
Stock and Bond Market Interactions with Level

and Asymmetry Dynamics: An Out-of-Sample

Application�

Peter de Goeijy Wessel Marqueringz

Abstract

We model the dynamic interaction between stock and bond returns us-

ing a multivariate model with level e¤ects and asymmetries in conditional

volatility. We examine the out-of-sample performance using daily returns

on the S&P 500 index and 10 year Treasury bond. We �nd evidence for

signi�cant (cross-) asymmetries in the conditional volatility and level e¤ects

in bond returns. The out-of-sample covariance matrix forecasts of the model

imply that an investor is willing to pay between 129 and 820 basis points

per year for using a dynamic trading strategy instead of a passive strategy.
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1 Introduction

While there exists a large literature on time-varying conditional variances of stock

and bond returns, the number of studies on conditional covariances between these

returns is rather limited. Moreover, to date, the empirical importance of mod-

eling the covariance between stock and bond returns is largely neglected in ex-

isting studies. Given their importance in asset pricing, portfolio selection and

risk management, it is crucial to obtain accurate estimates and predictions of the

conditional covariances between asset returns. Several studies have introduced uni-

variate models that capture the asymmetric volatility e¤ect, for example Nelson

(1991), Engle and Ng (1993) and Glosten, Jagannathan and Runkle (1993). Most

of these models successfully outperform their symmetric counterparts in practice.

Furthermore, De Goeij and Marquering (2004) show that the presence of asym-

metric e¤ects in conditional covariances is very likely if there exist asymmetric

e¤ects in the conditional variances of asset returns. As a portfolio manager�s op-

timal portfolio depends on the predicted covariance between assets, relaxing the

symmetric volatility speci�cation leads to superior investment choices. Moreover,

the introduction of asymmetric volatility in �nancial models could also be useful

in other �elds in �nance, such as risk management and derivative pricing.

Empirical research on asymmetric e¤ects in conditional covariances between

asset returns in a multivariate GARCH model has been scarce. Braun, Nelson

and Sunier (1995) estimate a bivariate exponential GARCH model with asymme-

tries in stock return betas for di¤erent sectors. However, they do not explicitly

consider asymmetries in covariances. In addition, one of the most in�uential stud-

ies on modeling time-varying covariances is the study by Kroner and Ng (1998).

They introduce the Asymmetric Dynamic Covariance (ADC) model that proposes

asymmetric extensions of the most common multivariate GARCH models. They

use data on large and small �rms to compare four popular multivariate GARCH

models. Their approach does not take into account cross-asymmetric volatilities:

the conditional variance and covariance between asset returns can be higher (or

lower) after a negative shock in one asset and a positive shock in the other asset,

rather than shocks of opposite signs of the same magnitude. In the application

of Kroner and Ng (1998) it makes sense not to consider these �cross-asymmetric

e¤ects�as these types of shocks are rare between the returns of small and large com-
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panies. In contrast, shocks of opposite signs are much more common in stock and

bond returns. De Goeij and Marquering (2004) show that these cross-asymmetric

e¤ects are statistically signi�cant in a multivariate GJR (Glosten, Jagannathan

and Runkle, 1993) framework, by modeling dynamic interactions between stock

and bond returns.1

Besides the (cross-) asymmetries, another factor which improves the ability to

forecast (interest rate) volatility is the level e¤ect. This e¤ect implies that con-

ditional volatility depends on the level of returns in addition to the dependency

on innovations. Chan, Karolyi, Longsta¤ and Sanders (1992) estimate a general

non-linear short rate process which nests many of the short rate processes cur-

rently assumed in the literature. The level e¤ect in Chan, Karolyi, Longsta¤ and

Sanders (1992) is formulated such that the volatility of the interest rate changes

is proportional to the power of the interest rate itself. Their model is able to

empirically distinguish between di¤erent theoretical term structure models. Bren-

ner, Harjes and Kroner (1996) mix a univariate GARCH process with a model for

level e¤ects. They introduce a new class of models for the dynamics of interest

rate volatility which allows volatility to depend on both interest rate levels and

information shocks. They show that the sensitivity of interest rate volatility to

levels is substantially reduced when volatility is a function of both levels and un-

expected shocks. More recently, Christiansen (2005) has extended this model in a

multivariate framework and includes the level e¤ect in a constant (although time-

varying) multivariate correlation model. Her model implies that the time-varying

behavior in conditional covariances is caused by time variation in the conditional

variances. Consequently, her model does not take into account a direct level e¤ect

for the dynamics in the covariances. It is therefore an open question whether the

conditional covariance between stock and bond returns contains a level e¤ect as

well. Variation in interest rates may induce a positive correlation since the prices

of stocks and bonds are negatively related to interest rates.

In this paper we extend the existing literature in three ways. First, we extend

the asymmetric multivariate model of De Goeij and Marquering (2004) with the

multivariate level e¤ect as in, e.g., Christiansen (2005). Thus the model incorpo-

rates level e¤ects and cross-asymmetries in conditional variances and covariances.

1Alternatively, Engle (2002) models conditional asymmetric correlations instead of condi-
tional covariances.
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To test the appropriateness of this model we examine the asymmetric volatility

behavior of stock and bond market returns using daily data. Second, more gen-

eral models obviously work better in-sample than simpler models. West and Cho

(1995), for example, show that in-sample and out-of-sample results could vary sub-

stantially because of estimation error. Therefore, in contrast to similar studies, we

concentrate on the out-of-sample forecasting performance comparison. Finally, re-

cent GARCH literature has been moving towards the direction of examining what

is the �best�model using economic loss functions rather than statistical loss func-

tions (see, e.g., Lopez, 2001 and Ferreira and Lopez, 2005). The fact that a model

performs better statistically, does not automatically imply that the model performs

well in practice. Therefore, we evaluate the out-of-sample performance using an

economic framework, taking into account transaction costs, rather than the tradi-

tional statistical framework. Overall, we emphasize the empirical applicability of

our proposed model rather than the theoretical and in-sample properties.

Our empirical results can be summarized as follows. We �nd the level e¤ect

to be statistically signi�cant for bond return volatility which is consistent with

�ndings in the existing literature. However, the level e¤ect is not signi�cant for

stock volatility and the covariance between stock and bond returns. We �nd strong

evidence of asymmetric e¤ects in the conditional variances and covariances of stock

and bond returns. In addition, we �nd signi�cant cross-asymmetric e¤ects in the

conditional covariances. We show that, after reasonable transaction costs, it would

have been economically pro�table to have used dynamic volatility timing employing

the most general model with level and asymmetric e¤ects in the out-of-sample

period January 2003 - September 2005. A mean-variance investor is willing to pay

a maximum fee of between 129 and 820 basis points per year to switch from the

static strategy to the dynamic strategy. Furthermore, including the asymmetries

in the model leads to a higher economic value, out-of-sample. We show that the

transaction costs need to be around 17 basis points per trade for the dynamic

volatility timing not to be pro�table anymore. Finally, our results indicate that

the more risk-averse the mean-variance investor is, the more he is willing to pay

for using one of the dynamic strategies instead of the passive strategy.

The remainder of this paper is organized as follows. In the next section we in-

troduce the level asymmetric DVECHmodel. In Section 3 we present the empirical

results and in Section 4 we investigate the quality of the covariance matrix out-
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of-sample forecasts of the models by determining the economic value of a trading

rule exploiting the model forecasts. Finally, Section 5 concludes.

2 The Level Asymmetric Diagonal VECH model

In this section we focus on modeling the asymmetric volatility phenomenon in a

multivariate context. First, we describe how the �rst moments evolve over time in

the mean equation. We follow Kroner and Ng (1998) and use a VAR framework to

model excess returns. To prevent that asymmetric e¤ects in the volatility equation

are due to misspeci�cation of the mean equation, we include extra terms which

capture possible asymmetries in the �rst moments. Some recent studies show that

asymmetries are present in the �rst moments of stock and bond returns; see, e.g.

Ang and Chen (2001), Connolly, Stivers and Sun (2005) and Hong, Tu and Zhou

(2007). Hence, our mean equation is modeled as:

rei;t = �i +
NX
j=1

LX
�=1

�
�mij;�r

e
j;t�� + �

m
ij;�r

e�
j;t��

�
+ "i;t, for i = 1; :::; N; (1)

where

rei;t denotes the excess return of asset i in period t;

re�i;t = min(0; r
e
i;t); the negative excess return of asset i in period t;

"i;t denotes the unexpected excess return of asset i, and

N denotes the number of assets, and L the number of lags.

We assume that "tjIt�1 � N(0;�t); where It�1 denotes the information set at
time t � 1, and �t = (�ij;t), with �ij;t = Covtfrj;t; ri;tg, is the N � N conditional

covariance matrix of the unexpected excess returns; �i, �
m
ij;� and �

m
ij;� i; j = 1; :::; N

are the unknown parameters. Model (1) enables us to examine the importance of

the in�uence of past returns on current levels of returns. Next, we describe how

the conditional covariances evolve over time.

We model the time-varying covariances by a multivariate GARCH process.2

2For an extensive overview of multivariate GARCH models, see Bauwens, Laurent and Rom-
bouts (2006).
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More speci�cally, we employ an asymmetric diagonal VECH model and extend it

with a level e¤ect for conditional variances and covariances:

�ij;t+1 = jri;trj;tj
ij � [!ij + �ij�ij;t + �1ij"i;t"j;t + �2ijI"i;t"i;tI"j;t"j;t (2)

+�3ijI"i;t"i;t(1� I"j;t)"j;t + �4ij(1� I"i;t)"i;tI"j;t"j;t];

i; j = 1; :::; N: The extended asymmetric diagonal VECH model in (2) di¤ers in

two ways from the standard diagonal VECH speci�cation.

First, generalizing the level speci�cation of Chan, Karolyi, Longsta¤and Sanders

(1992) and Brenner, Harjes and Kroner (1996), the conditional volatility of the

assets depends on the level of the bond and stock returns, more precisely on the


ijth power of their level. This is known as the level e¤ect. Consequently, the

dynamics of the volatility depends on both return levels and information shocks.

The larger 
ij is, the more sensitive the (co)variance is to the levels of returns.

The univariate level speci�cation of Chan, Karolyi, Longsta¤ and Sanders (1992),

Brenner, Harjes and Kroner (1996) and Christiansen (2005) can be written as

�2t+1 = r2
t � f(�2t ; "2t ; �), where f(:) is a linear function and � is a vector of pa-
rameters. Christiansen (2005) also speci�es a multivariate generalization of the
level e¤ect. Her multivariate GARCH model however, assumes constant correla-

tion as it extents Bollerslev�s (1990) Constant Conditional Correlation model. In

contrast, our multivariate speci�cation allows for a direct level e¤ect in conditional

covariance dynamics.

Second, we include several types of asymmetries in the model. In (2), the

indicator variable I"k;t is equal to 1 if "k;t < 0 (and zero otherwise), k = i; j:

There are three asymmetry terms in (2), I"i;t"i;tI"j;t"j;t, I"i;t"i;t(1 � I"j;t)"j;t and
(1 � I"i;t)"i;tI"j;t"j;t: The �rst term, I"i;t"i;tI"j;t"j;t, assigns an asymmetric covari-
ance e¤ect on shocks in the same direction (simultaneous positive shocks versus

simultaneous negative shocks). The two remaining terms account for a di¤erent

e¤ect for opposite shocks in asset returns in addition to the existing negative re-

turn shock e¤ects. The term I"i;t"i;t(1 � I"j;t)"j;t is nonzero for negative shocks
in asset i and positive in asset j, while (1 � I"i;t)"i;tI"j;t"j;t is nonzero for positive
shocks asset i and negative in asset j. These last two terms assigns an asymmetric

covariance e¤ect on shocks in the opposite directions. We will refer to these latter
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e¤ects as cross-asymmetry e¤ects or simply cross e¤ects. Note that these e¤ects

are usually neglected in the literature. However, when modeling the covariance

between stock and bond returns these cross e¤ects should be included, as shocks

of opposite signs are common and relevant (see De Goeij and Marquering, 2004).

The proposed multivariate model provides a generalization of the multivariate GJR

model by allowing explicitly for asymmetric conditional covariance terms and for

level e¤ects. We will refer this model as the level asymmetric diagonal VECH

model (ADVECH-L model). The speci�cation in (2) nests several existing models.

An overview with restrictions is provided in Table 1. Our proposed speci�cation

nests multivariate models such as the (symmetric) diagonal VECH model3 and the

asymmetric diagonal VECH model that was recently introduced by De Goeij and

Marquering (2004). In addition, the univariate GARCH(1,1) and GJR models are

nested as well.

[Include Table 1 about here]

Diagonalizing the model has the advantage that the number of parameters

to be estimated do not become too large. Note that for our application with

two assets, N = 2, the number of parameters to be estimated is 17. However,

by employing a diagonalized model, we constrain the dynamic dependence and

may introduce biases in the estimates of the other parameters. For instance, only

shocks in asset i can in�uence the conditional variance of asset i. This assumption

is quite restrictive and is obviously a disadvantage of the diagonal VECH model.

However we expect the potential biases to be negligible as models allowing for

such spillover e¤ects, such as the BEKK model (see Engle and Kroner, 1995) show

that these e¤ects are typically small. Finally, to guarantee that the conditional

covariance matrix is positive de�nite, we estimate the model using constrained

maximum likelihood.4 We estimate the ADVECH-L model in (2), along with two

other, more restrictive, speci�cations which we refer to as the DVECH-L and the

GJR-L model. The DVECH-L model is the symmetric version of (2). The GJR-L

is the multivariate GJR model extended with the level e¤ect, but without cross

asymmetries. Again, Table 1 provides an overview of the parameter restrictions

3Bollerslev, Engle and Wooldridge (1988) introduced this diagonal VECH model to estimate
the trade-o¤ in variance among the returns on a stock index, a bond and a Treasury bill.

4More details on the constrained maximum likelihood approach can be found in De Goeij
and Marquering (2004).
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that need to be implemented to obtain these models. The next section proceeds

with empirical results.

3 Empirical Results

3.1 Estimation Methodology

The estimation is performed in two steps following Pagan and Schwert (1990),

Engle and Ng (1993) and Kroner and Ng (1998). First we estimate mean equation

(1) using OLS to obtain the residuals et for all t = 1; :::; T: In the second step we

estimate the conditional covariance matrix parameters using maximum likelihood,

treating et as observable data. The block diagonality of the information matrix

under this setup guarantees that the consistency and e¢ ciency are not lost in such

a procedure. The loglikelihood function (for the sample 1; :::; T ) is given by

L(~�) = �1
2
TN log 2� � 1

2

TX
t=1

log(det�t(~�))�
1

2

TX
t=1

e
0

t�
�1
t (
~�)et; (3)

where ~� denotes the vector of unknown parameters and �t(~�) contains the condi-

tional covariance terms, as de�ned in (2).

If "t is not normally distributed, the maximum likelihood procedure may pro-

vide consistent estimators for the model parameters, even though the likelihood is

incorrectly speci�ed (see Verbeek, 2000 pp.171-172). The reason is that under fairly

weak assumptions, the �rst order conditions of the maximum likelihood procedure

are also valid when "t is not normally distributed. Bollerslev and Wooldridge

(1992) show that the maximum likelihood estimates of ~� are consistent if

Et�1

(
"i;tp
hii;t

)
= 0 and Et�1

�
"i;t"j;t
hij;t

�
= 1 for i; j = 1; :::; N: (4)

The resulting estimator for ~� is referred to as the quasi-maximum likelihood or

QML estimator. The standard errors are calculated according to Bollerslev and

Wooldridge (1992). We report these robust standard errors in the tables below.

The estimates are obtained by numerical methods using the Berndt, Hall, Hall

and Haussman (1974) (BHHH) optimization algorithm, which approximates the
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Hessian with the �rst derivatives. Note that estimation of multivariate GARCH

with many parameters is typically demanding in computer time. In order to im-

prove convergence, a sensible choice of starting values is important. We use starting

values based on unconditional sample statistics and preliminary estimates of uni-

variate GARCH models. A range of starting values was used to ensure that the

estimation procedure converged to a global maximum. We repeated the estima-

tions with random re-starts of the starting values, conditioned to the range of two

times the standard error of the univariate estimates. None of the estimation re-

sults indicated any local maximum. The results also seem robust to alternating

convergence criteria and optimizing methods. Consequently, we are con�dent that

we have found a global maximum for the loglikelihood function.

3.2 Data Description

In order to examine the asymmetric volatility in the stock and bond market, our

data include daily excess returns on the S&P 500 stock market index and the 10

year Treasury bond. We take into account the excess returns on these assets. We

follow Jones, Lamont and Lumsdaine (1998) by calculating excess returns as the

returns of holding the bond in excess of the risk-free rate, which is approximated

by the 3-month Treasury bill rate. We adjust for weekends and holidays (Appendix

A provides more details on the calculations). The data cover the period January

4, 1982 - September 30, 2005 (5,930 observations), such that we can examine some

volatile periods (1987-1988, 1990 and 1998) and less volatile periods (1991-1995).

Table 2 provides a summary of the descriptive statistics at the daily frequency.

[Include Table 2 about here]

The mean excess return on the S&P 500 index is 0.022% per day, which is

about 6% per year, while it is around 5% per year for the 10 year bond over the

same period. The standard deviation for the S&P 500 return is more than twice

as large than for the 10 year Treasury bond. The third row shows the minimum

returns, including the large 20% negative return in the S&P 500 index due to the

October 1987 crash. Finally, the kurtoses con�rm that the distributions of excess

returns have quite fat tails, which is common using daily data.

After estimating mean equation (1) the residuals can be divided into four quad-
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rants, based on the signs of the residuals: both residuals have a negative sign:

(�;�), S&P 500 residual negative, 10 year bond residual positive: (�;+), etc.
About 40 percent of the observations have shocks with opposite signs; i.e. they

are in the (�;+) or (+;�) quadrant. This indicates the importance of including
the cross-asymmetry e¤ects in (2).

3.3 Estimation Results

In this section we present the estimation results of the dynamic asymmetric inter-

action between daily U.S. stock and bond returns. Because shocks of the mean

equation are the main actors in the multivariate model, it is important that the

mean equation is not misspeci�ed. We have estimated VAR models up to ten lags

and tested the individual and joint signi�cance of the coe¢ cients.5 An appropri-

ate model selection criteria in our application is the Schwarz Information Criterion

(SIC). The number of lags that minimizes the SIC is obtained for only one lag.

Consequently, we use a VAR model with one lag in all calculations below.

Next, we discuss the results of estimating the asymmetric covariance between

the S&P 500 index and 10 year Treasury bond. As discussed above, we will estimate

the ADVECH-L model (2), along with two other, more restrictive, speci�cations:

the DVECH-L and the GJR-L model. The DVECH-L model is the symmetric

version of (2). The GJR-L is the multivariate GJR model extended with the level

e¤ect, but without cross asymmetries. The estimates of the conditional second

moment parameters for the three di¤erent speci�cations are presented in Table

3.6 It appears that covariances change substantially over time, as most of the

corresponding estimated parameters are statistically signi�cant at the �ve percent

level. Hence, the constant covariance hypothesis can be rejected. This result is

consistent with the �ndings of Bollerslev, Engle and Wooldridge (1988), Harvey

(1989) and Bodurtha and Mark (1991), who also document strong evidence in

favor of heteroskedastic covariances.
5The results can be obtained from the authors upon request.
6The sample period contains some major shocks (e.g., the crashes in 1987 and 2000). To check

the robustness of our results over time, we re-estimate our models using several subsamples. The
subsamples were based on the results in Rapach and Wohar (2006) in which several structural
breaks were uncovered, augmented with own research. All the models were re-run using data
from January 4, 1982 - November 14, 1988; November 15, 1988 - January 17, 1991; January 18,
1991 - April 14, 2000; and April 15, 2000 - September 3, 2005. Overall, these analyses did not
result in qualitative di¤erent results. Thus, our results seem robust over time.
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[Include Table 3 about here]

The estimates for the coe¢ cients on the level e¤ect are in line with the literature

(see, e.g., Chan, Karolyi, Longsta¤and Sanders,1992, Brenner, Harjes and Kroner,

1996 and Christiansen, 2005) as far as they are comparable. We �nd no level e¤ect

for the conditional variance of stock returns (the coe¢ cient corresponding to r21;t is

not statistically signi�cant), but the level e¤ect for the bond returns is statistically

signi�cant. Thus, the conditional volatility of the bond returns depends on the level

of the bond returns. Looking at the impact of the level e¤ect on the covariance

between the stock and bond returns (the coe¢ cient corresponding to jr1;tr2;tj), we
conclude that there is no direct level e¤ect in the covariance. However, as the level

e¤ect in the bond returns is statistically signi�cant for all three speci�cations, it

is important to include the level e¤ects.

The estimates for the coe¢ cients on lagged volatility (i.e. the �ij;t�s) are statis-

tically signi�cant and range from 0:913 and 0:956 for the variance of the S&P 500

returns and from 0:939 and 0:942 for the long term bond. These parameter values

indicate that the conditional variances for stock and bonds are highly persistent

and cluster over time. The lagged volatility for the conditional covariances range

from 0:953 to 0:956. Obviously, not only variances, but also covariances tend to

cluster over time.

The estimates for the coe¢ cients on the product of the return shocks (i.e. the

"i"j�s) in the three speci�cations range from 0:027 to 0:076 for the stock variances,

from 0:042 to 0:046 for the bond variances and from 0:020 to 0:038 for the covari-

ances. A positive estimate for the ARCH term in the covariance equation implies

that two shocks of the same sign a¤ect the conditional covariance between the

corresponding assets positively, while two shocks of opposite signs have a negative

e¤ect on the forecasted covariance. Apparently, two negative (or positive) shocks

lead to a signi�cant increase in next period�s covariance. However, this interpreta-

tion only holds if we neglect the asymmetries in covariance. We will see below that

the introduction of these asymmetric e¤ects lead to more complex relationships.

Next, we focus on the asymmetric e¤ects in the variances of the stock and

bond returns (i.e. (I"i;t"i;t)
2, i = 1; 2), in other words, the persistency of negative

return shocks. The results in Table 3 indicate that these e¤ects are pronounced in
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the variance of the stock index returns, but not in the variance of bond returns.

The estimated coe¢ cient of the variable that captures the negative shocks in the

S&P 500 return is equal to 0:076 using the GJR-L speci�cation, and 0:091 using the

ADVECH-L speci�cation, which means that negative return shocks in the S&P 500

are followed by a relatively high conditional variance. For the bond returns, there

is no asymmetric volatility according to both speci�cations. Given existing results

in the literature, this is not surprising, as most studies only �nd the asymmetric

e¤ect in the variance of the stock (index) returns.

To continue, we address the degree of importance of the asymmetries in covari-

ances. The results in Table 3 show that not only variances, but also covariances

exhibit signi�cant asymmetric e¤ects. Both speci�cations show that the asym-

metric e¤ects in the covariance for shocks with the same sign (i.e. I"1;t"1;tI"2;t"2;t)

seem to be important, as the corresponding estimated coe¢ cients are statistically

signi�cant. A positive sign of the coe¢ cient indicates that next day�s conditional

covariance between returns is higher when there are two negative shocks rather

than two positive shocks.

Finally, the cross asymmetric e¤ects, i.e. when shocks in the two assets are

of opposite signs (i.e. I"1;t"1;t(1 � I"2;t)"2;t and I"2;t"2;t(1 � I"1;t)"1;t), also appear
to be important. The ADVECH-L speci�cation shows a positive and statistically

signi�cant in�uence of the parameter of I"2;t"2;t(1� I"1;t)"1;t, which indicates that
the conditional covariance between returns is lower when there is a negative shock

in the stock index return and a positive shock in the long term bond rather than a

positive shock in the stock index return and a negative shock in long term bond of

the same magnitude. Thus, also cross asymmetries are an important factor when

modeling the covariance between stock and bond returns.

The empirical results of the cross asymmetries can be interpreted in the con-

text of �ight-to-quality versus contagion. Contagion is present if the covariance

between stock and bond returns (strongly) increase after movement of the asset

classes in same directions. It implies that during times of increased stock uncer-

tainty the return co-movement between stocks and bonds becomes more positively

correlated. A movement in the opposite direction characterized by strongly in-

creasing covariances implies �ight-to-quality across asset classes; investors might

move from holding stocks to bonds in uncertain times. From our estimates we can

infer that the covariance between stock and bond returns is especially high follow-
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ing a negative shock in both the stock and bond market, suggesting that there is a

contagion e¤ect across the S&P 500 and the 10 year Treasury bond returns. This

�nding of a contagion e¤ect between these two assets is consistent with De Goeij

and Marquering (2004). A word of caution on the �ight-to-quality versus contagion

story: note that our models are not speci�cally designed to distinguish between the

�ight-to-quality and contagion explanations. Thus while our empirical results are

consistent with the contagion story, it should not be seen as convincing empirical

evidence.

4 An Out-of-Sample Economic Evaluation

In this section, the performance of the models is evaluated by determining the

economic value of a trading rule exploiting the model forecast of the conditional

covariance matrix. The estimation results presented in the previous sections do

not necessarily imply economically useful implications for forecasting volatility.

The basic task in this section is to evaluate the quality of the covariance matrix

forecasts, using either the DVECH-L, the GJR-L or the ADVECH-L model. Re-

cently, the GARCH literature has been moving towards the direction of examining

what is the �best�model using economic loss functions rather than statistical loss

functions. For example, Lopez (2001) and Ferreira and Lopez (2005) examine con-

ditional covariance models within a Value-at-Risk framework. In our context, the

most appropriate economic loss function is the maximum fee an investor would be

wiling to give up using one volatility model instead of a passive strategy, taking

into account transaction costs. In other words, we examine the economic gains

of constructing a portfolio using the asymmetric model instead of the restricted

(symmetric) portfolio and a passive portfolio.

We follow Fleming, Kirby and Ostdiek (2001) and Marquering and Verbeek

(2004) by evaluating the impact of volatility timing on the economic performance

of a dynamic asset allocation strategy. To compare the di¤erent volatility timing

strategies, we consider an investor who minimizes his portfolio variance subject to

a particular target expected rate of return (�p). This optimization problem can be

written as:

min
wt+1

w0t+1�
�1
t+1wt+1; (5)

12



s.t: w0t+1�+ (1� w0t+1�)rf;t+1 = �p;

where � = Efrt+1g, � is a vector of ones and wt+1 is the vector of portfolio weights
on the risky assets. The proportion invested in the riskfree asset is w0;t+1 =

1� w0t+1�: Solving (5) for wt+1 gives us the optimal weights:

w�t+1 =
(�p � rf;t+1)��1t+1(�� rf;t+1�)
(�� rf;t+1�)0��1t+1(�� rf;t+1�)

: (6)

As in Fleming, Kirby and Ostdiek (2001) we assume that there are no short-sale

restrictions.

To calculate the portfolio weights of the optimal portfolio, we need the con-

ditional forecasts of the covariance matrix. We employ four di¤erent alternative

forecasts based on di¤erent volatility models: a constant, which we will refer to as

the passive strategy, a symmetric time-varying, and two asymmetric time-varying

covariance matrices. All models take the level e¤ect into account. The investor

determines the optimal mix of three assets: the riskfree asset and the returns on

the S&P500 index and 10 year Treasury bond return. In all cases we assume that

the expected return is constant over time. The reason for this is threefold. First,

we want to concentrate on volatility timing. Second, there is little evidence that

(economically signi�cant) predictable patterns in returns exist at the daily level.

Third, a long sample period is needed to produce reliable estimates in a forecast

regression for �rst moments (see Merton, 1980).

The vast majority of the multivariate GARCH models are evaluated on the

basis of the in-sample performance. This can overstate the performance due to

a look-ahead bias. It is more realistic to examine the out-of-sample performance

instead. An out-of-sample procedure tries to replicate the way a portfolio manager

could have managed its strategic asset portfolio. Such out-of-sample evaluations

are very common when modelling �rst moments, but not for second moments

models. Ideally, daily out-of-sample forecasts, generated by the models, are used

to evaluate the performance. However, this implies that for each observation (each

day) the model has to be re-estimated, which is computational quite demanding.

In addition, portfolio managers typically re-estimate volatility models on a weekly

or monthly basis instead of every single day. Therefore, to mimic this portfolio

manager behavior, we re-estimate the models each calendar month and generate

13



conditional volatility forecasts for each day in the subsequent month. It is an

interesting question whether the asymmetries that matter at a daily horizon also

make a di¤erence at the monthly horizon. We pursue the following procedure.7

The models are �rst estimated using data until December 31, 2002. Using these

estimates we generate out-of-sample one-day ahead forecasts for the conditional

covariance matrices for every trading day in January 2003. Then we estimate the

models again, using data until January 31, 2003 and generate out-of-sample one-

day ahead forecast for all the conditional covariance matrices for February 2003,

etc. This way we obtain real out-of-sample forecasts for the various speci�cations

for the period January 1, 2003 - September 30, 2005. Figure 1 provides a graphical

overview of the procedure.

[Include Figure 1 about here]

Our approach is essentially a recursive scheme where we add most recent obser-

vations but do not drop the older observations. Therefore we use all information

available to us. Alternatively, one could use a rolling scheme with a �xed number

of observations (see also West and Cho, 1995). Note that although the out-of-

sample period seems short given the total sample period, we want to test whether

the strategy works for a period that corresponds to the length of forecast periods

in which typical fund managers are interested.

We compare the out-of-sample performance of the dynamic strategies with the

passive strategy, i.e. using a constant covariance matrix. In addition we compare

the dynamic strategy which entails the asymmetric e¤ects with the dynamic strat-

egy that only considers the symmetric covariances. If the proposed asymmetric

models with level e¤ects have no economic value, then the ex post performance of

the two strategies should be indistinguishable. Making this comparison requires

a performance measure that captures the trade-o¤ between risk and return. Fol-

lowing Fleming, Kirby and Ostdiek (2001) we use a measure that is based on the

close relation between mean-variance analysis and quadratic utility.

Assume that the investor�s realized utility in period t+ 1 can be written as:

U(Wt+1) =Wtr
p
t+1 �

a

2
(Wtr

p
t+1)

2; (7)

7We thank an anonymous referee for a suggestion that helped us develop this procedure.
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where Wt+1 is the investor�s wealth at period t+ 1, a is his absolute risk aversion,

and

rpt+1 = w
�0
t+1rt+1 + (1� w�0t+1�)rf;t+1

is the period t + 1 return on his portfolio p. We hold aWt constant, which is

equivalent to setting the investor�s relative risk aversion, 
t = aWt=(1 � aWt)

equal to some �xed value 
. With relative risk aversion held constant, we can use

the average realized utility to consistently estimate the expected utility generated

by a given level of initial wealth (normalized to 1). In particular we have

Ûp(
) =
1

T

T�1X
t=0

�
rpt+1 �




2(1 + 
)
(rpt+1)

2

�
: (8)

The above approach enables us to compare alternative investment strategies by

calculating the associated average utility levels. We can determine the economic

value of volatility timing by calculating the maximum fee an investor would be

willing to pay for holding the dynamic portfolio rather than a passive one. A similar

approach is applied in Fleming, Kirby and Ostdiek (2001) and Marquering and

Verbeek (2004). To �nd the maximum fee an investor is willing to pay for holding

a dynamic portfolio rather than a passive portfolio, �, we solve the following

equation for �:

1

T

T�1X
t=0

�
(ra;t+1 ��)�




2(1 + 
)
(ra;t+1 ��)2

�

=
1

T

T�1X
t=0

�
rp;t+1 �




2(1 + 
)
r2p;t+1

�
; (9)

where the indices a and p refer to the active and passive strategies, respectively:

The � will be reported as annualized fees in percentages using two di¤erent risk-

aversion levels 
; 1 and 10.

The optimal portfolio weights, based on the out-of-sample forecasts, typically

change from day to day. This raises the question whether volatility timing is still

pro�table after introducing transaction costs. Therefore, additionally we calculate

the �break-even�transaction costs, i.e. the maximum transaction costs per trade

such that the dynamic strategy is still pro�table. In other words, we assume that

there is a transaction cost involved with each trade and calculate how much the
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mean-variance investor would be willing to pay in transaction costs per trade. If

the actual transaction costs are higher than the break-even transaction costs, this

would imply that the mean-variance investor should not be willing to trade on the

basis of the corresponding volatility timing strategy.

[Include Table 4 about here]

Table 4 presents the performance measures of the passive and dynamic portfo-

lios for the di¤erent model speci�cations for di¤erent levels of target returns. The

Sharpe ratio for the passive portfolio is lower than that for each of the dynamic

portfolio, indicating that the dynamic strategy is superior than the passive strat-

egy. The Sharpe ratios for the dynamic strategies are very similar and it is not

possible to discriminate one strategy against another. However, it is important

to realize that the Sharpe ratio does not appropriately take into account time-

varying volatility. The risk of the dynamic strategies is typically overestimated by

the sample standard deviation, particularly in the presence of volatility timing, be-

cause the ex post (unconditional) standard deviation is an inappropriate measure

for the (conditional) risk an investor was facing at each point in time (see Kirby,

Fleming and Ostdiek, 2001 and Marquering and Verbeek, 2004). This indicates

a potentially severe disadvantage of the use of Sharpe ratios to evaluate dynamic

strategies. Consequently, to compare the dynamic strategies we should not look

at the Sharpe ratios, but at the economic gains of constructing a portfolio using

the asymmetric model instead of one of the restricted portfolios.

First, Table 4 shows the maximum fee the mean-variance investor is willing

to pay for holding the dynamic portfolio. When using the DVECH-L model, the

investor is willing to pay more than 98 basis points per year for using that dynamic

strategy instead of the passive strategy. Using the same target return level, the

same investor would be wiling to pay between 129 and 830 basis points per year

for using the ADVECH-L model instead of the passive strategy. Furthermore, the

economic value of using the asymmetric model instead of the symmetric model

is between 31 and 403 basis points, and the value from switching from a model

without cross asymmetries to a model with these asymmetries is between 33 and

283 basis points return.8 Second, Table 4 shows that the mean-variance investor

8We have also compared the models with an exponentially-weighted sample covariance, which
assigns more weights to recent observations than a simple moving average method. When we

16



would be willing to pay a break-even transaction cost of around 17 basis points per

trade to use the ADVECH-L model instead of the passive strategy to calculate its

optimal weights. The break-even transaction costs are lower for the GJR-L and

DVECH-L models.

Obviously, the covariance asymmetries that matter at the daily horizon also

make a di¤erence at the out-of-sample monthly horizon. Note that these results

are conservative because of two reasons. First, transaction costs were not taken into

account in the optimization problem. Second, while the horizon for the portfolio

manager is monthly, we assume that the portfolio manager changes his portfolio

weights daily. In practice, a portfolio manager will not trade so frequently, thereby

incurring fewer transactions costs. To conclude, the empirical results of Table 3

also show that the more risk-averse the mean-variance investor is, the more he

is willing to pay for using one of the dynamic strategies instead of the passive

strategy.

5 Concluding Remarks

In this paper we develop a multivariate model to forecast the conditional volatility

of stock and bond returns and their interaction, taking into account level e¤ects

as well as asymmetric volatility. Our approach contributes to the literature across

three dimensions. First, we extend the asymmetric multivariate model of De Goeij

and Marquering (2004) by mixing the model with a multivariate level e¤ect. Our

model incorporates level e¤ects and cross-asymmetries in conditional variances

and covariances. Second, in contrast to comparable studies, we concentrate on the

out-of-sample forecasting performance comparison. Finally, we evaluate the out-of-

sample performance using an economic framework, taking into account transaction

costs, rather than the traditional statistical framework. This approach is important

in the light of recent GARCH literature that has been moving towards the direction

of examining what is the �best�model using economic loss functions rather than

statistical loss functions.

In order to examine the asymmetric volatility in the stock and bond market, we

use this exponentially-weighted sample covariance with a commonly used (see, e.g., Lopez, 2001)
decay rate of 0.94 as comparable performance, we �nd that all the models outperform this
benchmark, using di¤erent measurements. This, together with the fact that in our set-up a real
passive portfolio is a more natural benchmark, led us to leave out these results in this article.
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use daily excess returns on a stock market index and a long term Treasury bond.

The empirical results indicate that taking into account asymmetries is important

for forecasting the conditional covariance between stock and bond returns. Our

main �ndings can be summarized as follows. The level e¤ect is statistically signif-

icant for bond returns, thus the conditional volatility of the bond returns depends

on the level of the bond returns. However, there exists no direct level e¤ect in

the covariance between the stock and bond returns. We �nd strong evidence of

asymmetric e¤ects in the conditional variances and covariances of stock and bond

returns. In addition, we �nd signi�cant cross-asymmetric e¤ects in the conditional

covariances. From the estimates we can infer that the covariance between stock

and bond returns is especially high following a negative shock in both the stock

and bond market, suggesting that there is a contagion e¤ect across the S&P 500

and the 10 year Treasury bond returns.

We show that in the out-of-sample period January 2003 - September 2005,

it would have been economically pro�table, after taking into account reasonable

transactions costs, to have used a dynamic volatility timing strategy that is im-

plied by the most general volatility model with level and asymmetric e¤ects. A

mean-variance investor is willing to pay between 129 and 820 basis points per

year for using this model instead of the passive strategy. This is the maximum

fee the investor would be willing to pay to switch from a static strategy to the

dynamic strategy. Furthermore, including the asymmetries in the model leads to

a higher economic value out-of-sample. We show that the transaction costs need

to be around 17 basis points per trade for the dynamic volatility timing not to

be pro�table anymore. The asymmetries that matter at the daily horizon also

contribute to the economic value using estimates at the monthly horizon. Finally,

our results show that the more risk-averse the mean-variance investor is, the more

he is willing to pay for using one of the dynamic strategies instead of the passive

strategy.

To conclude, our proposed model has practical value for portfolio managers to

anticipate volatility. The model provides accurate out-of-sample predictions of the

conditional covariances between asset returns, which are crucial inputs in asset

pricing, portfolio selection and risk management.
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Appendix A: Calculation of the Returns

We obtained the �daily constant maturity interest rate series� from the federal

reserve bank in Chicago. We have followed the method in Jones, Lamont and

Lumsdaine (1998) to calculate the bond returns.9 The U.S. Treasury bonds have

semi-annual coupon payments, and the coupon on the hypothetical bonds is half

the stated coupon yield. Hence, the price of the bond at the beginning of the

holding period is equal to its face value. We have calculated an end-of-period price

on this bond using the next day�s yield augmented with the accrued interest rate:

Pn�#hd;t+1 =

2n�1X
i=1

1
2
ynt

(1 + 1
2
yn;t+1)i

+
1 + 1

2
ynt

(1 + 1
2
yn;t+1)2n

+
# holding days

365
ynt; (10)

where Pn�#hd;t+1 is the end-of-period price of the bond, n is the number of years

the bond is referring to, t is the time and ynt is the yield of an n-period bond at

time t. The #hd�return, is calculated as

rt+1 = Pn�#hd;t+1 � 1: (11)

Finally, the excess returns are calculated using the 3-month interest rate as the

risk free rate that accrues over the holding period, which varies from one to �ve

days due to weekends and holidays.

ret+1 = rt+1 �
# holding days

365
y3mo;t:

The returns on the S&P 500 index, obtained from Datastream, are calculated as

rindex;t+1 =
Pindex;t+1 � Pindex;t

Pindex;t
: (12)

Excess returns are calculated by substracting the risk free rate that accrues over

the holding period

reindex;t+1 = rindex;t+1 �
# holding days

365
y3mo;t: (13)

9We thank Charles Jones, Owen Lamont and Charlotte Christiansen for their suggestions to
write a program that generates the data used in the paper.
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Table 2: Descriptive Statistics for Stock and Bond Excess Returns

The table presents descriptive statistics for the excess return on the S&P 500 index and the
10 year Treasury bond for the period January 4, 1982 - September 30, 2005. All returns are
daily returns in percentages calculated according to the details in Appendix A.

S&P 500 10 yr bond

Mean 0:0225 0:0189
Std. Dev. 1:0570 0:4815
Minimum �20:473 �2:7120
Maximum 9:0828 4:0802
Skewness �1:2356 0:0651
Kurtosis 31:261 6:9028
Jarque-Bera 198; 825 3; 767:2
Observations 5; 929 5; 929
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Table 3: Estimation Results

This table reports the maximum likelihood estimation results of model (2) using data from January
4, 1982 to September 30, 2005 (T = 5; 930). Index i = 1 refers to the S&P 500 index and i = 2
to the long term bond. Robust Bollerslev Wooldridge standard errors are reported in parentheses,
while ���denotes statistical signi�cance at the 5% level.

Explanatory DVECH-L GJR-L ADVECH-L
Variables Estimate Std. Error Estimate Std. Error Estimate Std. Error

r21;t 0.0026 (0.0061) �0.0045 (0.0063) �0.0031 (0.0063)
jr1;tr2;tj 0.0151 (0.0123) 0.0122 (0.0121) 0.0139 (0.0127)
r22;t 0.0115� 0.0055) 0.0113� (0.0055) 0.0115� (0.0055)

Constant11 # 10.5526� (1.3246) 13.5974� (1.3788) 15.0623� (1.4349)
Constant12 1.0439� (0.2295) 0.8266� (0.3101) 2.2054� (0.4072)
Constant22 3.7717� (0.5139) 3.7539� (0.5210) 4.3181� (0.5797)

�21;t 0.9178� (0.0035) 0.9134� (0.0040) 0.9138� (0.0040)
�12;t 0.9556� (0.0030) 0.9535� (0.0031) 0.9531� (0.0034)
�22;t 0.9420� (0.0045) 0.9413� (0.0046) 0.9391� (0.0049)

"21;t 0.0758� (0.0026) 0.0370� (0.0044) 0.0274� (0.0046)
"1;t"2;t 0.0383� (0.0028) 0.0357� (0.0029) 0.0203� (0.0037)
"22;t 0.0438� (0.0031) 0.0455� (0.0041) 0.0419� (0.0041)

(I"1;t"1;t)
2 . . 0.0759� (0.0053) 0.0908� (0.0059)

I"1;t"1;tI"2;t"2;t . . 0.0074� (0.0037) 0.0283� (0.0054)
(I"2;t"2;t)

2 . . �0.0018 (0.0035) 0.0047 (0.0037)

I"1;t"1;t(1� I"2;t)"2;t . . . . 0.0043 (0.0055)
I"2;t"2;t(1� I"1;t)"1;t . . . . 0.0387� (0.0053)

Log Likelihood �11241.4 �11194.9 �11175.3
# �Constant�refers to estimate for the constant term !ij of the volatility equation (2).

26



Table 4: Economic Evaluation

This table shows the results of the economic evaluation exercise. Mean and Std. Dev. denote the
mean return and the standard deviation of the return on the corresponding strategy in percentage
a year, respectively. Sharpe denotes the Sharpe ratio, which is equal to the average excess return of
the strategy divided by the sample standard deviation. The maximum fee, �; an investor is willing
to pay for holding one of the dynamic portfolios rather than the passive portfolio is represented in
percentages per year. TC represents the (break-even) transaction cost in percentages per trade for
which the dynamic strategy would have the same utility as the passive strategy.

Passive Portfolio
Target Return Mean Std. Dev Sharpe

6 9.237 7.340 0.065
7 10.492 8.562 0.065
8 11.746 9.785 0.065
9 13.001 11.007 0.065
10 14.256 12.230 0.065
11 15.510 13.452 0.065
12 16.765 14.675 0.065
13 18.020 15.897 0.065
14 19.274 17.120 0.065

Dynamic Portfolio (DVECH-L)

 = 1 
 = 10

Target Return Mean Std. Dev Sharpe � TC � TC
6 9.975 7.273 0.072 0.984 0.124 1.184 0.132
7 11.353 8.484 0.072 1.196 0.126 1.470 0.134
8 12.731 9.695 0.072 1.423 0.128 1.781 0.136
9 14.108 10.906 0.072 1.663 0.130 2.118 0.137
10 15.486 12.117 0.072 1.917 0.131 2.479 0.138
11 16.864 13.328 0.072 2.185 0.133 2.866 0.139
12 18.241 14.539 0.072 2.467 0.134 3.278 0.140
13 19.619 15.750 0.072 2.763 0.135 3.716 0.141
14 20.997 16.961 0.072 3.073 0.136 4.179 0.142

Dynamic Portfolio (GJR-L)

 = 1 
 = 10

Target Return Mean Std. Dev Sharpe � TC � TC
6 9.786 7.227 0.070 0.961 0.132 1.297 0.142
7 11.132 8.430 0.070 1.202 0.135 1.661 0.146
8 12.478 9.634 0.070 1.466 0.138 2.066 0.148
9 13.824 10.837 0.070 1.753 0.140 2.514 0.150
10 15.171 12.040 0.070 2.063 0.142 3.003 0.151
11 16.517 13.244 0.070 2.397 0.144 3.535 0.152
12 17.863 14.447 0.070 2.754 0.146 4.108 0.153
13 19.209 15.651 0.070 3.133 0.146 4.724 0.154
14 20.555 16.854 0.070 3.536 0.148 5.382 0.155
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Table 4: Economic Evaluation (Continued)

This table shows the results of the economic evaluation exercise. Mean and Std. Dev. denote the
mean return and the standard deviation of the return on the corresponding strategy in percentage
a year, respectively. Sharpe denotes the Sharpe ratio, which is equal to the average excess return of
the strategy divided by the sample standard deviation. The maximum fee, �; an investor is willing
to pay for holding one of the dynamic portfolios rather than the passive portfolio is represented in
percentages per year. TC represents the (break-even) transaction cost in percentages per trade for
which the dynamic strategy would have the same utility as the passive strategy.

Dynamic Portfolio (ADVECH-L)

 = 1 
 = 10

Target Return Mean Std. Dev Sharpe � TC � TC
6 9.849 7.151 0.072 1.294 0.159 1.853 0.169
7 11.206 8.342 0.072 1.644 0.162 2.404 0.171
8 12.562 9.533 0.072 2.031 0.165 3.025 0.173
9 13.919 10.724 0.072 2.457 0.167 3.716 0.174
10 15.276 11.915 0.072 2.920 0.168 4.475 0.176
11 16.632 13.106 0.072 3.422 0.170 5.304 0.177
12 17.989 14.296 0.072 3.962 0.171 6.203 0.178
13 19.346 15.487 0.072 4.541 0.172 7.171 0.179
14 20.702 16.678 0.072 5.157 0.174 8.208 0.179
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Appendix C: Figures

Figure 1: Out-of-Sample procedure
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