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ESTIMATION OF EXTREME RISK REGIONS UNDER
MULTIVARIATE REGULAR VARIATION
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When considering d possibly dependent random variables, one is often
interested in extreme risk regions, with very small probability p. We consider
risk regions of the form {z ∈ R

d :f (z) ≤ β}, where f is the joint density and
β a small number. Estimation of such an extreme risk region is difficult since
it contains hardly any or no data. Using extreme value theory, we construct
a natural estimator of an extreme risk region and prove a refined form of
consistency, given a random sample of multivariate regularly varying random
vectors. In a detailed simulation and comparison study, the good performance
of the procedure is demonstrated. We also apply our estimator to financial
data.

1. Introduction. A two-dimensional normal density or Student t-density is
constant on boundaries of certain ellipses. Outside such an ellipse the density is
lower than inside. It is straightforward to find such an outer region and its con-
tour (line), for a given small probability. We can consider such contour as a natu-
ral multidimensional extension of a (one-dimensional) quantile. Even for extreme
sets, that is, very low density levels, the calculations are straightforward.

In this paper we consider, much more general, multivariate regularly varying
distributions [for a review, see Jessen and Mikosch (2006)]. We consider the latter
distributions, since we want to explore in particular extreme sets, that is, sets far
removed from the origin. A random vector X is multivariate regularly varying if
there exist a constant α > 0, the index and an arbitrary probability measure � on
� = {z ∈ R

d :‖z‖ = 1}, the unit hypersphere, such that

lim
t→∞

P(‖X‖ ≥ tx,X/‖X‖ ∈ A)

P(‖X‖ ≥ t)
= x−α�(A)(1)

for every x > 0 and Borel set A in � with �(∂A) = 0, with ‖X‖ the L2-norm
of X; see Rvačeva (1962). An equivalent statement is

lim
t→∞

P(‖X‖ ≥ tx)

P(‖X‖ ≥ t)
= x−α for x > 0,(2)
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and there exists a measure ν such that

lim
t→∞

P(X ∈ tB)

P(‖X‖ ≥ t)
= ν(B) < ∞(3)

for every Borel set B on R
d that is bounded away from the origin and satisfies

ν(∂B) = 0; here tB = {tz : z ∈ B}. Note that ν is homogeneous, that is, for all
a > 0,

ν(aB) = a−αν(B).(4)

Clearly, on {z ∈ R
d :‖z‖ ≥ 1}, ν is a probability measure. The limit relation in (3) is

a multivariate analogue of the “peaks-over-threshold” or “generalized Pareto limit”
method in one-dimensional extreme value theory. Particular cases of (1) are distri-
butions in the sum-domain of attraction of α-stable distributions and heavy tailed
elliptical distributions such as multivariate t-distributions [see Hashorva (2006)].

We require the convergence in (2) and (3) at the density level:

(a) Suppose that the distribution of X has a continuous and positive density
f and that for some positive function q and some positive function V regularly
varying at infinity with negative index −α, we have

lim
t→∞

f (tz)
t−dV (t)

= q(z) for all z �= 0(5)

and

lim
t→∞ sup

z∈�

∣∣∣∣ f (tz)
t−dV (t)

− q(z)
∣∣∣∣ = 0.(6)

Then q is continuous on R
d \ {0} and q(az) = a−d−αq(z) for all a > 0 and z �= 0.

Throughout, we can and will take V (t) = P(‖X‖ > t) (see Lemma 1, Section 5).
From Lemma 1, it follows that doing so (3) holds with ν(B) = ∫

B q(z) dz.

The extreme region will be of the form

Q = {z ∈ R
d :f (z) ≤ β},

where f is the probability density of the random vector X; β is determined in
such a way that the probability of Q is equal to a given very small number p, like
1/10,000.

It is the purpose of this paper to estimate Q based on n i.i.d. copies of X. Note
that the shape of Q is not predetermined, it depends on the density f . For the es-
timation of Q, we will use an approximation of f based on the density of � . The
values of p we consider are typically of order 1/n. This means that the number of
data points that fall in Q is small and can even be zero, that is, we are extrapolating
outside the sample. This lack of relevant data points makes estimation difficult. The
estimation of Q is a multivariate analogue of the estimation of extreme quantiles
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in the univariate setting; see, for example, de Haan and Ferreira (2006), Chap-
ter 4. The multivariate case is much more complicated, however, since we have to
estimate a whole set instead of only one value.

Having an estimate of Q can be important in various settings. It can be used as
an alarm system in risk management: if a new observation falls in the estimated Q

it is a signal of extreme risk. See Einmahl, Li and Liu (2009) for an application to
aviation safety along these lines. In a financial or insurance setting, points on the
boundary of the estimate of Q can be used for stress testing. The estimate of Q

can also be used to rank extreme observations (see Remark 3, Section 2).
For the “central” part of the distribution, that is, β is fixed (and “not too small”),

nonparametric estimation of density level sets has been studied in depth in the
literature. Two approaches are used, the plug-in approach using density estimation
[see Baíllo, Cuesta-Albertos and Cuevas (2001) and Rigollet and Vert (2009)], and
the excess mass approach [see Müller and Sawitzki (1991), Polonik (1995) and
Tsybakov (1997)]. Our estimation problem and (hence) our approach are quite
different from these.

This paper is organized as follows. In Section 2, we derive our estimator and
show a refined form of consistency. A simulation and comparison study is pre-
sented in Section 3 and a financial application is given in Section 4. Section 5
contains the proof of the main result.

2. Main result. Consider a random sample X1,X2, . . . ,Xn with Xi
d= X, for

i = 1, . . . , n; their common probability measure on R
d is denoted with P . Write Ri

for the radius ‖Xi‖ and Wi for the direction Xi/‖Xi‖ of Xi . We wish to estimate
an extreme risk region of the form

Q = {z ∈ R
d :f (z) ≤ β},

where β is such that PQ = p > 0, where p = pn → 0, as n → ∞. This means
that Q and β depend on n, that is, Q = Qn and β = βn. We shall connect Qn to a
fixed set S not depending on n, defined by

S = {z :q(z) ≤ 1}.
It will turn out that Qn can be approximated by a properly inflated version of S.
In fact, it follows from (6) that the risk regions are asymptotically homothetic as
a function of p, for small values of p. Define H(s) = 1 − V (s) = P(R ≤ s) and
U(t) = H−1(1 − 1

t
). Note that U is regularly varying at infinity with index 1/α.

We will approximate Qn in two steps by a (deterministic) region Q̃n. This ap-
proximation satisfies

P(Qn	Q̃n)

p
→ 0(7)

(	 denotes “symmetric difference”) and is based on the above limit relations. The
region Q̃n can therefore be estimated using extreme value theory. The first step is
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to establish an approximation of β = β(p). Let

(b) k = kn(< n) be a sequence of positive integers such that k → ∞ and
k/n → 0.

The region Qn is approximated by

Q̄n =
{

z :f (z) ≤
(

np

kν(S)

)1+d/α 1

(n/k)(U(n/k))d

}
.

Next, we approximate Q̄n by a further region Q̃n defined in terms of the limit
density q rather than f :

Q̃n = U

(
n

k

)(
kν(S)

np

)1/α

S.(8)

Indeed, S and this approximation of Qn are homothetic.
Write

Br,A = {z :‖z‖ ≥ r, z/‖z‖ ∈ A}
for a Borel set A on �. Clearly, Br,A = rB1,A and hence ν(Br,A) = r−αν(B1,A).

The relation between the spectral measure � and ν is [cf. (1) and (3)]

�(A) = ν(B1,A)

for a Borel set A ⊂ �. Recall that the spectral measure is a probability measure.
The existence of a density q of ν implies the existence of a density ψ of � , that is,

�(A) =
∫
A

ψ(w) dλ(w),

where λ is the Hausdorff measure (surface area) on � and

q(rw) = αr−α−dψ(w).

Next, we write S and ν(S) in terms of the spectral density:

S = {
z = rw : r ≥ (αψ(w))1/(α+d),w ∈ �

}
and hence

ν(S) = α−α/(α+d)
∫
�
(ψ(w))d/(α+d) dλ(w).

To estimate Q̃n, we need estimators for U(n/k),α,S and ν(S). From the above
expressions for S and ν(S), we see that this means that we have to estimate
U(n/k), α and ψ . First, we define

Û

(
n

k

)
= Rn−k:n
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[the (n − k)th order statistic of the Ri , i = 1, . . . , n]. Since the tail of the distribu-
tion function of R is regularly varying with index −α, we can use one of the well-
known estimators of the extreme value index 1/α, based on the Ri, i = 1, . . . , n;
see, for example, Hill (1975), Smith (1987) and Dekkers, Einmahl and de Haan
(1989). It remains to estimate ψ . Let K : [0,1] → [0,1] be a continuous and non-
increasing (kernel) function with K(0) = 1 and K(1) = 0. For w ∈ �, define an
estimator of ψ(w) by

ψ̂n(w) = c(h,K)

k

n∑
i=1

K

(
1 − wT Wi

h

)
1[Ri>Rn−k:n]

with 0 < h < 1 and

c(h,K) =
(∫

Cw(h)
K

(
1 − vT w

h

)
dλ(v)

)−1

, Cw(h) = {v ∈ � : wT v ≥ 1−h};

cf. Hall, Watson and Cabrera (1987).
For estimating Qn it suffices to estimate Q̃n, see (7). Hence, in view of (8), we

define

Q̂n = Û

(
n

k

)(
kν̂(S)

np

)1/α̂

Ŝ(9)

with

Ŝ = {
z = rw : r ≥ (α̂ψ̂n(w))1/(α̂+d),w ∈ �

}
and

ν̂(S) = α̂−α̂/(α̂+d)
∫
�
(ψ̂n(w))d/(α̂+d) dλ(w).

In the definition of the set S, the choice of the value 1 was not motivated. We
could have taken any number c > 0 instead. Such an alternative definition of S

would lead to exactly the same estimator Q̂n, which shows that the value 1 plays
no role.

Assume

lim
t→∞

U(t)

t1/α
= c for some c ∈ (0,∞).(c)

Note that this simple condition is weaker than the usual second order condition
with negative second order parameter ρ [see, e.g., Theorem 4.3.8 in de Haan and
Ferreira (2006)]; indeed, there exist functions U with ρ = 0 that satisfy condi-
tion (c).

THEOREM 1. Let p → 0 as n → ∞. Assume conditions (a), (b), (c) hold and
that α̂ is such that

√
k(α̂−α) = OP(1). Also assume that (lognp)/

√
k → 0, h → 0
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and k/(c(h,K) log k) → ∞, as n → ∞. Then we have

P(Q̂n	Qn)

p

P→ 0 as n → ∞,(10)

and hence

P(Q̂n)

p

P→ 1.

REMARK 1. The tuning parameter k is used in the estimators of α,U(n/k)

and ψ . It is important to be able to choose three different values for k, denoted with
kα, kU and kψ , respectively. (Note that “good” values of kα and kU are determined
by the tail of H—the distribution function of R1—whereas a good kψ is deter-
mined by the conditional distribution of W1, given that R1 > r , for large r .) If we
adapt the conditions of the theorem, in particular if (b) holds for kα, kU , kψ and if
(lognp)/

√
kα → 0, kψ/(c(h,K) log kψ) → ∞ and (logkU)/

√
kα → 0, then (10)

remains true for the generalized estimator that allows for the aforementioned dif-
ferent k-values. We will use this generalized estimator in the simulation study and
the real data application.

The actual choice of these k-values is a notorious problem in extreme value
theory. A solution of this problem is far beyond the scope of the present paper. We
will only give heuristic guidelines here. First, consider the estimation of α. Plot α̂

as a function of k. Now find the first stable, that is, approximately constant, region
in the graph of this function. This vertical level is the final estimate of α. It is also
possible to use (complicated) asymptotically optimal procedures; see, for example,
Danielsson et al. (2001). Once the estimate α̂ is fixed, we plot Û (n

k
)( k

n
)1/α̂ against

k and we search for the first stable part in this graph. The vertical level is now the
estimate of the constant c in condition (c). Observe that Û (n

k
)( k

n
)1/α̂ is a building

block of Q̂n, so we do not need to estimate U(n
k
) separately. Also observe that we

do not (need to) determine kα and kU , but only a region of good values. Finally,
using again the already fixed α̂, we plot ν̂(S) as a function of k and again we search
for the first stable region; we take kψ to be the midpoint of this region of k-values.

REMARK 2. The class of multivariate regularly varying distributions is quite
large. It contains, for example, all elliptical distributions with a heavy tailed radial
distribution and all distributions in the domain of a sum-attraction of a multivari-
ate (nonnormal) stable distribution. It seems natural, however, to try to extend the
assumption of multivariate regular variation to the case of nonequal tail indices α.
It is an important feature of the present model that all directions are equally impor-
tant: the marginal distributions do not play a special role. An extension to nonequal
tail indices would be possible in principle, but it will be of limited value since
it only works if marginal transformations lead to the present model. Also note
that basically all linear combinations of the components inherit the lowest of the
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marginal tail indices: the tail index is not a smooth function of the direction (if it
is not constant). Moreover, the statistical theory that will be needed will be chal-
lenging and will lead to a new and different project.

REMARK 3. Note that the estimated extreme risk region Q̂n = Q̂n(p) de-
pends on p in a continuous way and has the property that p1 < p2 implies
Q̂n(p1) ⊂ Q̂n(p2). Hence, we can find the smallest p such that an observation
is on the boundary of Q̂n(p). The corresponding observation can be considered
the largest one and we know its “p-value.” This is helpful in deciding whether
some observation is the most extreme or if it is an outlier. Also, by continuing this
procedure we can rank the larger observations.

3. Simulation study. In this section, a detailed simulation study is performed
in order to investigate the finite sample performance of our estimator [with 1/α

estimated using the moment estimator of Dekkers, Einmahl and de Haan (1989)
and with K(u) = 1 − u]. We consider five multivariate distributions.

• The bivariate Cauchy distribution with density

f (x, y) = 1

2π(1 + x2 + y2)3/2 , (x, y) ∈ R
2.(11)

This is a very heavy tailed density, with α = 1 and ψ(w) = 1/(2π), for w ∈ �.
• The trivariate Cauchy distribution with density

f (x, y, z) = 1

π2(1 + x2 + y2 + z2)2 , (x, y, z) ∈ R
3.(12)

This is also a very heavy tailed density, with α = 1 and ψ(w) = 1/(4π), for
w ∈ �.

• A bivariate elliptical distribution with density (r0 ≈ 1.2481)

f (x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3

4π
r4

0 (1 + r6
0 )−3/2, x2/4 + y2 < r2

0 ,

3(x2/4 + y2)2

4π(1 + (x2/4 + y2)3)3/2 , x2/4 + y2 ≥ r2
0 .

(13)

It is less heavy tailed. We have α = 3 and ψ(w1,w2) = c(1 + 3w2
2)

−5/2,w =
(w1,w2) ∈ �, with c ≈ 0.6028.

• A bivariate “clover” distribution with density (r0 ≈ 1.2481)

f (x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3

10π
r4

0 (1 + r6
0 )−3/2

(
5 + 4(x2 + y2)2 − 32x2y2

r0(x2 + y2)3/2

)
,

x2 + y2 < r2
0 ,

3(9(x2 + y2)2 − 32x2y2)

10π(1 + (x2 + y2)3)3/2 ,

x2 + y2 ≥ r2
0 .

(14)
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We have α = 3, again, and ψ(w1,w2) = (9 − 32w2
1w

2
2)/(10π),w =

(w1,w2) ∈ �.
• A bivariate asymmetric shifted distribution with density [r0 ≈ 1.2331, r̃(x, y) :=

r0 ∨ ((x + 5)2 + y2)1/2]

f (x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
r̃2(x, y)

6π(1 + r̃4(x, y))5/4

(
3 + x + 5

r̃(x, y)

)
, y ≥ 0,

r̃2(x, y)

6π(1 + r̃4(x, y))5/4

(
3 + (x + 5)3 − 3(x + 5)y2

r̃3(x, y)

)
, y < 0.

(15)

This distribution is not symmetric and the “center” is not the origin, but (−5,0);
α = 1 and ψ(w1,w2) = 1

6π
(3+w1), if w2 ≥ 0, and ψ(w1,w2) = 1

6π
(3+4w3

1 −
3w1), if w2 < 0, w = (w1,w2) ∈ �.

First, we simulated single data sets of size 5,000 of the bivariate Cauchy dis-
tribution, the elliptical distribution in (13), the clover distribution in (14) and the
asymmetric shifted distribution in (15). We computed the true and estimated risk
regions for p = 1/2,000, 1/5,000 or 1/10,000. This is depicted in Figure 1. We
see that the estimated regions are relatively close to the true risk regions. It is in-
teresting to note that the p-value (see Remark 3) of the largest observation for the
Cauchy sample is 0.000209, which is about 1/n. This shows that this observation
is a typical one. (Looking at the data only, one might want to conclude that this
observation is an outlier.) Also note that for the bivariate Cauchy distribution, for,
for example, p = 1/10,000, the density f at the boundary of the true risk region is
less than 10−12. This emphasizes that we are estimating in an “almost empty” part
of the plane and that a fully nonparametric procedure could not work here.

In addition, we simulated one sample of the bivariate distribution with inde-
pendent t3-components. This distribution does not satisfy condition (a), since the
spectral measure is discrete and concentrated on the intersection of the coordinate
axes with the unit circle. We also simulated one sample of a bivariate “logarith-
mic” distribution with α = 1 and uniform spectral measure, but where the radial
distribution satisfies U(t)/(t log t) tends to a constant and hence U(t)/t → ∞
as t → ∞, that is, this distribution does not satisfy condition (c). Although both
distributions do not satisfy our conditions, we see nevertheless satisfactory behav-
ior of the estimator in Figure 2. In the left panel, the estimated region has about
the right size and the difficult shape is approximated reasonably well; in the right
panel, we see that both the shape and the size are approximated quite well.

After this visual assessment of our estimator based on one sample at a time, we
now investigate its performance based on 100 simulated samples of size 5,000. We
will compare our estimator (denoted EVT) to a nonparametric and to a more para-
metric estimator. The nonparametric estimator is only defined in case p = 1/n and
tries to mimic the largest order statistic as an estimator of the (1 − 1/n)th quantile
in the univariate case. It aims at elliptical level sets. It is defined as follows. First,
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FIG. 1. True and estimated risk regions based on one sample of size 5,000 from the bivariate
Cauchy distribution, the elliptical distribution in (13), the clover distribution in (14) and the asym-
metric shifted distribution in (15).

calculate the smallest ellipsoid containing half of the data, the so-called MVE.
Then inflate this ellipsoid, such that the “largest” observation lies on its boundary.
Now the region outside this ellipsoid is the estimator.

For d = 2, the more parametric estimator is defined similarly to Q̂n in (9), but
(only) the estimation of (ν(S))1/αS is done parametrically. Therefore, this estima-
tor has the same size as Q̂n, but a different shape. (Note that the fully parametric
estimator based on multivariate normality would have a very bad performance.)
Take the k observations with radius Ri > Rn−k:n and consider the transformed
data (Ri/Rn−k:n,Wi). In line with the limit result in (1), assume that these data
have a “distribution” (·)−α� , where � depends on a parameter ρ. To be precise,
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FIG. 2. True and estimated risk regions based on one sample of size 5,000 from the bivariate
distribution with independent t3-components and the “logarithmic” distribution.

we assume for the density

ψρ(θ) = (4π)−1(
2 + sin

(
2(θ − ρ)

))
, 0 ≤ θ < 2π,0 ≤ ρ < π.

(Here a point on the unit circle is represented by its angle θ ∈ [0,2π).) Now α and
ρ are estimated by maximum likelihood; observe that this yields the Hill estimator
for 1/α.

Table 1 shows for the three different estimators the median of the 100 relative er-
rors P(Q̂n	Qn)/p for p = 1/5,000 (p1) and 1/10,000 (p2). In Figure 3, boxplots
are shown of the relative error P(Q̂n	Qn)/p for p = 1/5,000 (p1) and 1/10,000
(p2). From this table and figure, we see a good performance of our estimator. Its
behavior does not change much if p changes from 1/5,000 to 1/10,000. The para-
metric estimator performs reasonably well, but it is outperformed by our estimator,
in particular for the elliptical and clover densities. Recall that this estimator can be
seen as a modification of our estimator, since it uses the same estimated inflation

TABLE 1
Median of the relative errors P(Q̂n	Qn)/p of the three estimators,

for p = 1/5,000 (p1) and 1/10,000 (p2)

Density EVT p1 Par p1 NP p1 EVT p2 Par p2

Biv. Cauchy 0.28 0.29 0.72 0.31 0.32
Triv. Cauchy 0.22 – 0.54 0.24 –
Elliptical 0.36 0.51 0.80 0.39 0.54
Clover 0.44 0.57 0.58 0.49 0.61
Asymm. shifted 0.26 0.27 0.61 0.30 0.32
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FIG. 3. Boxplots of P(Q̂n	Qn)/p for the here proposed estimator and for the parametric and
the nonparametric estimator, based on 100 simulated data sets of size 5,000 from the five presented
densities for p = 1/5,000 (p1) and 1/10,000 (p2).
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factor, but the shape is estimated differently. We see a moderate performance of
the nonparametric estimator; also, it cannot be adapted to p = 1/10,000. Given
that the estimation of these extreme risk regions is a statistically difficult problem,
we see decent behavior of the three estimation methods. Obviously the parametric
and the nonparametric estimator do not perform well if the parametric part of the
model is not adequate or if the shape of the region is not elliptical, respectively. The
EVT estimator, presented in this paper, does not suffer from these shortcomings
and performs well for many multivariate distributions.

4. Application. In this section, an application of our method to foreign ex-
change rate data is presented. The data are the daily exchange rates of Yen-Dollar
and Pound-Dollar from January 4, 1999 to July 31, 2009. Consider the daily log
returns given by Xi,j = log (Yi+1,j /Yi,j ), with i = 1, . . . ,2,664, j = 1,2, and Yi,1
is the daily exchange rate of the Yen to the Dollar and Yi,2 of the Pound to the Dol-
lar. First, we check the equality of the extreme value indices (the reciprocals of the
tail indices) of the right and left tails of both marginal distributions and that of the
radius. This yields 5 extreme value indices; the 5 estimates in increasing order are:
0.141, 0.191, 0.223, 0.242, 0.256. Hence, the maximal difference is 0.115. Based
on the asymptotic normality of the moment estimator of the extreme value index,
we compute an approximate upper bound for the maximal difference of the 5 es-
timators under the null hypothesis of equality: 0.264. Hence, there is no evidence
that the 5 extreme value indices are different. Other exchange rate data sets share
this property. There are also economic arguments supporting this claim. Therefore,
we estimate α based on the radius and find α̂ = 3.90. As a next step, we estimate
the density ψ of the spectral measure. The estimate ψ̂n is depicted in Figure 4; it
is almost periodic with period π . This yields that the boundary of the estimated
extreme risk region is not like a circle, but more like an ellipse. The location of the
maxima of ψ̂n correspond to the major axis of the region. We estimate the extreme
risk regions for p = 1/2,000,1/5,000 and 1/10,000; see Figure 5. For risk man-
agement of financial institutions in the U.S., it is important to know which extreme

FIG. 4. Estimator of ψ of bivariate exchange rate returns.
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FIG. 5. Estimated extreme risk regions of exchange rate returns.

exchange rate returns w.r.t. the Pound and the Yen can occur and which returns es-
sentially never occur. Our estimate answers this question. More specifically, points
on the boundary of the estimated extreme risk region can be used as multivariate
stress test scenarios. A scenario on the intersection of the major axis of the ellipse-
like boundary of the extreme risk region and the boundary itself corresponds to a
larger shock than a scenario on the intersection of the minor axis of the ellipse-like
boundary and the boundary itself, but our method shows that their “extremeness”
is about the same.

5. Proofs. For the proof of the theorem, we need several lemmas and propo-
sitions. We assume throughout that the conditions of the theorem are in force. We
start with a lemma on regular variation in R

d .

LEMMA 1. Write l = 1/
∫
{‖z‖≥1} q(z) dz. For any ε > 0,

lim
t→∞ sup

‖z‖≥ε

∣∣∣∣ f (tz)
t−dV (t)

− q(z)
∣∣∣∣ = 0.(16)

Moreover

lim
t→∞

P(X ∈ tB)

V (t)
=

∫
B

q(z) dz(17)

for any Borel set B bounded away from the origin. Define qt (z) = t (U(t))d ×
f (U(t)z). Then

lim
t→∞ sup

‖z‖≥ε

|qt (z) − lq(z)| = 0.(18)



1816 J.-J. CAI, J. H. J. EINMAHL AND L. DE HAAN

Let h̃ be the density of H , then

lim
t→∞

h̃(t)

t−1V (t)
= α

l
.(19)

PROOF. For any ‖z‖ ≥ ε > 0 [cf. Theorem 2.1 in de Haan and Resnick
(1987)], ∣∣∣∣ f (tz)

t−dV (t)
− q(z)

∣∣∣∣
=

∣∣∣∣ f (t‖z‖(z/‖z‖))

(t‖z‖)−dV (t‖z‖) · (t‖z‖)−dV (t‖z‖)
t−dV (t)

− q(z)
∣∣∣∣

≤ ‖z‖−d−α

∣∣∣∣ f (t‖z‖(z/‖z‖))

(t‖z‖)−dV (t‖z‖) − q

(
z

‖z‖
)∣∣∣∣

+ f (t‖z‖(z/‖z‖))

(t‖z‖)−dV (t‖z‖)
∣∣∣∣(t‖z‖)−dV (t‖z‖)

t−dV (t)
− ‖z‖−d−α

∣∣∣∣
Then (16) follows from condition (a).

Let a Borel set B be such that B ⊂ {‖z‖ ≥ γ }, for some γ > 0. Then for z ∈
B and sufficiently large t , f (tz)/t−dV (t) is bounded by q(‖z‖−1z)‖z‖−a/2−d .
Hence, (17) holds by Lebesgue’s dominated convergence theorem.

We have from (17), as t → ∞,

tV (U(t)) = V (U(t))

P(R ≥ U(t))
→ l.

Hence (16) implies, uniformly for ‖z‖ ≥ ε,

qt (z) = tV (U(t))
f (U(t)z)

(U(t))−dV (U(t))
→ lq(z).

Note that

1 − H(t) = P(R > t) =
∫ ∞
t

∫
�

f (rw) dλ(w)rd−1 dr.

By taking derivatives, (16) and the homogeneity of q , we obtain

lim
t→∞

h̃(t)

t−1V (t)
=

∫
�

q(w) dλ(w) = α

∫
{‖z‖≥1}

q(z) dz = α/l. �

We now see that (5) and (6) hold with V = 1 − H . From now on, we will make
the choice V = 1 − H and hence l = 1. Note that with this choice the relations (3)
[with ν(B) = ∫

B q(z) dz] and (4) readily follow from (17).

COROLLARY 1. For all Borel sets B with positive distance from the origin,

lim
t→∞ tP (U(t)B) = ν(B)(20)
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and

lim
n→∞

ν(S)

p
P

(
U

(
n

k

)(
kν(S)

np

)1/α

B

)
= ν(B).(21)

PROOF. From P(R ≥ U(t)) = 1/t and (3), we obtain (20). It follows from (c)
that

U(ν(S)/p)

U(n/k)(kν(S)/(np))1/α
→ 1.(22)

This yields (21). �

LEMMA 2. For each ε > 0, there exists a δ > 0 and t0 > 0 such that for t > t0{
z :

f (tz)
t−dV (t)

≤ ε

}
⊂ {z :‖z‖ > δ}.

PROOF. It is sufficient to prove {z :‖z‖ ≤ δ} ⊂ {z :f (tz)/(t−dV (t)) > ε}.
First, by (6) and the continuity of q , for some c1 > 0, there exists s0 > 0 such
that for s > s0

inf
w∈�

f (sw)

s−dV (s)
≥ c1

and also for s1, s2 > s0 [cf. Proposition B.1.9.5 in de Haan and Ferreira (2006)]

V (s1)

V (s2)
>

1

2

(
s1

s2

)−α/2

.

Now for t > s0 and any z ∈ {z :‖z‖ ≤ δ}, there are two possibilities.

(i) t‖z‖ > s0, then

f (tz)
t−dV (t)

= f (t‖z‖(z/‖z‖))

(t‖z‖)−dV (t‖z‖) · (t‖z‖)−dV (t‖z‖)
t−dV (t)

>
1

2
c1δ

−α/2−d > ε;
(ii) t‖z‖ ≤ s0, then by continuity of f and f > 0, we have for some c2 > 0,

f (tz) ≥ c2, and hence, since limt→∞ t−dV (t) = 0, we obtain for t > t0(≥ s0)

f (tz)
t−dV (t)

> ε. �

LEMMA 3. For ε > 0 and large n,

Q̄n ⊂ U

(
ν(S)

p

)
{z :q(z) ≤ 1 + ε}

and

Q̄n ⊃ U

(
ν(S)

p

)
{z :q(z) ≤ 1 − ε}.
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PROOF. Recall that Q̄n = {z :f (z) ≤ (
np

kν(S)
)1+(d/α) 1

(n/k)(U(n/k))d
}. It follows

from (22) that for n large enough and ε1 > 0

Q̄n = U

(
ν(S)

p

){
z :f

(
U

(
ν(S)

p

)
z
)

≤
(

np

kν(S)

)1+(d/α) 1

(n/k)(U(n/k))d

}

= U

(
ν(S)

p

){
z :qν(S)/p(z) ≤

(
np

kν(S)

)d/α(
U

(
n

k

))−d(
U

(
ν(S)

p

))d}

⊂ U

(
ν(S)

p

){
z :qν(S)/p(z) ≤ 1 + ε1

}
.

Now Lemma 2 implies {z :qν(S)/p(z) ≤ 1 + ε1} ⊂ {z :‖z‖ > δ}, hence we have by
(18)

Q̄n ⊂ U

(
ν(S)

p

)
{z :q(z) ≤ 1 + ε}.

The other inclusion follows in the same way (but Lemma 2 is not needed). �

LEMMA 4. For ε > 0 and large n,

Q̃n ⊂ U

(
ν(S)

p

)
{z :q(z) ≤ 1 + ε}

and

Q̃n ⊃ U

(
ν(S)

p

)
{z :q(z) ≤ 1 − ε}.

PROOF. Recall that Q̃n = U(n
k
)(kν(S)

np
)1/α{z :q(z) ≤ 1}.

Put Tn = (U(ν(S)
p

))−1U(n
k
)(kν(S)

np
)1/α , then

Q̃n = U

(
ν(S)

p

)
{Tnz :q(z) ≤ 1} = U

(
ν(S)

p

)
{Tnz :q(Tnz) ≤ T −d−α

n }

= U

(
ν(S)

p

)
{z :q(z) ≤ T −d−α

n }.

Since Tn → 1 as n → ∞ by (22), the result follows. �

PROPOSITION 1. We have

lim
n→∞

P(Qn 	 Q̃n)

p
= 0.
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PROOF. Note that P(Qn 	 Q̃n) ≤ P(Qn 	 Q̄n)+P(Q̄n 	 Q̃n). Observe that
Qn ⊂ Q̄n or Q̄n ⊂ Qn, hence P(Qn 	 Q̄n) ≤ |p − P(Q̄n)|. By Lemma 3 and
Corollary 1, for any ε > 0 and large n

ν(S)

p
P (Q̄n) ≤ ν(S)

p
P

(
U

(
ν(S)

p

)
{z :q(z) ≤ 1 + ε}

)
→ ν

({z :q(z) ≤ 1 + ε})
= ν

({
z :q

(
z(1 + ε)1/(d+α)) ≤ 1

})
= ν

({
(1 + ε)−1/(d+α)z :q(z) ≤ 1

})
= (1 + ε)α/(d+α)ν(S).

Thus, lim supn→∞ P(Q̄n)
p

≤ (1 + ε)α/(2+α).

Similarly, we have lim infn→∞ P(Q̄n)
p

≥ (1−ε)α/(2+α). Hence, limn→∞ P(Q̄n)
p

=
1, that is, limn→∞ P(Qn	Q̄n)

p
= 0.

In the same way, it follows from Lemmas 3 and 4 that

ν(S)

p
P (Q̄n 	 Q̃n) ≤ ν(S)

p
P

(
U

(
ν(S)

p

)
{z : 1 − ε ≤ q(z) ≤ 1 + ε}

)
→ ν

({z : 1 − ε ≤ q(z) ≤ 1 + ε})
= ν(S)

(
(1 + ε)α/(d+α) − (1 − ε)α/(d+α)).

Hence, limn→∞ P(Q̄n	Q̃n)
p

= 0. �

The following proposition shows uniform consistency of ψ̂n and might be of
independent interest. There is an abundant literature on density estimation for di-
rectional data. In particular, uniform consistency of density estimators for direc-
tional data has been established in Bai, Rao and Zhao (1988). Here, however, the
data do not have a fixed probability density on �: the density ψ is defined via a
limit relation. Hence, ψ is only an approximate model for the directional data. As
a consequence, a more general result is required.

PROPOSITION 2. As n → ∞,

sup
w∈�

|ψ̂n(w) − ψ(w)| P→ 0.

PROOF. It is easy to see that, for any η > 0, there exists a function

K∗ =
m∑

j=1

αj 1[rj−1,rj )
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with 1 ≥ α1 ≥ α2 ≥ · · · ≥ αm ≥ 0 and 0 = r0 < r1 < · · · < rm = 1, such that

sup
u∈[0,1]

|K(u) − K∗(u)| ≤ η.

Write Ui = 1 − H(Ri), i = 1, . . . , n, and denote the corresponding order statis-
tics with Ui:n. Let P̃ be the probability measure on � × (0,1) corresponding to
(W1,U1) and let P̃n be the empirical measure of the (Wi ,Ui) i = 1, . . . , n. Define

ψ∗
n(w) = c(h,K)

k

n∑
i=1

K∗
(

1 − wT Wi

h

)
1[Ri>Rn−k:n]

and

ψ∗
n,j (w) = nc(h,K)

k
P̃n

(
Dw,j × (0,Uk:n])

with Dw,j = {v ∈ � : 1 − hrj < wT v ≤ 1 − hrj−1}. Observe that ψ∗
n(w) =∑m

j=1 αjψ
∗
n,j (w). Also write

ψn,j (w) = nc(h,K)

k
P̃

(
Dw,j × (0,Uk:n]).

Let ε > 0. It is sufficient to show that for large n

P

(
sup
w∈�

∣∣∣∣∣ψ̂n(w) −
m∑

j=1

αjψn,j (w)

∣∣∣∣∣ ≥ 2ε

)
≤ 2ε,(23)

P

(
sup
w∈�

∣∣∣∣∣
m∑

j=1

αj

(
ψn,j (w) − c(h,K)�(Dw,j )

)∣∣∣∣∣ ≥ 2ε

)
≤ ε,(24)

sup
w∈�

∣∣∣∣∣c(h,K)

m∑
j=1

αj�(Dw,j ) − ψ(w)

∣∣∣∣∣ ≤ ε.(25)

For w ∈ � and δ ∈ (0,1), write Cδ = {Cw(a) : w ∈ �,a ≤ δ}. Note that, as n → ∞,

sup
C∈C1,0<s≤2

1

λ(C)

∣∣∣∣nk P̃
(
C × (0, sk/n]) − s�(C)

∣∣∣∣ → 0.(26)

This readily follows from

n

k
P̃

(
C × (0, sk/n]) = n

k
P

(
W ∈ C,R ≥ U

(
n

sk

))
= n

k

∫ ∞
U(n/(sk))

∫
C

f (rw)

r−dV (r)
dλ(w) r−1V (r) dr

and (16) and (19).
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Now we prove (23). It is easy to show that

c(h,K) =
(

2π(d−1)/2

�((d − 1)/2)

∫ 1

1−h
K

(
1 − t

h

)
(1 − t2)(d−3)/2 dt

)−1

and hence

lim sup
h↓0

c(h,K)λ(Cw(h)) < ∞.(27)

We have

|ψ̂n(w) − ψ∗
n(w)|

= c(h,K)

k

∣∣∣∣∣
n∑

i=1

(
K

(
1 − wT Wi

h

)
− K∗

(
1 − wT Wi

h

))
1[Ri>Rn−k:n]

∣∣∣∣∣
≤ c(h,K)

k

n∑
i=1

η1[Wi∈Cw(h),Ri>Rn−k:n](28)

≤ η
nc(h,K)

k
P̃

(
Cw(h) × (0,Uk:n])

+ η
nc(h,K)

k

∣∣(P̃n − P̃ )
(
Cw(h) × (0,Uk:n])∣∣.

By (26), for η small enough the first term is less than ε, with probability tending
to one, uniformly in w ∈ �. Also,∣∣∣∣∣ψ∗

n(w) −
m∑

j=1

αjψn,j (w)

∣∣∣∣∣
≤

m∑
j=1

αj |ψ∗
n,j (w) − ψn,j (w)|(29)

≤
m∑

j=1

αj

nc(h,K)

k

∣∣(P̃n − P̃ )
(
Dw,j × (0,Uk:n])∣∣.

From (29), (28) and (27), we see that for a proof of (23) it remains to show that

n

kλ(Cw(h))
sup
w∈�

sup
0<a≤1

∣∣(P̃n − P̃ )
(
Cw(ah) × (0,Uk:n])∣∣ P→ 0.

It can be shown that there exists a constant c = c(d) and finitely many wl , l =
1, . . . , lh such that lh = O(c(h,K)) as h ↓ 0, and for every w ∈ � and 0 < a ≤ 1

Cw(ah) ∈ Cwl
(ch) for some l.
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Hence for ε1 > 0,

P

(
n

kλ(Cw(h))
sup
w∈�

sup
0<a≤1

∣∣(P̃n − P̃ )
(
Cw(ah) × (0,Uk:n])∣∣ ≥ ε1

)
≤ P

(
max

1≤l≤lh
sup

C⊂Cwl
(ch)

C∈Ch

sup
0<s≤2

∣∣(P̃n − P̃ )
(
C × (0, sk/n])∣∣ ≥ ε1k/nλ(Cw(h))

)

+ P(Uk:n > 2k/n)

≤
lh∑

l=1

P

(
sup

C⊂Cwl
(ch)

C∈Ch

sup
0<s≤2

∣∣(P̃n − P̃ )
(
C × (0, sk/n])∣∣ ≥ ε1k/nλ(Cw(h))

)

+ P(Uk:n > 2k/n).

The latter probability tends to 0, so it suffices to consider the sum of the lh proba-
bilities. Write b = ε1kλ(Cw(h)). Fix l and define N = nP̃n(Cwl

(ch) × (0,2k/n]),
μ = nP̃ (Cwl

(ch) × (0,2k/n]). Define the conditional probability measure P̃c =
nP̃
μ

on Cwl
(ch) × (0,2k/n] and let P̃c,r be the corresponding empirical measure,

based on r observations. We have

P

(
sup

C⊂Cwl
(ch)

C∈Ch

sup
0<s≤2

n
∣∣(P̃n − P̃ )

(
C × (0, sk/n])∣∣ ≥ b

)

≤
r=�μ+b/3�∑
r=�μ−b/3�

P

(
sup

C⊂Cwl
(ch)

C∈Ch

sup
0<s≤2

n
∣∣(P̃n − P̃ )

(
C × (0, sk/n])∣∣ ≥ b

∣∣N = r
)

× P(N = r) + P(|N − μ| ≥ b/3)

≤
r=�μ+b/3�∑
r=�μ−b/3�

P

(
sup

C⊂Cwl
(ch)

C∈Ch

sup
0<s≤2

n

∣∣∣∣(P̃n − N

μ
P̃

)(
C × (0, sk/n])∣∣∣∣

≥ b

2

∣∣∣N = r

)
P(N = r)

+
r=�μ+b/3�∑
r=�μ−b/3�

P

(
sup

C⊂Cwl
(ch)

C∈Ch

sup
0<s≤2

n

∣∣∣∣(N − μ)

μ
P̃

(
C × (0, sk/n])∣∣∣∣

≥ b

2

∣∣∣N = r

)
P(N = r)

+ P(|N − μ| ≥ b/3)(30)
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≤
r=�μ+b/3�∑
r=�μ−b/3�

P

(
sup

C⊂Cwl
(ch)

C∈Ch

sup
0<s≤2

r
∣∣(P̃c,r − P̃c)

(
C × (0, sk/n])∣∣ ≥ b

2

)

× P(N = r)

+
r=�μ+b/3�∑
r=�μ−b/3�

P

(
|r − μ| ≥ b

2

)
P(N = r) + P(|N − μ| ≥ b/3).

Note that the first probability of the second sum in the right side of (30) is equal
to 0. From Bennett’s inequality [cf. Shorack and Wellner (1986), page 851], it
follows that for some constant c1

P(|N − μ| ≥ b/3) ≤ 2 exp
(
−ε2

1c1
k

c(h,K)

)
.

Hence, since lh = O(c(h,K)),

lh∑
l=1

P(|N − μ| ≥ b/3) = O

(
c(h,K) exp

(
−ε2

1c1
k

c(h,K)

))
= o(1).

To complete the proof of (23), we need to consider the first sum in the right side of
(30). For the first probability in there, we use Corollary 2.9 in Alexander (1984),
a good probability bound for empirical processes on VC classes. We obtain as an
upper bound

16 exp
(
−b2

4r

)
.

Using r ≤ μ + b/3, we find for some constant c2

lh∑
l=1

r=�μ+b/3�∑
r=�μ−b/3�

P

(
sup

C⊂Cwl
(ch)

C∈Ch

sup
0<s≤2

r
∣∣(P̃c,r − P̃c)

(
C × (0, sk/n])∣∣ ≥ b

2

)

× P(N = r)

≤ 16
lh∑

l=1

r=�μ+b/3�∑
r=�μ−b/3�

exp
(
−ε2

1c2
k

c(h,K)

)
P(N = r)

≤ 16
lh∑

l=1

exp
(
−ε2

1c2
k

c(h,K)

)
= o(1).
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Next, we show (24). From (27) and (26), we obtain for ε2 > 0 small enough,

sup
w∈�

∣∣∣∣∣
m∑

j=1

αj

(
ψn,j (w) − c(h,K)�(Dw,j )

)∣∣∣∣∣
= sup

w∈�

∣∣∣∣∣
m∑

j=1

αjc(h,K)
(
n/kP̃

(
Dw,j × (0,Uk:n]) − �(Dw,j )

)∣∣∣∣∣
≤ ε2

m∑
j=1

αjc(h,K)λ(Cw(h)) + sup
w∈�

∣∣∣∣∣
m∑

j=1

αjc(h,K)(nUk:n/k − 1)�(Dw,j )

∣∣∣∣∣
≤ ε +

∣∣∣∣nk Uk:n − 1
∣∣∣∣ m∑
j=1

αjc(h,K)λ(Cw(h)) sup
w∈�

ψ(w) < 2ε

with probability tending to one.
It remains to prove (25). It is readily seen that

∫
Cw(h) K

∗(1−wT v
h

) dλ(v) =∑m
j=1 αjλ(Dw,j ). Hence, for ε3 > 0 small enough

sup
w∈�

∣∣∣∣∣c(h,K)

m∑
j=1

αj�(Dw,j ) − ψ(w)

∣∣∣∣∣
≤ sup

w∈�

ψ(w)

∣∣∣∣∣c(h,K)

m∑
j=1

αjλ(Dw,j ) − 1

∣∣∣∣∣ + ε3c(h,K)

m∑
j=1

αjλ(Dw,j )

≤ sup
w∈�

ψ(w)

∣∣∣∣
∫
Cw(h) K

∗((1 − wT v)/h) dλ(v)∫
Cw(h) K((1 − wT v)/h) dλ(v)

− 1
∣∣∣∣

+ ε3c(h,K)λ(Cw(h))

m∑
j=1

αj

≤ ηc(h,K)λ(Cw(h)) sup
w∈�

ψ(w) + ε3c(h,K)λ(Cw(h))

m∑
j=1

αj

≤ ε. �

From Proposition 2 and the consistency of α̂, we obtain immediately, as n → ∞,

ν̂(S)
P→ ν(S)

and, for ε > 0,

P
(
(1 + ε)S ⊂ Ŝ ⊂ (1 − ε)S

) → 1.(31)
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PROPOSITION 3. As n → ∞,

P(Q̃n	Q̂n)

p

P→ 0.

PROOF. Note that as n → ∞, we have

Û

(
n

k

)/
U

(
n

k

)
P→ 1,

(ν̂(S))1/α̂ P→ (ν(S))1/α,(
k

np

)1/α̂−1/α

= exp
(√

k(α − α̂)

α̂α

(
logk√

k
− log(np)√

k

))
P→ 1.

Combining these three limit relations, we obtain

Û (n/k)(kν̂(S)/(np))1/α̂

U(n/k)(kν(S)/(np))1/α

P→ 1.

This and (31) yields that with probability tending to one, as n → ∞,

(1 + ε)2Q̃n ⊂ Q̂n ⊂ (1 − ε)2Q̃n.

Then,

P(Q̃n	Q̂n)

p
≤ 1

p
P

(
U

(
n

k

)(
kν(S)

np

)1/α(
(1 − ε)2S \ (1 + ε)2S

))
,

and, by (21), the latter expression tends to

ν
(
(1 − ε)2S \ (1 + ε)2S

)
/ν(S)

= ν
(
(1 − ε)2S

)
/ν(S) − ν

(
(1 + ε)2S

)
/ν(S)

= (1 − ε)−2α − (1 + ε)−2α,

which in turn tends to 0, as ε ↓ 0. �

PROOF OF THEOREM 1. The result follows from Propositions 1 and 3. �
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