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1 Introduction

The almost ideal demand system of Deaton and Muellbauer (1980a,b)
and the Rotterdam model (Barten, 1964, 1968, 1977; Theil, 1965, 1975a,b)
have been widely adopted in applied demand research. Their attractive-
ness is explained by the fact that both demand specifications share desirable
properties that are not possessed by other local flexible functional forms such
as the Generalized Leontief (Diewert, 1971) and the Translog (Christensen
et al., 1975): local flexibility, consistency with demand theory, linearity and
parsimony with respect to the parameters. They also have identical data
requirement so that no additional variable is needed in order to estimate one
specification whenever the estimation of the other is possible.

However, the two specifications lead to different results in some applica-
tions (Alston and Chalfant, 1991), prompting the question of the appropri-
ateness of either specification for a given dataset. Nevertheless, the adoption
of one of the models for empirical demand analysis has been purely arbitrary
and possibly motivated by the personal acquaintance of the researcher with
each of them. This is understandable since economic theory does not pro-
vide a basis for ex ante discriminating among the flexible functional forms in
general, and between the AIDS and the Rotterdam model (RM) in particular.

The observed discrepancies between the outcomes of the two specifications
require adopting a research strategy that allows to discriminate between them
not only based on the demand properties contained in the specific dataset,
but also on their consistency with the particular maximization problem that
has produced or that is believed to have produced the data. Thus, choosing
the best approximating structure for the true underlying model should be
the result of a well-defined methodology that establishes the true properties
contained in the data as a benchmark. This applies whether consumer pref-
erences are postulated to be fixed as in the neoclassical demand theory, or
otherwise subject to shifts of a specific nature.

Alston and Chalfant (1993) developed a statistical test of the linear-
approximate AIDS against the RM and then applied it to the meat demand
in the United States. The test concluded in favor of the acceptance of the
RM, rejecting the AIDS. The same conclusion obtained with Barten (1993)’s
test. However, the authors warned that their finding could not be interpreted
as an evidence of the superiority of the RM over the AIDS in a general way.
Furthermore, their test may lead to a different conclusion if applied to a
different dataset. Although this does not clearly appear from Alston and
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Chalfant’s conclusion, the difference in the performance of the AIDS and the
RM from one dataset to another may mainly result from the fact that the
datasets are produced by different data generating processes.

On the other hand, Barnett and Seck (2008) conducted a Monte Carlo
comparison of the nonlinear AIDS, the linear-approximate AIDS and the
RM. They sought to determine which of the three specifications could per-
form better in terms of the ability to recover the elasticities of the true de-
mand system. Their finding was that both the nonlinear AIDS and the RM
performed well when substitution among goods was low or moderately high.
However, the nonlinear AIDS model performed better when the substitution
among goods was very high. Finally, the RM performed better at recovering
the true elasticities within separable branches of a utility function. In this
experiment, the linear-approximate AIDS performed badly and was found to
be a poor approximation to the nonlinear AIDS.

It is noteworthy that both papers postulated constant parameters in the
demand functions and the underlying utility functions. However, when us-
ing real data, the consistency of the estimated coefficients of the demand
system can be compromised if one wrongly assumes the constancy of the
parameters while they are actually random or varying over time. In this
case the constant-coefficient model will not only fail to capture the possible
long-run dynamics in the data but also will produce a poor approximation
to the underlying data generating process (Leybourne, 1993). In addition, it
is important that further investigation be conducted in order to determine
whether or not the advantages of one demand specification on the other can
be preserved when the constant-parameters assumption is abandoned in a
Monte Carlo study.

This paper evaluates the performance of the nonlinear AIDS, the linear-
approximate AIDS and the Rotterdam model when the parameters of the
model of consumer preferences and that of the resulting demand system
are permitted to vary over time. To the best of our knowledge, such an
assessment has not been attempted yet. The present paper shall contribute
to the literature by filling this gap.

The motivation for undertaking this study can be put forth into a three-
fold argument. First, the real world economic system is constantly subject to
shocks that translate into technological and institutional changes as well as
shifts in consumer preferences. The interaction of these shocks leads to more
or less permanent changes in economic behavioral relationships. Therefore,
assuming time-varying parameters helps to capture the dynamics of spe-
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cific nature in these economic relationships. Second, accounting for shifting
consumer preferences allows to deepen our understanding of consumer be-
havior outside the neoclassical framework of fixed tastes. Moreover, such
an approach helps break with the old tradition of considering the subject
as pertaining to social disciplines other than economics. Third, both the
RM and the AIDS are local first-order Taylor series approximations that are
intended to approximate a true demand system derived from any utility max-
imization problem. When fitting the data to any of these flexible functional
forms, an implicit assumption is that there exists an unknown true function
of the variables of interest that has generated the observed data given a set
of parameters. Since the approximation provided by each functional form is
only locally valid, assuming a single value for the parameter vector is more
unlikely to provide an adequate approximation of the true demand system
that underlies the observed data. This idea has been expressed for the RM
by Barnett (1979) and Bryon (1984), and for the AIDS by Leybourne (1993).

It is customary to assume that consumer preferences are affected by taste-
changing factors. These factors can be captured in the consumer’s behavioral
model by postulating, on the one hand, the interdependence of consumer
preferences in terms of myopic habit formation (Gaertner, 1974; Pollak, 1976,
1978; Alessie and Kapteyn, 1991; Kapteyn et al., 1997). On the other hand,
one can make the assumption of simultaneous consumption decisions (Karni
and Schmeidler, 1990) or of intrinsic reciprocity or consumer altruism (Sobel,
2005). Finally, the parameters in the functional form of the consumer model
may be assumed as functions of the exogenous taste changing factors or
depending on stochastic variables (Ichimura, 1950; Tintner, 1952; Basmann,
1955, 1956, 1972; Barnett, 1979; Basmann et al., 2009; Barten, 1977; Brown
and Lee, 2002). In this paper’s analytical framework, stochastic factors are
considered to affect the marginal utilities and to induce preference changes
over time through the parameters of the utility function.

The treatment of varying marginal utilities in this paper differs from Bas-
mann (1985) in that we will not consider multiplicative functional forms for
the marginal utilities. In contrast, we shall assume that the stochastic shocks
to consumer preferences affect parameters of the marginal rates of substi-
tution over time. In addition, we shall explicitly specify the time-varying
process for the stochastic chocks to consumer preferences and estimate the
implied time-varying parameters in the demand functions.

The analysis shall be conducted in the framework of Harvey (1989)’s
structural time series models. We first assume a pure random walk process
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for the parameters in the demand systems and compute the time-varying
elasticities accordingly. Second, we assume a local trend model specification
where the time-varying intercept in each demand equation is specified as a
random walk with drift, with the drift itself being a random walk. The two
approaches have been respectively used by Leybourne (1993) and Mazzocchi
(2003) to estimate time-varying parameters in the linear-approximate AIDS.
However, none of the papers attempted to compare the performance of the
linear-approximate AIDS neither to that of the nonlinear AIDS nor to that
of the RM.

The scope of the results in this paper will be limited to the approximating
time-varying elasticities (elasticities of substitution, income and compensated
price elasticities) that have a counterpart in the set of relevant elasticities
derived from the true model. The approximating time-varying elasticities will
be calculated using the estimated time-varying coefficients in each demand
specification. Time-varying parameters shall be estimated in each demand
system by the Kalman filter and passed through the Kalman smoother for
their revision, after appropriately representing each demand specification in
a state space form.

The paper is organized in 8 sections, including this introduction. The
true model is described in section 2 and the time-varying parameter versions
of the AIDS and the Rotterdam model are specified in section 3. Section 4
provides the state space representation of the time-varying parameter AIDS
and RM. The Monte Carlo experiment and the data generation procedure are
described in section 5, while the estimation method and results are presented
in sections 6 and 7 respectively. Section 8 summarizes the findings and
concludes with their empirical implications.

2 The true model

The consumer’s problem is specified as that of maximizing the time-
varying parameter utility function

ut = u (xt; Θt) ,
subject to

p′txt = mt

Θt = Θt−1 + εΘ,t.

(2.1)

where Θt = (θ1t, θ2t, · · · , θnt) is the vector of the parameters that describe the
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form of the ordinal utility function at each time period t = 1, 2, ..., T ; pt =
(p1t, p2t, · · · , pnt) is the price vector and mt is the consumer’s expenditure.
The specification in equation (2.1) implies that only the parameters of the
utility function are time-varying and that the functional form of the utility
function is time-invariant.

It is assumed that the specification of the time-varying structure of the
parameter vector is such that the utility function ut possesses nice prop-
erties at each time period t, that is ut is assumed to be a well-behaved
function that satisfies all the regularity conditions of consumer demand the-
ory(increasingness, quasiconcavity, continuity, etc.). In addition, the shocks
to the parameter vector affect the marginal rates of substitution and hence
translate into demand functions with time-varying parameters. An important
assumption that underlies the model in equation (2.1) is that the parameters
of the utility function are affected only by the stochastic process that gov-
ern the preference shifting factors. More specifically, the parameters of the
utility function and the shocks to consumers’ preferences follow exactly the
same stochastic process (Kalonda-Kanyama, 2012).

2.1 Illustration: The WS-Branch Utility Tree

To illustrate the above considerations, we shall use a known functional
form of the utility function that will serve as the benchmark. The weak
separable(WS-) branch utility function shall be used to serve this purpose.
It was first introduced by Barnett (1977) and subsequently used by Bar-
nett and Choi (1989) as the underlying true utility function in testing weak
separability in four demand specifications. This utility function, which is a
macroutility function over quantity aggregator functions, is a flexible block-
wise weakly separable utility function when defined over no more than two
blocks with a total of two goods in each block. The constant-parameter ho-
mothetic form of the WS-branch utility function with two blocks q1 and q2
is defined as follows:

U = U(q1(x1, x2), q2(x3)) = A
[
A11q

2ρ
1 + 2A12q

ρ
1q
ρ
2 + A22q

2ρ
2

](1/2ρ)
(2.2)

where ρ < 0.5, the constants Aij > 0 are elements of a symmetric matrix
such that Aij = Aji and

∑
i

∑
j Aij = 1. The constant A > 0 produces a

monotonic transformation of the utility function and thus can be normalized
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to 1 without loss of generality. Assume that there are only three goods and
that the first block consists of the two first goods x1 and x2 while the second
block consists only of the third good, x3. Then the sub-utility functions
q1 and q2 are defined as follows in terms of the vector of supernumerary
quantities y = x− α, where x = (x1, x2, x3), and α = (α1, α2, α3) is a vector
of translation parameters:

q1 = q1(x1, x2) = B
[
B11y

2δ
1 + 2B12y

δ
1y

δ
2 +B22y

2δ
2

](1/2δ)
(2.3)

q2 = q2(x3) = y3 + α3 (2.4)

where δ < 0.5, Bkl > 0 for k,l = 1,2 ; Bkl = Blk for k 6=l and
∑

k

∑
lBkl = 1.

Notice that the specification of the aggregator function q1 in equation (2.3)
is the same as the specification of the macroutility function (2.2). Therefore,
both functions share the same properties. For example, both functions are
monotone and quasi-concave as a result of the restrictions on their parame-
ters. These restrictions insure their theoretical regularity as well.

2.2 True time-varying elasticities

Barnett and Choi (1989) have derived the properties of the WS-branch
utility function(income elasticities and elasticities of substitution). When
the parameters of the WS-branch utility function are assumed to vary over
time as in problem (2.1), the income elasticity of the elementary good xj (j
= 1,2,3) is, for every time period t, given by

ηjt =

(
1

1− p
′
tαy

)
xjt − αjt
xjt

. (2.5)

On the other hand, the elasticity of substitution between two elementary
quantities xi and xj is given by

σij,t = ξij,t

(
1

1− p′α

)
(xit − αit)(xjt − αjt)

xjtxit
(2.6)

where pt = (p1t, p2t, p3t) is the income normalized price vector, pt/mt, with
mt = p

′
txt being the total consumer expenditure at time t. In equation

(2.6), ξij,t represents the elasticity of substitution between the ith and the jth

(j=1,2 ) aggregator function in the WS-branch utility function, and is defined
as follows, ∀t:
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ξij,t =
1

(1− ρt +Rt)
(2.7)

where

Rt = −ρt
A11,tA22,t − A2

12,t

(A11,t(
q2t
q1t

)−ρt + A12,t)(A12,t + A22,t(
q2t
q1t

)ρt)
(2.8)

However this formula applies only when α1 = α2 = 0 or when the aggregate
function is defined in terms of the supernumerary quantities as in equations
(2.3) and (2.4)[ See Theorem 2.2 in Barnett and Choi (1989)].

The time-varying compensated elasticity of the demand for the elemen-
tary good xi with respect to the price, pj, of the elementary good xj obtains
from the relation between the Allen-Uzawa elasticity of substitution and the
compensated price elasticity, that is

η∗ij,t = σij,twjt (2.9)

where wjt = pjtxjt/
∑

k pktxkt is the expenditure share for the elementary
good xjt.

3 Structural time-varying coefficients AIDS

and RM

This section introduces the AIDS and the Rotterdam model in the frame-
work of Harvey (1989)’s structural time series models. The resulting demand
specifications are respectively referred to as the structural time-varying co-
efficients (TVC-) AIDS and RM. This framework allows the time-varying
specification of the parameters in each demand function and their estimation
by means of the Kalman filter, after appropriately representing the demand
systems in a state space form.

3.1 The structural TVC-AIDS

In the n-goods unrestricted model, the demand equation for the ith good
in the TVC linear-approximate AIDS is specified as follows (see for example
Mazzocchi (2003)):
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wit = µit +
n∑
j=1

γijtlogpjt + βitlog

(
xt
P ∗t

)
+ φit + uit (3.1)

where wit is the budget share of good i at time t, xt is the aggregate consumer
expenditure on the n goods and P ∗t is the Stone price index defined as P ∗ =∏n

i=1 p
wi
i ; µit and the φit are respectively the time-varying intercept and the

seasonal components. Finally, uit is an error term that is assumed to be a
random noise process. Following Harvey (1989), the time-varying intercept
is specified as a random walk with drift, with the drift itself following a pure
random walk process. On the other hand, the seasonal dummies φit are
constrained to sum to zero over a year. All the price and income coefficients
in equation (3.1) are assumed to follow a pure random walk process.

Given the similarity between the nonlinear AIDS and the linear-approximate
AIDS, the structural TVC specification for the nonlinear AIDS obtains by
using the appropriate price index in equation (3.1) to obtain:

wit = αit +
n∑
j=1

γ∗ijtlogpjt + βitlog

(
xt
Pt

)
+ φit + uit, (3.2)

where Pt is the translog price aggregator defined by

logP = α0 +
∑
k

αklogpk +
1

2

∑
k

∑
j

γkjlogpklogpj. (3.3)

The following constraints are imposed on the parameters of both the
nonlinear and the linear-approximate AIDS models to respectively satisfy
linear homogeneity, adding-up and Slutsky symmetry at every time period t :

n∑
i=1

γ∗ij,t = 0 =
n∑
i=1

βit (3.4)

n∑
i=1

αit = 1 (3.5)

γ∗ij,t = γ∗ji,t (3.6)
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3.2 The Structural TVC-RM

One important feature of the Rotterdam model is that the constancy of
its parameters obtains by assuming constant mean functions involved in the
formulas of its marocoefficients. However, Barnett (1979) has shown that
the macrocoefficients in the Rotterdam model are not necessarily constant.
In contrast they vary over time and are income-proportional-weighted theo-
retical population averages of microcoefficients. By admitting time-varying
microparameters and macroparameters in the Rotterdam model, the implicit
assumption is that the coefficients of the utility function that the Rotterdam
is approximating are also time-varying. However, the neoclassical theory
leaves open the question of how consumer preferences are affected by exoge-
nous factors over time.

We assume that shocks to preferences reflect into the utility function
in the form of time-varying parameters. Hence the Rotterdam model is
theoretically well suited to incorporate the analysis of change in preferences
over time. The specification of the ith equation in the structural TVC-RM
is given in equation (3.7) as follows:

witDqit = $it + θitDQt +
n∑
j=1

πij,tDPjt + ψit + νit (3.7)

where wit = (1/2)(wi,t−1 + wi,t) is an arithmetic average of the ith good
income share over two successive time periods t and t− 1; πij,t is the Slustky
coefficient that gives the total substitution effect of the change in the price of
good j on the demand for good i; νit is the error term; DQt and DPt are the
finite change versions of the Divisia quantity and price indexes1. The income
effect of the n price changes on the demand for good i at time t is given
by θit. The time-varying coefficients $it and ψit’s have the same meaning
and follow the same stochastic processes as µit and the φit’s in equation (3.1).
Each of the time-varying coefficients θit and πijt’s follows a pure random walk
process. For more details on the derivation of the Rotterdam model in its
constant-parameters version, see Barten (1964), Theil (1965, 1971, 1975a,b,
1980a,b), Barnett (1979), and Barnett and Serlertis (2008).

The following restrictions are imposed on the coefficients in order for

1The formulas for the Divisia quantity and price indexes are respectively dlogQ =
dlogm−dlogP =

∑n
j=1 wjdlogxj and dlogP =

∑n
j=1 wjdlogpj , where m is total consumer

expenditure.
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the Rotterdam model to satisfy Engel aggregation, linear homogeneity and
symmetry respectively, at each time period:

n∑
i=1

θit = 1;
∑
i

πij,t = 0 (3.8)

n∑
i=1

πij,t = 0 (3.9)

πij,t = πji,t (3.10)

The next section discusses the state space representation of the AIDS and
the Rotterdam model, a framework that allows estimating the time-varying
parameters, using the Kalman filter. We shall consider two specifications
of the time-varying parameters in the demand system: the random walk
model (RWM) where all the parameters are assumed to follow a random
walk process, and the local trend model (LTM) where the intercept in each
demand equation is assumed to follow a random walk with drift while all the
other parameters follow a pure random walk process.

4 State space Representation of the AIDS

and the RM

Consider the following state space representation of the demand system:

yt = Ztαt + wt
αt+1 = Stαt + vt

(4.1)

For an n-goods demand system, the n × 1 vector yt is the vector of the
dependent variables in the demand system, the m vector αt is the state
vector of the m unknown parameters for t =1, . . . , T. The above state
space representation has two matrices. The n×m matrix Zt contains all the
exogenous variables of the system while the m×m matrix St is the transition
matrix that links the state vector at time period t+1 to its current value, and
the entries of which are supposed to be known. Finally, the n× 1 vector wt

and the m× 1 vector vt are the serially uncorrelated and independent error
vectors in the measurement equation and the transition equation respectively,
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with zero means and respective nonnegative definite covariance matrices Ht

and Qt, that is

E(wt) = 0 and V ar(wt) = Ht; E(vt) = 0 and V ar(vt) = Qt; t = 1, . . . , T,
(4.2)

where Ht and Qt are respectively of order n × n and m × m. In addition,
the error vectors in the state space model are assumed to be independent of
each other at all time points, that is

E(wtv
′

t) = 0, ∀t (4.3)

An explicit formulation of different matrices in the state space model of
the demand system, as they relate to the AIDS and the Rotterdam model2,
is provided in the next subsection. The homogeneity and symmetry restric-
tion are imposed, following Mazzocchi (2003), by modifying the measurement
equation and the transition equation accordingly rather than by augmenting
the measurement equation prior to estimation as suggested by Doran (1992)
and Doran and Rambaldi (1997). We shall underline the fact that the re-
striction on the coefficients in each demand specification are assumed to hold
at every time point.

4.1 The Random Walk Model

The state-space representation matrices for each demand specification
incorporate the restrictions that are imposed on its parameters. However,
When linear homogeneity is imposed the disturbances become linearly depen-
dent and their covariance matrix becomes singular. In order to circumvent
this problem, one equation must be deleted from the demand system prior
to estimation as advocated by Barten (1969). The parameters of the deleted
equation will then be recovered by using the imposed restrictions or by esti-
mating the system with a different equation dropped.

2Although we shall only consider two specifications of the parameters’ time varying
structure, other stochastic processes can be specified for the time-varying coefficients as
well, such as the autoregressive structure suggested by Chavas (1983).
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4.1.1 State-space representation of the structural TVC-AIDS

In the 3-goods case, the measurement equation, with homogeneity and
symmetry imposed on the coefficients and the third equation deleted is as
follows, for every t = 1, 2, . . . , T :

[
w1t

w2t

]
=

 1 log
(
p1t
p3t

)
log
(
p2t
p3t

)
log
(
mt
Pt

)
0 0 0

0 0 log
(
p1t
p3t

)
0 1 log

(
p2t
p3t

)
log
(
mt
Pt

) ×


α1,t

γ11,t
γ12,t
β1,t
α2,t

γ22,t
β2,t


+

[
ε1,t
ε2,t

]

When the state vector is assumed to follow a pure random walk process,
the transition equation at every time period is given by



α1,t

γ11,t
γ12,t
β1,t
α2,t

γ22,t
β2,t


=



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





α1,t−1
γ11,t−1
γ12,t−1
β1,t−1
α2,t−1
γ22,t−1
β2,t−1


+



eα1
t

eγ11t

eγ12t

eβ1t
eα2
t

eγ22t

eβ2t


4.1.2 State-space representation of the structural TVC-RM

When linear homogeneity is imposed the ith equation in the n-goods
Rotterdam model (3.7) becomes:

witDqit = $it + θitDQt +
n−1∑
j=1

πijt(Dpjt −Dpn,t) + ψit + νit (4.4)
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With the constant and the seasonal dummies dropped from equation
(4.4), the measurement equation of the state space representation of the
Rotterdam model can be expressed explicitly as follows, in the 3-goods case
when symmetry is imposed and the third equation deleted:

[
w1,tDq1,t
w2,tDq2,t

]
=

[
DQt (Dp1 −Dp3) (Dp2 −Dp3) 0 0

0 0 (Dp1 −Dp3) DQt (Dp3 −Dp3)

]
×


θ1,t
π11,t
π12,t
θ2,t
π22,t

+

[
ν1,t
ν2,t

]

The transition equation in matrix form is given ∀t by


θ1,t
π11,t
π12,t
θ2,t
π22,t

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




θ1,t−1
π11,t−1
π12,t−1
θ2,t−1
π22,t−1

+


eθ1t
eπ11t

eπ12t

eθ2t
eπ22t


4.2 The Local Trend Model

The local trend model assumes that the intercept in each equation of both
the AIDS and the Rotterdam model follows a random walk process with a
drift, that is

µit = µi,t−1 + λi,t−1 + eµit
λit = λi,t−1 + eλit

(4.5)

for the ith equation in the AIDS, and

$it = $i,t−1 + ωi,t−1 + e$it
ωit = ωi,t−1 + eωit

(4.6)

for the ith equation in the Rotterdam model. All the other parameters of
the demand systems follow the random walk process as in the random walk
model. The measurement and transition equations are modified accordingly.
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5 Data generation procedure

This section explains the steps used to generate the data for the Monte
Carlo simulations. In this process, all the parameters in the utility functions
in equations (2.2) and (2.3), except ρ and δ, are assumed to be time varying.
The constancy of δ and ρ is assumed for convenience, since these parameters
can be considered as time-varying as well. The data generation procedure
proceeds as follows:

Step 1 : Set the value of the elasticity of substitution between the super-
numerary quantities y1 and y2 in the microutility function in equation
(2.3) for each time period, t = 1, 2, ...,T, where T = 60.

Step 2 : Generate the stochastic process for the time-varying parameters in
the microutility function q1. The parameters B11,t,B12,t,B21,t and B22,t

are assumed to follow a random walk process and are constrained so
that they satisfy the condition

∑
k

∑
lBkl,t = 1, with B12,t = B21,t, ∀t.

Step 3 : Obtain the ratio between y1t and y2t from the formula of the elas-
ticity of substitution between the two supernumerary quantities, using
the values set in Step 1.

Step 4 : Generate the first order autoregressive time series for the two super-
numerary quantities y1t and y2t and the supernumerary income m1t

3;
then adjust the time series of the two supernumerary quantities so that
the ratio y2t/y1t corresponds to the one obtained in Step 3.

Step 5: Use the first order conditions for maximizing q1
4 and the super-

numerary budget constraint to solve for the price system (p1t, p2t) at
every time period.

Step 6 : Calculate the aggregate quantity q1t and the corresponding price
index using the Fisher factor reversal test.

3The autoregressive models for the supernumerary quantities and income are the fol-
lowing: y1t = 2 + 0.75y1,t−1 +e1t; y2t = 1 + 0.739y2,t−1 +e2t; m1t = 125 + 0.98m1,t−1 +e3t
where e1t, e2t and e3t are zero mean and serially uncorrelated normal error terms with
variance 1.

4See Barnett and Choi (1989)
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Step 7 : Set the value of the elasticity of substitution between the two
aggregate quantities q1t and q2t in the macroutility function (2.2) and
solve for the ratio q2t/q1t from equation (2.7) for each time period t =
1,2,...,T.

Step 8 : Generate the time path of the time-varying parameters in the
macroutility function, such that

∑
i

∑
j Aijt = 1 and A12t = A21t. The

parameter vector in the macroutility function is assumed to follow a
random walk process. The only constant parameter in the macroutility
function is ρ.

Step 9 : Generate the supernumerary quantity y3t = q2t according a first
order autoregressive process5 and adjust the resulting time series so
that the ratio q2t/q1t corresponds to the ratio obtained in Step 7.

Step 10 : Solve for p3t from the first order conditions for the maximization
of the macroutility function6.

Step 11 : Set the value of α1,α2 and α3 and obtain the elementary quantities
x1, x2 and x3 from their relationships with the supernumerary quanti-
ties, that is xi = yi + αi

7, i=1,2,3 and calculate total expenditure on
the elementary quantities.

Step 12 : Add noises to the elementary quantities x1t, x2t and x3t that con-
stitute the reference dataset and estimate the time varying parameters
of the resulting demand system, bootstrapping the model 2000 times
while recalculating the total expenditure on x1t, x2t and x3t.

For the bootstrap procedure we have generated three vectors of 2000
seeds each, to use in generating the normally distributed random numbers
that are added as shocks to the reference dataset. Relevant elasticities are
calculated and stored at each replication from the estimated time-varying
parameters. Finally, the income and compensated price elasticities as well
as the elasticities of substitution at each time period are calculated as the

5y3t = 3 + 0.69y3,t−1 + e
4t

6See Barnett and Choi (1989) for the specification of this utility maximization problem.
7The values used to generate the data are: α1 = 1, α2 = 10 and α3 = 4. This

specification is used for the random walk model. For the local trend model, each of the
αi’s is specified as a random walk plus a shift, where the shift itself follows a random walk
process.
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averages of the values stored during the bootstrap procedure. The true time-
varying cross-price elasticities are obtained from the WS-branch utility model
by using the relationship between the Allen-Uzawa elasticity of substitution,
the income shares, and the Hicksian demand elasticities.

6 Estimation method

The time-varying parameters in the AIDS and RM are estimated by
Kalman filtering. The exact Kalman filter (Koopman, 1997) is used for
initial states and variances and implemented in the RATS software (Doan,
2010b,a, 2011; Estima, 2007a,b). Under the normality assumption for the
disturbance vectors wt and vt in equations (4.1), the distribution generated
by the Kalman filter is given by

yt|y1, y2, . . . , yt−1 ∼ N(Z
′

tαt,Λt) (6.1)

where Λt = Z
′
tPt|t−1Zt +Qt. The essential part of the likelihood function for

the full sample, which is the objective function of the Kalman filter(smoother)
is therefore

−1

2

∑
t

log|Λt| −
1

2

∑
t

(yt − Z
′

tαt|t−1)
′
Λ−1t (yt − Z

′

tαt). (6.2)

The AIDS models have been estimated in first-differenced form by assum-
ing time-varying coefficients rather than constant coefficients like, for exam-
ple, in Deaton and Muellbauer (1980a), Eales and Unnevehr (1988), Moschini
and Meilke (1989), Brester and Wohlgenant (1991) and Alston and Chalfant
(1993). An intercept is included in each demand equation. Leybourne (1993)
and Mazzocchi (2003) have estimated time-varying parameters in the AIDS
model. However, we have found no journal article that has attempted to
estimate time-varying parameters in the Rotterdam model.

6.1 Calculation of the time-varying elasticities

The Kalman filtered and Kalman smoothed time-varying parameters in
the AIDS and RM are used to calculate the demand elasticities using the
formulas in Table 1. The elasticity formulas in the linear-approximate AIDS
are the corrected elasticity formulas from Green and Alston (1990, 1991).
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Table 1: Time-varying demand elasticities in the AIDS the RM
Model ηit ηijt η∗ijt

Rotterdam θit
wit

πijt−θitwjt

wit

πijt

wit

AIDS 1 + βit
wit

−δijt +
γijt
wit
− βitαjt

wit
ηijt + wjt

(
1 + βit

wit

)
− βit
wit

∑
k γkjtlnpkt

LA-AIDS 1+ −δijt +
γijt
wit
− β

i
wjt
wit

ηijt + wjtηit

βit
wit

[
1−

∑
jt wjtlnpjt(ηjt − 1)

]
− βit
wit

[∑
k wktlnpkt(ηkjt + δkjt)

]

However, Alston et al. (1994) have shown, in a Monte Carlo study, that if
the nonlinear AIDS is viewed as the underlying demand system and that
the linear-approximate AIDS is indeed an approximation of it, the simple
formulas of elasticities can be used. we shall consider both versions of the
formulas in calculating the income and price elasticities in the linear approx-
imate AIDS.

On the other hand, we shall use the Morishima formulas (Morishima,
1967; Blackorby and Russell, 1975) in calculating the elasticities of substitu-
tion. In contrast to the Allen-Uzawa elasticity of substitution (AUES), this
measure of the elasticity of substitution is both quantitatively meaningful
and qualitatively informative. Moreover, it is a measure of curvature or ease
of substitution and a logarithmic derivative of a quantity ratio with respect to
marginal rate of substitution (Blackorby and Russell, 1981, 1989; Blackorby
et al., 2007).

The Morishma elasticity of substitution (MES) between goods i and j is
calculated as follows:

σMij =
piCij(p, u)

Cj(p, u
)− piCii(p, u)

Ci(p, u)
= εij(p, u)− εii(p, u), (6.3)

where C(p, u) is the cost function and the subscripts on C(p, u) are the
partial derivatives with respect to the relevant prices; εij(p, u) is the Hicksian
compensated elasticity of good i with respect to the price of good j. The
cost function in equation (6.3) depends on the price vector p and the utility
level u; and it is assumed to satisfy all the regularity conditions 8.

8A regular cost function is continuous, nondecreasing, linearly homogeneous and con-
cave in p, increasing in u and twice continuously differentiable.
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It is important to mention that both the MES and the AUES are used
to classify inputs/goods as substitutes or complements. However, they yield
different stratification sets in general (Barnett and Serlertis, 2008). In fact,
two Allen substitutes goods must be Morishima substitutes while two Allen
complements may be Morishima substitutes. The goods that we have con-
structed in our experiments are all substitutes to each other so that the AUES
and the MES will produce an identical stratification.

7 Results

In introducing the results of this paper, we shall underline the fact that the
linear-approximate AIDS with corrected elasticity formulas (LA-AIDS/CF)
and the Rotterdam model are the most used demand specifications in empir-
ical demand analysis, among all the local flexible functional forms. There-
fore, the importance of the findings in this paper help to share the light
on the performance of these two demand specifications when the param-
eters of the demand functions are assumed to be time-varying. We also
include, for comparison purpose, the nonlinear AIDS model (NL-AIDS) and
the linear-approximate AIDS model where simple elasticity formulas are used
(LA-AIDS/SF).

Tables 2, 3 and 4 provide the true and approximating elasticities of substi-
tution, income elasticities and cross-price elasticities. As mentioned earlier,
only the elasticities that have counterparts in the true model are presented.
All elasticities in the true model are positive at every single time period.
This means that all the goods are substitutes based on the elasticities of
substitution. In addition, they are normal goods based on the income elas-
ticities. The result are presented for both specifications of the time-varying
parameters (the random walk model and the local trend model).

7.1 Performance of the RM and the LA-AIDS/CF

Both the RM and the LA-AIDS/CF approximated the true time-varying
elasticities of substitution with positive values at every time point under
the RWM. In addition, the approximating values are close to the true ones
within the same utility branch for both demand specifications. On the other
hand, while the RM approximated all the three time-varying elasticities of
substitution with the correct positive signs at every time period under the
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LTM, the LA-AIDS/CF approximated 2 of them with the wrong negative
sign (Table 2). The LA-AIDS/CF thus identified goods as complements while
they are actually substitutes at every single time period. By comparing the
values of the time-varying coefficient elasticities of substitution in Table 2,
one realizes that the LA-AIDS/CF produces a poor approximation of the
NL-AIDS at every time point.

On the other hand, it appears from Table 3 that the RM correctly clas-
sified x1,x2 and x3 as normal goods under both the RWM and the LTM at
every time period. In addition, this specification produced a correct classifi-
cation of the three goods in terms of them being normal necessities and/or
luxuries. A notable fact from Table 3 is that the RM produced approximat-
ing time-varying income elasticities the values of which are close to the true
ones. In contrast, the LA-AIDS/CF performed poorly in recovering the true
time-varying income elasticities. Whenever the values of its approximations
were positive, they underestimated the true ones. Otherwise, the approxi-
mating values of the time-varying income elasticities from this model were
negative while the true ones are positive. Finally, the time-varying income
elasticities produced by the LA-AIDS/CF are poor approximations of the
NL-AIDS.

The RM correctly recovered the signs of the compensated cross-price elas-
ticities (Table 4). The approximating values of the time-varying compensated
cross-price elasticities are close to the true ones under both the RWM and
the LTM within the same utility branch. The results in Table 4 also show
that the LA-AIDS/CF produced approximations of the true time-varying
elasticities with negative values, except for η∗13,t under the LTM. Even worse,
the LA-AIDS/CF produced an approximation of η∗23,t with both negative and
positive values.

7.2 Performance of the NL-AIDS and the LA-AIDS/SF

The NL-AIDS approximated the true time-varying elasticities of substi-
tution with positive values under the RWM and the LTM. However, the
approximating values were not close to the true ones. On the other hand,
the model produced approximations of the time-varying income elasticities
the values of which tended to be constant over time. Under the LTM, the
approximating values of the time-varying income elasticities produced by this
specification are very close to one, regardless of the magnitude of the true val-
ues. Finally, this model produced compensated cross-price elasticities with
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Table 2: Time-varying elasticities of substitution

Random Walk Model

t = 1 2 3 4 6 12 24 36 48 60

σ12,t True 0.40 0.39 0.39 0.38 0.37 0.27 0.33 0.43 0.34 0.41
RM 0.30 0.34 0.34 0.32 0.34 0.32 0.37 0.31 0.35 0.33
NLAI 1.34 1.64 1.64 1.57 1.62 1.62 1.57 1.57 1.65 1.63
LAISF -0.37 -0.42 -0.36 -0.23 -0.36 -0.32 -0.48 -0.25 -0.40 -0.36
LAICF 0.34 0.31 0.34 0.39 0.34 0.36 0.21 0.40 0.35 0.37

σ13,t True 0.15 0.60 0.84 1.12 2.00 0.80 0.94 1.39 2.90 2.79
RM 0.60 0.77 0.75 0.67 0.75 0.68 0.38 0.68 0.75 0.91
NLAI 0.16 0.20 0.22 0.35 0.20 0.27 0.64 0.25 0.20 0.01
LAISF -0.30 -0.26 -0.22 -0.03 -0.25 -0.14 -0.40 -0.18 -0.24 -0.53
LAICF 0.47 0.48 0.49 0.56 0.48 0.53 0.72 0.52 0.52 0.40

σ23,t True 0.91 0.93 0.88 0.64 0.92 0.89 0.25 0.97 1.43 1.17
RM 0.25 0.29 0.88 0.27 0.28 0.27 0.32 0.25 0.30 0.28
NLAI 1.93 1.94 1.92 1.83 1.91 1.89 1.95 1.84 1.94 1.95
LAISF 0.26 0.24 0.28 0.35 0.27 0.30 0.23 0.33 0.26 0.26
LAICF 0.27 0.24 0.28 0.35 0.28 0.30 0.22 0.34 0.25 0.27

Local Trend Model

σ12,t True 0.17 0.18 0.20 0.20 0.16 0.14 0.13 0.06 0.09 0.07
RM 0.13 0.11 0.12 0.14 0.15 0.14 0.11 0.14 0.15 0.18
NLAI 0.44 0.42 1.10 1.10 1.11 1.07 1.05 1.06 1.07 1.08
LAISF -0.91 -1.00 -0.98 -1.04 -1.12 -1.01 -1.09 -1.67 -1.93 -2.51
LAICF -0.13 -0.18 -0.17 -0.21 -0.24 -0.17 -0.20 -0.53 -0.68 -1.00

σ13,t True 3.05 3.07 2.96 3.01 3.06 2.95 2.65 2.42 2.95 2.45
RM 0.30 0.28 0.41 0.44 0.41 0.43 1.08 1.31 1.26 1.89
NLAI 1.06 1.08 1.08 1.09 1.22 1.25 1.59 1.79 1.74 2.30
LAISF 1.25 1.33 1.46 1.52 1.39 1.48 2.24 2.72 2.59 3.86
LAICF 1.29 1.38 1.41 1.45 1.36 1.43 2.08 2.49 2.37 3.46

σ23,t True 1.71 1.77 1.81 1.86 1.89 1.49 1.37 2.16 2.27 2.85
RM 0.23 0.19 0.17 0.17 0.22 0.21 0.23 0.27 0.24 0.31
NLAI 0.53 1.08 1.08 1.08 1.05 1.05 1.02 1.05 1.04 1.06
LAISF -0.41 -0.33 -0.35 -0.43 -0.44 -0.57 -0.85 -0.04 -1.43 -1.74
LAICF -0.39 -0.38 -0.40 -0.47 -0.48 -0.41 -0.90 -1.09 -1.48 -1.74
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Table 3: Time-varying income elasticities

Random Walk Model

t = 1 2 3 4 6 12 24 36 48 60

η1t True 1.039 1.041 1.043 1.062 1.042 1.043 1.136 1.043 1.024 1.028
RM 1.054 1.028 1.030 1.040 1.031 1.040 1.097 1.042 1.029 1.021
NLAI 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
LAISF 1.072 1.072 1.072 1.073 1.072 1.072 1.077 1.072 1.072 1.071
LAICF 0.074 0.075 0.075 0.078 0.076 0.076 0.079 0.075 0.069 0.070

η2t True 0.449 0.485 0.740 0.435 0.487 0.434 0.489 0.446 0.463 0.456
RM 0.380 0.441 0.440 0.409 0.487 0.400 0.480 0.384 0.445 0.4187
NLAI 0.996 0.996 0.996 0.997 0.996 0.996 0.996 0.997 0.996 0.996
LAISF 0.279 0.255 0.283 0.356 0.286 0.304 0.194 0.347 0.262 0.287
LAICF -0.745 -0.777 -0.749 -0.681 -0.748 -0.725 -0.909 -0.675 -0.715 -0.705

η3t True 0.695 0.645 0.633 0.504 0.635 0.698 0.184 0.716 0.965 0.878
RM 0.697 0.923 0.890 0.798 0.887 0.806 0.417 0.810 0.891 1.096
NLAI 0.997 0.997 0.997 0.997 0.997 0.997 0.998 0.997 0.997 0.996
LAISF 0.213 0.241 0.264 0.390 0.248 0.314 0.666 0.289 0.247 0.062
LAICF -0.818 -0.799 -0.776 -0.652 -0.795 -0.719 -0.386 -0.739 -0.725 -0.924

Local Trend Model

η1t True 1.000 1.000 0.997 0.995 0.996 0.984 0.996 0.970 0.958 0.967
RM 0.998 0.994 0.995 0.992 0.992 0.986 0.980 0.974 0.970 0.966
NLAI 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
LAISF 1.027 1.027 1.028 1.028 1.028 1.028 1.028 0.027 1.027 1.027
LAICF 0.027 0.027 0.029 0.029 0.029 0.028 0.028 0.028 0.028 0.027

η2t True 0.544 0.487 0.522 0.566 0.589 0.602 0.568 0.781 0.838 0.968
RM 0.571 0.580 0.604 0.643 0.669 0.769 0.717 0.882 1.051 1.167
NLAI 0.991 0.992 0.993 0.984 0.984 0.982 0.983 0.980 0.976 0.973
LAISF 0.211 0.326 0.203 0.161 0.136 0.039 0.070 -0.134 -0.323 -0.501
LAICF -0.794 -0.677 -0.803 -0.846 -0.872 -0.971 -0.940 -0.144 -1.332 -1.508

η3t True 1.809 2.290 2.491 2.652 2.187 3.175 4.370 10.39 12.15 15.78
RM 1.932 2.270 2.391 2.597 2.367 2.571 6.523 7.918 7.630 11.50
NLAI 1.009 1.011 1.011 1.018 1.024 1.031 1.068 1.093 1.085 1.151
LAISF 0.963 0.953 1.062 1.073 1.063 1.081 1.200 1.272 1.252 1.447
LAICF -0.032 -0.043 0.064 0.075 0.065 0.083 0.205 0.272 0.258 0.457
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Table 4: Time-varying cross-price elasticities

Random Walk Model

t = 1 2 3 4 6 12 24 36 48 60

η∗12,t True 0.015 0.015 0.015 0.017 0.014 0.011 0.011 0.018 0.013 0.016
RM 0.013 0.012 0.012 0.012 0.012 0.012 0.013 0.012 0.012 0.012
NLAI 0.066 0.065 0.067 0.072 0.067 0.068 0.065 0.071 0.065 0.067
LAISF 0.016 0.015 0.016 0.021 0.017 0.018 0.010 0.020 0.015 0.017
LAICF -0.025 -0.025 -0.025 -0.026 -0.025 -0.026 -0.027 -0.026 -0.026 -0.025

η∗13,t True 0.101 0.100 0.100 0.096 0.099 0.118 0.068 0.120 0.158 0.106
RM 0.039 0.038 0.039 0.039 0.039 0.039 0.041 0.039 0.038 0.038
NLAI 0.005 0.007 0.009 0.019 0.008 0.012 0.072 0.010 0.007 -0.002
LAISF 0.027 0.029 0.031 0.042 0.030 0.034 0.101 0.032 0.029 0.0.19
LAICF -0.026 -0.026 -0.026 -0.027 -0.026 -0.026 -0.032 -0.026 -0.023 -0.023

η∗23,t True 0.043 0.047 0.045 0.039 0.046 0.049 0.029 0.051 0.071 0.047
RM 2.0e-5 1.1e-5 1.6e-5 1.5e-5 1.9e-5 1.1e-5 2.2e-5 1.4e-5 1.1e-5 2.2e-5
NLAI 0.201 0.207 0.204 0.198 0.203 0.202 0.289 0.191 0.206 0.191
LAISF -0.062 -0.066 -0.061 -0.046 -0.061 -00057 -0.063 -0.051 -0.065 -0.064
LAICF -0.062 -0.060 -0.057 -0.046 -0.056 -0.058 -0.023 -0.057 -0.095 -0.082

Local Trend Model

η∗12,t True 0.008 0.006 0.006 0.006 0.007 0.003 0.002 0.001 0.001 0.001
RM 0.044 0.048 0.006 0.005 0.004 0.004 0.003 0.003 0.003 0.003
NLAI 0.013 0.0190 0.016 0.015 0.0360 0.032 0.032 0.026 0.023 0.020
LAISF 0.024 0.030 -0.004 -0.005 -0.006 -0.007 -0.006 -0.010 -0.014 -0.015
LAICF -0.008 -0.008 -0.040 -0.040 -0.040 -0.007 -0.037 -0.036 -0.036 -0.035

η∗13,t True 0.056 0.043 0.039 0.036 0.045 0.036 0.013 0.009 0.012 0.005
RM 0.005 0.004 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.005
NLAI 0.020 0.015 0.014 0.013 0.018 0.015 0.008 0.006 0.007 0.005
LAISF 0.025 0.020 0.020 0.161 0.136 0.021 0.018 0.011 0.010 0.008
LAICF 0.005 0.005 0.006 0.018 0.006 0.006 0.006 0.006 0.005 0.005

η∗23,t True 0.031 0.021 0.02 0.020 0.027 0.022 0.008 0.007 0.010 0.005
RM 0.037 0.028 0.017 0.018 0.018 0.020 0.017 0.020 0.023 0.025
NLAI 0.058 0.043 0.050 0.048 0.005 0.002 -0.001 -0.001 -0.002 -0.005
LAISF -0.020 -0.014 -0.076 -0.084 -0.069 -0.078 -0.075 -0.092 -0.108 -0.122
LAICF 0.009 0.005 -0.053 -0.059 -0.061 -0.068 -0.068 -0.082 -0.091 -0.105
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the correct sign, except for η∗13,t under the RWM and η∗23,t under the LTM
for which both negative and positive values were produced.

The LA-AIDS/SF tended to produce negative values for the time-varying
elasticities of substitution, except for σ23,t under the RWM, and σ13,t under
the LTM. Furthermore, this model tended to produce constant values of η1t
and fails to capture very high variations in the values of true time-varying
income elasticities. Finally, this specification produced time-varying com-
pensated cross-price elasticities with the wrong sign in most of the cases.

7.3 Robustness of the findings

Table 5 shows the time-varying elasticities obtained by using different val-
ues of the time-varying parameters in the WS-branch utility function. This
new Monte Carlo experiment shows that the previous findings are robust to
different values of the time-varying parameters in the true model. For exam-
ple, the RM model produced approximating time-varying income elasticities
the values of which are very close to the true ones. In addition, the model
was able to capture the very high values of the time-varying income elas-
ticities. The LA-AIDS/CF produced time-varying income and cross-price
elasticities with negative values as in the initial experiment. The NL-AIDS,
on the other hand, tended to produce constant values for the time-varying
income elasticities.

7.4 Theoretical Regularity

The regularity condition is defined as the non-violation of the negative
semi-definiteness of the Slutsky matrix. Rather than being imposed during
the estimation procedure, this condition is usually just checked after estima-
tion. In the case of a three-goods demand system, the regularity condition
is defined below for both the AIDS and the Rotterdam model. In the AIDS,
the Slutsky matrix is negative semi-definite at each time period t if

η∗11t < 0 and

∣∣∣∣ η∗11t η∗12t
η∗21t η∗22t

∣∣∣∣ = η∗11tη
∗
22t − η∗21tη∗12t > 0. (7.1)

However, for the Rotterdam model one must have

π11t < 0 and

∣∣∣∣ π11t π12t
π21t π22t

∣∣∣∣ = π11tπ22t − π21tπ12t > 0. (7.2)
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Table 5: Time-varying elasticities: Robustness checks

Random Walk Model Local Trend Model

t = 1 12 24 36 60 1 12 24 36 60

σ12,t True 0.246 0.248 0.205 0.230 0.263 0.116 0.054 0.112 0.044 0.055
RM 0.534 0.517 0.510 0.485 0.536 0.629 0.648 0.681 0.742 1.041
NLAI 0.943 0.946 0.948 0.946 0.946 1.109 0.830 0.758 0.755 0.650
LAISF 0.596 0.615 0.638 0.662 0.604 -0.283 -1.311 -0.643 -0.898 -1.721
LAICF 1.036 1.035 1.032 1.030 1.035 0.481 0.421 0.254 0.233 -0.098

σ13,t True 3.006 3.035 2.770 3.025 2.878 2.992 2.872 2.875 2.900 2.911
RM 1.300 1.153 1.316 1.204 1.542 0.389 0.603 0.996 1.472 2.016
NLAI 0.430 0.478 0.418 0.465 0.313 1.210 1.141 1.138 1.220 1.361
LAISF 0.303 0.366 0.291 0.352 0.155 1.515 1.818 1.977 2.594 3.627
LAICF 0.905 0.913 0.902 0.910 0.885 1.342 1.552 1.653 2.053 2.720

σ23,t True 0.883 0.853 0.619 0.736 0.870 1.113 1.110 1.442 1.472 2.521
RM 0.476 0.455 0.451 0.422 0.484 0.674 0.699 0.730 0.817 1.149
NLAI 2.175 2.105 2.103 2.018 2.249 1.133 0.975 0.925 0.971 0.981
LAISF 1.941 1.887 1.873 1.808 1.987 0.380 0.276 0.080 -0.046 -0.565
LAICF 1.925 1.870 1.864 1.799 1.974 0.336 0.225 0.022 -0.277 -0.634

η1t True 1.031 1.033 1.041 1.042 1.032 0.981 0.963 0.967 0.952 0.955
RM 1.057 1.070 1.059 1.070 1.044 0.989 0.977 0.965 0.960 0.952
NLAI 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
LAISF 1.060 1.061 1.061 1.061 1.060 1.021 1.020 1.020 1.020 1.020
LAICF 0.058 0.059 0.059 0.059 0.057 0.021 0.021 0.020 0.020 0.020

η2t True 0.303 0.290 0.232 0.253 0.312 0.365 0.372 0.485 0.483 0.827
RM 0.296 0.284 0.280 0.262 0.299 0.478 0.548 0.689 0.736 1.040
NLAI 0.998 0.998 0.998 0.998 0.998 0.985 0.987 0.982 0.981 0.973
LAISF 0.571 0.590 0.621 0.646 0.585 0.186 0.138 -0.162 -0.185 -0.694
LAICF -0.412 -0.396 -0.370 -0.342 -0.396 -0.834 -0.883 -1.194 -1.213 -1.728

η3t True 0.965 0.973 0.930 0.946 0.943 2.506 4.489 4.375 8.314 10.64
RM 0.621 0.544 0.629 0.571 0.747 2.021 3.043 5.058 7.474 10.30
NLAI 0.998 0.998 0.998 0.998 0.998 1.015 1.046 1.061 1.100 1.163
LAISF 0.393 0.449 0.381 0.434 0.260 1.210 1.308 1.368 1.596 1.976
LAICF -0.581 -0.529 -0.604 -0.547 -0.704 0.220 0.317 0.381 0.613 1.001

η∗12,t True 0.009 0.010 0.009 0.010 0.010 0.004 0.002 0.002 0.001 0.001

RM 0.019 0.019 0.019 0.019 0.018 0.020 0.018 0.015 0.015 0.015
NLAI 0.036 0.038 0.041 0.044 0.038 0.034 0.023 0.016 0.015 0.009
LAISF 0.041 0.043 0.046 0.049 0.042 0.015 0.013 0.006 0.006 0.000
LAICF 0.019 0.019 0.019 0.019 0.018 -0.016 -0.0160 -0.015 -0.015 -0.015

η∗13,t True 0.191 0.212 0.172 0.206 0.150 0.074 0.043 0.036 0.023 0.014

RM 0.084 0.085 0.084 0.085 0.083 0.010 0.010 0.010 0.010 0.010
NLAI 0.026 0.032 0.025 0.030 0.015 0.030 0.017 0.014 0.009 0.006
LAISF 0.061 0.067 0.059 0.065 0.049 0.034 0.024 0.021 0.016 0.013
LAICF -0.008 -0.008 -0.008 -0.008 -0.008 0.009 0.008 0.008 0.008 0.008

η∗23,t True 0.056 0.060 0.038 0.050 0.045 0.027 0.017 0.018 0.012 0.012

RM 0.028 0.027 0.027 0.025 0.028 0.034 0.030 0.024 0.025 0.034
NLAI 0.818 0.792 0.730 0.691 0.782 0.034 0.060 0.067 0.061 0.080
LAISF 0.602 0.582 0.540 0.511 0.577 -0.069 -0.074 -0.101 -0.104 -0.150
LAICF 0.573 0.548 0.507 0.473 0.553 -0.058 -0.059 -0.072 -0.077 -0.105
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Table 6: Regularity index by model and TVC specification

NLAI LAISF LAICF RM

Period RWM LTM RWM LTM RWM LTM RWM LTM

1 84.3 72.5 47.8 53.3 66.9 51.7 100.0 98.0
2 86.1 71.9 50.0 62.4 64.8 60.3 100.0 98.1
3 87.6 71.9 49.1 40.8 66.6 34.8 100.0 96.1
4 95.3 71.3 56.1 39.5 71.7 32.8 100.0 95.9
6 85.0 95.9 48.7 35.5 66.7 28.6 100.0 95.3

12 91.7 94.8 52.3 33.3 68.0 24.1 100.0 95.5
18 91.8 95.8 60.7 47.8 64.6 30.7 100.0 94.3
24 94.2 95.6 61.4 45.9 61.1 28.2 100.0 93.2
30 92.6 93.3 55.5 37.6 67.6 21.4 100.0 90.9
36 90.9 91.5 48.6 35.8 71.2 18.3 100.0 91.2
42 86.6 90.4 48.1 25.1 68.3 14.1 100.0 91.9
48 88.5 88.2 53.2 27.0 65.3 12.3 100.0 91.8
54 83.0 87.2 46.3 26.6 68.1 11.0 100.0 92.0
60 64.7 85.8 42.8 28.3 67.2 9.8 100.0 92.1

Table 6 reports, at selected time periods, the percentage of replications pro-
ducing non-violation of the negative semi-definiteness as an index of regular-
ity for the four models.

The Rotterdam model satisfied the regularity condition under the ran-
dom walk specification in every single replication and at every single time
period. The regularity index is thus equal to 100. Under the local trend
model specification, the regularity index ranged from 91 to 98 by time pe-
riod, meaning that a minimum of 91% of the replications per time period
satisfied the negative semi-definiteness condition of the Slutsky matrix. On
the other hand, the LA-AIDS/CF model achieved a minimum regularity in-
dex as low as 9.8 under the local trend model, compared to 60.6 under the
random walk model. The maximum proportion of replications per time pe-
riod that satisfied the regularity condition was also higher under the random
walk model (76.0%) than under the local trend model specification (60.3%).
In general, the NL-AIDS achieved higher regularity scores compared to the
LA-AIDS/CF at each time point.
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8 Conclusion

The aim of this paper was to evaluate the ability of the AIDS and the
RM to recover true time-varying elasticities derived from the WS-branch
utility function. A structural time series model was specified for each demand
specification and the time-varying parameters estimated using the Kalman
filter. Next, time varying elasticities were computed from the estimated
time-varying parameters obtained during the bootstrap procedure. We found
that the RM performed better than the LA-AIDS/CF in that it correctly
recovered the positive signs of the time-varying elasticities.

The findings in this paper lead to two important implications for the
demand analysis with time-varying coefficients. First, with regard to the
performance of the LA-AIDS/CF, this model should not be considered as
an approximation of the NL-AIDS. It should, in contrast, be considered as
a model on its own. This is important since its outcomes may substantially
differ from those of the NL-AIDS with regard to the signs and the magnitude
of the estimated time-varying parameters and elasticities.

The second implication relates to the choice between an AIDS-type model
and the Rotterdam model in empirical demand analysis. An important rec-
ommendation is that such a choice be made with respect to the performance
of each model to better approximate the properties of an hypothesized true
model. However, the results in this paper may be dependent on the structure
of the true model and the particular Monte Carlo experiment that was imple-
mented. Therefore, caution should be used in selecting the correct structure
to approximate the properties that are contained in a given dataset.

It is noteworthy that the comparison of the performance of models in-
cluded in this paper mainly focused on how they can approximate the quan-
titative properties of the true model. However, a broader range of aspects
can be considered as well. For example, future research efforts to assess the
performance of an AIDS-type model and the Rotterdam model may focus on
their forecasting abilities. In the specific case of time-varying parameters, the
two models can also be assessed in terms of their performance in producing
time series of elasticities that recover the time series properties of the true
time-varying elasticities.
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