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Abstract

This paper introduces an estimator for the extremal index as the ratio of the number of
elements of two point processes defined by threshold sequences {un}, {vn} and a partition of
the sequence in different blocks of the same size. The first point process is defined by the
sequence of the block maxima that exceed {un}. This paper introduces a thinning of this
point process, defined by a threshold {vn} with {vn} > {un}, and with the appealing property
that under some mild conditions the ratio of the number of elements of both point processes
is a consistent estimator of the extremal index. The method supports a hypothesis test for
the extremal index, and hence for testing the existence of clustering in the extreme values.
Other advantages are that it allows some freedom to choose {un}, and it is not very sensitive
to the choice of the partition. Finally, the stylized facts found in financial returns (clustering,
skewness, heavy tails) are tested via the extremal index, in this case for the DaX returns.

Keywords: Extremal Index, Extreme Value Theory, GARCH processes, Poisson Processes.

1 Background

Suppose a random sample from an unknown distribution function F, and let G be the limiting
distribution of the sample maximum Mn. Classical Extreme Value Theory shows that under
some regularity conditions on the tail of F and for some suitable constants an > 0, bn,

P{a−1
n (Mn − bn) ≤ x} → G(x), (1)

where G must be of the following types (see de Haan (1976)),

Type I: (Gumbel) G(x) = e−e−x

, −∞ < x < ∞.

Type II: (Fréchet) G(x) =

{
0 x ≤ 0,

e−x
− 1

ξ
x > 0, ξ > 0.

Type III: (Weibull) G(x) =

{
1 x ≥ 0,

e−(−x)
− 1

ξ
x < 0, ξ < 0.

∗Address for correspondence: Universidad Carlos III de Madrid, C/ Madrid 126, 28903, Getafe (Madrid). E-
mail: jose.olmo@uc3m.es. Financial support DGCYT Grant (SEC01-0890) is gratefully acknowledged. The author
is deeply grateful to the Department of Statistics and Operations Research of UNC at Chapel Hill, especially to
Ross Leadbetter and Francisco Chamu. The author also thanks the seminar participants of the 3rd Symposium on
Extreme Value Analysis: Theory and Practice celebrated in Aveiro (Portugal) as well as its scientific committee for
the C.E.A.U.L. prize for young researchers. The software developed for this paper is implemented in Matlab 6.1.
and may be downloaded from the author homepage wwww.unc.edu/home/olmo.
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This important result may be extended to study the maximum of a wide class of dependent
processes. We concentrate here on stationary sequences where the dependence is restricted
by different distributional mixing conditions. We distinguish two types of dependence: long
range and short range dependence. To limit the first type of dependence we assume a variation
of the distributional mixing condition D(un) of Leadbetter et al. (1983). Leadbetter’s mixing
condition is said to hold for a sequence {un} if for any integers 1 ≤ i1 < . . . < ip < j1 < . . . <

jp′ ≤ n for which j1 − ip ≥ l, we have

D(un) : |Fi1,...,ip,j1,...,jp′ (un)− Fi1,...,ip(un)Fj1,...,jp′ (un)| ≤ αn,l,

where αn,ln → 0 as n →∞ for some ln = o(n), and Fi1,...,ip(un) denotes P{Xi1 ≤ un, . . . , Xip ≤
un}. Let D′(un) be the alternative mixing condition that will be used throughout the paper.
This condition is as follows,

D′(un) : |P
{

Xi1 > un or . . . or Xip
> un orXj1 > un or . . . or Xjp′ > un

}
−

−P
{
Xi1 > un or . . . or Xip

> un

}
P

{
Xj1 > un or . . . or Xjp′ > un

}
| ≤ αn,l. (2)

Note that these conditions only concern events of the form {Xi > un} in contrast to more
restrictive mixing conditions, for example the strong mixing condition introduced in Rosenblatt
(1956).

These mixing conditions alone are sufficient to extend the central result given in (1) to
stationary sequences for some suitable constants not necessarily the ones obtained from the
iid context. In particular these constants an > 0, bn and the extreme value distribution G
are the same of the iid case under a condition D′′(un) restricting short range dependence,
Leadbetter (1983), that avoids the presence of clusters,

D′′(un) : limsup
n→∞

n

[n/kn]∑

j=2

P{X1 > un, Xj > un} → 0 as kn →∞, (3)

with kn a sequence that defines a partition of the sample.
Otherwise, for a stationary sequence {Xn} satisfying only D′(un) with un = anx + bn, we

typically have
P{a−1

n (Mn − bn) ≤ x} → Gθ(x), (4)

where θ is the key parameter for extending extreme value theory for iid random variables to
stationary sequences. This concept, originated in papers by Loynes (1965), O’Brien (1974) and
developed in detail by Leadbetter (1983), reflects the effect of the clustering of the observations
exceeding un on the limiting distribution of the maximum.

There are different interpretations of the extremal index θ, concerning diverse features of
the clustering of the largest observations. Loynes (1965) under different mixing conditions
found that

P{Mn ≤ un} = Fnθ(un). (5)

O’Brien (1987) showed that

P{M2,rn ≤ un|X1 > un} → θ, (6)

where M2,rn is the maximum of {X2, . . . , Xrn}, and rn = o(n) satisfies certain growth con-
ditions. Note that from this definition of the extremal index it is straightforward to see that
0 ≤ θ ≤ 1. Alternatively Leadbetter (1983) showed that the inverse of the extremal index is
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the limiting mean number of exceedances of un in an interval of length rn, i.e.

E




rn∑

j=1

I(Xj > un)|
rn∑

j=1

I(Xj > un) ≥ 1


 → θ−1, (7)

with I(X > 0) the indicator function. By stationarity this is called the limiting mean cluster
size of the process. Finally, Hsing (1993) and Ferro and Segers (2003) take advantage of the
limiting probability

P{Mn ≤ un} → e−θτ , (8)

with 0 < τ < ∞, in two different ways. Hsing approximates the distribution of n(1− F (Mn))
by an exponential distribution with mean θ−1, and Ferro and Segers model the process of the
interexceedance times defined by un by the same limiting exponential distribution.

Expression (8) is a transformation of (4) where τ is the exponent of an extreme value
distribution and un = anx + bn. In the same way the limiting probability (1) may be
written as P{Mn ≤ un} → e−τ . Taking logs in this expression, it is immediate to derive that

n(1 − F (un)) → τ for un sufficiently high. Then for iid sequences, B
(un)
n =

n∑
j=1

I(Xj > un)

converges in distribution to a Poisson random variable with mean τ .
However for dependent stationary sequences where D′′(un) is not satisfied B

(un)
n does not

converge to a Poisson random variable (the exceedances of un are not mutually independent),
nevertheless we can define a point process as the result of thinning B

(un)
n . This thinning

defines the process N
(un)
kn

formed by the maxima over kn blocks of length rn and exceeding
un, and converges to a Poisson process N with mean θτ , see Leadbetter (1983) or Leadbetter
et al. (1983). This paper presents an alternative derivation of the extremal index as the
result of thinning twice B

(un)
n . The second thinning of B

(un)
n , and hence thinning of N

(un)
kn

,

defines another point process N
(vn)
kn

that converges in distribution to a Poisson process with

intensity θ2τ . The sequence {vn} satisfies n(1− F (vn)) → θτ and is defined by E[
rn∑

j=1

I(Xj >

vn)|
rn∑

j=1

I(Xj > un) ≥ 1] → 1. Under some mild conditions on the threshold sequence, this

method provides a consistent estimator of the extremal index that outperforms most of the
popular estimators and such that it is not very sensitive to the choice of the block size rn nor
the choice of the sequence {un} in contrast to the rest of the candidates that estimate θ.

The paper is structured as follows. Section 2 introduces a definition of the extremal index
as the ratio of two point processes derived from the asymptotic distribution of the maximum.
A natural estimator for this parameter based on these techniques is introduced in Section 3.
This section also reviews some of the most popular estimators found in the literature and
their statistical properties, in particular bias and variance. The corresponding properties of
our estimator are also studied with special emphasis in the analysis of the mean square error
of the different methods. The optimal block size selection is also considered and the section
concludes with a hypothesis test for the extremal index that is sufficient to test the existence
of clustering in the extremes. A simulation experiment for different examples presented in
the literature is conducted in Section 4 stressing a Monte-Carlo experiment for the mean
square error. Section 5 presents an application to DaX Index returns in order to gain some
understanding about the clustering in the extremes and in the volatility of the process. Finally
the conclusions are found in Section 6.

2 Definition of the extremal index

Suppose throughout that we have n observations from a stationary sequence {Xi, i ≥ 1} with
marginal distribution function F satisfying [1 − F (x)]/[1 − F (x−)] → 1 as x → ∞. This
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condition is sufficient to define a sequence {un} for each 0 < τ < ∞ such that

n(1− F (un)) → τ. (9)

Consider from now on that {Xn} satisfies D′(un), as defined in (2), for each τ > 0.
Intuitively this condition gives a measure of the degree of dependence in the process and
permits the construction of almost independent blocks by the definition of sequences {kn},
{rn} with kn → ∞, kn = o(n) and knln = o(n), while rn is the integer part of n/kn. The
interpretation of these sequences is: kn is the number of blocks of the sequence of length n,
and rn the size of each block.

Under these assumptions, if P{Mn ≤ un} converges for some τ > 0 then

P{Mn ≤ un} → e−θτ , (10)

for all τ > 0, with 0 ≤ θ ≤ 1 (see theorem 3.7.1. of Leadbetter et al. (1983) for a detailed proof).
The parameter θ is called the extremal index of the sequence {Xn} and is the key parameter
for extending extreme value theory from iid random variables to stationary processes.

Consider {kn}, {rn} that define a suitable partition of the sequence {Xn}, then a sufficient
condition for the existence of the extremal index is

kn(1− F1,...,rn(un)) → θτ. (11)

This result is immediate by the approximation of P{Mn ≤ un} by P kn{Mrn ≤ un} for suitable
choices of kn and rn, and (10) and the linear polynomial expansion of the exponential function.
The converse of this result is also true, i.e. a stationary sequence with extremal index θ satisfies
(11) for each τ > 0. The proof is obtained by taking logs in the expression P kn{Mrn ≤ un}
that approximates e−θτ .

Consider the number of exceedances of un within a block of size rn. This event defines

a sequence of random variables B
(un)
rn =

rn∑
j=1

I(Xj > un) for rn → ∞, and rn = o(n) whose

expected value, by the stationarity of the process, converges to the mean cluster size of the
exceedances of un in the sequence {Xn}, that is, the inverse of the extremal index,

E
[
B

(un)
rn |B(un)

rn ≥ 1
]
→ θ−1.

This is readily seen since E
[
B

(un)
rn |B(un)

rn ≥ 1
]

=
∞∑

j=1

jP
{

B
(un)
rn = j|B(un)

rn ≥ 1
}

= rnP{Xj>un}
P{

rnS
j=1

(Xj>un)}
,

and therefore E
[
B

(un)
rn |B(un)

rn ≥ 1
]

= rn(1−F (un))
1−F1,...,rn (un) → θ−1, if (11) holds.

The same argument may be applied to define a process B
(vn)
rn with vn ≥ un satisfying

E
[
B(vn)

rn
|B(un)

rn
≥ 1

]
→ 1. (12)

It is of interest to note that the sequence {vn} satisfies condition D′(vn) since vn ≥ un and

n(1− F (vn)) → θτ as n →∞. (13)

In addition, by the structure of dependence (see (9) and (10)) we have P{Mn ≤ vn} → e−θ2τ .
It is immediate now to see that (11) holds for the sequence {vn} by

kn(1− F1,...,rn(vn)) → θ2τ. (14)

The event {Xi > un} and the sequences {kn}, {rn} divide the sequence {Xn}, with ex-
tremal index θ, in approximately independent groups of exceedances of un where M(j−1)rn+1,jrn
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is the block maxima for j = 1, . . . , kn. It is clear that the sequence {M(j−1)rn+1,jrn
} is ap-

proximately serially independent as n increases if D′(un) holds for {Xn}.
Consider the points j as points in time and define for each n, and kn, a process ηkn

(j/kn) =
M(j−1)rn+1,jrn

. The time scale is normalized t = j/kn on the unit interval (0, 1]. Then the
exceedances of un by the process ηkn(t) define a point process N

(un)
kn

on the unit interval

(see Kallenberg (1976) for the theory of point processes). Moreover, the point process N
(un)
kn

converges in distribution to a Poisson process N on (0, 1] with intensity parameter θτ . To prove
this result it is only necessary to show that E[N (un)

kn
(a, b]] → E[N(a, b]] for 0 < a < b ≤ 1 and

P{N (un)
kn

(A) = 0} → P{N(A) = 0} for each finite disjoint union A of sets (ai, bi] ⊂ (0, 1]. The
proof is analog to the corresponding one found in theorem 4.1. in Leadbetter (1983).

It is interesting to see that the same argument may be applied to construct a thinning of
N

(un)
kn

by a sequence {vn} satisfying (12). This sequence defines the point process N
(vn)
kn

on
the unit interval that converges to a Poisson process with intensity measure θ2τ . The proof is
identical to the case N

(un)
kn

since (14) and D′(vn) hold with vn ≥ un.
These results provide the setting to define the extremal index as the ratio of the limiting

expected value of the point processes N
(un)
kn

and N
(vn)
kn

,

θ = lim
n→∞

E[N (vn)
kn

]

E[N (un)
kn

]
. (15)

The extremal index can also be interpreted as the conditional excess probability of un.
From the results given in (9) and (13),

θ = 1− lim
n→∞

Fun(vn), (16)

with Fun(vn) = F (vn)−F (un)
1−F (un) . It is clear that as the dependence in the extremes (exceedances

of un) of the stationary sequence decreases, vn approaches un and θ gets closer to one as for
the iid case or for weak dependence (D′(un) and D′′(un) hold).

These definitions of the extremal index are also valid for threshold sequences where (9) does
not hold but the mixing condition in (2) still does. Consider ũn such that n(1−F (ũn)) = τn,
with τn →∞, and τn = o(n). This condition implies that P{Mn ≤ ũn} → 0.

A necessary condition for ũn in order to define the extremal index in the same way as in
(15) is that the ratio −logP{Mn≤eun}

n(1−F (eun)) converges to a constant in (0, 1). If the sequence {Xn}
has extremal index θ conditions (9) and (11) are satisfied for certain sequence un. Then, a
sufficient condition for ũn is that

(1− F (ũn))(1− F1,...,rn(un))
(1− F (un))(1− F1,...,rn(ũn))

→ 1. (17)

This condition entails this, kn(1− F1,...,rn(ũn)) = τ ′n with τ ′n →∞ and τ ′n/τn → θ. The same
results that for un and τ constant are achieved now for ũn and τn. Therefore, the sequence
Brn(ũn) satisfies that

E
[
B

(eun)
rn |B(eun)

rn ≥ 1
]
→ θ−1,

and there exists a sequence ṽn such that n(1 − F (ṽn)) = τ ′n. Under condition (17) for {ṽn}
instead of {ũn} we obtain that kn(1 − F1,...,rn(ṽn)) = τ ′′n , with τ ′′n → ∞ and τ ′′n/τ ′n → θ, and
the extremal index may be defined as in (15) for the corresponding ũn and ṽn given that
D′(ũn) holds.

For estimation purposes we will refer to the number of elements of the processes N
(eun)
kn

and N
(evn)
kn

as Z∗eun
and Z∗evn

respectively, and Zeun
and Zevn

will be used to denote the number
of exceedances of ũn and ṽn by the sequence {Xn}. Analog notation will be used for the
corresponding exceedances of un and vn. Note the variables Z∗eun

and Z∗un
can be interpreted

5



as the number of blocks of the partition defined by {kn}, {rn} where there is at least one
exceedance of ũn and un respectively.

3 Estimation of the extremal index

The extremal index represents the clustering of the largest observations determined by a
sequence {un} sufficiently high to satisfy a condition of type (9). The serial dependence in
these observations has an effect on the distribution of the maximum of the stationary sequence,
that is, P{Mn ≤ un} is Fnθ(un) instead of Fn(un) for n and un sufficiently large.

This result leads to the first estimator of the extremal index for appropriate sequences kn,
rn satisfying that P kn{Mrn

≤ un} approximates P{Mn ≤ un}. Then, by taking logs in both
expressions, θ = logP{Mrn≤un}

rnlogF (un) . A natural estimator for the extremal index is in this case,

θ̂(1)
n =

log(1− Z∗un
/kn)

rnlog(1− Zun/n)
, (18)

with the notation introduced in the last section. The ratio Zun/n is an estimator of 1−F (un),
and Z∗un

/kn an estimator of 1− F1,...,rn(un).
On the other hand the concept of extremal index introduced by Leadbetter (1983), θ−1

the limiting mean cluster size of the exceedances, yields this estimator

θ̂(2)
n =

Z∗un

Zun

. (19)

This method is called the blocks method and may be considered a simplified version of θ̂
(1)
n .

Another popular method is the runs estimator, that may be seen as the estimator of the
extremal index for the definitions introduced in O’Brien (1987) or in Hsing (1993),

θn =
Wun

Zun

, (20)

where Wun =
n−rn∑
i=1

I(Xi > un)(1− I(Xi+1 > un)) · ·(1− I(Xi+rn > un)).

Our definition of the extremal index yields an appealing estimator of θ given by the ratio
of Z∗vn

and Z∗un
or alternatively Z∗evn

and Z∗eun
. For un and vn sequences satisfying (9) and

(13) our estimator θ̃n is given by

θ̃n =
Z∗vn

Z∗un

, (21)

representing the corresponding thinnings defined by the sequence kn and the thresholds un and
vn. The estimator, however, is not fully specified since these sequences are not determined. By
(9) an appropriate candidate for this threshold sequence is given by extreme order statistics
(see section 2.5. in Leadbetter et al. (1983)). In turn an adequate choice of vn is given by the
order statistic of the stationary sequence {Xn} satisfying the empirical counterpart of (12),
i.e.

vn = max
1≤i≤n



xi, i = 1, . . . , n| 1

Z∗un

kn∑

j=1

B
(xi)
rn,j = 1



 , (22)

with B
(un)
rn,j =

jrn∑
k=(j−1)rn+1

I(Xk > un). This expression boils down to vn = x(n−Z∗un
), ex-

treme order statistic, with x(1) ≤ . . . ≤ x(n) the sequence of order statistics. By (17) the
corresponding expressions apply to ũn and ṽn being intermediate order statistics.

If the threshold un is estimated by an extreme order statistic the point process N
(un)
kn
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converges to a Poisson process, and its variance in consequence converges to a constant. This
is a serious inconvenient for the consistency of the majority of the estimators of θ that is
overcome in our setup by using ũn (intermediate order statistic).

3.1 Statistical properties of the different estimators

Consider first the case of θ̃n as the quotient of the random variables Z∗vn
and Z∗un

where vn

and un satisfy (13) and (9) respectively, that is,

θ̃n =
Z∗vn

Z∗un

.

By the second order Taylor expansion of E[Z∗vn
/Z∗un

] about the respective expected values
(delta method) we have that

E[θ̃n] =
E[Z∗vn

]
E[Z∗un

]

(
1 +

V [Z∗un
]

E[Z∗un
]2
− Cov[Z∗vn

, Z∗un
]

E[Z∗un
]E[Z∗vn

]

)
+ O(

1
τ2

). (23)

The different contributions to Z∗un
are not mutually independent. In particular, E[Z∗2un

] =

knP{M1 > un} +
kn∑
i=1

kn∑
i 6=j

P{Mi > un,Mj > un}, where Mi is used to denote the maximum of

{X(i−1)rn+1, . . . , Xirn
}. By stationarity the variance can be expressed as V [Z∗un

] = E[Z∗un
] +

k2
nP{M1 > un,M2 > un}−E2[Z∗un

]− knP{M1 > un,M2 > un}. Under D′(un) the difference
between k2

nP{M1 > un,M2 > un} and E2[Z∗un
] converges to 0 as n increases, and knP{M1 >

un,M2 > un} is well approximated by E[Z∗un
]P{M1 > un} that in turn also converges to 0.

The covariance takes a similar expression, Cov[Z∗un
, Z∗vn

] = E[Z∗vn
] + k2

nP{M1 > un, M2 >

vn} − E[Z∗un
]E[Z∗vn

]− knP{M1 > un, M2 > vn} that boils down to Cov[Z∗un
, Z∗vn

] = E[Z∗vn
].

Therefore expression (23) for n sufficiently high is as follows

E[θ̃n] =
E[Z∗vn

]
E[Z∗un

]

(
1 +

E[Z∗un
]

E[Z∗un
]2
− E[Z∗vn

]
E[Z∗un

]E[Z∗vn
]

)
+ O(

1
τ2

),

and it is immediate to see that the expected value of our estimator takes this expression,

E[θ̃n] = θ + O(
1
τ2

). (24)

For the analysis of the variance it is useful to derive the conditional moments. Consider
Z∗un

= z∗un
known, and note that the sequences un and vn are related by this expression,

1− F1,...,rn(vn) = (1− F1,...,rn(un))
(

1− F1,...,rn(vn)− F1,...,rn(un)
1− F1,...,rn(un)

)
. (25)

Then by (11), E[θ̃n|Z∗un
= z∗un

] = 1 − F1,...,rn (vn)−F1,...,rn (un)
1−F1,...,rn (un) , and the conditional variance

takes this form

V [θ̃n|Z∗un
= z∗un

] =
1

z∗un

(
1− F1,...,rn(vn)− F1,...,rn(un)

1− F1,...,rn(un)

)
. (26)

By the law of iterated expectations the unconditional variance can be decomposed in two
different terms, V [θ̃n] = V [E[θ̃n|Z∗un

]] + E[V [θ̃n|Z∗un
]]. It is clear the first term is 0, and by

the Taylor expansion of E[1/Z∗un
] about E[Z∗un

] we obtain that

E[V [θ̃n|Z∗un
= z∗un

]] =
(

1− F1,...,rn(vn)− F1,...,rn(un)
1− F1,...,rn(un)

)(
1

E[Z∗un
]
+

V [Z∗un
]

E3[Z∗un
]

)
. (27)
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In consequence,

V [θ̃n] =
(

1− F1,...,rn(vn)− F1,...,rn(un)
1− F1,...,rn

(un)

)(
1
θτ

+ O

(
1
τ2

))
= O

(
1
τ

)
. (28)

Therefore the mean square error (MSE) of our estimator is of order O( 1
τ ) with τ constant.

This result implies that this estimator is not consistent for un and vn defined by extreme order
statistics. The consistency, however, will be achieved when these sequences are replaced by
ũn and ṽn intermediate order statistics as it is shown in the following section.

Our estimator may be interpreted as a refinement of the standard blocks method θ̂
(2)
n by

writing θ̃n =
Z∗vn

/Zun

θ̂
(2)
n

. The asymptotic properties of the latter estimator θ̂
(2)
n are derived in

Hsing (1991) or in Smith and Weissman (1994). By means of the delta method they find that

E[θ̂(2)
n ] = θ + O( 1

τ ), and the variance is V [θ̂(2)
n ] = O(

1
τ

). Therefore the bias of this estimator

is higher than the bias of θ̃n, but the mean square error (MSE) of both estimators is O(1/τ).
For the logs method,

E[θ̂(1)
n ] =

E[Z∗un
]

E[Zun
]

(
1 +

E[Z∗un
]

2kn
+

E2[Z∗un
]

6k2
n

)
= θ + O

(
τ

kn

)
, and V [θ̂(1)

n ] = O( 1
τ ).

This estimator is asymptotically unbiased, but it is not consistent either for τ constant.

3.2 Inference for the Extremal Index

Consider now the sequences ũn and ṽn defined by the conditions τ ′n = kn(1 − F1,...,rn(ũn)),
τ ′′n = kn(1 − F1,...,rn(ṽn)), with τ ′n → ∞, τ ′′n → ∞ and τ ′′n/τ ′n → θ. In this case the first two
moments of the random variables Z∗eun

and Z∗evn
diverge to infinity. By stationarity the variance

is given by this expression,

V [Z∗eun
] = E[Z∗eun

] +
(
k2

nP{M1 > ũn,M2 > ũn} − E2[Z∗eun
]
)− knP{M1 > ũn,M2 > ũn}.

Note that in this case, under D′(un) for n sufficiently high, the variance is

V [Z∗eun
] = E[Z∗eun

]− E[Z∗eun
]P{M1 > ũn}. (29)

The covariance in turn takes this expression,

Cov[Z∗eun
, Z∗evn

] = E[Z∗evn
]− E[Z∗evn

]P{M1 > ũn}.
Therefore expression (23) is as follows

E[θ̃n] =
τ ′′n
τ ′n

(
1 +

τ ′nP{M1 ≤ ũn}
(τ ′n)2

− τ ′′nP{M1 ≤ ũn}
τ ′nτ ′′n

)
+ o

(
1
τn

)
, (30)

that boils down to E[θ̃n] = θ + o
(

1
τn

)
, by the definition of τ ′n and τ ′′n .

This estimator of θ is now asymptotically unbiased, and for τn < kn, τ2
n > kn, θ̃n outper-

forms θ̂
(1)
n in this sense. For τn > kn this result is trivial.

In order to find the unconditional variance in this case, we calculate first the conditional
moment.

V [θ̃n|Z∗eun
= z∗eun

] =
1

z∗2eun

V [Z∗evn
|Z∗eun

= z∗eun
]. (31)

Applying (29) to the random variable Z∗evn
|Z∗eun

,

V [Z∗evn
|Z∗eun

= z∗eun
] = E[Z∗evn

|Z∗eun
= z∗eun

]P{M1 ≤ ṽn|M1 > ũn},
that amounts to

V [Z∗evn
|Z∗eun

= z∗eun
] = z∗eun

P{M1 > ṽn|M1 > ũn}P{M1 ≤ ṽn|M1 > ũn}. (32)
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Then, in the same way as in (27),

V [θ̃n] =
(
1− F1,...,rn (evn)−F1,...,rn (eun)

1−F1,...,rn (eun)

)(
F1,...,rn (evn)−F1,...,rn (eun)

1−F1,...,rn (eun)

)(
1

E[Z∗eun
] + V [Z∗eun

]

E3[Z∗eun
]

)
,

that in turn is

V [θ̃n] =
(

1− F1,...,rn
(ṽn)− F1,...,rn

(ũn)
1− F1,...,rn

(ũn)

)(
F1,...,rn

(ṽn)− F1,...,rn
(ũn)

1− F1,...,rn
(ũn)

)
1
τ ′n

+ o

(
1
τn

)
. (33)

Under D′(ũn) the distribution of Z∗evn
|Z∗eun

is well approximated (∼) by a binomial distribu-

tion with parameters bin
(
Z∗eun

, 1− F1,...,rn (evn)−F1,...,rn (eun)
1−F1,...,rn (eun)

)
, and Z∗eun

by a bin (kn, 1− F1,...,rn(ũn)).

Then, the distribution of θ̃n can be approximated by a normal distribution with parameters
given in (30) and (33).

On the other hand the relation between the tails introduced in (25) holds for ũn and ṽn,
and by assumption τ ′′n/τ ′n → θ, yielding that 1 − F1,...,rn (evn)−F1,...,rn (eun)

1−F1,...,rn (eun) → θ. In turn, the

distribution of θ̃n is approximated by

θ̃n
w∼ N

(
θ,

θ(1− θ)
τ ′n

)
. (34)

By the structure of dependence τ ′n
τn
→ θ as n goes to infinity, and hence θ̃n

w∼ N
(
θ, 1−θ

τn

)

results a valid approximation for the distribution of θ̃n. More formally, we can obtain a test
statistic that is asymptotically parameter free,

Tn =
θ̃n − θ√

1− θ

√
τn

w→ N(0, 1). (35)

The asymptotic confidence intervals for θ are easily calculated from the former expression.

θ ∈

θ̃n ± z1−α/2

√
1− θ̃n

τn


 , (36)

with z1−α/2 the quantile of the standard normal distribution. This interval is an approximation
of the true confidence interval for finite samples. The exact confidence region for small sample
sizes may be better approximated by resampling techniques. The confidence interval takes
this expression

θ ∈

θ̃n −

√
1− θ̃n

τn
J−1

n (1− α

2
, F ), θ̃n −

√
1− θ̃n

τn
J−1

n (
α

2
, F )


 , (37)

where J−1
n (1 − α, F ) is the 1 − α quantile of the sampling distribution Jn(F ) of the statistic

Tn. In practice this quantile is approximated by the order statistic Tn,((1−α)B) of the sample
Tn,1, . . . , Tn,B with B the number of iterations. The notation F in the distribution Jn(F ) refers
to Monte Carlo simulation, that is, the generating process of the data is known. Otherwise
Jn(F ) must be approximated by Jb(F ) with b < n, b/n → 0 (subsampling), or by Jn(F ∗) with
F ∗ representing blocks bootstrap methods. The näıve bootstrap does not work in this context
due to the serial dependence in the data. Nevertheless, as it is seen in the simulations, the
gaussian asymptotic intervals give reliable approximations of the exact confidence regions for
moderate sample sizes.

Our interest however lies on testing hypotheses of the type H0 : θ = θ0 vs H1 : θ < θ0.
This one-sided hypothesis test permits to assess the mixing condition D′′(un) introduced in
(3) by imposing θ0 = 1. In other words, if θ = 1 there are no clusters of extreme values
(exceedances of some threshold) in the stationary sequence. The null hypothesis amounts
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to see if θ0 is contained in the interval


−∞, θ̃n + z1−α

√
1− θ̃n

τn


 or alternatively in

(
−∞, θ̃n −

√
1−eθn

τn
J−1

n (α, F )
]
, the bootstrap approximation.

Consider the example due to Chernick (1981) for {Xn} a strictly stationary first order
autoregressive sequence driven by the model Xi = 1

r Xi−1 + εi, where r ≥ 2 is an integer, εi

are discrete uniforms on {0, 1/r, . . . , (r − 1)/r}, being independent of Xi−1, and Xi having a
uniform distribution on [0, 1]. The extremal index is given by θ = r−1

r . The plot given in
figure 6.1 describes the curve of the estimates of θ for different partitions and different sample
sizes. The upper panel is for n = 200 and the lower panel considers n = 1000.

(INSERT FIGURE 6.1)

Two conclusions stem from these plots. First, it is clear that condition D′′(ûn) is rejected
with α = 0.05, and second, the confidence intervals for θ are smaller as n increases. This is
caused by the choice of an increasing order statistic, ûn = x(n−k) with k =

√
2n as threshold.

3.3 Some comments on the block size selection

The partition of the sequence {Xn} in kn blocks of size rn has two main features: First, it
defines a point process N

(un)
kn

that converges to a serially independent process, and second, the
distribution of this sequence converges to a Poisson process as kn goes to infinity. The majority
of the estimators for the extremal index found in the literature are tied to that partition. This
dependence turns explicit for example for the logs method where kn appears in the expression
for θ̂

(1)
n , as well as in its expected value.

If the observations are independent or weak dependent, N
(un)
kn

with kn = n defines itself
an iid point process and θ = 1. Otherwise the extremal index is less than 1 and the partition
kn < n plays a central role in the estimation of the extremal index.

Provided n, an adequate choice of the sequence kn along with a suitable threshold un

define a sequence given by the maxima over the corresponding blocks of observations. Testing
condition D′(un) in practice is replaced by testing for serial independence in this sequence
of maxima. Hypothesis tests for the latter condition require large sample sizes and most of
them rely on gaussian assumptions. A näıve alternative to these methods is dropping the
first partitions defined by kn = n, n − 1, . . ., that have a high likelihood of entailing serial
dependence in N

(un)
kn

, and analyzing the performance of the estimators by the stability of the
corresponding estimates along the different partitions.

The influence of the choice of kn on the estimates of the extremal index also depends on the
choice of the threshold un. For example in the blocks method the estimates of θ are driven by
the corresponding partition for low un. In this case Z∗un

and kn take the same values resulting
in a sequence of estimates that approaches 0 when kn decreases.

A similar situation occurs for the logs method with un a low threshold. The numerator
in this case collapses to −∞ and the estimator is not defined for the corresponding partition.
These effects are not present in θ̃n because a larger ratio Z∗un

/kn given by a low threshold is
compensated by a large value of Z∗vn

/kn, that is, the sequence vn varies according to un.

4 Simulations: Some examples

We now consider some examples from the literature showing short range dependence (0 < θ <

1) reflected by a distribution of the maximum satisfying (5).
The following example is the doubly stochastic model studied by Smith and Weissman

(1994). Let {ξi, i ≥ 1} be iid with distribution function F, and suppose that Y1 = ξ1, and for
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i > 1, Yi = Yi−1 with probability ψ, and Yi = ξi with probability 1−ψ. The doubly stochastic
sequence {Xi} is defined by Xi = Yi with probability η, and Xi = 0 with probability 1 − η,
with these different events mutually independent. The extremal index is

θ = 1−ψ
1−ψ+ψη .

The following pictures represent the paths of the different estimators for the extremal index.
The threshold sequence is estimated by an order statistic: ûn = x(n−k). We have implemented
two different types of order statistics for samples of size n = 200 and n = 1000 observations.
An extreme order statistic (k = 20 fixed), and an intermediate order statistic (k =

√
2n). We

only present the estimates of θ for the intermediate order statistic since the other threshold
sequence provides similar results for these sample sizes in this example.

The curves describe the sample means of the different estimates of the extremal index
and for different partitions of the sample for m = 100 simulated sequences generated from
the model introduced in Smith and Weissman with ψ = 0.9 and η = 0.7. Suppose also F, a
Fréchet distribution F (x) = exp(−x−α) with α = 1 and x ∈ (0,∞).

(INSERT FIGURE 6.2)

The confidence intervals for θ̃n derived in the last section are not plotted. Instead we have
represented the simulated standard deviation of the different estimators for m = 100 in order
to present a fair comparison between the three competitors. The standard deviation for the
different partitions is estimated via Monte Carlo simulation by σ̂kn with

σ̂2
kn

= 1
m−1

m∑
i=1

(θi,est − θest)2,

and θest the sample mean of the different estimates.
Apparently the blocks method is the best method. After the first partitions of the sample

the curve of the estimates of θ remains stable very close to the target line for the three methods.
Nevertheless, the blocks method estimator has smaller variance. In addition, focusing on figure
6.3 it is clear that the different estimators of θ analyzed in this example are consistent and
the blocks method is more efficient. The mean square error is estimated from the simulated
sequences generated for figure 6.2, and takes this expression,

MSE(θest) = 1
m

m∑
i=1

(θi,est − θ)2.

These results agree with the conclusions found in Smith and Weissman (1994).

(INSERT FIGURE 6.3)

However the impressive performance of the blocks method may be due to the low value
of the extremal index (θ = 0.137) and the choice of a low threshold estimate. Under these
circumstances, the curve of estimates of θ by the blocks method is decaying as kn decreases
(rn increases) and approaches the true parameter. To get an insight into this, we also study
a doubly stochastic process where the extremal index is significantly higher. Suppose ψ = 0.5
and η = 0.5, i.e. θ = 0.66. The following plots are the analogs of figures 6.2 and 6.3.

(INSERT FIGURE 6.4)
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(INSERT FIGURE 6.5)

The blocks method in this example does not work. The number of blocks with an ex-
ceedance of ûn (Z∗ûn

) is similar to kn for each partition. Therefore the estimator decreases as
kn decreases since Zûn remains constant. On the other hand the logs method improves as n
increases and the mean square error of θ̃n and θ̂

(1)
n are negligible for n = 1000.

Finally the exact and asymptotic confidence intervals for θ are displayed to assess the
estimates given by θ̃n.

(INSERT FIGURE 6.6)

5 Clustering in Financial Series: The Case of DaX Index

Financial returns are characterized by a series of stylized facts: leverage effect (after periods
of high volatility the likelihood of losses is higher than in calm periods), heavy tails, clustering
of the largest observations and some skewness towards the losses tail. The seminal paper
of Engle and Bollerslev (1986) proposed the popular GARCH models, Generalized Auto-
Regressive Conditional Heteroscedastic volatility models, to explain these features of the data.
In general, the Garch(1,1) is sufficient to model most of the financial returns. It takes this
expression,

Xi = εiσi, σ2
i = ω + αX2

i−1 + βσ2
i−1,

with ω, α, β > 0, and α + β < 1, that can be interpreted as an ARMA(1,1) model for the
squares,

X2
i = ω + (α + β)X2

i−1 + νi − βνi−1,

with νi = σ2
i (ε2

i − 1).
According to this model, the dependence found in the financial returns is driven by the

second moments. The literature concerning this topic is enormous; up to the extent that there
exist different GARCH type models to explain particular characteristics of the financial series.

We propose to analyze some of these stylized facts, in particular the clustering of the largest
observations, by means of the extremal index. A value of θ significatively less than 1 shows
certain short range dependence reflected in the clustering of the largest observations. This
may be interpreted as a pattern in the occurrence of the extreme values, that is, once a large
loss in the asset return has occurred we can expect a period of large losses (values exceeding
some threshold). The average length of this period is the inverse of the extremal index.

The data we use to illustrate this methodology consists on the analysis of the Frankfurt
financial market (DaX Index) over the period 19/12/1994 − 20/04/2001. These data have
been collected from www.freelunch.com. The observations considered for the analysis are the
logarithmic returns measured in percentage terms and denoted as rt:

rt = 100 (logPt − logPt−1),

with Pt the original prices at time t.

(INSERT TABLE 6.7)

The analysis of the extremal index for both tails shows certain clustering in the occurrence
of the positive and negative extreme values. The confidence intervals derived from θ̃n do not
contain θ = 1 for α = 0.05 (figure 6.8).
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(INSERT FIGURE 6.8)

These pictures also depict a higher level of clustering for the largest negative returns than
for the positive values. This fact can be statistically tested by means of a confidence interval
for the difference of the extremal indexes corresponding to the positive and negative tail. This
confidence interval takes this expression

θpos − θneg ∈

θ̃n,pos − θ̃n,neg ± z1−α/2

√
1− θ̃n,pos

τn,pos
+

1− θ̃n,neg

τn,neg


 . (38)

It is important to mention that θ̃n,pos and θ̃n,neg are considered independent. This can lead
to obtain smaller confidence intervals given α compared to considering dependent estimators
with positive correlation. For some partitions of the sample it is statistically significant that
the clustering for the positive extreme values is smaller than for the largest negative returns
(figure 6.9).

(INSERT FIGURE 6.9)

The analysis of the clustering of the largest values for the sequence of the volatility of the
returns deserves some interesting comments. The confidence interval introduced in (38) may
be applied to test the difference between the extremal index of the volatility sequence θvol and
θpos or θneg (figure 6.10). The results derived from both tests, θpos − θvol and θneg − θvol,
point out that the extreme values of the volatility sequence are driven by the negative extreme
values. Therefore these observations are bigger in absolute value than the largest positive
returns. This fact explains the negative skewness of the returns sequence.

Finally it is worth mentioning the stylized fact of heavy tails. By Berman’s condition
(Berman, 1964), if {rt} is a standard normal sequence and Cov(rt, rt−j)log j → 0 as j →∞,
the extremal index of the sequence is θ = 1. In practice, the autocorrelation function of the
returns of a financial series is usually close to zero, also in this case and then the second part
of Berman’s condition holds. Therefore, if θ < 1 the sequence of the returns of the DaX Index
is not normally distributed but heavy tailed. This suggests that the existence of clustering
of the extreme values in a financial series implies that the distribution of the observations is
heavy tailed. Hence it is not sufficient with the second moments of {rt} to know the structure
of dependence of the sequence. Moreover, the dependence in the extremes plays an important
role and this dependence stems from the heavy tails.

(INSERT FIGURE 6.10)

6 Conclusion

The aim of this paper has been to propose an estimator for the extremal index defined by
the ratio of the number of exceedances of two threshold sequences. This estimator possesses
two appealing properties: First, it is not necessary to choose a sequence {un} satisfying the
Poisson condition in the limit, and second it is not very sensitive to the block size selection.

Regarding the asymptotic properties of our estimator, we can conclude that are estimator
has the same order of convergence than the standard methods (the respective variances are
of the same order). However, under very general conditions our estimator is asymptotically
unbiased outperforming the other two methods that are not free from a residual term. Our
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estimator also works better than these methods in two manners: it is not so dependent of the
corresponding partition of the sequence, and it relaxes the selection of the threshold sequence.

In addition, the absence of dependence on the Poisson condition permits to propose a hy-
pothesis test for the extremal index. We find this test useful in different ways: it formally
assesses the estimates of the extremal index, it introduces an innovative procedure for testing
the existence of clustering in the occurrence of extreme events, and it may be useful to de-
termine the skewness and kurtosis of the distribution of the data by testing the difference of
extremal indexes between both tails.

Finally, the application of these methodologies to financial series (DaX Index) confirms
the existence of short range dependence in the extreme observations; that is, some clustering
of the extreme values of the positive and negative returns. The clustering is higher for the
negative tail. By Berman’s condition, the distribution of the observations is heavy tailed since
θ is statistically less than 1. These results agree with the stylized facts found in most of the
financial series.
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Figure 6.1. Estimated values of the extremal index for the Chernick model with r = 5. The
extremal index is θ = 0.8 plotted by ¤ line. The partitions rn considered are in the range
[1, 50]. θ̃n is represented by (· · ·) and o; the dash line describes the bootstrap confidence
interval with B = 1000 and (+−) is employed for the asymptotic intervals. The significance
level is α = 0.05. The sample sizes are n = 200 and n = 1000 respectively. The threshold
sequence is ûn = x(n−k) with k =

√
2n.
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Figure 6.2. Estimated values of the extremal index for the doubly stochastic model with ψ =
0.9 and η = 0.7. The extremal index is θ = 0.137 plotted by ¤ line. The partitions rn

considered are in the range [1, 50]. θ̃n is represented by (· · ·) and o; the corresponding standard
deviation is plotted with (· · ·). The logs method θ̂

(1)
n is represented with (−−−−) and ¦. The

standard deviation with (−−−−). The blocks method θ̂
(2)
n with (· − ·−) and +, and (· − ·−)

for the standard deviation. The sample sizes are n = 200 and n = 1000 respectively. m = 100
simulations are used. The threshold sequence is ûn = x(n−k) with k =

√
2n.
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Figure 6.3. Simulated mean square error (MSE) of the estimators of θ for the doubly stochas-
tic model with ψ = 0.9 and η = 0.7. The partitions rn considered are in the range [1, 50].
m = 100 simulations of the model are used. θ̃n is represented by (· · ·) and o, θ̂

(1)
n with

(− − −−) and ¦, and (· − ·−) and + for θ̂
(2)
n . The sample sizes are n = 200 and n = 1000

respectively. The threshold sequence is ûn = x(n−k) with k =
√

2n.
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Figure 6.4. Estimated values of the extremal index for the doubly stochastic model with ψ =
0.5 and η = 0.5. The extremal index is θ = 0.66 plotted by ¤ line. The partitions rn considered
are in the range [1, 50]. θ̃n is represented by (· · ·) and o; the corresponding standard deviation
is plotted with (· · ·). The logs method θ̂

(1)
n is represented with (−−−−) and ¦. The standard

deviation with (− − −−). The blocks method θ̂
(2)
n with (· − ·−) and +, and (· − ·−) for the

standard deviation. The sample sizes are n = 200 and n = 1000 respectively. m = 100
simulations are used. The threshold sequence is ûn = x(n−k) with k =

√
2n.
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Figure 6.5. Simulated mean square error (MSE) of the estimators of θ for the doubly stochas-
tic model with ψ = 0.5 and η = 0.5. The partitions rn considered are in the range [1, 50].
m = 100 simulations of the model are used. θ̃n is represented by (· · ·) and o, θ̂

(1)
n with

(− − −−) and ¦, and (· − ·−) and + for θ̂
(2)
n . The sample sizes are n = 200 and n = 1000

respectively. The threshold sequence is ûn = x(n−k) with k =
√

2n.
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Figure 6.6. Estimated values of the extremal index for the doubly stochastic model with ψ =
0.5 and η = 0.5. The extremal index is θ = 0.66 plotted by ¤ line. The partitions rn considered
are in the range [1, 50]. θ̃n is represented by (· · ·) and o; the dash line describes the bootstrap
confidence interval with B = 1000 and (+−) is employed for the asymptotic intervals. The
significance level is α = 0.05. The sample sizes are n = 200 and n = 1000 respectively. The
threshold sequence is ûn = x(n−k) with k =

√
2n.
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Figure 6.7. DaX Index returns are represented in the upper panel. Squared returns showing
the patterns of volatility are plotted in the lower panel. The sample period is 19/12/1994 −
20/04/2001 (n = 1614 observations).
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Figure 6.8. Estimated values of θpos and θneg for the DaX Index returns over the period
19/12/1994 − 20/04/2001 (n = 1614). The upper panel estimates θpos and the lower panel
θneg. rn ∈ [1, 100]. θ̃n is represented by (· · ·) and o; (+−) describes the asymptotic confidence
intervals with α = 0.05. θ̂

(1)
n with (−−−−) and ¦, and (·−·−) and + for θ̂

(2)
n . ûn,pos = x(n−k)

and ûn,neg = x(k) with k =
√

2n are the corresponding thresholds.
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Figure 6.9. Estimated values of θpos − θneg for the DaX Index returns over the period
19/12/1994 − 20/04/2001 (n=1614). rn ∈ [1, 100]. θ̃n,pos − θ̃n,neg is represented by (· · ·)
and o; (+−) describes the asymptotic confidence intervals with α = 0.05. ûn,pos = x(n−k) and
ûn,neg = x(k) with k =

√
2n are the corresponding thresholds.
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Figure 6.10. Estimated values of θpos − θvol (upper panel) and θneg − θvol (lower panel) for
the DaX Index returns over the period 19/12/1994 − 20/04/2001 (n = 1614). rn ∈ [1, 100].
θ̃n,pos− θ̃n,vol and θ̃n,neg− θ̃n,vol are represented by (· · ·) and o; (+−) describes the asymptotic
confidence intervals with α = 0.05. un,pos = x(n−k) is the threshold for the positive exceedances
and un,neg = x(k) for the negative exceedances, with k =

√
2n.
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