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Abstract. We classify all the surfaces inM2(c1)×M2(c2) for which the tangent space TpM
2

makes constant angles with Tp(M
2(c1)× {p2}) (or equivalently with Tp({p1} ×M2(c2)) for

every point p = (p1, p2) of M2. Here M2(c1) and M2(c2) are 2-dimensional space forms,

not both flat. As a corollary we give a classification of all the totally geodesic surfaces in

M2(c1)×M2(c2).

1. Introduction

In recent years a lot of people started the study of submanifolds in product spaces, in

particular surfaces M2 in M2(c)×R, where M2(c) is a 2-dimensional space form of curvature

c ̸= 0. This was initiated by the study of minimal surfaces in the product space M2 × R by

Meeks and Rosenberg in [13] and by Rosenberg in [15]. In the papers [6] and [7] geometers

began the study of constant angle surfaces in M2(c)×R, i.e. surfaces for which the normal of

the surface makes a constant angle with the vector field ∂t parallel to the second component

of M2(c) × R and hence also with the first component TpM
2(c) of Tp(M

2(c) × R). They

proved that they can construct all the constant angle surfaces in M2(c)×R starting from an

arbitrary curve in M2(c) and that these surfaces have constant Gaussian curvature. Here we

would like to define and classify constant angle surfaces in a product space M2(c1)×M2(c2)

of two 2-dimensional space forms, not both flat. We show that these constant angle surfaces

have necessarily constant Gaussian curvature. In the classification theorem we show that

some of the constant angle surfaces can be constructed from curves in M2(c1) and M2(c2).

In other cases, the constant angle surfaces in M2(c1) ×M2(c2) will be constructed from a

solution of a Sine-(or Sinh-)Gordon equation and its Bäcklund transformation.

2. Preliminaries

2.1. Surfaces in M2(c1)×M2(c2). LetM2(c1)×M2(c2) be the product of two 2-dimensional

space forms of constant sectional curvature c1 and c2 with the standard product metric g̃,

with c1 and c2 not both 0. Denote by ∇̃ the Levi-Civita connection of (M2(c1)×M2(c2), g̃)

and by F the product structure of M2(c1) ×M2(c2), see [17]. This is the (1, 1)-tensor of

M2(c1)×M2(c2) defined by

F (X1 +X2) = X1 −X2,
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for any vector field X = X1+X2, where X1 and X2 denote the parts of X tangent to the first

and second factors, respectively. By definition of the product structure F , we see that I+F
2 (X)

is the projection of the vector field X on the first component and that the (1, 1)-tensor I+F
2

has rank 2 everywhere. Analogously we have that I−F
2 (X) is the projection of the vector field

X on the second component and that the (1, 1)-tensor I−F
2 has rank 2 everywhere. We note

that the product structure has the following properties:

F 2 = I (F ̸= I),(1)

g̃(FX, Y ) = g̃(X,FY ),(2)

and

(∇̃XF )(Y ) = 0,

for any vector field X and Y of M2(c1)×M2(c2). The Riemann-Christoffel curvature tensor

R̃ of (M2(c1)×M2(c2), g̃) is given by

R̃(X,Y )Z = c1

(
I + F

2
(X) ∧ I + F

2
(Y )

)
Z + c2

(
I − F

2
(X) ∧ I − F

2
(Y )

)
Z,

where ∧ associates to two tangent vectors v, w ∈ Tp(M
2(c1) ×M2(c2)) the endomorphism

defined by

(v ∧ w)u = g̃(w, u)v − g̃(v, u)w,

for every u ∈ Tp(M
2(c1)×M2(c2)).

Let us now consider a surface M2 immersed in M2(c1) × M2(c2). We will denote by

X,Y, Z, . . . tangent vector fields and by ξ, ξ1, ξ2, . . . vector fields normal to M2 in M2(c1)×
M2(c2). We can now let the product structure F of M2(c1)×M2(c2) act on a tangent vector

field X or on a normal vector field ξ. We can consider the decomposition of FX and Fξ into

a tangent component and a normal component as

FX = fX + hX,

Fξ = sξ + tξ,

where f : TM2 → TM2, h : TM2 → T⊥M2, s : T⊥M2 → TM2 and t : T⊥M2 → T⊥M2 are

(1, 1)-tensors on M2. It can be easily deduced from equations (1) and (2) that

f is a symmetric (1, 1)-tensor field on M2 such that f2X = X − shX,(3)

t is a symmetric (1, 1)-tensor field on M2 such that t2ξ = ξ − hsξ,(4)

g̃(hX, ξ) = g(X, sξ),(5)

fsξ + stξ = 0 and hfX + thX = 0,(6)

for every X ∈ TM2 and every ξ ∈ T⊥M2. If we denote by R the Riemann-Christoffel

curvature tensor of M2, then with the previous notations we obtain that Gauss, Codazzi and



CONSTANT ANGLE SURFACES IN PRODUCT SPACES 3

Ricci equations are written as follows in terms of f and h:

(7) R(X,Y )Z = Sσ(Y,Z)X − Sσ(X,Z)Y + a((X ∧ Y )Z+

(fX ∧ fY )Z) + b(f(X ∧ Y )Z + (X ∧ Y )fZ),

(8) (∇σ)(X,Y, Z)− (∇σ)(Y,X,Z) = a(g(fY, Z)hX − g(fX,Z)hY )+

b(g(Y, Z)hX − g(X,Z)hY ),

(9) R⊥(X,Y )ξ = a(g̃(hY, ξ)hX − g̃(hX, ξ)hY )− σ(SξX,Y ) + σ(SξY,X),

where a = c1+c2
4 and b = c1−c2

4 . Since M2 is a surface immersed in M2(c1)×M2(c2), we have

that equation (7) is equivalent to the fact that the Gaussian curvature K is equal to

det(Sξ1) + det(Sξ2) + c1 det(
I + f

2
) + c2 det(

I − f

2
),

where {ξ1, ξ2} is an orthonormal basis of T⊥M2. Moreover we have the following proposition

that we can prove using the formulas of Gauss and Weingarten and the fact that ∇̃F = 0.

Proposition 1. For every X,Y ∈ TM2 and every ξ ∈ T⊥M2, we have that

(∇Xf)(Y ) = ShYX + s(σ(X,Y )),(10)

∇⊥
XhY − h(∇XY ) = t(σ(X,Y ))− σ(X, fY ),(11)

∇⊥
Xtξ − t(∇⊥

Xξ) = −σ(sξ,X)− h(SξX),(12)

∇Xsξ − s(∇⊥
Xξ) = −fSξX + StξX.(13)

We remark that the (1, 1)-tensor s is, in some sense, a kind of transpose of the (1, 1)-tensor

h, because of equation (5). We can easily see that equations (11) and (13) are equivalent

because of equation (5). Analogously we can see that the two equations of (6) are equivalent.

The equations (7), (8), (9), (10), (11) and (12) are called the compatibility equations of

surfaces in M2(c1)×M2(c2). The following theorems follow from more general results proven

in [12].

Theorem 1. Let (M2, g) be a simply connected Riemannian surface with Levi-Civita con-

nection ∇, ν a Riemannian vector bundle over M2 of rank 2 with metric g̃, ∇⊥ a connec-

tion on ν compatible with the metric g̃, σ a symmetric (1, 2) tensor with values in ν. Let

f : TM2 → TM2 , t : ν → ν and h : TM2 → ν be (1, 1)-tensors over M2 that satisfy

equations (3), (4) and (6). Define s : ν → TM2 by g(sξ,X) = g̃(ξ, hX) for X,Y ∈ TM2 ,

ξ ∈ ν. Moreover I+F
2 and I−F

2 are bundle maps of rank 2 defined such that FX = fX + hX

and Fξ = sξ+ tξ. Assume that the compatibility equations for M2(c1)×M2(c2) are satisfied.

Then there exists an isometric immersion ψ :M2 →M2(c1)×M2(c2) such that σ is the sec-

ond fundamental form, ν is isomorphic to the normal bundle of ψ(M2) in M2(c1)×M2(c2)
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by an isomorphism ψ̃ : ν → T⊥ψ(M2) and such that

(14) F̃ (ψ∗X) = ψ∗(fX) + ψ̃(hX),

and

(15) F̃ (ψ̃ξ) = ψ∗(sξ) + ψ̃(tξ),

where F̃ is the product structure of M2(c1)×M2(c2).

Theorem 2. Let ψ :M2 →M2(c1)×M2(c2), resp. ψ
′ :M2 →M2(c1)×M2(c2), be isometric

immersions, with corresponding second fundamental form σ, resp. σ′, shape operator S, resp.

S′, normal space T⊥M2, resp. T⊥′
M2. Let f and h be (1, 1)-tensors on M2 defined by (14)

and f ′ and h′ similarly for ψ′. Suppose that the following conditions hold:

(1) fX = f ′X for every X ∈ TpM
2 and p ∈M2.

(2) There exists an isometric bundle map ϕ̃ : T⊥M2 → T⊥′
M2 such that

ϕ̃(σ(X,Y )) = σ′(X,Y ),

ϕ̃(∇⊥
Xξ) = ∇⊥′

X ϕ̃(ξ)

and

ϕ̃(hX) = h′X

for every X ∈ TpM
2, ξ ∈ T⊥

p M
2 and p ∈M2.

Then there exists an isometry τ of M2(c1)×M2(c2) such that τ ◦ ψ = ψ′ and τ∗|T⊥Mn = ϕ̃.

2.2. Curves in M2(c). In this short subsection we will discuss curves in 2-dimensional space

forms M2(c) with c ̸= 0. It is known that M2(c) is isometric to the 2-dimensional sphere

S2(c) of radius 1√
c
if c > 0, i.e.

S2(c) = {(p1, p2, p3) ∈ E3 | p21 + p22 + p23 =
1

c
},

endowed with the induced metric of E3. The tangent space TpS2(c) in every point p is given

by

S2(c) = {v ∈ TpE3 | ⟨p, v⟩ = 0}.
Using the cross-product × in E3, we define a complex structure J on TS2(c) by

J : TS2(c) → TS2(c) : vp 7→
√
c(p× v)p.

It is easy to see that if v ∈ TpS2(c) and ∥v∥2 = 1, then {v, Jv} is an orthonormal basis of

TpS2(c).
We can define in a similar manner a complex structure when c < 0. It is known that

M2(c) is isometric to the hyperbolic plane H2(c) if c < 0. We use here the Minkowski or

the hyperboloid model of the hyperbolic plane. Denote by R3
1 the Minkowski 3-space with

standard coordinates p1, p2 and p3, endowed with the Lorentzian metric

⟨., .⟩1 = −dp21 + dp22 + dp23.
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The hyperbolic plane H2(c) can be constructed as the upper sheet (p1 > 0) of the hyperboloid

{(p1, p2, p3) ∈ R3
1 | − p21 + p22 + p23 =

1

c
},

endowed with the induced metric of R3
1. The tangent space TpH2(c) in every point p is given

by

TpH2(c) = {v ∈ TpR3
1 | ⟨p, v⟩1 = 0}.

Using the Lorentzian cross-product � in R3
1 (see for example [7]), we define a complex struc-

ture J on TH2(c) by

J : TH2(c) → TH2(c) : vp 7→
√
−c(p� v)p.

It is easy to see that if v ∈ TpH2(c) and ∥v∥2 = 1, then {v, Jv} is an orthonormal basis of

TpH2(c). In the following we will denote J as the complex structure of M2(c).

Let α : I → M2(c) be an arc-length parameterized curve in M2(c). Denote by T (s) ∈
Tα(s)M

2(c) the tangent unit vector α′(s) and by N(s) ∈ Tα(s)M
2(c) the normal vector JT (s).

By direct calculations, one can show that

T ′ = DTT = κN − cα,N ′ = DTN = −κT,

where D is the Levi-Civita connection of E3 or of R3
1. We call κ the geodesic curvature of

α in M2(c). We will need the geodesic curvature of a curve in M2(c) in order to state our

classification results of constant angle surfaces.

3. Constant angle surfaces

Since f is a symmetric (1, 1)-tensor onM2, there exist continuous functions λ1 ≤ λ2 onM
2

such that for every p inM2 λ1(p) and λ2(p) are eigenvalues of f at p. Moreover λ1 and λ2 are

differentiable functions in points where λ1 and λ2 are different. If λ1 < λ2, then one can show

that the distributions Tλ1 = {X ∈ TM2|fX = λ1X} and Tλ2 = {X ∈ TM2|fX = λ2X} are

differentiable. From equations (3) and (5) it is easy to deduce that λ2i ≤ 1 for i = 1, 2. Hence

we have that for every point p there exists a unique θ1(p) and θ2(p) in [0, π2 ] such that

λ1(p) = cos(2θ1(p)) and λ2(p) = cos(2θ2(p)).

We call θ1 and θ2 the angle functions of M2 in M2(c1)×M2(c2). This definition is inspired

by the definition of angles between 2-dimensional linear subspaces of the Euclidean space E4

given in [8] or [14], where θ1(p) and θ2(p) are the angles between TpM
2 and Tp(M

2(c1)×{p2}),
p = (p1, p2) ∈M . Moreover this definition of angle for surfaces in M2(c1)×M2(c2) coincides

with the definition of angle for surfaces in M2(c)× R.
For Lagrangian surfaces in S2 × S2, a similar notion for angle was introduced in [9]; since

for Lagrangian surfaces λ1 + λ2 = 0, see below, there is only one angle function. Lagrangian

surfaces in S2 × S2 are also studied in [2].
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Definition 1. A surface in M2(c1) × M2(c2) is a constant angle surface if θ1 and θ2 are

constant.

This definition also makes sense for c1 = c2 = 0, but in this case it is better to call a surface

in E4 a constant angle surface if there is a fixed plane in E4 such that TpM makes constant

angles with this plane. This will be studied in a separate paper. Under additional conditions,

a classification of those surfaces independently have been classified in [1].

3.1. Complex structures. Let J̃ and J be complex structures on M2(c1)×M2(c2) defined

by

J̃v = J̃(v1, v2) = (J1v1, J2v2) = (J1
I + F

2
v, J2

I − F

2
v)

and

Jv = J(v1, v2) = (J1v1,−J2v2) = (J1
I + F

2
v,−J2

I − F

2
v),

respectively, where J1 and J2 denote the standard complex structures onM2(c1) andM
2(c2).

We obtain the following connection between the angle functions and the complex structures

J̃ and J .

Proposition 2. Consider a surface M2 in M2(c1)×M2(c2) with angle functions θ1 and θ2,

then

(16) g(J̃v, w) = cos(θ1 − θ2)ωM2(v, w) and g(Jv,w) = cos(θ1 + θ2)ωM2(v, w)

or

(17) g(J̃v, w) = cos(θ1 + θ2)ωM2(v, w) and g̃(Jv,w) = cos(θ1 − θ2)ωM2(v, w),

for all v, w ∈ TpM
2 and p ∈M and a suitable choice of volume form ωM2 of M2.

Proof. We only prove this proposition in the case that c1, c2 > 0. The other cases can be

proved analogously. Let us consider an orthonormal basis {e1, e2} of TpM
2 that diagonalizes

f . Hence we have that fei = cos(2θi)ei for i = 1, 2. Then

g(J̃e1, e2) = −
√
c1(

I + F

2
e1 ×

I + F

2
e2) · p1 −

√
c2(

I − F

2
e1 ×

I − F

2
e2) · p2

= ϵ1(∥
I + F

2
e1∥∥

I + F

2
e2∥+ ϵ2∥

I − F

2
e1∥∥

I − F

2
e2∥)

= ϵ1 cos(θ1 − θ2) or ϵ1 cos(θ1 + θ2),

where ϵ21 = ϵ22 = 1. This proves the first equation in the proposition. The second equation

can be proved similarly and the proof of the proposition is finished. �

By direct computations, one can now easily prove the following theorem.

Theorem 3. A surface M in M2(c1)×M2(c2) is a complex surface with respect to J̃ or J if

and only if f is proportional to the identity. M2 is Lagrangian with respect to J̃ or J if and

only if the trace of f vanishes.
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3.2. f is proportional to the identity. Suppose now that f = λI, and that λ = cos(2θ)

is a constant. Using equations (3) and (5) we see that g̃(hX, hY ) = sin2(2θ)g(X,Y ) for every

X,Y ∈ TM2. Moreover from equation (10) we immediately deduce that ShXY +s(σ(X,Y )) =

0. Suppose first that sin 2θ = 0 and hence we obtain that θ = 0 or θ = π
2 . In the first case

this means that the tangent vector fields along M2 are eigenvectors of F with eigenvalue 1

and that the normal vector fields along M2 are eigenvectors of F with eigenvalue −1. It can

be shown then that M2 is an open part of M2(c1)×{p2}. Analogously we obtain that M2 is

an open part of {p1} ×M2(c2) if θ =
π
2 .

Let θ be now a constant in (0, π2 ). Using the fact that ShXY + s(σ(X,Y )) = 0 for every

X,Y ∈ TM2, we deduce that v is an eigenvector of Shv with eigenvalue 0 for every v ∈ TpM
2,

i.e. Shvv = 0. Take now an arbitrary orthonormal basis {e1, e2} ⊂ TpM
2. Consider the

shape operators She1 and She2 associated to he1 and he2, respectively. We have then that

She1e2 = µ1e2 and She2e1 = µ2e1. Moreover we have that 0 = Sh(e1+e2)(e1+e2) = µ1e2+µ2e1

and hence we have that µ1 = µ2 = 0. We conclude that M2 is a totally geodesic surface in

M2(c1) ×M2(c2), because {he1, he2} is an orthogonal basis of T⊥M2 and She1 = She2 = 0.

Using the equation of Codazzi, we obtain that

(c1 cos
2(θ)− c2 sin

2(θ)) sin(θ) cos(θ) = 0.

Since θ ∈ (0, π2 ) and c1 and c2 are not both 0, we obtain that c1c2 > 0 and tan2(θ) = c1
c2
.

Hence we have that cos(2θ) = c2−c1
c1+c2

. Moreover we have that the Gaussian curvature of the

surface equals c1c2
c1+c2

. We summarize the previous in the following proposition.

Proposition 3. Let M2 be a surface immersed in M2(c1) ×M2(c2). Suppose f = λI with

λ ∈ [−1, 1] and λ is a constant. Then M2 is a totally geodesic surface in M2(c1) ×M2(c2).

Moreover we have that the λ equals 1,−1 or c2−c1
c1+c2

with c1c2 > 0 and that the Gaussian

curvature of M2 equals c1, c2 and c1c2
c1+c2

.

3.3. f is not proportional to the identity. We first consider the trivial case θ2 = 0 and

θ1 = π
2 . One can then easily prove that M2 is an open part of a Riemannian product of a

curve in M2(c1) and a curve of M2(c2).

Suppose now that θ1 = π
2 and θ2 is a constant in (0, π2 ). Denote in the following θ2

by θ. Consider an adapted orthonormal frame {e1, e2, ξ1, ξ2} such that fe1 = −e1, fe2 =

cos(2θ)e2, tξ1 = ξ1 and tξ2 = − cos(2θ)ξ2. Using equations (3), (5) and (6), we see that

he2 = ± sin(2θ)ξ2. We may suppose that he2 = sin(2θ)ξ2. Moreover we can deduce from

equations (3) and (5) that he1 = 0. Using equations (10), (11) and (12), we obtain that

2 cos2(θ)∇Xe2 = sin(2θ)Sξ2X + s(σ(X, e2)),(18)

− sin(2θ)g(∇Xe1, e2)ξ2 = t(σ(X, e1)) + σ(X, e1),(19)

2 cos2(θ)∇⊥
Xξ2 = sin(2θ)σ(e2, X) + h(Sξ2X).(20)
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From equations (18) and (19) we deduce that g(Sξ2X, e2) = g(Sξ1X, e1) = 0 for every X ∈
TM2. Hence we obtain, using equations (18) and (20) and the fact that g(Sξ2X, e2) =

g(Sξ1X, e1) = 0, that

g(∇Xe1, e2) = − tan(θ)µ2g(X, e1),

g̃(∇Xξ1, ξ2) = − tan(θ)µ1g(X, e2),

where µ1 is the eigenvalue of Sξ1 and µ2 is the eigenvalue of Sξ2 . Since we know the shape-

operators Sξ1 and Sξ2 and the symmetric operator f , we can find the Gaussian curvature K

of M2. From the equation of Gauss we find that K = c2 sin
2(θ). From the equation of Ricci

we obtain also easily that K⊥ = |g̃(R⊥(e1, e2)ξ2, ξ1)| = 0. We summarize the previous in the

following proposition.

Proposition 4. Let M2 be a constant angle surface immersed in M2(c1)×M2(c2). Suppose

that λ1 = −1 and λ2 is a constant in (−1, 1). Then we can find an adapted frame {e1, e2, ξ1, ξ2}
such that fe1 = −e1, fe2 = cos(2θ)e2, tξ1 = ξ1 and tξ2 = − cos(2θ)ξ2, where cos(2θ) = λ2

and such that the shape operators Sξ1 and Sξ2 take the following form with respect to the

orthonormal frame {e1, e2} :

(21) Sξ1 =

(
0 0

0 µ1

)
, Sξ2 =

(
µ2 0

0 0

)
,

for some functions µ1 and µ2 on M2. Moreover the Levi-Civita connection ∇ of M2 and the

normal connection ∇⊥ of M2 in M2(c1)×M2(c2) are given by

g(∇Xe1, e2) = − tan(θ)µ2g(X, e1),(22)

g̃(∇⊥
Xξ1, ξ2) = − tan(θ)µ1g(X, e2).(23)

The Gaussian curvature K is given by

K = c2 sin
2(θ),

and the normal curvature K⊥ is equal to 0.

We obtain a similar proposition if λ1 is a constant in (−1, 1) and λ2 = 1(θ1 ∈ (0, π2 ) and

θ2 = 0).

Proposition 5. Let M2 be a constant angle surface immersed in M2(c1)×M2(c2). Suppose

that λ1 is a constant in (−1, 1) and λ2 = 1. Then we can find an adapted frame {e1, e2, ξ1, ξ2}
such that fe1 = cos(2θ)e1, fe2 = e2, tξ1 = − cos(2θ)ξ1 and tξ2 = −ξ2, where cos(2θ) =

λ1and such that the shape operators Sξ1 and Sξ2 take the following form with respect to the

orthonormal frame {e1, e2} :

Sξ1 =

(
0 0

0 µ1

)
, Sξ2 =

(
µ2 0

0 0

)
,
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for some functions µ1 and µ2 on M2. Moreover the Levi-Civita connection ∇ of M2 and the

normal connection ∇⊥ of M2 in M2(c1)×M2(c2) are given by

g(∇Xe1, e2) = − cot(θ)µ1g(X, e2),(24)

g̃(∇⊥
Xξ1, ξ2) = − cot(θ)µ2g(X, e1).(25)

The Gaussian curvature K is given by

(26) K = c1 cos
2(θ),

and the normal curvature K⊥ is equal to 0.

Finally we consider the case for which λ1 = cos(2θ1) and λ2 = cos(2θ2) are constant,

λ2 − λ1 > 0 and λ1, λ2 ∈ (−1, 1). Let {e1, e2, ξ1, ξ2} be an adapted frame such that fei =

cos(2θi)ei and tξi = − cos(2θi)ξi for i = 1, 2. Using equations (10) and (12) and by similar

reasoning as before, we obtain the next proposition.

Proposition 6. Let M2 be a surface immersed in M2(c1) ×M2(c2). Suppose that λ1 and

λ2 are constants in (−1, 1) and λ2 − λ1 > 0. Then we can find an adapted orthonormal

frame {e1, e2, ξ1, ξ2} such that fei = cos(2θi)ei and tξi = − cos(2θi)ξi, where cos(2θi) = λi for

i = 1, 2 and such that the shape operators Sξ1 and Sξ2 take the following form with respect to

the orthonormal frame {e1, e2}:

Sξ1 =

(
0 0

0 µ1

)
, Sξ2 =

(
µ2 0

0 0

)
,

for some functions µ1 and µ2 on M2. Moreover the Levi-Civita connection ∇ of M2 and the

normal connection ∇⊥ of M2 in M2(c1)×M2(c2) are given by:

g(∇Xe1, e2) =
cos(θ1) sin(θ1)µ1g(X, e2) + cos(θ2) sin(θ2)µ2g(X, e1)

cos2(θ1)− cos2(θ2)
,(27)

g̃(∇⊥
Xξ1, ξ2) =

cos(θ1) sin(θ1)µ2g(X, e1) + cos(θ2) sin(θ2)µ1g(X, e2)

cos2(θ1)− cos2(θ2)
.(28)

The Gaussian curvature K is given by

(29) K = c1 cos
2(θ1) cos

2(θ2) + c2 sin
2(θ1) sin

2(θ2),

and the normal curvature K⊥ equals | c1+c2
4 | sin(2θ1) sin(2θ2).

4. Existence results

We will need the following existence results in the next section.

Proposition 7. Let c1, c2 ∈ R, not both 0, θ1, θ2 ∈ (0, π2 ) with θ1 > θ2. Define constants

a1, a2, A1 and A2 by

a1 =
sin(2θ1)

cos(2θ1)− cos(2θ2)
, a2 =

sin(2θ2)

cos(2θ2)− cos(2θ1)
,
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A1 = (cos2(θ2)− cos2(θ1))(c1 cos
2(θ2)− c2 sin

2(θ2)),

and

A2 = (cos2(θ1)− cos2(θ2))(c1 cos
2(θ1)− c2 sin

2(θ1)).

Let µ1 = µ1(u, v) and µ2 = µ2(u, v) be real-valued functions defined on a simply connected

open subset of R2 which satisfy

(30) − a1√
µ22 +A2

=
(µ1)u
µ21 +A1

, − a2√
µ21 +A1

=
(µ2)v
µ22 +A2

.

Then the Riemannian manifold M2 = (U, g) with the Riemannian metric g = du2

µ2
2+A2

+ dv2

µ2
1+A1

is a surface of constant curvature c1 cos
2(θ1) cos

2(θ2) + c2 sin
2(θ1) sin

2(θ2). Define now on

the vector bundle TU a second metric g̃ by sin2(2θ1)
du2

µ2
2+A2

+ sin2(2θ2)
dv2

µ2
1+A1

and denote this

Riemannian vector bundle by T⊥M2. Let f : TM2 → TM2, t : T⊥M2 → T⊥M2, and

h : TM2 → T⊥M2 be, respectively, (1, 1)-tensors over M2 defined by(
cos(2θ1) 0

0 cos(2θ2)

)
,

(
− cos(2θ1) 0

0 − cos(2θ2)

)
,

(
1 0

0 1

)
,

with respect to {∂u, ∂v} and {∂̃u, ∂̃v}, where ∂̃u, ∂̃v ∈ T⊥M2 and dual to the forms du and

dv. Finally define a symmetric (1, 2) tensor σ with values in T⊥M2 and a connection ∇⊥ on

T⊥M2 compatible with the metric by

σ(∂u, ∂u) =
µ2
√
µ21 +A1

sin(2θ2)(µ22 +A2)
h∂v, σ(∂u, ∂v) = 0,

σ(∂v, ∂v) =
µ1
√
µ22 +A2

sin(2θ1)(µ21) +A1
h∂u,

(31)

∇⊥
∂uh∂u = −µ2(µ2)u

µ22 +A2
h∂u +

a1 sin(2θ1)µ2
√
µ21 +A1

sin(2θ2)(µ22 +A2)
h∂v,

∇⊥
∂uh∂v = ∇⊥

∂vh∂u = h(∇∂u∂v) = h(∇∂v∂u),

∇⊥
∂vh∂v =

a2 sin(2θ2)µ1
√
µ22 +A2

sin(2θ1)(µ21 +A1)
h∂u − µ1(µ1)v

µ21 +A1
h∂v,

where ∇ is the Levi-Civita connection of M2. Then (M2, g, T⊥M2, g̃, σ,∇⊥f, h, t) satisfies

the compatibility equations of M2(c1)×M2(c2) and hence there exists an isometric immersion

of M2 in M2(c1)×M2(c2) such that this surface is a constant angle surface and is unique up

to isometries of M2(c1)×M2(c2).
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Proof. From (30) and a direct computation we know that the Riemannian metric g has con-

stant curvature c1 cos
2(θ1) cos

2(θ2)+ c2 sin
2(θ1) sin

2(θ2) and the Levi-Civita connection satis-

fies

∇∂u∂u = −µ2(µ2)u
µ22 +A2

∂u − a2µ2
√
µ21 +A1

µ22 +A2
∂v,

∇∂u∂v = ∇∂v∂u =
a2µ2√
µ21 +A1

∂u +
a1µ1√
µ22 +A2

∂v,

∇∂v∂v = −a1µ1
√
µ22 +A2

µ21 +A1
− µ1(µ1)v
µ21 +A1

∂v.

We have already defined a second metric g̃ on the vector bundle TU , and denoted this

Riemannian vector bundle by T⊥M2, together with a connection ∇⊥ that is compatible

with this metric. Let f, t and h be (1, 1)-tensors as defined above and σ the symmet-

ric (1, 2) tensor defined by (31). By direct straightforward computations we can see that

(M2, g, T⊥M2, g̃,∇⊥, σ, f, h, t) satisfies the compatibility equations for M2(c1) × M2(c2).

Hence there exists an isometric immersion of M2 into M2(c1) ×M2(c2). Moreover, we can

deduce from equation (14) that M2 is a constant angle surface in M2(c1)×M2(c2). We can

also conclude from Theorem 2 that this immersion with the given second fundamental form

and normal connection is unique up to rigid motions of M2(c1)×M2(c2). �

The next two propositions can be proven analogously as the previous one.

Proposition 8. Let c1, c2 ∈ R, not both 0, θ1, θ2 ∈ (0, π2 ) with θ1 > θ2. Define constants

a1, a2, A1 and A2 as in Proposition 7. Moreover we suppose that A1 < 0. Let µ = µ(u, v) and

G = G(u, v) be real-valued functions which satisfy

(32) −a2
√
G =

(µ)v
µ2 +A2

, a1

√
−A1

µ2 +A2
=
Gu

2G
.

Then the Riemannian manifold M2 = (U, g) with the Riemannian metric g = du2

µ2+A2
+Gdv2

is a surface of constant curvature c1 cos
2(θ1) cos

2(θ2) + c2 sin
2(θ1) sin

2(θ2). Define now on

the vector bundle TU a second metric g̃ by sin2(2θ1)
du2

µ2
2+A2

+ sin2(2θ2)Gdv
2 and denote this

Riemannian vector bundle by T⊥M2. Let f : TM2 → TM2, t : T⊥M2 → T⊥M2, and

h : TM2 → T⊥M2 be (1, 1)-tensors over M2 as defined above in Proposition 7. Finally define

a symmetric (1, 2) tensor σ with values in T⊥M2 and a connection ∇⊥ on T⊥M2 compatible

with the metric by

σ(∂u, ∂u) =
µ2

sin(2θ2)(µ22 +A2)
√
G
h∂v, σ(∂u, ∂v) = 0,

σ(∂v, ∂v) =
G
√
−A1(µ22 +A2)

sin(2θ1)
h∂u,

(33)
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∇⊥
∂uh∂u = −µ2(µ2)u

µ22 +A2
h∂u +

a1 sin(2θ1)µ2

sin(2θ2)(µ22 +A2)
√
G
h∂v,

∇⊥
∂uh∂v = ∇⊥

∂vh∂u = h(∇∂u∂v) = h(∇∂v∂u),

∇⊥
∂vh∂v =

a2 sin(2θ2)µ1
√

−A1(µ22 +A2)G

sin(2θ1)
h∂u +

Gv

2G
h∂v,

where ∇ is the Levi-Civita connection of M2. Then (M2, g, T⊥M2, g̃, σ,∇⊥, f, h, t) satisfies

the compatibility equations of M2(c1)×M2(c2) and hence there exists an isometric immersion

of M2 in M2(c1)×M2(c2) such that this surface is a constant angle surface and is unique up

to isometries of M2(c1)×M2(c2).

Proposition 9. Let c1, c2 ∈ R, not both 0, θ1, θ2 ∈ (0, π2 ) with θ1 > θ2. Define constants

a1, a2, A1 and A2 as in Proposition 7. Moreover we suppose that A1, A2 < 0. Let E = E(u, v)

and G = G(u, v) be positive real-valued functions which satisfy

(34) a2
√

−A2G =
Ev

2E
, a1

√
−A1E =

Gu

2G
.

Then the Riemannian manifold M2 = (U, g) with the Riemannian metric g = Edu2 + Gdv2

is a surface of constant curvature c1 cos
2(θ1) cos

2(θ2) + c2 sin
2(θ1) sin

2(θ2). Define now on

the vector bundle TU a second metric g̃ by sin2(2θ1)Edu
2 + sin2(2θ2)Gdv

2 and denote this

Riemannian vector bundle by T⊥M2. Let f : TM2 → TM2, t : T⊥M2 → T⊥M2, and

h : TM2 → T⊥M2 be (1, 1)-tensors over M2 as defined in Proposition 7. Finally define a

symmetric (1, 2) tensor σ with values in T⊥M2 and a connection ∇⊥ on T⊥M2 compatible

with the metric by

σ(∂u, ∂u) =

√
−A2E

sin(2θ2)
√
G
h∂v, σ(∂u, ∂v) = 0,

σ(∂v, ∂v) =

√
−A1G

sin(2θ1)
√
E
h∂u,

∇⊥
∂uh∂u =

Eu

2E
h∂u +

a1 sin(2θ1)
√
−A2E√

G
h∂v,

∇⊥
∂uh∂v = ∇⊥

∂vh∂u = h(∇∂u∂v) = h(∇∂v∂u),

∇⊥
∂vh∂v =

a2 sin(2θ2)
√
−A1G√

E
h∂u +

Gv

2G
h∂v,

where ∇ is the Levi-Civita connection of M2. Then (M2, g, T⊥M2, g̃, σ,∇⊥, f, h, t) satisfies

the compatibility equations of M2(c1)×M2(c2) and hence there exists an isometric immersion

of M2 in M2(c1)×M2(c2) such that this surface is a constant angle surface and is unique up

to isometries of M2(c1)×M2(c2).
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4.1. Sine-Gordon and Sinh-Gordon equations. We would like to make some remarks

on the equations (30). Suppose that A1, A2 > 0. If we define functions θ̃i such that µi =√
Ai cot(θ̃i), then the equations (30) are equivalent to

−a1
√
A1

A2
sin(θ̃2) = (θ̃1)u,

−a2
√
A2

A1
sin(θ̃1) = (θ̃2)v.

(35)

Differentiating the first equation with respect to v and second equation with respect to u

gives us

(θ̃1)uv = −a1
√
A1

A2
cos(θ̃2)(θ̃2)v = a1a2 cos(θ̃2) sin(θ̃1),(36)

(θ̃2)vu = −a2
√
A2

A1
cos(θ̃1)(θ̃1)u = a1a2 cos(θ̃1) sin(θ̃2).(37)

The operations (36) + (37) and (36)− (37) yield

(θ̃1 + θ̃2)uv = a1a2 sin(θ̃1 + θ̃2),

(θ̃1 − θ̃2)uv = a1a2 sin(θ̃1 − θ̃2).

Hence we have found a correspondence between some constant angle surfaces in M2(c1) ×
M2(c2) and the Sine-Gordon equation. We would like to remark that the equations (35) are

the Bäcklund transformations for this Sine-Gordon equation. We give now a procedure to

construct a constant angle surface with angles θ1 and θ2. Define constants a1, a2, A1 and A2

like in Proposition 7, suppose that A1, A2 > 0 and let θ be a solution of the Sine-Gordon

equation, there exist infinitely many solutions for this equation, see [16] and let θ̄ be the

solution of equations

−a1
√
A1

A2
sin(

θ − θ̄

2
) = (

θ + θ̄

2
)u,

−a2
√
A2

A1
sin(

θ + θ̄

2
) = (

θ − θ̄

2
)v.

There exists a unique solution for this system, because θ is a solution of the Sine-Gordon

equation, see [16]. We have then that µ1 =
√
A1 cot(

θ+θ̄
2 ) and µ2 =

√
A2 cot(

θ−θ̄
2 ) satisfy

equations (30) and hence there exists a constant angle surface with angles θ1 and θ2 and with

second fundamental form σ and normal connection ∇⊥ given by (31) and (32) respectively.

We obtain this surface by integrating the Gauss formula and Weingarten formula. We can

integrate the Gauss and Weingarten formulas, because equations (30) are the integrability

conditions for this system.

With similar reasoning we find a correspondence with the Sinh-Gordon equation and some

constant angle surfaces inM2(c1)×M2(c2) if A1, A2 < 0. We define functions θ̃i : U → (0,∞),
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such that µi =
√
−Ai coth(θ̃i), then the equations (30) are equivalent to

−a1
√
A1

A2
sinh(θ̃2) = (θ̃1)u,

−a2
√
A2

A1
sinh(θ̃1) = (θ̃2)v.

Differentiating the first equation with respect to v and second equation with respect to u

gives us

(θ̃1)uv = −a1
√
A1

A2
cosh(θ̃2)(θ̃2)v = a1a2 cosh(θ̃2) sinh(θ̃1),(38)

(θ̃2)vu = −a2
√
A2

A1
cosh(θ̃1)(θ̃1)u = a1a2 cosh(θ̃1) sinh(θ̃2).(39)

The operations (38) + (39) and (38)− (39) yield

(θ̃1 + θ̃2)uv = a1a2 sinh(θ̃1 + θ̃2),(40)

(θ̃1 − θ̃2)uv = a1a2 sinh(θ̃1 − θ̃2).(41)

Finally we suppose that A1 < 0 and A2 > 0. We define functions θ̃1 : U → (0,∞), such that

µ1 =
√
−A1 coth(θ̃i), and θ̃2 : U → (0, π), such that µ2 =

√
A2 cot(θ̃2), then the equations

(30) are equivalent to

−a1
√

−A1

A2
sin(θ̃2) = (θ̃1)u,

−a2
√
−A2

A1
sinh(θ̃1) = (θ̃2)v.

Differentiating the first equation with respect to v and the second equation with respect to u

gives us

(θ̃1)uv = −a1
√

−A1

A2
cos(θ̃2)(θ̃2)v = a1a2 cos(θ̃2) sinh(θ̃1),(42)

(θ̃2)vu = −a2
√

−A2

A1
cosh(θ̃1)(θ̃1)u = a1a2 cosh(θ̃1) sin(θ̃2).(43)

The operations (42) + i(43) and (42)− i(43) yield

(θ̃1 + iθ̃2)uv = a1a2 sinh(θ̃1 + iθ̃2),

(θ̃1 − iθ̃2)uv = a1a2 sinh(θ̃1 − iθ̃2).

5. Main Theorems

In this section we will classify all the constant angle surfaces in M2(c1) × M2(c2). We

split the classification in several subcases. Suppose first that λ1 = −1 and λ2 = cos(2θ) is a

constant in (−1, 1). We will prove the following theorem.
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Theorem 4. A surface M2 isometrically immersed in M2(c1)×M2(c2) is a constant angle

surface with angles θ and π
2 if and only if the immersion ψ is locally given by

ψ(u, v) = (f̃(v), cos(
√
c2 sin(θ)v)f̄(u) + sin(

√
c2 sin(θ)v)f̄(u)× f̄ ′(u)) if c2 > 0,

where f̃ is a curve in M2(c1) of constant speed cos(θ) and f̄ is a unit speed curve in M2(c2);

by

ψ(u, v) = (f̃(v), cosh(
√
−c2 sin(θ)v)f̄(u) + sinh(

√
−c2 sin(θ)v)f̄(u)� f̄ ′(u)) if c2 < 0,

where f̃ is a curve in M2(c1) of constant speed cos(θ) and f̄ is a unit speed curve in M2(c2),

or by

(44) ψ(u, v) = (f̃(v), u, sin(θ)v) or ψ(u, v) = (f̃(v), v sin(θ)f̄(u) + ḡ(u)) if c2 = 0,

where f̃ is a curve in M2(c1) of constant speed cos(θ), f̄(u) = (cos(u), sin(u)) and ḡ′(u) =

cos(θ)C(u)(− sin(u), cos(u)), where C is a function on an interval I. M2 is a totally geodesic

surface if and only if the constant angle surface M2 is locally given by the first immersion ψ

of (44), in which the curve f̃ is a geodesic curve of M2(c1).

Proof. After a straight-forward computation, one can verify that the surfaces listed in the

theorem are constant angle surfaces in M2(c1)×M2(c2) with angles θ and π
2 .

Conversely, let ψ :M2 →M2(c1)×M2(c2) be a constant angle surface, with λ1 = −1 and

λ2 = cos(2θ). Then Proposition (4) tells us that we can find an adapted orthonormal frame

{e1, e2, ξ1, ξ2} such that fe1 = −e1, fe2 = λ2e2, tξ1 = ξ1 and tξ2 = −λ2ξ2 and such that the

shape operators associated to ξ1 and ξ2 with respect to e1 and e2 are given by

Sξ1 =

(
0 0

0 µ1

)
, Sξ2 =

(
µ2 0

0 0

)
,

for some functions µ1 and µ2 on M2. Using (22) we obtain that the Levi-Civita connection

satisfies

∇e1e1 = tan(θ)µ2e2,(45)

∇e1e2 = − tan(θ)µ2e1,(46)

∇e2e1 = 0,(47)

∇e2e2 = 0.(48)

From equations (46) and (47) and the fact that [∂u, ∂v] = 0, we can deduce that there exist

locally coordinates (u, v) on M2 such that ∂u = αe1 and ∂v = e2 with

(49) αv = αµ2 tan(θ).

Hence the metric takes the form

ds2 = α2du2 + dv2
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and the Levi-Civita connection is given by

∇∂u∂u =
αu

α
∂u − ααv∂v,

∇∂u∂v = ∇∂v∂u = tan(θ)µ2∂u,

∇∂v∂v = 0.

We can also calculate the normal connection ∇⊥ of M2 using (23):

∇⊥
∂uξ1 = ∇⊥

∂uξ2 = 0,

∇⊥
∂vξ1 = − tan(θ)µ1ξ2,

∇⊥
∂vξ2 = tan(θ)µ1ξ1.

The Codazzi equation gives us now that

(µ1)u = 0,(50)

(µ2)v = −µ22 tan(θ)− cos(θ) sin(θ)c2.(51)

We immediately see that µ1 is a function that depends only on v. We solve now equations

(49) and (51). From equation (51) we see that µ2 must satisfy the following PDE:

(µ2)v = − tan(θ)(c2 cos
2(θ) + µ22).

By integration we obtain that µ2 must be equal to
−√

c2 cos(θ) tan(
√
c2 sin(θ)v + C(u)) if c2 > 0,

0 or 1
tan(θ)v+C(u) if c2 = 0,

±
√
−c2 cos(θ) or

√
−c2 cos(θ) tanh(

√
−c2 sin(θ)v + C(u)) if c2 < 0,

where C is some function depending on u. Now, solving (49) we see that α equals
D(u) cos(

√
c2 sin(θ)v + C(u)) if c2 > 0,

D(u) or D(u)(tan(θ)v + C(u)) if c2 = 0,

D(u) exp (±
√
−c2 sin(θ)v) or D(u) cosh(

√
−c2 sin(θ)v + C(u)) if c2 < 0,

where D is some strictly positive function depending on u.

We will only consider the case for which c2 > 0. The other cases can be treated analogously

and the results of the other cases are stated in Theorem 4. So we can considerM2(c1)×M2(c2)

as a submanifold of E5,E6
1 or E6 of codimension 1 or 2 and denote by D the connection of

E5,E6
1 or E6. Hence M2 is an immersed surface in E5,E6

1 or E6. Remark now that ξ1, ξ2,

which are tangent to M2(c1) × M2(c2), and ξ̄ = (0, 0, 0, ψ4, ψ5, ψ6) are normals of M2 in

E5 if c1 = 0 and that ξ1, ξ2, ξ̃ = (ψ1, ψ2, ψ3, 0, 0, 0) and ξ̄ are normals of M2 in E6
1 or E6 if
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c1 ̸= 0. Moreover we have that Fξ1 = ξ1 and hence ξ1 is parallel to the first component of

M2(c1)×M2(c2). One can verify that we have for every X ∈ TpM
2,

(52) DX ξ̃ =

(
I + F

2

)
X =

(
I + f

2

)
X +

hX

2

and

(53) DX ξ̄ =

(
I − F

2

)
X =

(
I − f

2

)
X − hX

2
,

where F is the product structure of M2(c1) ×M2(c2). Moreover the formulas of Gauss and

Weingarten give that:

DXY = ∇XY + σ(X,Y )− c1
2
g(

(
I + f

2

)
X,Y )ξ̃ − c2

2
g(

(
I − f

2

)
X,Y )ξ̄,(54)

DXξ1 = −Sξ1X +∇⊥
Xξ1,(55)

DXξ2 = −Sξ2X +∇⊥
Xξ2 −

c1
2
g̃(hX, ξ2)ξ̃ +

c2
2
g̃(hX, ξ2)ξ̄.(56)

In the following we will consider the case for which c1 > 0. The case for which c1 ≤ 0 can be

treated analogously. Since ∂u = αe1 we find using equation (52) that

(ψ1, ψ2, ψ3, 0, 0, 0)u = D∂u ξ̃ = 0,

and hence we obtain that ψi(u, v) = f̃i(v) for i = 1, . . . , 3. Analogously we find that

(ξ2)i = tan(θ)(ψi)v for i = 1, . . . , 3;

(ξ2)j = − cot(θ)(ψj)v for j = 4, . . . , 6.

We now use the formula of Gauss and the previous equations to find that

(ψj)uu =
αu

α
(ψj)u − ααv(ψj)v − cot(θ)µ2α

2(ψj)v − c2α
2ψj ,(57)

(ψj)uv =
αv

α
(ψj)u = tan(θ)µ2(ψj)u,(58)

(ψj)vv = −c2 sin2(θ)ψj(59)

for j = 4, 5, 6. Integrating equation (58), we find that

(ψj)u = cos(
√
c2v + C(u))Hj(u)

and hence we obtain that

ψj =

∫ u

u0

cos(
√
c2v + C(τ))Hj(τ)dτ + Ij(v)

for j = 4, 5, 6 and with Hj and Ij arbitrary functions. Moreover, using equation (59) we find

that the functions Ij must satisfy

Ij(v) = Kj cos(
√
c2 sin θv) + Lj sin(

√
c2 sin(θ)v),
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where Kj and Lj are constant. We summarize the previous and see that our immersion ψ is

given by

ψ = (f̃1(v), f̃2(v), f̃3(v),(
K4 +

∫ u

u0

H4(τ) cos(C(τ))dτ

)
cos(

√
c2 sin(θ)v)

+

(
L4 −

∫ u

u0

H4(τ) sin(C(τ))dτ

)
sin(

√
c2 sin(θ)v), . . . ).

We define now the functions

f̄j(u) = Kj +

∫ u

u0

Hj(τ) cos(C(τ))dτ,

ḡj(u) = Lj −
∫ u

u0

Hj(τ) sin(C(τ))dτ.

We use now some conditions to find a relation between f̄(u) = (f̄1(u), f̄2(u), f̄3(u)) and

ḡ(u) = (ḡ1(u), ḡ2(u), ḡ3(u)):

g(ψu, ψu) = α2, g(ψv, ψv) = 1, g(ψu, ψv) = 0,

g(ξ1, ψu) = 0, g(ξ1, ψv) = 0, g(ξ1, ξ1) = 1,

g(ξ2, ψu) = 0, g(ξ2, ψv) = 0, g(ξ2, ξ2) = 1,

g(ξ̃, ψu) = 0, g(ξ̃, ψv) = 0, g(ξ̃, ξ̃) =
1

c1
,

g(ξ̄, ψu) = 0, g(ξ̄, ψv) = 0, g(ξ̄, ξ̄) =
1

c2
,

g(ξ1, ξ2) = 0, g(ξ1, ξ̃) = 0, g(ξ2, ξ̃) = 0, g(ξ1, ξ̄) = 0, g(ξ2, ξ̄) = 0,

which are equivalent to

3∑
i=1

f̃2i =
1

c1
,

3∑
j=1

f̄2j =
1

c2
,

3∑
j=1

ḡ2j =
1

c2
,

3∑
j=1

f̄j ḡj = 0,

3∑
j=1

f̄ ′j ḡj = 0,

3∑
i=1

(f̃ ′i)
2 = cos2(θ),
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(60)
3∑

j=1

(f̄ ′j)
2 cos2(

√
c2 sin(θ)v) + (ḡ′j)

2 sin2(
√
c2 sin(θ)v)+

2f̄ ′j ḡ
′
j cos(

√
c2 sin(θ)v) sin(

√
c2 sin(θ)v) = D2(u) cos2(

√
c2 sin(θ)v + C(u)).

From the above equations we see that f̄(u) = (f̄1(u), f̄2(u), f̄3(u)) and ḡ(u) = (ḡ1(u), ḡ2(u), ḡ3(u))

are curves in M2(c2). Moreover if we change the u-coordinate such that f̄ is a unit speed

curve, which corresponds to the fact that D2(u) = sec2(C(u)), we see then from the previous

equations that ḡ is a curve in M2(c2) that is perpendicular to the vectors f̄ and f̄ ′. Hence we

obtain that ḡ = ±f̄ × f̄ ′ and we can choose that ḡ = f̄ × f̄ ′. The immersion ψ is then given

by

ψ(u, v) = (f̃(v), cos(
√
c2 sin(θ)v)f̄(u) + sin(

√
c2 sin(θ)v)f̄(u)× f̄ ′(u)).

Let us remark that since g = f × f
′
, we obtain that g′ = 1√

c2
(Jf

′
)′ = − κ√

c2
f
′
and hence we

have f
′ · g′ = − κ√

c2
. Using equation (60), we obtain that κ√

c2
= tan(C(u)). �

The case for which λ1 = cos(2θ) and λ2 = 1 can be treated analogously as the previous

case. We summarize this case in the next theorem:

Theorem 5. A surface M2 isometrically immersed in M2(c1)×M2(c2) is a constant angle

surface with angles 0 and θ if and only if the immersion ψ is locally given by

ψ(u, v) = (cos(
√
c1 cos(θ)u)f̃(v) + sin(

√
c1 cos θ)u)f̃(v)× f̃ ′(v), f̄(u)) if c1 > 0,

where f̄ is a curve in M2(c2) of constant speed sin(θ) and f̃ is a unit speed curve in M2(c1);

by

ψ(u, v) = (cosh(
√
−c1 cos(θ)u)f̃(v) + sinh(

√
−c1 cos(θ)u)f̃(v)� f̃ ′(v), f̄(u)) if c1 < 0

where f̄ is a curve in M2(c2) of constant speed sin(θ) and f̃ is a unit speed curve in M2(c1);

or by

(61) ψ(u, v) = (cos(θ)u, v, f̄(u)) or ψ(u, v) = (u cos(θ)f̃(v) + g̃(v), f̄(u)) if c1 = 0,

where f̄ is a curve in M2(c2) of constant speed sin(θ), f̃(v) = (cos(v), sin(v)) and g̃′(v) =

− sin(θ)C(v) (− sin(v), cos(v)), where C is a function on an interval I. M2 is a totally

geodesic surface if and only if the constant angle surface M2 is locally given by the first

immersion ψ of (61), in which the curve f̄ is a geodesic curve of M2(c2).

We consider now the case for which λ1, λ2 ∈ (−1, 1) and λ2−λ1 ≥ 0 and show the following

theorem.

Theorem 6. Let M2 be a constant angle surface with θ1, θ2 ∈ (0, π2 ). Then there are 2

possibilities:
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(1) M2 is an open part of the surfaces parameterized by

(cos(

√
c1c2
c1 + c2

u)f̃(v) + sin(

√
c1c2
c1 + c2

u)
1

cos(θ)
f̃(v)× f̃ ′(v);

cos(

√
c1c2
c1 + c2

u)f̄(v) + sin(

√
c1c2
c1 + c2

u)
1

sin(θ)
f̄(v)× f̄ ′(v))

if c1, c2 > 0,

(cosh(

√
− c1c2
c1 + c2

u)f̃(v) + sinh(

√
− c1c2
c1 + c2

u)
1

cos(θ)
f̃(v)� f̃ ′(v);

cosh(

√
− c1c2
c1 + c2

u)f̄(v) + sinh(

√
− c1c2
c1 + c2

u)
1

sin(θ)
f̄(v)� f̄ ′(v))

if c1, c2 < 0,

where θ is equal to θ1 or θ2 and θ2 or θ1 is a real number in (0, π2 ) such that cos2(θ2)

or cos2(θ1) is equal to c2
c1+c2

and f̃ is a curve in M2(c1) of constant speed cos(θ) and

geodesic curvature κ̃ and f̄ is a curve in M2(c2) of constant speed sin(θ) and geodesic

curvature κ, such that κ̃√
|c1|

= κ√
|c2|

, M2 is a totally geodesic surface if f̃ is a geodesic

with speed cos(θ) =
√

c2
c1+c2

and f̄ is a geodesic with speed sin(θ) =
√

c1
c1+c2

.

(2) a constant angle surface in M2(c1)×M2(c2) given by Proposition 7, 8 or 9, which are

never totally geodesic.

Proof. After a straight-forward computation, one can deduce that the surfaces listed in the

theorem are constant angle surfaces in M2(c1)×M2(c2). Conversely, let us assume that M2

is a constant angle surface in M2(c1)×M2(c2) with angles θ1, θ2 ∈ (0, π2 ). Suppose first that

θ1 = θ2. Then M2 is a totally geodesic surface in M2(c1) ×M2(c2) and λ1 = λ2 = c2−c1
c1+c2

.

We refer the reader to the last section of this paper for the classification of totally geodesic

surfaces. In that section we show that the immersion is locally given by the immersion of

Case (1), in which the curves are geodesic curves of M2(c1) and M
2(c2) with constant speed√

c2
c1+c2

and
√

c1
c1+c2

, respectively. Let us now suppose that θ1 ̸= θ2. Then there is an

adapted orthonormal frame {e1, e2, ξ1, ξ2} such that fei = cos(2θi)ei and tξi = − cos(2θi)ξi,

where cos(2θi) = λi, for i = 1, 2. Moreover we have that the shape operators Sξ1 and Sξ2
have the same form as (21) with respect to {e1, e2}. Moreover the Levi-Civita connection is

given by

∇e1e1 =
sin(θ2) cos(θ2)µ2
cos2(θ1)− cos2(θ2)

e2,(62)

∇e1e2 =
sin(θ2) cos(θ2)µ2
cos2(θ2)− cos2(θ1)

e1,(63)

∇e2e1 =
sin(θ1) cos(θ1)µ1
cos2(θ1)− cos2(θ2)

e2,(64)

∇e2e2 =
sin(θ1) cos(θ1)µ1
cos2(θ2)− cos2(θ1)

e1.(65)
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We also know the normal connection ∇⊥ of M2 in M2(c1)×M2(c2):

∇⊥
e1ξ1 =

sin(θ1) cos(θ1)µ2
cos2(θ1)− cos2(θ2)

ξ2,

∇⊥
e1ξ2 =

sin(θ1) cos(θ1)µ2
cos2(θ2)− cos2(θ1)

ξ1,

∇⊥
e2ξ1 =

sin(θ2) cos(θ2)µ1
cos2(θ1)− cos2(θ2)

ξ2,

∇⊥
e2ξ2 =

sin(θ2) cos(θ2)µ1
cos2(θ2)− cos2(θ1)

ξ1.

Using the expressions for the Levi-Civita connection and the normal connection, we find that

the Codazzi equations are given by

e1[µ1] +
sin(θ1) cos(θ1)

cos2(θ1)− cos2(θ2)
µ21 = (c1 cos

2(θ2)− c2 sin
2(θ2)) sin(θ1) cos(θ1),(66)

e2[µ2] +
sin(θ2) cos(θ2)

cos2(θ2)− cos2(θ1)
µ22 = (c1 cos

2(θ1)− c2 sin
2(θ1)) sin(θ2) cos(θ2).(67)

Case 1: µ1 = µ2 = 0. From the equations of Codazzi (66) and (67) we obtain that c1 cos
2(θ1)

−c2 sin2(θ1) = c1 cos
2(θ2)− c2 sin

2(θ2) = 0, because θ1, θ2 ∈ (0, π2 ) and hence we obtain that

cos(2θ1) = cos(2θ2) =
c2−c1
c1+c2

with c1c2 > 0. Since cos(2θ2) > cos(2θ1) by assumption, we have

a contradiction.

Case 2: µ1 = 0, µ2 ̸= 0. As before, using the equation of Codazzi, we obtain that c1 cos
2(θ2)−

c2 sin
2(θ2) = 0 and hence we obtain that cos(2θ2) =

c2−c1
c1+c2

with c1c2 > 0. Denote in the fol-

lowing θ1 by θ. We will work out only the case for which c1 > 0 and c2 > 0. The other case

can be treated analogously. From the expressions for the Levi-Civita connection, we find that

∇e2e1 = ∇e2e2 = 0. Let us take now coordinates on M2 with ∂u = αe1 and ∂v = βe2. Using

the condition [∂u, ∂v] = 0 and the expressions for the Levi-Civita connection we find that

αv =

√
c1c2

c2 sin
2(θ)− c1 cos2(θ)

αβµ2,(68)

βu = 0.(69)

Equation (69) implies that, after a change of the u-coordinate, we can assume that β = 1 and

hence the metric takes the form

g = α2du2 + dv2,

and so the Levi-Civita connection becomes:

∇∂u∂u =
αu

α
∂u − ααv∂v,

∇∂u∂v = ∇∂v∂u =

√
c1c2

c2 sin
2(θ)− c1 cos2(θ)

µ2∂u,

∇∂v∂v = 0.
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The equation of Codazzi (67) can now be rewritten as

(70) (µ2)v =
c1c2

c1 cos2(θ)− c2 sin
2(θ)

(
(c1 cos

2(θ)− c2 sin
2(θ))2

c1 + c2
+ µ22

)
.

Integrating equations (68) and (70) we find

µ2 =
c1 cos

2(θ)− c2 sin
2(θ)√

c1 + c2
tan(

√
c1c2
c1 + c2

v + C(u)),

α = D(u) cos(

√
c1c2
c1 + c2

v + C(u)).

We consider now the surface M2 as a codimension 4 immersed surface in the Euclidean

space E6. By D we will denote the Euclidean connection. We remark that ξ1, ξ2, ξ̃ =

(ψ1, ψ2, ψ3, 0, 0, 0) and ξ = (0, 0, 0, ψ4, ψ5, ψ6) are normals of M2 in E6. We still have that the

equations (52) and (53) hold. Moreover the equations of Gauss and Weingarten are given by

DXY = ∇XY + σ(X,Y )− c1
2
g(

(
I + f

2

)
X,Y )ξ̃ − c2

2
g(

(
I − f

2

)
X,Y )ξ̄, ,

DXξ1 = −Sξ1X +∇⊥
Xξ1 −

c1
2
g̃(hX, ξ1) +

c2
2
g̃(hX, ξ1),

DXξ2 = −Sξ2X +∇⊥
Xξ2 −

c1
2
g̃(hX, ξ2) +

c2
2
g̃(hX, ξ2).

Now applying the formula Gauss and the previous equations we find

D∂u∂u =
αu

α
∂u − ααv∂v + µ2α

2ξ2 − c1 cos
2(θ1)α

2ξ̃ − c2 sin
2(θ1)α

2ξ̄,(71)

D∂u∂v = D∂v∂u = −
√

c1c2
c1 + c2

tan(

√
c1c2
c1 + c2

v + C(u))∂u,(72)

D∂v∂v = − c1c2
c1 + c2

(ξ̃ + ξ̄),(73)

where

(ξ2)i =

√
c1
c2
(ψi)v for i = 1, 2, 3,

(ξ2)j = −
√
c1
c2
(ψj)v for j = 4, 5, 6.

Integrating the last two formulas of Gauss, i.e. (72) and (73), we obtain analogously as

before that

ψ(u, v) = (cos(

√
c1c2
c1 + c2

u)f̃(v)+sin(

√
c1c2
c1 + c2

u)g̃(v), cos(

√
c1c2
c1 + c2

u)f̄(v)+sin(

√
c1c2
c1 + c2

u)ḡ(v)),
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where f̃(v) = (f̃1(v), f̃2(v), f̃3(v)), g̃(v) = (g̃1(v), g̃2(v), g̃3(v)), f̄(v) = (f̄1(v), f̄2(v), f̄3(v)) and

ḡ(v) = (ḡ1(v), ḡ2(v), ḡ3(v)) and

f̃i(v) = K̃i +

∫ v

v0

H̃i(τ) cos(C(τ))dτ,

g̃i(v) = L̃i −
∫ v

v0

H̃i(τ) sin(C(τ))dτ,

f j(v) = Kj +

∫ v

v0

Hj(τ) cos(C(τ))dτ,

gj(v) = Lj −
∫ v

v0

Hj(τ) sin(C(τ))dτ,

for i, j = 1, . . . , 3. Moreover we have the following equations

g(ψu, ψu) = α2, g(ψv, ψv) = 1, g(ψu, ψv) = 0,

g(ξ1, ψu) = 0, g(ξ1, ψv) = 0, g(ξ1, ξ1) = 1,

g(ξ2, ψu) = 0, g(ξ2, ψv) = 0, g(ξ2, ξ2) = 1,

g(ξ̃, ψu) = 0, g(ξ̃, ψv) = 0, g(ξ̃, ξ̃) =
1

c1
,

g(ξ̄, ψu) = 0, g(ξ̄, ψv) = 0, g(ξ̄, ξ̄) =
1

c2
,

g(ξ1, ξ2) = 0, g(ξ1, ξ̃) = 0, g(ξ2, ξ̃) = 0, g(ξ1, ξ̄) = 0, g(ξ2, ξ̄) = 0,

which are equivalent to

3∑
i=1

f̃2i =
1

c1
=

3∑
i=1

g̃2i ,

3∑
j=1

f̃2j =
1

c2
=

3∑
j=1

ḡ2j ,

3∑
i=1

f̃ig̃i = 0 =

3∑
i=1

f̃ ′i g̃i,

3∑
j=1

f̄j ḡj = 0 =
3∑

j=1

f̄ ′j ḡj ,

3∑
i=1

(
(f̃ ′i)

2 cos2(

√
c1c2
c1 + c2

v) + (g̃′i)
2 sin2(

√
c1c2
c1 + c2

v) + 2f̃ ′i g̃
′
i cos(

√
c1c2
c1 + c2

v) sin(

√
c1c2
c1 + c2

v)

)
= cos2(θ)D2(u) cos2(

√
c1c2
c1 + c2

v + C(u)),
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3∑
j=1

(
(f̄ ′j)

2 cos2(

√
c1c2
c1 + c2

v) + (ḡ′j)
2 sin2(

√
c1c2
c1 + c2

v) + 2f̄ ′j ḡ
′
j cos(

√
c1c2
c1 + c2

v) sin(

√
c1c2
c1 + c2

v)

)
= sin2(θ)D2(u) cos2(

√
c2 sin(θ)v + C(u)).

We obtain from the above equations that f̃ and g̃ are curves inM2(c1), that f̄ and ḡ are curves

in M2(c2). If we change the v-coordinate such that f̃ and f̄ have constant speed cos(θ) and

sin(θ), which corresponds to the fact that D2(v) = sec2(C(v)), we see then from the previous

equations that g̃ = ± 1
cos(θ) f̃ × f̃ ′ and ḡ = ± 1

sin(θ) f̄ × f̄ ′ and we can choose g̃ = 1
cos(θ) f̃ × f̃ ′

and ḡ = 1
sin(θ) f̄ × f̄ ′. From the last two equations we also deduce that f̃ ′·g̃′

cos2(θ)
= f̄ ′·ḡ′

sin2(θ)
and

g̃′·g̃′
cos2(θ)

= ḡ′·ḡ′
sin2(θ)

. This is equivalent to κ̃√
c1

= κ√
c2
, where κ̃ and κ are the geodesic curvatures

of respectively f̃ and f . So we obtain the first case of the theorem.

Case 3: µ1 ̸= 0, µ2 ̸= 0. Let (u, v) be coordinates on M2 such that ∂u = αe1 and ∂v = βe2.

From the expression of the Levi-Civita connection, i.e. equation (62) and the condition

[∂u, ∂v] = 0, we obtain

a2µ2 =
αv

αβ
,(74)

a1µ1 =
βu
αβ

,(75)

where a1 and a2 are constants as in Proposition 7. Using the previous equations, we can

rewrite the equations of Codazzi (66) and (67) as follows

(α2(µ22 +A2))v = 0,

(β2(µ21 +A1))u = 0,

where A1 and A2 are constants as in Proposition 7 and hence we obtain that α2(µ22 +A2) =

C2(u) and β
2(µ21 +A1) = C1(v). We have to consider now several subcases.

Case 3.a.: C1 ̸= 0, C2 ̸= 0. After a transformation of the u-coordinate and the v-coordinate

we can suppose that α2 = 1
µ2
2+A2

and β2 = 1
µ2
1+A1

. Substituting this in equations (74) and

(75) we obtain equations (30). We can conclude that the isometric immersion ψ is locally

congruent to the surface of Proposition 7.

Case 3.b.: C1 = 0, C2 ̸= 0. Since C1 = 0, we have that µ21 + A1 = 0. So we have that

A1 < 0, because µ1 ̸= 0. We conclude that µ1 = ±
√
−A1 and without loss of generalization

we can suppose that µ1 =
√
−A1 . After a transformation of the u-coordinate, we can suppose

that α2 = 1
µ2
2+A2

. Substituting the last two equations into equations (74) and (75) we obtain

equations (32). We can conclude that the isometric immersion ψ is locally congruent to the

surface of Proposition 8.

Case3.b.: C1 = C2 = 0. Analogously as before we conclude that ψ is locally congruent to

the surface of Proposition 9. �
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6. Totally geodesic surfaces

We end this paper with a classification of the totally geodesic surfaces of M2(c1)×M2(c2).

We show first that totally geodesic surfaces in M2(c1) ×M2(c2) are constant angle surfaces

in M2(c1)×M2(c2). We will use the classification of the constant angle surfaces to give the

classification of the totally geodesic surfaces of M2(c1)×M2(c2).

Proposition 10. Suppose M2 is a totally geodesic surface of M2(c1)×M2(c2), then M
2 is

a constant angle surface in M2(c1)×M2(c2).

Proof. As M2 is a totally geodesic surface, we have that (∇Xf) = 0 for any X ∈ TM2 and

hence the eigenvalues of f are constant. We give also the explicit values of λ1 and λ2, because

we will need these values in the classification of totally geodesic surfaces. Let p be an arbitrary

point in M2(c1) ×M2(c2) and {e1, e2} an orthonormal basis in TpM
2 such that fe1 = λ1e1

and fe2 = λ2e2. Put Y = Z = e2, X = e1, respectively Y = Z = e1, X = e2, in (8), we obtain

using (3) and (5)

0 = (aλ1 + b)(1− λ22) = (aλ2 + b)(1− λ21),

with a = c1+c2
4 and b = c1−c2

4 . We obtain the following values for λ1 and λ2:

(1) λ1 = λ2 = − b
a with c1c2 > 0,

(2) λ21 = 1 = λ22,

(3) λ1 = 1, a+ b = 0 (c1 = 0) and λ2 ∈ (−1, 1),

(4) λ1 = −1, a− b = 0 (c2 = 0) and λ2 ∈ (−1, 1),

(5) λ2 = 1, a+ b = 0 (c1 = 0) and λ1 ∈ (−1, 1), or

(6) λ2 = −1, a− b = 0 (c2 = 0) and λ1 ∈ (−1, 1),

Since λ1 and λ2 are continuous, one of the above conditions must hold. Hence we obtain that

totally geodesic surfaces of M2(c1)×M2(c2) are constant angle surfaces, in which λ1 and λ2

have one of the above specific values. �

In this section we will give a local classification of totally geodesic surfaces for which

λ1 = λ2 = − b
a with c1c2 > 0. The other cases were treated in the previous sections and will

appear as special cases of constant angle surfaces. Suppose that c1, c2 > 0. The other case

can be treated analogously and the result of the second case is stated together with the first

case in Proposition 11.

We can immerse M2(c1) × M2(c2) as a submanifold of codimension 2 in the Euclidean

space E6. We also remark that we obtain, by using the equation of Gauss, that the surface

M2 has constant Gaussian curvature c1c2
c1+c2

. So let ψ : M2 → M2(c1) ×M2(c2) be a totally

geodesic surface in M2(c1)×M2(c2) with λ1 = λ2 = − b
a . Let us fix a point p in open set U

of M2 and let (u, v) be Fermi coordinates of U in M2, there always exist such coordinates on

an open set of a surface (see for example [11]). The metric g of M then has the form

du2 +G(u, v)dv2
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on the open set U ofM , with G(0, v) = 1 and ∂
∂u
G(0, v) = 0 for every v, in terms of the Fermi

coordinates (u, v). Since M2 has constant Gaussian curvature, we have that G is uniquely

determined by the partial differential equation

∂2

∂2u

√
G = − c1c2

c1 + c2

√
G.

So we find that G is given by

(76) cos2(

√
c1c2
c1 + c2

u),

because of the initial conditions G(0, v) = 1 and ∂
∂u
G(0, v) = 0 for every v. We can now inte-

grate the formulas of Gauss and Weingarten ofM2 in E6 and obtain the following proposition.

We omit the details of the integration procedure.

Proposition 11. Let ψ : M2 → M2(c1) ×M2(c2) be a totally geodesic surface with λ1 =

λ2 = c2−c1
c1+c2

and c1c2 > 0. Then ψ is locally congruent to one of the surfaces of case (1) of

Theorem 6.

Theorem 7. Let M2 be a totally geodesic surface of M2(c1)×M2(c2). Then there are four

possibilities

(1) M2 is locally congruent to the immersion given by one of the surfaces given in Case

(1) of Theorem 6;

(2) M2 is a product of two geodesic curves;

(3) M2 is an open part of M2(c1)× {p2} or {p1} ×M2(c2);

(4) M2 is locally congruent to the first immersion of (44), in which the curve f̃ is a

geodesic curve of M2(c1) if c2 = 0, or to the first immersion of (61), in which the

curve f is a geodesic curve of M2(c2) if c1 = 0.

Proof. Proposition 10 tells us that a totally geodesic surface ofM2(c1)×M2(c2) is a constant

angle surface. Moreover in the proof of Proposition 10, we have seen that there are six possible

situations. In the first case we have seen that the angle functions λ1 and λ2 are equal and

have value − b
a , in which a = c1+c2

4 , b = c1−c2
4 and c1c2 > 0. We have classified these totally

geodesic surfaces in Proposition 11 and showed that they are locally congruent to one of the

surfaces given in Case (1) of Theorem 6. The second case says that the angle functions are

equal to ±1. If the angle functions have opposite sign then one can easily show that the

surface is a Riemannian product of curves of M2(c1) and M2(c2) and that this surface is

totally geodesic if and only if both curves are geodesic curves of M2(c1) and M
2(c2). If both

angle functions have the same sign then one can easily deduce that the surface is an open

part of M2(c1)× {p2} if the angle functions are equal to 1 or an open part of {p1} ×M2(c2)

if the angle functions are equal to −1. For the last four cases we have that one of the angle

functions is equal to 1 and the other angle function is a constant in (−1, 1) if c1 = 0 or that

one of the angle functions is equal to −1 and the other angle functions is a constant in (−1, 1)
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if c2 = 0. We can easily deduce from the classification theorems 4 and 5, that M2 is indeed

locally congruent to the first immersion of (44), in which the curve f̃ is a geodesic curve of

M2(c1) if c2 = 0, or to the first immersion of (61), in which the curve f is a totally geodesic

curve of M2(c2) if c1 = 0. �

Remark. The special case when c1 = c2 = 2 of Theorem 7 was also considered in the paper [3]

where totally geodesic surfaces in Qn (in particular, in Q2 = S2(2) × S2(2)) were classified.

In particular, they proved that a totally geodesic surface of Qn is one of the following three

kinds:

(1) a totally geodesic totally real surface,

(2) a totally geodesic complex surface,

(3) a totally geodesic surface of curvature 1/5 in Qn which is neither totally real nor

complex. This case occurs only when n ≥ 3.

Since the third case doesn’t occur for n = 2, this is consistent with our results. It is interesting

to remark that the third case was missing in [4] and [5]. This was remarked by S. Klein in

[10], who didn’t notice that the missing case did occur in the earlier paper [3]. The authors

would like to thank B.-Y. Chen for drawing our attention to [3].
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