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1 Introduction

In this paper we examine the equilibria of a spatial model of proportional repre-
sentation, in which the policy space is multidimensional and the policy outcome
is a linear combination of parties’ positions weighted by the share of votes each
party gets in the election. The understanding of such issues is a fundamental
step in order to study the relation between strategic voting and the number of
parties resulting at equilibrium, as well as the relation between strategic voting
and the position of the parties voters decide to vote for.

In a recent paper (De Sinopoli and Iannantuoni 2000) we analyze a com-
pletely analogous voting game of proportional representation, in which the pol-
icy space is unidimensional. The main result is that, if voters’ preferences are
single peaked, essentially an unique Nash equilibrium exists, characterized by
the fact that any voter on the left/right of the corresponding policy outcome
votes for the leftmost /rightmost party. The incentive to vote for an extreme is
given by the maximal effect that such a vote has on the outcome.

In this paper, we first show, via an example, how the assumption of quasi-
concavity of the utility function (that is the natural extension of single-peakedness
to the multidimensional case) is not sufficient to obtain the result that only the
extreme parties get votes. More precisely, we describe a game in which there
are five parties located, respectively, at the four corners and at the center of
the square: independently of the number of players, every voter voting for the
party located at the center is a Nash equilibrium of the game.

From this example we argue that to obtain an extreme result stronger as-
sumptions on voters preferences are needed. If we assume that the policy space
is the unit square and there are parties located at the four corners, it is unam-
biguous that these parties are the extreme ones. Under this political situation,
we trivially prove that, if voters’ preferences are single peaked in each dimen-
sion with the peak independent from the other dimension, only the extreme
parties take a relevant amount of votes. Hence, under the above assumptions,
the extreme result holds also when strategic voters face a two-dimensional policy
space.

Making stronger assumptions on utility function, we are able to drop the
assumption that there are four parties located at the corners. We study the
case in which each voter has a loss function given by a weighted sum of each
issue’s distance from his preferred policy. In this case we show that only parties
located on the boundary of the convex hull of parties’ positions take a relevant
amount of votes.

We stress that even if all the results are proven assuming a two-dimensional
policy space, the extension to more than two dimensions is straightforward.

Before proceeding to the model, let us mention that Schofied and Sened
(2002) present a model of multi-party spatial competition under proportional
rule. They model each party as a set of delegates choosing a leader who an-
nounces the policy declaration to the electorate. Their main result, supported
also by an empirical analysis to the Israeli politics, shows that “the centre is
empty in politics”.



We describe the model in Section 2, we present the counterexample in which
voters’ utilities are quasi-concave but there exist an equilibrium where the center
takes all the votes in Section 3. Section 4 contains the study of the case where
four parties are located at corners, while in Section 5 we analyze the case in
which each voter has a loss function given by a weighted sum of each issue’s
distance from his preferred policy.

2 The Model

Policy Space. The policy space X = [0, 1]2

Parties. Parties are fixed both in number and in their positions, in that
there is no strategic role for them: there is an exogenously given set of parties
M ={1,..,k,..m}, indexed by k. Each party k is characterized by a policy
Ck € [0, 1]2'

Proportional Rule. Given the set of parties M, each voter can cast his vote
for any party.! The pure strategy space of each player i is S; = {1,...,k, ..., m}
where each k € S; is a vector of m components with all zeros except for a one
in position k, which represents the vote for party k.

A mixed strategy of player i is a vector o; = (0}, ...Jf, ...,07") where each
Ji.“ represents the probability that player ¢ votes for party k.

The policy outcome. The position of the government, i.e., the policy out-
come, is a linear combination of parties’ policies each coefficient being equal
to the corresponding share of votes. Given a pure strategy combination s =
(81,82 .0y 8n), V(8) = % > s; is the vector representing for each party its share

iEN
of votes, hence the policy outcome can be written as:

X(5) =3 Coon (s). &
k=1

Voters. Each strategic voter i is characterized by a bliss point §; € © =
[0,1]°. We assume that it exists a fundamental utility function (& la Harsany)
u: R* — R, which represents the preferences, that is u;(X) = u(X, 6;). In other
words, a player is fully characterized by his bliss point.

Given the set of parties and the utility function u, a finite game T' is char-
acterized by a set of players N = {1, ...,4,...,n} and their bliss points.

The utility that player 7 gets under the strategy combination s is:

U;(s) = u(X(s),6,)

'n this model we do not allow for abstention. We cannot claim that this assumption is
neutral. In our proof we use the fact that, as the number of players goes to infinity, the weight
of each player goes to zero, and this does not hold if a large number of voters abstains.



Given a mixed strategy combination o = (074, ...,0,), because players make
their choice independently of each other, the probability that s = (s1, s, ..., $»)

occurs is:
o(s) = H ot

iEN

The expected utility that player 7 gets under the mixed strategy combination
o is:

Ui(o) = Za(s)Ui(s).

In the following, as usual, we shall write ¢ = (0_;,0;), where 0_; =
(01,...04-1,0441, ...05,) denotes the (n — 1) —tuple of strategies of the players
other than ¢. Furthermore s; will denote the mixed strategy o; that gives prob-
ability one to the pure strategy s;.

3 A counterexample

In De Sinopoli and Iannantuoni (2000) we have shown that single-peakdness
of voters’ preferences is the only assumption needed to prove that almost any
voter, in any pure strategy equilibrium, votes only for the two extremist parties.
Then, it is quite natural to check if the strict-quasi-concavity of the utility
function, that is the natural extension of single-peakdness when the policy space
is multidimensional, leads to a similar result.

In this section we discuss an example, in which the policy space is two-
dimensional, that shows that this is not the case.

More precisely, we describe a game in which there are five parties located,
respectively, at the four corners and at the center of the square. Voters have
a strictly quasi-concave utility function and are located in precisely defined
regions of the square. We show that, independently of the number of players,
every voter voting for the party located at the center is a Nash equilibrium of
the game.

The policy space is the unit square, i.e. X = [0, 1]2.

There are five parties located at the four corners of the square and at the
center, i.e. at {(0,0) ,(0,1),(1,0),(1,1), (%, %)}

The utility function of voter ¢, characterized by the bliss point 8; = (6;1,6:2),
is:

u; (X,0;) = —(Xy— 671',1)2 - (X2 — 9¢,2)2 -

1 1 1 2
—10\/[(9¢,2 - 5) X1+ 3 (0i1 —0;,2) — (9¢,1 - 5) X2:|




Voters are located in four regions (see figure 1) on © =04 x @3 = [0, 1]2:

3 15 3,1
= < mi - _——_ - — = —
A {Gl_mm{Qﬂg 4,4 292,2}

It takes few calculations to check that, independently from the number of
voters, everybody voting for the center is a Nash Equilibrium of the game.

We show that for a player 7 located in region A and with 6, 5 < % (see figure
2), voting for the center is a best reply to everybody voting for the center.
By symmetry, it will follow that everybody voting for the center is a Nash
equilibrium of the game.

If player ¢ votes for the center the policy outcome is (X1, X3) = (%, %), hence
2 2
u((5-5(33)),0:) = = (3= 0s1)" = (5~ 0s2)

If player i votes for the left-bottom corner (0,0) the policy outcome is

(X1,X3) = (% — %,%— %), hence

(o 000,00 = (3 & )~ 2
_10\/[(9i,2 -3 (B —5)+ 301 —0i2)— (61— 3) (3 — %)]2

If player i votes for the left-top corner the policy outcome is (Xi,Xs3) =
(1= g 3+ ), honco 2

U ((S—i, (0, 1)) ,01) = — (% - % - 91',1) — (% =+ % — 91',

10y [(0:2 =) (3= )+ 0in = 0:2) = (6~ 3)

If player ¢ votes for the right-bottom corner the policy outcome is (X1, Xso) =

1, 1 1_ 1
(2 t 33 Qn)’ hence




If player i votes for the right-top corner the policy outcome is (X1, X3) =
(3+ 35,3+ 35), hence

(p 1) 0) ==
_10\/ i2 — %_f_%)

The first easy observation is that voting the left-bottom corner, i.e. for (0,0),

is a better reply than voting for any other corner of the square’.

Hence if u ((s_i, (%, %)) ,91') > u((s_4,(0,0)),0;) voting for the party at

(3, %) is a best reply for player 1.

It is easy to calculate that

w((smey (3, 2)),62)—u (51, (0,0)) ,05) = L [%—1—1—9@14—91’,24—5 (ai,l_ai,gf],

n

which is strictly positive since 6; € A (i.e. 6,1 <3/20, 0 —1/4).
By symmetry, everybody voting for the party at (;, ;) is a Nash equilibrium

(independently from the number of the players).3

4 Parties at the corners of the square

The example above shows that to obtain an extreme result we have to make
stronger assumption on the utility function. In this section we furthermore
assume that the are four parties located at the four corners of the policy space.

Assumption 1: There exist the four extremists parties, i.e., LB, LT, RB,
RT with ¢, = (0,0), (1r = (0,1), (g = (1,0), {pr = (1,1).

Under Assumption 1, if preferences are single peaked in X (resp. X3) with
the peak independent from Xs(resp. X7i), in any pure strategy equilibrium,
almost all the voters vote for extreme parties. If we add the assumption that
the utility function u(X,8) is continuously differentiable with respect to the
policy, the result holds also for mixed strategies. The two assumptions can be
formulated as:

Assumption 2: VX5, 6;:
Xy < Xy <6;q0r6;1 <X <X, implies u(X1, Xz,6;) < u(Xy, Xo,0;)

VX, 6;:
X5 < XQ <#6;z0r ;5 < XQ < X implies u(X1, X2,0;) < u(X1, X3, 0;)

2For example, u; ((s—s, (0, 0)) 0;) —u((5-4,(0,1)),60;) =
£(1-20;2)>0for 05 < %
>Note that our proof also 1mphes that this Nash equilibrium is strict, and then it cannot
be eliminated by any usual refinement.



Assumption 3: The fundamental utility function u : #* — R is continu-
ously differentiable with respect to the policy.*

We first state a result for pure strategy equilibria. We stress that assumption
3 is not needed to obtain the result.

Proposition 1 Under Assumptions 1 and 2, let s be a pure strategy equilibrium
of the game I" with n voters, then
() if 0; < X (s )— L then s; = (0,0)
(B3) if6; > X (s )—|— thensl—(l 1)
() if Bi1 < X1 (s) — ; and 0;2 > X2 (s) + £ then s; = (0,1)
(6) if ;1 > X1 (s)+ 2 and 6,5 < X5 (s) — £ then s; = (1,0)

Proof. (a) First notice that if §; < X (s_;,(0,0)), then by Assumption
2 voting for (0,0) is the only best reply for player i against s_;. Because
X(s-4,(0,0)) = X(s) —1(¢,, — (0,0)) > X(s) — L, then 6, < X(s) — L implies
that (0,0) is the unique best reply, for player i, to s_;. (8) (v) (6) A symmetric
argument holds. m

We now study the case in which voters are allowed to play mixed strategies.
In order to get the result also assumption 3 is needed.
We recall that, given the set of parties M and the utility function u, a game T’
is characterized by the set of players and their bliss points. Let ¢ = (04, ..., 05,)
m
and i” = ) Z. With abuse of notation, let X (%) = 3 (. ig.
iEN k=1
We can state the following proposition:

Proposition 2 Under assumptions 1, 2 and 3, Ve > 0, Ing such that ¥n > nyg
if 0 is a Nash equilibrium of a game I with n voters, then:

() if 6; < X () — & then 0, = LB

(B) if 0; > X (u°) + € then o; = RT

(v) if 0,1 < X1 (p%) —¢e and ;2 > X5 (R°) + € then o, = LT

(6) if 91,1 > X1 (p%) +e and b;2 < X3 (%) —e then o; = RB.

Proof:
Given a mixed strategy o, the player j’s vote is a random vector® 5; with

—1?
Pr(s;=k) = J;?. Given 0_; = (01,...04_1,0441,..0), let § == 3§
JEN/i
and - = ﬁ >~ o;. The first step of the proof consists in proving the next
JEN/L
lemma:

4With assumption 2, this implies that Vo, V0; %ﬁ%) ; 0if z1 § 0,1 as well as Vz1,V0;

90D 2 0 if w2 S Oio.

5We remind readers that a vote is a vector with m components.



Lemma 3 V¢ >0 and V6 > 0, if n > ﬁ + 1, then Vo,Vi

d

Proof. To prove the lemma we can use Chebichev’s inequality component
by component. Given o_;, it is easy to verify that E(§f) = J;? and Var(§;?) =
_—i _—i
o¥(1—ok) < 1, hence E(3, ) =py * and Var(3, ) < m. By Chebychev’s
inequality we know that Vk, V¢:

o

s&)zl—g;m<

—3

s —po

§<Z> >1-6.

—1
-0 4

Sk T Hg

1
¢) s e

—1 —1

Hence
s —po

Pr<-

m

>¢>21—W,

-0

Sk T My

which is strictly greater than 1 — § for n > ﬁ +1 =

Lemma 4 Ve > 0, In§? such that Vn > nfB, if the game has n voters and if
0; < X (u°) — &, then LB is the only best reply for player i to o—*.

Proof: Fix € > 0. Define V8 € [O, 1-— %]2

ou(X,0
1.
(X1,X2)€[0+%,1] 1

By assumption 2 we know that M, 1 (6) < 0. Moreover, given the continuity
of %))((—1’02 we can apply the theorem of the maximum® to deduce that the
function M, ; (f) is continuous, hence it has a maximum on [O, 1-— %]2, which
is strictly negative. Let

MZy= max M.(6).
o€[0,1-5]
Define analogously M_,. Let M = max {M:,p M:,Q}, and c=ming_(g,0) {Ck,l + Ck,Q}.

Let M denote the upper bound” of ﬂ";}((—’el‘ on [0, 1]4, and let §7 = 2—&% >0

6Because there are various versions of the theorem of the maximum, we prefer to state ex-
plicitly the version we are using. Let f : ¥ xX® — R be a continuous function and g : & — P(¥)
be a compact-valued, continuous correspondence, then f*(¢) := max {f(y,¢) | ¥ € g(¢)} is
continuous on .

ou(X,0)
X

"The continuity of assures that such a bound exists.



and ¢* = giﬂ:/ék. We prove that if n > WL%* +1, then LB is the only best re-

ply for player i, which, setting n{® equal to the smallest integer strictly greater
than WL%* + 1, directly implies the claim.
Take a party ¢ # LB. We show that

u(X (0_4,¢),6;) —u(X(6_4 LB),0;) <0
which implies that ¢ # LB is not a best reply for player .

uw(X (0_4,¢),68;) —u(X(6_4LB),6;)
1

= Y o(s) [u (X (5-5:0) = —(C. = CLB),@) —u (X (s-i,c) ,91')]

s_;€S8_;

Because the outcome function X (s) depends only upon v(s), denoting with
V.7* the set of all vectors representing the share of votes obtained by each party
with (n — 1) voters, the above expression can be written as:

> P =) [u (X074 - 2 ) (X (5) 0)

o teVy
where, with abuse of notation, X (v;%,c) = 2= + 2=1 1;1 CV (k)"
By the mean value theorem we know that Vv, ?,

X *belonging to the line joining X (v; i c) — %Cc and X (v; : c) such that

0Xo

[u (X (v;i,c) ,91') — u(X (11);",0) — %(Cc — CLB),GZ')] _ Ou(X™,6;)

6‘X1 Cc’l +

Cc,?'

Hence we have:

u(X (0-5¢),60:) —u(X (0, LB) ,6) |
_ % Z Pr(§ :v_i) [u (X (vn ,c) ,91') —u(X (;n ,c) — E(CC_CLB),Gi)]

— - <
v eV,
SPr(|§ - <) [MIa(8780)Cen + M o(67,02)C, )
+=(1-Pr(|5 —p| < §)M
n




where

M;:,l(d? ,91'1) = max " ) %
(X1,X2)€[X (a7 18" ,c)— 5.1 1
M;:,Q(d) ,91'2) = max M

(Xl,Xz)e[X(ﬂ"*i—5*,c)—,—ﬁcc,1]2 90Xy

Now we prove that, for n > 5= +1, My ((¢%,0:1) < MZas wellasM: 5(¢7, 0 2)
< M*.
We show that M (¢, 0;1) < MZ, the other one being completely analo-

gous.
From the definition of M7, it suffices to prove that M} | (¢",0.1) < M.,

which is true if Xy(p" — ¢, ¢) — £¢, 1 is greater than 6; 1 + £, and Xy (" —
(f, c)— %C ¢,2 is greater than 6,5 + 5. We only prove the inequality for the first
coordinate because the proof for the second coordinate is completely analogous.

I 1 n—1 o n—1 N
Xi(f7 =6 ,0) = —Cou =" B e~ —— D " G =
k k

o 1 n—1 .

X1 (p )_EZU;CCM R Z¢ Cr,a >
% %

oy 1 * 1 *

Xl(ﬂ)—ﬁ—mfﬁ 29¢,1+6—E—m¢7-

Hence this step of the proof is concluded by noticing that 67 is by definition
less than %, hence®

1 ) *2
Gi,1+6———m¢*>0i,1+e—m¢*— ¢ =
n m

20 — 8v/6)e? 20 — 8v/6
SO S T = FP
m 8
1
91',1 + 56.

By Lemma 3, we know that, for n > WL%* +1,

Pr(|3 — 17| < &) [My(9",001)Cor + My o(6%,0:2)C, ) +
421—Pr(|§ —p°| < $NM<

81n the following we assume that € < 1, since otherwise the proposition is trivially true.



—MZc *o —MZc

(1—-8)M2c+26:M = (1- i

Summarizing, we have proved that for n > ﬁ + 1, for every strategy
c# LB

uw(X (0_4,¢),0;) —u(X (6_4,LB),8;) <

IA
-y
v*

1 (@750i1)C 01 + My, o(67, 9i2)Cc,2] +

IA
<
A

1 YA 2
~(1- &) Mic+ ~6:M =0,

which implies that ¢ # LB is not a best reply for player .
Analogously, the following Lemmas can be proved:
Lemma 5 Ve > 0, 3nf? such that ¥n > nft’', if the game has n voters and if

6; > X (u°) + &, then RT is the only best reply for player i to oc~*.

Lemma 6 Ve > 0, In? such that Vn > nl™, if the game has n voters and if
0;1 < X1 (%) —¢, and 0,9 > Xy (%) + ¢, then LT is the only best reply for
player i to o~ *.

Lemma 7 Ve > 0, Inf? such that Yn > nfiP, if the game has n voters and if
0i1> X1 (B°) +e€, and ;2 < X5 (1°) — €, then RB is the only best reply for
player i to o—*

Setting ng = max {n§?®, n§", n§T, n§P} completes the proof. W

10



5 A specific utility function

In the previous section we have made a very strong political assumption, that is
there are four parties located at the corners of the policy space. In the following
we will drop Assumption 1, at the cost to deal with a much more specific utility
function, which is linear and separable in the two dimensions:

Assumption 4: The fundamental utility function u : #* — R takes the
form:

u(X,0;) = —a(0;) 65,0 — Xa| — 02 — Xa

where « (6;) : [0,1]> — R, is a continuous function.

The above utility is simply a normalized weighted sum of each issue’s dis-
tance from player i’s bliss policy.
For any 6, we define the following four sets of parties:

LB(0) = {k € M s.t. arglgréij\r/l[ [a (0) i t Ck,?]}
RT (0) = {k € M s.t. arg max [ (8) Crq + Ck,Q]}
RB(6) = {k € M s.t. argiréaj\l)/[c [a 9) Ck,1 - Ck,Q]}

LT (0) =<k € M s.t. arglgréij\r}[ [ (6) Con — Cho] ¢ -

We will show that almost every voter votes, in any equilibrium, for parties
belonging to the above sets. Hence, parties that are not located on the boundary
of the convex hull of parties’ positions will not take a relevant amount of votes.
The following proposition presents the result for pure strategy combinations:

Proposition 8 Under Assumption 4, let s be a pure strategy equilibrium of the
game I' with n voters, then

(
(8) if 0; > X (s) + L then s; = rt € RT (6;)
("y) ’Lf 91',1 S X1 (S) — % and 91',2 Z XQ (S)
(6) ’Lf 91',1 Z X1 (S) + % and 01',2 S XQ (S)

then s; = It € LT (6;)
then s; =rb € RB (6;)

Proof. (a) Given s_;, take a party Ib € LB (6;) and a party c ¢ LB (6;):
w(X(s_5,1b),6;) —u (X (s_4,¢),65)
= [~ () Cp1 = Cipo+@(0:)Cq + o] >0

which implies that ¢ ¢ LB (0;) is not a best reply for player i. (8) (y) (6) A
symmetric argument holds. m

Analogously to the previous section, we now study the case in which voters
are allowed to play mixed strategies:

11



Proposition 9 Under Assumption 4, Ve > 0, Ing such that Vn > ng if o is a
Nash equilibrium of a game I' with n voters, then:

() if 0; < X (2°) — & and c ¢ LB (6;) then o =0

(B) if 0, > X (5°) + € and c ¢ RT (0;) then o =0

(v)if0;,1 < X1 (p%)—€,0;20>Xo(5%) +€ and c ¢ LT (0;) then o =0
(6)if 6,1 > X1 (5%)+¢e, 0,2 < Xo(°) — € and c ¢ RB(0;) then o = 0.

Proof: We first prove the following Lemma:

Lemma 10 Ve > 0, Ini? such that Yn > n&B, if the game has n voters, if
0; <X (u°)—¢&, and c ¢ LB (6;) then o¢ =0.

Proof: Fix € > 0. Take a party lb € LB (6;). Define for k ¢ LB (6;):
D*(6;) = [ (6:) Cin1 + Cip2 — @ (0:) G — Ck,Q] <0

Define also D (6;) = kgrilgx(e )D’c (6;) <0, as well as D = meaxD (6;) < 0. Let

oz*:mea,xoz(ﬂ), 6*:H_;—*D_D>O,and¢*:£_2+—ix/§ﬁ>0.

Now we prove that if n > + 1, then Ve ¢ LB (6;):

19+757
u(X(0_;,¢),0;) —u(X (6_41b),60;) <0
which implies that ¢ ¢ LB (6;) cannot be a best reply for player i.

As in the proof of Lemma 4, because the outcome function X (s) depends
only upon v(s), denoting with V,~* the set of all vectors representing the share
of votes obtained by each party with (n — 1) voters:

w(X (0_4,¢),0;) —u(X (0_4,1b),6;)
= Y PG =) [u (X (v70) . 0) — u (X (v ) ,65)]
o teVy
where, with abuse of notation, X (v; i,t) = % + o i ¢ kv;(ik).

Notice that, if:

91',1 S min {Xl (S_Z’,C) ,X1 (S_Z’,lb)}
91',2 S min {XQ (S—i, C) ,Xg (S—i, lb)}

then
(X (S—i, C) y 91) — U (X (S—i, lb) y 91)
1
[ (65) Cio1 T w2 — @ (0:)Con — CC,Q] = EDC (6:)

S|~ &

12



Moreover:

max |u(X (S—i, C) ,91') - “(X (S—i, lb) ,01')| = [0‘ (91) + 1]

s_4,c,t

3+

Obviously, X (s_i, 6) < min{Xy (s_4,¢), Xy (s_;,1b) }, as well as Xy (s_i, 6) <
min { X5 (s_;,¢), Xa (5_4,1b) }. From Lemma 3 we know, for n > 15755 1, that

o

X (p°) — 2> 0;'Y, we can deduce:

§ —poi| < (Z* > 1—6". Because, for n > W"Eﬁ*—i—l, X (ﬂaﬂ _ ¢*,(_)') >

uw(X (0_4,¢) ,91) —u(X (0_4,1b),6,)

= Z Pr(§ =v;") [u (X (v;i,c) ,91') —u (X (v;i,lb) ,91')] <

v eVt
1 * * *
< —[1-8)D+E(1+a7) =
1 -D - .
T n [(1_1+a*—D)D+1+a*—D(1+a) =0

and, hence, ¢ ¢ LB (6;) cannot be a best reply for player i..

Analogously, the following Lemmas can be proved:

Lemma 11 Ve > 0, Inf’ such that Vn > nfl, if the game has n voters, if
6; > X (1°) + &, and if c ¢ RT (0;) then o¢ = 0.

YWith abuse of notation X (s_i, 6) denotes the outcome that would have been resulted if
a party in (0,0) existed and player 3 voted for it.

10We only prove the inequality for the first coordinate because the proof for the second
coordinate is completely analogous.

=,

X1 (a7~ — ¢ ,0)

_ 1 n—1
X1(p7) - ;ngCkJ - TZ¢*Ck,1 >
% %

1
X\(5) = - —m

Hence this step of the proof is concluded by noticing that 62 is by definition less than %,
hence

1 2 * 2
Xi(5%) = — —mg" > X2 (57) —me" - 27 _

24 — 16+/2
—3‘/_52 > X1(a°) — ¢
m

X1(p7) = (=2 +2V2)e —
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Lemma 12 Ve > 0, 3nfT such that Vn > nf™, if the game has n voters, if
0i1 < X1 (g%) —e¢,if0;2> Xo(0%) +¢, and if c ¢ LT (6;) then o5 = 0.

Lemma 13 Ve > 0, Inf® such that ¥n > nfiP, if the game has n voters, if
0i1> X1 (%) +e,if0;2 < Xo(n%) —e¢, and if c ¢ RB(0;) then of = 0.

Setting ng = max {n§?®, n§", n§T, n§P} completes the proof. W

6 Conclusion

In this short paper we have studied strategic voting in a proportional repre-
sentation model, when the policy space is multidimensional. This model is the
extension of the unidimensional model presented in De Sinopoli and Iannantuoni
(2000), in which single-peakdness of voters’ preferences is the only assumption
needed to prove that voters, in any pure strategy equilibrium, essentially vote
only for the two extremist parties.

We first show, via an example, that the assumption of strict-quasi-concavity
of the utility function is not sufficient to obtain the result that only the extreme
parties get votes: stronger assumptions on the utility function are needed.

We then prove that, if four parties located at the corners of the policy space
exist (i.e. they are the extreme parties), if voters’ preferences are single-peaked
in each dimension with the peak independent from the other dimension, and
if the utility function is continuously differentiable with respect to the policy,
voters essentially vote in any equilibrium only for the extreme parties. Because
the assumption that there are four parties located at the corners is very strong,
we drop it, at the cost to deal with a more specific utility function, i.e. linear
and separable in the dimensions. In this case, we show that, in any equilibrium,
only parties located on the boundary of the convex hull of parties’ positions take
a relevant amount of votes.
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Figure 1: £ =0, 1, y = 0, 5.
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Figure 2: z =0;1, y = 0; 2.
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