged values of the observations only. This approach
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yields an easy approximated model, but because of the large number of regressors it is
computationally heavy and severely suffers from the curse of dimensionality. Another in-
teresting solution comes from Franke and Muller (2002) and Franke et al. (2004), who
employ a deconvolution kernel estimator, that relies strongly on normality of the innova-
tions (which means that it would be hardly adaptable to an ACD framework) and has a
rather slow rate of convergence. A solution more easily adaptable to the ACD structure
consists instead in the iterative scheme proposed by Bühlmann and McNeil (2002). Under
a central, and albeit rather restrictive, contraction hypothesis, the estimation algorithm
can be proven to be consistent and to have a rate of estimation accuracy of the order of a
usual bivariate nonparametric regression technique, which means that it performs better
than the deconvolution kernel and does not represent an approximation.

The advantages of the specification and estimation technique that are proposed here, and
that rely strongly on the results of Bühlmann and McNeil (2002), are, in principle, rather
significant. Apart from the great flexibility that it guarantees for the autocorrelated factor
functional form, this specification is also less prone to suffer from an incorrect hypothesis
on the distribution of the conditional duration, as the only hypothesis it relies on is that its
realizations are independent and have mean equal to one. On the other hand, its main cost
is that the exact role played by an independent variable in the model cannot be summarized
in a single vector of parameters, and this limits the scope for inference.

The outline of this chapter 1 is as follows: Section 2 will display the main characteristics
and properties of the specification and of the estimation techniques that are used, a Monte
Carlo experiment is conducted in Section 3 on a series of simulated processes, to compare
the performance of the nonparametric estimator and of the ML one employed in parametric
formulations under both correct and incorrect specification, Section 4 is characterized by
the estimation of a financial dataset that is commonly used in the ACD literature, followed
by some goodness-of-fit comparisons, Section 5 presents the evaluation of the shocks impact
curve calculatet on the basis of a nonparametric estimation and Section 6 concludes.

4.2 The Theoretical framework

4.2.1 The Model

We introduce in this section the ACD model in the form that can be usually found in the
literature, and then rewrite it in a way that will allow us to estimate it nonparametrically.
Let {Xt} be a nonnegative stationary process adapted to the filtration {Ft, t ∈ Z}, with

1This chapter is the result of a joint work with Antonio Cosma, Université du Luxembourg, published
as CORE discussion paper, 2006/67.

74



Ft = σ({Xs; s ≤ t}), and such that:

Xt = ψtεt,

ψt = f(Xt−1, . . . , Xt−p, ψt−1, . . . , ψt−q), (4.1)

where p, q ≥ 0 and where {εt} is an iid nonnegative process with mean 1 and finite second
moment. We assume f(·) to be a strictly positive function. Since f(·) is Ft−1-measurable,
we have that E(Xt|Ft−1) = ψt, i.e. ψ is the conditional mean of the process. We focus on
the case where p = q = 1, this restriction being widely justified by empirical works. Several
parameterizations of (4.1) have been introduced, the first one being the linear specification:

ψt = ω + αψt−1 + βXt−1, (4.2)

being followed by more complicated functional forms allowing also for nonlinearity in the
response of the conditional mean to the realizations of Xt or in the autoregressive part.
Most of the generalizations have been introduced in order to provide more flexibility in
fitting the stylized facts of financial duration data, but not always have proven to be
sufficiently general to tackle data series differing in their features. In our setup, f(·) is
allowed to be any function of the past realization Xt−1 and of the lagged conditional mean
ψt−1. Moreover, parametric specifications of the ACD family often make use of highly
parameterized functions for the distributions of the innovations εt, while here we only
ask for the mean of the εt’s to be one and for the variance to be finite. We expect our
estimation to outperform parametric models in the case were the ‘real’ f shows some
accentuated nonlinearity like in the threshold models:

ψt = h(ψt−1, Xt−1) +
∑
i

βiI[Xt−1∈Bi]ψt−1,

where Bi are disjoint subsets of R+ and h(x) again a strictly positive function.

In order to estimate f , we rewrite (4.1) in the additive form:

Xt = f(Xt−1, ψt−1) + ηt, (4.3)

ηt = f(Xt−1, ψt−1)(εt − 1).

ηt is a white noise, since E(ηt) = E(ηt|Ft−1) = 0 and E(ηsηt) =
E(ηsηt|Ft−1) = 0 for s < t. The conditional variance of Xt is Var(Xt|Ft−1) =
f 2(Xt−1, ψt−1)(E(ε2t ) − 1). Thus, formally, f(Xt−1, ψt−1) could be estimated by regress-
ing Xt on f(Xt−1, ψt−1). In practice, the ψ’s are unobserved variables. To overcome the
problem, we adapt the recursive algorithm suggested by Bühlmann and McNeil (2002).

4.2.2 The estimation procedure

The algorithm is built as follows. Let {Xt; 1 6 t 6 n} be the data set. We assume that
that the data generating process is of the type described by (4.1) with p = q = 1. The
steps of the algorithm are indexed by j.
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Step 1. Choose the starting values for the vector of the n conditional means. Index these
values by a 0: {ψt,0}. Set j = 1.

Step 2. Regress nonparametrically {Xt; 2 6 t 6 n} on {Xt−1; 2 6 t 6 n} and on the con-
ditional means computed in the previous step: {ψt−1,j−1; 2 6 t 6 n}, to obtain an

estimate f̂j of f .

Step 3. Compute {ψ̂t,j = f̂j(Xt−1, ψ̂t−1,j−1); 2 6 t 6 n}; remember to choose some sensible

value for ψ̂1,j, that cannot be computed recursively.

Step 4. Increment j, and return to step two to run a new regression using the {ψt} computed
in Step 3.

A further improvement of the algorithm can often be achieved by averaging the estimates
obtained in the last steps, when the algorithm becomes more stable.

A justification and theoretical discussion of the algorithm can be found in Bühlmann and
McNeil (2002). We state here from the work just cited the main theorem that allows
determining the convergence rates of the estimates provided by the algorithm. We first
need some notation. From now on ‖Y ‖ denotes the L2 norm of Y : ‖Y ‖2 = E(Y 2). Let:

f̃t,j(x, ψ) = E(Xt|Xt−1 = x, ψ̂t−1,j−1 = ψ),

ψ̃t,j = f̃t,j(Xt−1, ψ̂t−1,j−1);

That is, ψ̃t,j is the true conditional expectation of Xt given the value of ψ̂t−1,j−1 estimated
at the previous step of the algorithm. So the quantity:

∆t;j,n ≡ ψ̃t,j − ψ̂t,j, j = 1, 2, . . . , t = j + 2, . . . , n,

gives us the estimation error introduced at the j-th step solely due to the estimation of
f . In the nonparametric language, ‖∆‖ is the stochastic component of the risk of the
estimator ψ̂t,j of E(Xt|Xt−1, ψt−1,j−1).

Theorem 4 (Theorems 1 and 2 in Bühlmann and McNeil (1999)) Assume that:

1. supx∈R |f(x, ψ)− f(x, ϕ)| 6 D|ψ − ϕ| for some 0 < D < 1, ∀ψ, ϕ ∈ R+.

2. E|ψt|2 ≤ C1, E|ψt,0|2 ≤ C2, max2≤t≤n E|ψ̂t,0|2 ≤ C3, C1,2,3 <∞,
‖ψj − ψj,0‖ <∞, ‖ψ̂j,0 − ψj,0‖ <∞ ∀j.

3. E({ψ̃t,j−ψt,j}2) 6 G2E({ψ̂t−1,j−1−ψt−1,j−1}2) for some 0 < G < 1, for t = j+2, j+
3, . . . and j = 1, 2, . . .

4. ∆n
.
= sup

j>2
max

j+2≤t≤n
‖∆t;j,n‖ → 0, as n→∞ for j = 1, 2, . . . , t = j + 2, . . . , n .
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Then, if {Xt}t∈N is as in (4.1) with p = q = 1, and choosing mn = C{− log ∆n}:

max
mn+26t6n

‖ψ̂t,mn − ψt‖ = O(∆n), as n→∞.

The theorem tells us that if all the assumptions hold, then the upper bound on the quadratic
risk of the estimates of the {ψt} is of the same order as ∆n, that is the error of a one
step nonparametric regression to estimate ψt,j from (Xt−1, ψt−1). That is, in a bivariate
nonparametric regression with an appropriate choice of the kernel function and of the
smoothing parameter, and assuming for instance that f(Xt−1, ψt−1) is twice continuously
differentiable, the convergence rates are O(n−1/3). A practical choice of mn of about
3 log(n) is suggested by the authors.

We briefly discuss the assumptions of the theorem. For more insights, refer to Bühlmann
and McNeil (2002). First let us write:

‖ψ̂t,j − ψt‖ ≤ ‖ψ̂t,j − ψ̃t,j‖+ ‖ψ̃t,j − ψt,j‖+ ‖ψt,j − ψt‖. (4.4)

The first two components of the risk (4.4) are the usual quadratic risk of an estimator ψ̂t,j
of ψt,j. The additional component ‖ψt,j −ψt‖ is due to the fact that we do not observe ψt.
Assumption 1 controls this last part of the risk. If there were no estimation error in passing
from one step to the following of the algorithm, Assumption 1 jointly with the recursive
form of the algorithm would be enough to assure the convergence of ψt,m to the true value
ψt. Assumption 2 is technical and is needed to give an upper bound to the estimation error
of the first step of the algorithm. Assumption 3 is used to control the second component
of (4.4). It can be written in the following way:
‖ψ̃t,j −ψt,j‖ = ‖E(Xt|Xt−1, ψ̂t−1,j−1)−E(Xt|Xt−1, ψt−1,j−1)‖ so Assumption 3 is a contrac-
tion property of the conditional expectation with respect to
‖ψ̂t−1,m−1 − ψt−1,j−1‖. It is again a technical property that Bühlmann and McNeil are
obliged to impose on the process in order to prove the consistency of the estimates deliv-
ered by the algorithm.

4.2.3 The practical implementation

In our application to simulated and real data we use the following settings. For the initial
values of the {ψt} to use in the first step of the algorithm, we choose a constant vector of
the unconditional mean of the data series {Xt}. Bühlmann and McNeil suggested using
a parametric estimate, to be improved in the following steps of the algorithm. Since our
goal is to compare parametric with nonparametric estimates, we think that challenging the
nonparametric procedure by giving dull initial values would make the competition fairer,
and the results more reliable. Moreover the algorithm gives almost the same outcome in
both cases, that is when providing the unconditional mean or the parametric estimate as
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starting values. We can say that the algorithm is quite insensitive to changes in the choice
of the initial values, providing that these are sensible.

As far as the choice of the nonparametric technique is concerned, a local linear nonpara-
metric regression is used. For an introduction to local linear fitting, one can refer to Fan
and Gijbels (1996). In the bivariate case, suppose that {Yt}t=1,...,n are observations of
a random variable Y , and {(X1, ψ1}, . . . , (Xn, ψn)} the realizations of a predictor (X,ψ).
Then the conditional mean of Y given (X,ψ) is given by setting m(Y |(X,ψ) = (x, ψ)) = â,
where â and b̂1, b̂2 minimize:

n∑
t=1

(Yt − a− b1(Xt − x)− b2(ψt − ψ))2 ·Kh1(Xt − x)Kh2(ψt − ψ), (4.5)

where K is a kernel function, Kh(·) = 1
h
K(·/h) and h is the bandwidth. The choice of

this specific method is due to the peculiar features of our data set. In our application the
predictors are the lagged durations Xt−1 and the conditional means at the j-th step of
the algorithm, ψt−1,j. As can be seen in Figure (4.1), they form a non uniform random
design in the xψ plane and are visibly more dense in the region next to the axes, drawing
in the xψ plane a “falling star” pattern. So we need a design-adapted nonparametric
method for estimating regression functions. Moreover both the regressors are nonnegative,
and we needed an estimator free of boundary bias effect when evaluating the response
function m(Y |X,ψ) close to the axes x, ψ. The bias of the local linear estimator (4.5) does
not depend on the marginal density of the predictors, and this holds both for points at
the interior and at boundary of the predictor domain. This makes the estimator (4.5) a
good candidate for our problem. Another good candidate method to estimate the model
(4.3) could have been a Nadaraya-Watson type estimator built using asymmetric kernels.
Fernandes and Grammig (2005) use asymmetric kernels for building specification tests for
duration models, and Scaillet (2004) introduces two new families of asymmetric kernels,
the Inverse Gaussian (IG) and the Reciprocal Inverse Gaussian (RIG) that share with
the local linear estimator the property of having the second derivative of the conditional
density g(y|xψ) in the expression of the bias instead of the first derivative. The choice
was finally made in favor of the local linear method since for data sets with high noise to
signal ratio, as in our data, the RIG kernel showed a higher variance when approaching
the border. It is not possible to use a robust version of (4.5), consisting in minimizing∑n

t=1 |Yt− a− b1(Xt− x)− b2(ψt−ψ)| ·Kh1(Xt− x)Kh2(ψt−ψ). This last method would
give an estimate of the conditional median instead of the conditional mean, but since the
innovations ηt in model (4.3) are asymmetric, we would introduce a systematic bias.

A practical rule for the choice of the bandwidths is needed. Simulations show that this
choice can be simplified in our case. We initially fix hx = hψ = h. Plotting against h
the mean square error of the estimator obtained from simulations, we can see that the
curve decreases rapidly at the beginning, to reach a minimum and remain quite flat before
increasing again for very large h. This is due to the fact that for small h the variance is
large like in all nonparametric regression, then it decreases as h increases until it reaches
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Figure 4.1: Scatterplot of a typical xψ domain

a minimum. At this point the bias should kick in, but the extra parameters b1 and b2

in (4.5) mitigate its growth . So the important point is to stay out of the zone where
the variance is high, at the risk of oversmoothing a little. What we do is to estimate a
standard ACD(1,1) model with exponential innovations. We then bootstrap 50 series of T
data points, and compute the h that minimizes the MSE in the bootstrapped series. This
choice is usually slightly oversmoothing with respect to the one that minimizes the MSE
directly on the simulated series, but this should keep us on the save side of the minimum
of the MSE curve, so we retain hx = h. Since the {ψt} are more dense than the {Xt}, we
choose hψ = 0.8h. This too is an heuristic choice that worked well in practice.

4.3 Estimation of simulated processes

In this section an assessment of the performance of the nonparametric specification is
performed via a comparison with the estimates of a linear ACD model on different simulated
series. The first simulated series is characterized by an asymmetry in the conditional mean
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equation, which has the following form:

f(xt−1, ψt−1) = 0.2 + 0.1xt−1 + (0.3I[xt−160.5] + 0.85I[xt−1>0.5])ψt−1, (4.6)

and the conditional duration is exponentially distributed, with scale parameter such that its
mean is equal to one. The size of the generated sample is of 2000 observations. We simulate
50 series from model (4.6). Figure 4.2 illustrates a window of 200 data as an example of
the general appearance of the series. The simulated series have been estimated by ML with
a linear ACD(1,1) specification and by the nonparametric smoother described in Section
4.2.2, with smoothing parameter hx = 5, hψ = 4, 8 basic iterations and performing a final
smooth based on the arithmetic mean of the last K = 4 iterations. The performance of
the parametric and nonparametric estimators were compared by computing three widely
used measures of estimation errors. The first one is the Mean Square Error (MSE), based
on a quadratic loss function:

MSE =
1

nM

M∑
l=1

n∑
i=1

(ψ̂il − ψil)2, (4.7)

where i = 1, . . . , n = 2000 denotes the i−th estimated conditional mean within the series,
and l = 1, . . . ,M = 50 labels the 50 series simulated from (4.6).
The second measure is the trimmed version of MSE (TMSE):

TMSE =
1

nM

M∑
l=1

n∑
i=1

δi · (ψ̂il − ψil)2. (4.8)

δj = 0 if (ψ̂j − ψj)2 is in the 5% of the biggest realizations of {(ψ̂il − ψil)2, i = 1, . . . , n}
within one series, and δj = 1 otherwise. TMSE eliminates the contribution of outliers to
the MSE.
The third measure is the Mean Absolute Error (MAE):

MAE =
1

nM

M∑
l=1

n∑
i=1

|ψ̂il − ψil|. (4.9)

Table 4.1 shows a comparison of the performance of the nonparametric and of the para-
metric estimators in terms of the measures just introduced. The third line reports the
percentage difference between the two estimators. What is remarkable is that even if we
cannot use the robust version of estimator (4.5), the nonparametric estimates have a rela-
tively better performance in terms of MSE than in terms of TMSE. This means that the
nonparametric estimator (4.5) is robust.

Figure 4.3 displays in a 200 data window an example of the evolution of the simulated ψ
(hence the true dgp), and of the ones estimated parametrically and nonparametrically. We
can remark that the parametric estimator seems to overreact, and make big mistakes in a
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Figure 4.2: Nonlinear ACD, simulated series

small number of points. This characteristic had already been captured by the difference
between the MSE and TMSE of the parametric estimator. Figure 4.4 shows the surface
f(xt−1, ψt−1) as estimated nonparametrically from one series simulated from model (4.6).
It is not possible to remark in this figure an abrupt change in the slope of f = ψ̂t(xt−1, ψt−1)
as a function of ψt−1 for x ≤ 0.5 and x > 0.5 as specified in (4.6). Yet, it is clear that
the slope increases as x increases. To make the analysis easier, in Figure 4.5 we plot the
function f̂t(xt−1, ψt−1) for two fixed values of x, x = 0.2 and x = 1.6. Even though this
graph too does not display a great difference between the two slopes, if we compute them
for x = 0.2 and x = 1.6, we obtain the values respectively of 0.52 and 0.58. So, even if
the difference is not big, the slope is steeper for high x, as imposed in (4.6). To complete
the analysis on this group of simulations, we give an example of how the nonparametric
estimation evolves with the steps of the algorithm, see Table 4.2.

As it can be seen, the algorithm stabilizes already from the third step of the loop. In this
particular series the last step does not display a significant improvement in the quality of
the fit with respect to the previous ones. We remember that in the last step of the loop
we use as regressor {ψt−1} the arithmetic mean of the estimates {ψ̂t−1} computed in the
previous 4 steps of the algorithm.
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MSE TMSE MAE

Nonpar 0.072125 0.03098 0.195972

Par 0.100114 0.033575 0.2113

28% 8% 7%

Table 4.1: MSE, TMSE, MAE for the Nonparametric and Parametric estimations on the asymmetric
ACD simulated data.

Nonparametric estimation

Loop MSE MAE

1 0.13503 0.26955

2 0.085269 0.20679

3 0.068307 0.1834

4 0.06157 0.17614

5 0.05974 0.1752

6 0.059301 0.17494

7 0.059627 0.17591

8 0.060783 0.17618

9 0.05974 0.1752

Parametric 0.091169 0.19781

Table 4.2: Evolution of MSE and MAE for one series of simulated nonlinear ACD.
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MSE TMSE MAE

Nonpar 0.0098 0.006533 0.076

Par 0.002 0.00178 0.007

79.59% 72.76% 90.79%

Table 4.3: MSE, TMSE, MAE for the Nonparametric and Parametric estimations on the standard
ACD(1,1) simulated data.

We carried out the same kind of analysis on series simulated from a standard ACD(1,1)
model, with no asymmetric component in the specification of the conditional mean equa-
tion. The functional form is of the conditional mean is

f(xt−1, ψt−1) = 0.1 + 0.1xt−1 + 0.75ψt−1, (4.10)

and the conditional distribution and the sample size are the same as in the first group
of simulated series. The settings of the parametric and nonparametric estimators do not
change from the first example. In particular, we will estimate a parametric ACD(1,1) model
which this time is correctly specified. In Table 4.3 we report the values of MSE, TMSE
and MAE of the nonparametric and parametric estimators. The superior performance of
parametric estimates is evident, which is not surprising, as the model is correctly specified.
It is not too interesting to discuss further this set of simulations, since they only confirm
that a well specified parametric model clearly outperforms the nonparametric estimator.

4.4 Estimation of a financial data set

In this section, the nonparametric specification of the ACD model is tested on a set of
financial data that is typically subject to analysis in the ACD family literature. The
estimated series consists in a 2000 observations excerpt on the trade durations of the IBM
stock traded on the New York Stock Exchange. Figure 4.6 shows a window of 200 durations
of the time series considered. In Figures 4.7 and 4.8 are displayed the estimated surface
ψ̂t = f(xt−1, ψ̂t−1) and the curves f̂(x, ψ̂t−1) at fixed x = 0.2, 1.6, 3, 4. Already at a first
glance we can see that the slope of the surface as a function of ψt−1 changes for high
or low x. This is even clearer in Figure 4.8. The four curves are less apart then in the
simulated case, but the difference in the slopes is evident. We have a slope of 1, 0.96, 0.88
and 0.7 respectively for x = 0.2, 1.6, 3, 4. Moreover, the curves seem to have a slightly
concave shape. This visual analysis suggests us that the real data generating process in
the conditional mean equation puts a low weight (given by the intercepts in Figure 4.8
on the lagged observation Xt−1, and that the dependence of ψt on ψt−1 diminishes with
growing x. This is a reasonable feature. Let us think about a regime switching model,
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Nonparametric Parametric Difference

MPE 1.416277 1.415312 0.07%

Table 4.4: MPE of the nonparametric and parametric estimators.

dependent on whether the market speeds up or slows down. When the market speeds up
(short durations), we are more likely to observe bunching in the data, that is, there is
a bigger autocorrelation component in the conditional mean equation, and so a stronger
dependence of ψt on ψt−1. When the market cools down, we observe less clustering in the
duration data, and the autocorrelated component in the conditional mean is weaker.

We now proceed to compare the forecasting performances of the nonparametric and para-
metric estimators. Like all throughout this work, we use a standard ACD(1,1) specification
for the parametric model. The estimation of the parametric model is carried out by max-
imum likelihood, using an exponential density for the innovations. We consider a series of
2100 durations of IBM. We estimate both the nonparametric and parametric models on
the first 2000 observations, and forecast the conditional mean for the first observation that
is not in the estimating sample. We compare the observed duration with the forecasted
conditional mean, then we incorporate it in our information set to make a new one step
ahead forecast. The models are not estimated again when a new duration is observed.

We compute the (one step ahead) mean prediction error (MPE) as:

MPRnp,p =
1

L

L∑
i=1

(Xt − ψ̂np,pt )2,

where ψ̂np,pt are the nonparametric and parametric forecasts of the conditional mean. The
sample length for the one step ahead forecasts is L = 100. Table 4.4 reports the result.
We can see that the parametric model has a slightly better performance, but which only
amounts to a 0.7% improvement in the predicting power. A close inspection of the evolution
of the MPE (not reported here) tells us that the parametric model makes big forecasts error
after a change in regime, that is after the durations increase or decrease rapidly. Especially,
like in the simulated series, the parametric model seems to overreact to long durations.
This is a hint that a threshold ACD specification of the kind (4.6) would probably be
more suited to describe the process generating the IBM data. This is in accord with the
considerations made when commenting Figures 4.7 and 4.8.

4.5 Evaluation of the shocks impact curve

Engle and Russell (1998a) noticed that the ACD model had the tendency to overpredict
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after very long or very short durations. This would make a model with a concave shocks
impact function (the ACD one is linear) better suited as a forecasting tool. The desirability
for this feature was explicitely acknowledged in the subsequent literature and the Box-Cox
transformation-based ACD family of specifications proposed by Fernandes and Grammig
(2006) indeed show concavity in the shape of the curve. The model proposed in this paper
has not an a-priori form for the shock impact curve given that, depending on the resulted
estimated surface, the the response of the expected conditional duration to a shock in the
baseline duration can vary. As an experiment, we estimate our model with the same data
(quote durations for the IBM stock) used in Fernandes and Grammig (2006) and compute
the resulting shocks impact curve by fixing ψi−1 at 1 and letting εt−1 vary in order to
evaluate its impact on the value of the expected conditional duration ψi.

Figure 4.9 displays the curve resulting from the nonparametric estimation along with the
one resulting from the estimation of a parametric ACD model. The result seems to confirm
the hypothesis of Engle and Russell (1998a). The nonparametric estimatro in fact seems to
benefit from its better flexibility and to produce a slightly concave response curve. It can
be noticed too that the concavity resulting from our estimator seems less pronounced than
the one observed in the estimations of the modes proposed by Fernandes and Grammig
(2006), this at least on the basis of a simple visual evaluation.

4.6 Conclusion

The nonparametric specification of the ACD model encompasses most of the parametric
forms so far introduced to study high frequency transaction data, the only exception being
constituted by the models with two stochastic components, such as the SCD. The model
can be easily estimated by standard nonparametric techniques, though a recursive approach
is necessary to deal with the fact that some regressors are not directly observable. The
simulated examples show that in the presence of asymmetry in the specification of the
conditional mean equation the nonparametric estimator easily outperforms the symmetric
parametric one. An estimation of a financial data set does not show a better performance
of the nonparametric model in terms of forecasting power, since its prediction error is the
same as the one of a probably misspecified standard ACD(1,1) model. Still, though not
providing a specification test for parametric models, the nonparametric analysis can be
useful as a benchmark in the choice of the right parametric specification. The graphical
study of the dependence of the conditional mean on its lags that we carried out can give
valuable information on the kind of parametric specification to choose. Also comparing
the predicting performances of the nonparametric and parametric estimators can help
evaluating ex post the choice of the parametric specification. For instance our analysis
showed that the linear ACD(1,1) could not adapt rapidly to changes in regime of the
duration process.
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A final word can be spent for what could be the use of this estimation strategy in empirical
analysis (for a very brief account of some of the literature see Section 1.4). Though the
advantages of using a consistent estimator that is encompassing most of the specifications
currently used would allow for several applications, we think that two could be the imme-
diate fields where the nonparametric ACD could be applied. The first one would be the
inclusion of calendar time as a further explanatory variable. So far, the attention in the
literature on the effect of the seasonality and its possible link with other determinants of
durations has been rather limited (the only exception probably being Espasa et al. (2007))
but the analysis of possible links between the determinants of durations could be an easy
and interesting extension for this model. A second possible application could be the in-
clusion in the regression of market microstructure variable, such as volume, prices, bid-ask
spread or, if available dummies about the arrival of news in the market. These variables
have often been used in ACD estimations, but not always their impact on the frequency of
trading stands clear and they could be easily the subject of a nonparametric or eventually,
a semiparametric analysis.

86



0
5

10
15

20
25

30
35

40
45

50
55

60

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

N
p 

SI
M

 
M

L 
 

Figure 4.3: Nonlinear ACD, simulated conditional mean, parametric estimate (ML) and
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Figure 4.4: Nonparametric estimate of the surface f̂t(xt−1, ψt−1) for a nonlinear simulated
process.
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Figure 4.5: Nonparametric estimate of the curves f̂t(x = 0.2, ψt−1) and ψ̂t(x = 1.6, ψt−1)
for a nonlinear simulated process.
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Figure 4.7: Nonparametric estimate of the surface f̂t(xt−1, ψt−1) for the IBM durations
data.
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Figure 4.8: Nonparametric estimate of the curves f̂t(x, ψt−1), x = 0.2, 1.6, 3, 4, for the IBM
durations data.
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