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Optimal Advertising with Traded
Raw and Final Goods: The Case

of Variable Proportions Technology

J. A. L. Cranfield

An optimal advertising investment rule is derived for a vertically related, competi-
tive market with traded final and raw goods and a processing sector characterized
by variable proportions technology and nonconstant returns to scale. An equilibrium
displacement framework incorporating conditional factor demands is used to account
for the elasticity of substitution between agricultural and nonagricultural inputs to
the marketing channel. Simulation for the Canadian beef industry in the post-WTO
environment demonstrates how optimal advertising intensity falls as export demand
elasticities for beef and live cattle become more elastic. Results show the optimal
advertising intensity ranges between 0.05% and 0.22% offarm-level market revenue.
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Introduction

Recently, an initiative forwarded by the Canadian Cattleman's Association would coor-
dinate generic advertising and promotion efforts on the part of stakeholders in the
Canadian beef industry. As trade plays an important role in determining the economic
well-being of Canada's beef cattle industry, advertising and promotion investment must
account for the role of live cattle and beef trade in shaping the domestic market place.
It should be recognized, though, that transformation of live cattle to beef involves appli-
cation of a substantial amount of nonagricultural inputs to a traded raw agricultural
input (live cattle). The net result is a final good (beef) that is traded and whose sale is
promoted at the retail level in Canada through cattle producer investment in market
expansion activities, with a historical focus on generic advertising.

Because investment in advertising is pursued with the intent of maximizing cattle
producers' surplus, one may suspect that trade of both the final and agricultural goods,
and substitution possibilities between agricultural and nonagricultural intermediate
inputs, may affect the optimal level of investment. The objective of this study is to derive
an optimal investment rule for advertising in a vertically related, competitive market
with traded final and agricultural goods and a processing sector characterized by vari-
able proportions technology and nonconstant returns to scale.

The importance of the elasticity of substitution between agricultural and nonagri-
cultural inputs to the processing sector has been demonstrated in previous studies (e.g.,
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Gardner; Mullen, Wohlgenant, and Farris; Wohlgenant 1989, 1993, 1999a; Holloway).
Wohlgenant (1993) showed that if the elasticity of substitution between agricultural and
nonagricultural inputs is strictly positive, then producers of agricultural commodities
should prefer investment of checkoff funds in research related to primary production
rather than in market promotion. However, this result must be viewed with caution as
it is based on an assumption that the vertical shift in supply resulting from research
investment equals the vertical shift in demand resulting from advertising investment.1

When fixed proportions are assumed (i.e., when the elasticity of substitution equals
zero), Wohlgenant found producers should be indifferent between investment in
research related to primary production and market promotion. Furthermore, producers
of the agricultural input were shown to benefit more from research related to primary
production and market promotion than from research-induced changes in the cost of
marketing inputs.

Kinnucan (1997) determined that ignoring the role of marketing intermediaries, by
omitting the role of the elasticity of substitution, results in an overstatement of farm-
level returns to advertising. Note, in drawing these conclusions, both Wohlgenant (1993)
and Kinnucan (1997) ignore trade at the farm and retail levels of the market.

However, several studies have explored the role of trade when producers of the
agricultural good finance generic advertising activities at the retail level (e.g., Alston,
Carman, and Chalfant; Piggott, Piggott, and Wright; Ding and Kinnucan; Kinnucan
1999; and Kinnucan, Xiao, and Yu). Moreover, Kinnucan (1999) derived an optimality
rule for cooperative advertising investment in an open, competitive economy that nests
earlier optimality rules developed by Dorfman and Steiner and by Nerlove and Waugh.
Still, Kinnucan's framework assumes fixed-proportions technology and considers only
a single market level. Kinnucan, Xiao, and Yu relaxed the fixed-proportions assumption
and incorporated a processing sector, but considered trade only at the farm level and
assumed constant returns to scale.

This analysis generalizes the work of Kinnucan and his colleagues by adding retail-
level trade and relaxing the constant-returns-to-scale assumption. In fact, the optimal
investment rule obtained below nests those previously derived by Dorfman and Steiner;
Nerlove and Waugh; Kinnucan (1997); and Kinnucan, Xiao, and Yu. In some respects,
this study also extends the work ofWohlgenant (1993) by accounting for retail- and farm-
level trade and relaxing the assumption of constant returns to scale, albeit without
explicit incorporation of investment in research. Last, this paper extends one of Kinnu-
can's (1997) results wherein the optimal advertising intensity varies inversely with the
farmer's share of the consumer's food dollar, but only when substitution possibilities at
the retail level are stronger than substitution possibilities faced by processors.

Economic Framework

Because producers typically finance generic advertising efforts via a checkoff, and such
efforts are pursed in a collective manner through a representative commodity agency,
it is assumed a commodity agency manager seeks to maximize producers' surplus

'As one reviewer pointed out, equal effectiveness of investment in primary production-related research and market promo-
tion is unlikely to hold. Moreover, when the elasticity of substitution is nonzero, a preference for primary production-related
research over market promotion becomes an empirical issue. Interested readers are directed to Chang and Kaiser, and to
Wohlgenant (1999b) for further discussion.
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through appropriate choice of generic advertising at the retail level. This advertising
investment decision is made in isolation from all other investment decisions, such as
primary production-related research, investment in financial instruments, and so on.
Specifically, the optimality rule calculates the optimal, lump-sum generic advertising
investment. As such, the relevant optimization problem is an unconstrained problem
which assumes away investment in other alternatives.2 As will be noted, however, the
analysis follows the historical developments in this literature and accounts for the
opportunity cost of invested funds-namely, investment in primary production-related
research.

To begin, denote producers' surplus as:

(1) T = w X - XSf (t)d - A,

where TC is producers' surplus, wx is the farm price of the agricultural input, Xs is the
quantity supplied of the agricultural input, f (u) is the inverse farm-supply equation,3

irj is the share of the checkoff funds raised from domestic sale of the agricultural input,
and A is producers' advertising investment.4 To determine optimal generic advertising
in a competitive environment, equate the marginal value product of advertising to the
marginal cost of advertising and solve for optimal advertising, A*, or alternatively solve
for the optimal advertising intensity, At*, defined as the ratio of A* to market revenue.

Because equation (1) includes the producers' cost of advertising, it already measures
the net benefits realized by producers. Consequently, the net marginal value product
of generic advertising can be derived by totally differentiating (1) and solving for the
following:

dnc W Xs dln(wx)

dA A dln(A)

Following Nerlove and Waugh, set the net marginal value product equal to the marginal
return on the advertising investment in its next-best alternative, denoted by p, and solve
for Al*:

(1') Al*= -A = 1A* dln(wx)

wxXS (ip + p) dln(A)

2 A reviewer indicated the optimization problem faced by the agency's manager is a constrained one-specifically, one
where producers' surplus is maximized subject to an expenditure constraint requiring the sum of expenditure on alternative
investments to be less than or equal to the funds made available through checkoff financing. Such an approach would assume
the agency committed a priori to spend a fixed amount of money and then had to allocate this amount over different
alternatives. A different approach is taken here, in which the goal is to determine the optimal lump-sum investment for
generic advertising, which could then be added to the lump-sum investment for the other alternatives to determine total
financing needs.

3
Research could be included as a shift parameter in the inverse supply function. For the sake of analytical tractability,

and to make the connection to previous literature as clear as possible, research has not been included in this function. In this
regard, research could be viewed as a fixed value that has been absorbed into the inverse supply function, meaning a change
in the level of research could change the optimal level of advertising investment, but only to the extent that the marginal cost
curve shifts.

4
To better focus attention on extending earlier models to account for trade at the farm and retail levels, the incidence

parameter resulting from checkoff financing of generic advertising has been ignored. This is not to suggest such an incidence
parameter is unimportant, but rather to squarely focus attention on the main issue of the study. In fact, ignoring the
incidence parameter means the optimal intensities may be underestimated. Chang and Kinnucan provide a complete
discussion on the tax-incidence of an advertising checkoff.
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Inclusion of p allows for a direct accounting of the return to alternative investment
opportunities, such as investment in research related to primary production. An
increase in the returns to research, as manifest through an increase in p, will lower the

optimal advertising intensity. Furthermore, the optimal advertising intensity, Ail, de-
pends on the proportional response of the agricultural input's price, wx, to a 1% change
in advertising. In turn, the value of x changes in response to changes at the retail level,
but such retail-level changes must first pass through the marketing channel (see Kinnu-
can 1997). Consequently, it is important not to ignore the structure of production in the

marketing channel. Kinnucan, Xiao, and Yu address this issue, but only assume trade
at the farm level and constant returns to scale.

The remainder of this section derives an optimal advertising rule using an equilib-
rium displacement model that accounts for trade in both final and raw agricultural

goods, with variable proportions processing technology using two inputs (agricultural

and nonagricultural), and nonconstant returns to scale.
A static, competitive, deterministic economic environment in the context of a large,

open economy is assumed. Demand for the final good (YD) depends on the final good's

price (P) and advertising through the demand function:

(2) YD = D(P, A).

Following Ball and Chambers, the processing sector is represented by a well-behaved

aggregate production function:

Y = g(X, B),

where X and B represent agricultural and nonagricultural inputs, respectively. As
Gardner points out, the aggregation of nonagricultural inputs into a bundle, B, assumes
the relative prices of the nonagricultural inputs in the bundle are constant. The corres-
ponding dual cost function to this production function fntiis defined as:

C(wx, WB, Y) = min{wxX + wBB Ig(X, B) = Y,
X,B

where C is the cost of producing Y units of output, and WB is the unit price of the non-

agricultural input. Market equilibrium requires equality of marginal cost and price:

(3) P = MC(WX, WB, Y).

Assuming the law of one price holds, trade of the final good, YT, is represented by:

(4) YT = T(P),

where the function T(') assumes the role of either an export demand or import supply

function. Market clearing in the final good's market requires:

(5) YT YD

The market for the agricultural input reflects trade of the raw agricultural good and

the structure of the processing technology via derived demand for the agricultural good.

Cranfield
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Following Mullen, Wohlgenant, and Farris, demand for the agricultural input is ex-
pressed as a conditional factor demand derived by applying Shephard's lemma to the
processing sector's cost function:

(6) XD = CX(WX WB, Y),

where Cx(wx, WB, Y) is the partial derivative of the cost function with respect to the
price of the agricultural input, and is assumed to be homogeneous of degree zero in
prices. Market supply of the agricultural input is a function of its price alone:

(7) Xs = f(Wx).

Trade of the agricultural input, XT, is defined as a function of the agricultural good's
price:

(8) XT = h(wx).

As with equation (4), equation (8) can be either an export demand or import supply func-
tion. Finally, equation (9) provides a market-clearing condition for the agricultural input
market:

(9) XT = X -XD

Equations (2)-(9) completely define a vertically related market with traded final and
agricultural goods, but also allow for variable proportions technology and nonconstant
returns to scale. In this model, a change in the level of advertising, which is exogenous
to the system of equations defined by equations (2)-(9), will bring about a new equilib-
rium.5 Such equilibrium displacement provides the means by which one can determine
the proportional change in farm price to a change in advertising. To begin, logarithmic-
ally differentiate equations (2)-(5):

(2') dln(YD) = -iidln(P) + pdln(A),

(3') dln(P) = yxdln(wx) + yBdln(wB) + yydln(Y),

(4') dln(YT) = edln(P),

(5') dln(YT) = - dln(Y) - - dln(YD),
YT YT

where l(> 0) and p(>0) are the own-price and own-advertising elasticities of demand for
the final good, respectively; yx(>0) is the farm-to-retail price transmission elasticity; YB
is the price transmission elasticity from the nonagricultural market to the final goods
market; yy is the elasticity of marginal cost with respect to output; and e is the own-price

5 Once equation (1') is included in the model, advertising becomes an endogenous variable. Also note the amount spent on
such activities ultimately depends on the mechanism by which financing is raised. Typically, funds are raised through
checkoff levies assessed on the sale of the agricultural input. In this case, tA will depend upon the price of the agricultural
input, the supply of the agricultural input, or some combination of the two. For analytic tractability, however, attention in
this study is focused on lump-sum financing. Interested readers are directed to Freebairn and Alston, who provide insight
into the impact of financing mechanisms for generic advertising in industries without supply control.
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trade elasticity for the final good. In a competitive market, yx and YB can also be inter-
preted as the elasticity of marginal cost with respect to the price of the farm and non-
agricultural inputs. Substituting (2'), (3'), and (4') into (5') and solving for dln(Y) gives:

(10) dln(Y) = - [(kRe - )(yxdln(wx) + yBdln(wB)) + dln(A)],

where E = 1 + kR - Yy(kRe - r), and kR = YT/YD. By definition, kR is bounded to (0,1] in
the case of an exporter and [-1, O0) in the case of an importer. Furthermore, the trade
elasticity is negative (positive) for an exporter (importer). Consequently, the term -kRe
is always positive.

Attention is now focused on the agricultural input. Logarithmically differentiating
equation (6), using the Allen decomposition of conditional factor demand elasticities and
the homogeneity property of factor demands (see Allen, p. 504, for details), results in:

(6') dln(XD) = -osBdln(wx) + osBdln(wB) + Odln(Y),

where o(20) is the elasticity of substitution between agricultural and nonagricultural
inputs, si is the ith input's cost share (sx can be interpreted as the farmer's share of the
consumer's food dollar), and 0 is the elasticity of derived demand for the agricultural
input with respect to output of the final good. Notice that alternative returns-to-scale
assumptions can be made by varying the value of 0. Increasing returns to scale occur
when 0 < 1, constant returns to scale when 0 = 1, and decreasing returns to scale when
0>1.

Next, logarithmically differentiate equations (7), (8), and (9):

(7') dln(X,) = pdln(wx),

(8') dln(XT) = idln(wx),

(9') dln(XT) = S dln(Xs) - dln(XD),
XT XT

where (p(20) is the own-price supply elasticity for the agricultural input, and E is the
own-price trade elasticity for the agricultural input.

Following Wohlgenant (1993), assume the supply of nonagricultural input is perfectly
elastic. Further assuming this supply curve does not shift means the price of the non-
agricultural input is constant, and so dln(wB) = O0. Furthermore, yx = sx when supply of
the nonagricultural input is perfectly elastic (Kinnucan 1997, p. 195). Making these
substitutions, setting SB = 1 - sx, then substituting equation (10) into (6'), and then (6'),
(7'), and (8') into (9') results in:

{ (( +kF)(p + o(1 - s) - kF) - Q(kRe - rI)sx)dln(wx) = 0pdln(A),

where kF = XTIXD. By definition, kF will be bound to (0, 1] for an exporter and [-1, 0) for
an importer. Furthermore, the farm-level trade elasticity is negative (positive) for an
exporter (importer). Consequently, -kF, is always positive. The proportional response
of the farm price with respect to retail advertising can now be rewritten as:

(11) dln(wx) _ Op
dln(A) D
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where D = E((1 + kF)(p + o(1 - sx ) - kF) - O(kRe - rl)sx.
Substituting equation (11) into equation (1') produces a formula for the optimal adver-

tising intensity when the final and agricultural goods are traded and the technology
exhibits variable proportions and nonconstant returns to scale:

(12) AI*= A* _ 0
wxX s ($I + p)D

In the following section, attention is next focused on the analysis of the optimal adver-
tising intensity rule.

Analysis of the
Optimal Advertising Intensity Rule

Equation (12) is a very general expression of an optimal advertising intensity which nests
several special cases that have appeared in the literature. Table 1 shows these special
cases. Consider first the case of a single market level in the absence of a marketing
intermediary. This market structure can be represented in equation (12) by assuming
a fixed proportion technology (a = 0), constant returns to scale (0 = 1 and yy = 0 for
convenience), and demand elasticities are measured at the farm level. The Dorfman-
Steiner rule for a price- (or quantity-) setting monopolist results when one assumes fixed
supplies ((p = 0) and no trade (kF = 0). Relaxing the fixed-supplies assumption results in
the Nerlove-Waugh optimal advertising intensity rule without supply control. Relaxing
the fixed-supplies and no-trade assumptions results in Kinnucan's (1999) optimal adver-
tising rule for a traded good.

Return now to the market scenario that includes a marketing intermediary with vari-
able proportions technology. By assuming constant returns to scale (0 = 1, yy = 0) and
no trade (kR = kF = 0), one obtains the optimal advertising intensity illustrated in Kin-
nucan (1997) and attributed to Wohlgenant (1993). Take note of the fact that the Hicks-
Allen industry input demand elasticity [i.e., o(l - sx) + rlsx] is present in the denomin-
ator of this case. If trade does not occur at the farm level (kF = 0), then an optimal
advertising intensity not previously reported in the literature results. Finally, assuming
no trade at the retail level (kR = 0), as assumed in Kinnucan, Xiao, and Yu, results in the
optimal intensity rule shown in the last row of table 1.

Before proceeding, note the role of the elasticity of derived demand for the agricul-
tural good with respect to output (0). From equation (12), the partial derivative of Al
with respect to 0 is pE((1 + kF)(p + o(1 - sx ) - kFp) /(D 2(1 + p)), which will be positive for
economically interesting values of the arguments of the expression. All other things
equal, the optimal investment intensity increases in 0. This means that as returns
to scale change from increasing (i.e., 0 < 1) to constant (i.e., 0 = 1) to decreasing (i.e.,
0 > 1), the optimal advertising intensity rises. This is consistent with the findings of
Nerlove and Waugh, who showed increasing returns to scale reduce the optimal adver-
tising intensity compared to instances where there are constant returns to scale.

Likewise, Al* increases in yy. Because 0 appears in the numerator of (12), its sign is
also important. Since 0 measures the elasticity between the agricultural good and the
final good, it stands to reason that an increase in output of the final good will increase
derived demand for the agricultural good, and so 0 is assumed to be positive.
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Table 1. Special Cases of the Optimal Advertising Intensity (AI*) Shown in
Text Equation (12)

Description AJ* = Supporting Literature

One Market Level (a = 0, sx = 1):

* Fixed supplies and no trade P Dorfman-Steiner (1954)
((x = kR = kF = 0) a r(1 + p) optimal advertising

intensity rule

· No trade (kR = kF = 0) a Nerlove-Waugh (1961)
((p + )(1 + p) optimal advertising

intensity rule

* Trade P Optimal advertising
((1 + kF)(p + t - kF0)(i + p) intensity rule derived by

Kinnucan (1999)

Two Market Levels:

* No trade at either market P Uses the same assump-
level (kR = kF = 0)a ((p + o(l - sx ) + ilsX)(1 + p) tions as Wohlgenant

(1993)

* No trade at farm market P Not previously reported in
level (kF = 0)a ((1 + kR)(p + o(l - sx)) - (kRe - q)sx)(l + p) the literature

* No trade at retail market P Uses the same assump-
level (kR = 0) ((1 + k)(p + o(1 - sx ) - kF + risx)(i + p) tions as Kinnucan, Xiao,

and Yu (2000)

a No trade is assumed, so $ = 1.

In what follows, it is convenient to assume constant returns to scale (i.e., 0 = 1, and
yy = 0), in which case the optimal advertising intensity can be written as:

(13) A* = [(1 + )(( + k + - s) - k - (ke - + p)
[(1 + kR)((1 + kF)p + a(l - sx) - kF) - (kRe- -)sl( + p)

The term in the brackets of the denominator of equation (13) can be rewritten as:

(14) (1 +kR)((1 + kF)qp - a - kF) + SX({ - o(l + kR) - kRe).

Kinnucan (1997), who assumed no trade at either the farm or retail levels, found optimal
advertising intensity is inversely related to sx, provided r9 > a [to see this in equation
(13), set kR = 0]. However, when trade of the final good occurs (i.e., kR # 0), the optimal
advertising intensity will be inversely related to sx, provided ir - kRe > a(1 + kR). It is the
net effect of domestic demand and the trade function, relative to substitution possibili-
ties in the processing sector and the relative magnitude of trade, which determines
whether AI* increases or decreases in sx. Stated another way, the optimal advertising
intensity is inversely related to the farmer's share of the consumer's food dollar if and
only if r > o(1 + kR) + kRe.

Consider what happens for a fixed nonzero value of the elasticity of substitution. If
an import position is held, the retail substitution possibilities needed for 1r > o(1 + kR)
+ kRe are weaker than those implied by Kinnucan's no-trade case since (1 + kR), which
is less than unity in an import position, diminishes the value of a, and kRe is negative.

Cranfield
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However, if an export position is held, then (1 + kR), which is greater than unity in an

export position, magnifies the value of a, while kRe is still negative-meaning the retail

substitution possibilities may have to be weaker or stronger than Kinnucan's no-trade

case for ll > o(1 + kR) + kRe to hold.
Two specific cases will help illustrate the relationship between AI* and the farmer's

share of the consumer's food dollar. Consider first a Leontief technology. Since a = 0, the

last term in (14) is sx(ri - kRe), where ir - kRe > 0 for all nonzero values of rj, kR, and e.

Consequently, with a Leontief technology, AI* varies inversely with sx regardless of
whether an import or export position is held. Such a result is in accordance with Kinnu-
can (1997), who observed, "... industries that account for a modest share of the total cost
of the finished product will have a stronger incentive to promote ... than industries that
account for a relatively large share of total retail value" (p. 197).

Second, consider a Cobb-Douglas technology. Now, a = 1, and the last term in (14) can
be written as sx[r1 - 1 - kR(l + e)]. The relationship between AI* and sx now depends on

whether an export or import position is held, and on the magnitude of the demand and

trade elasticities and the value of kR. To see this, note retail demand for most food

products is thought to be inelastic, so ir -1 < 0. If an import position is held, kR(l + e) < 0,

which implies r -1 - kR(l + e) has an ambiguous sign, and thus the relationship between
AI* and sx is also ambiguous. If an export position is held, the sign and magnitude of

kR(1 + e) depend on the magnitude of e:

> (-10, 1
kR(l +e) {= O Ve { (-1}

< (-oo, -1)

If e E [- 1, O], then kR(l + e) 2 0, which implies qr - 1 - kR(l + e) < 0, and so AI* increases
in s .

Thus, when retail demand is inelastic, the processing technology is Cobb-Douglas, and
when faced with nonelastic export demand, the incentive to invest in advertising will

be stronger in industries where the farmer's share of the consumer's food dollar is large.

If export demand is elastic, then kR(l + e) < 0, which implies qr -1 - kR(l + e) has an
ambiguous sign, and thus AI* has an ambiguous relationship with sx.

Further qualitative results can also be derived. For instance, the optimal advertising
intensity falls as farm supply becomes more elastic, as expected, because the incentive

to invest in advertising is diminished when farm price changes little with shifts in

demand. The optimal intensity also falls as the technology moves from no substitution

possibilities (a = 0) to perfect substitutes (a = oo). This occurs because, as the elasticity

of substitution increases toward infinity, the elasticity of derived demand for the agri-

cultural input becomes perfectly elastic and the incentive to invest in advertising again

disappears because shifts in retail demand have a diminished (or no) effect on farm-level

prices, ceteris paribus.
Notice also, as the elasticity of trade with respect to the farm price ([) becomes per-

fectly elastic, the optimal intensity approaches zero. Regardless of whether the farm

market is in an import or export position, as the trade curve faced by domestic producers

becomes more elastic, the incentive to invest in advertising disappears. The same result

holds for the elasticity of retail trade with respect to the retail price. Even if derived

demand were less than perfectly elastic, a perfectly elastic retail demand curve

implies the optimal advertising intensity is zero. Consequently, if one market level is
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characterized as small and open to trade, it does not pay to advertise. Similar results
have been reported previously by Alston, Carman, and Chalfant, and by Kinnucan
(1999), but for models assuming only one market level.

The behavior of (13) is next considered by simulating its value under a variety of
assumptions. A deterministic approach is first taken to highlight the pattern of the
optimal investment intensity as retail- and farm-level trade elasticities vary. The opti-
mal investment rule is then simulated using the probabilistic approach forwarded by
Davis and Espinoza, and by Zhao et al. Such an approach allows one to account for the
random nature of elasticities used to parameterize the optimal investment rule. Finally,
the impact of alternative returns-to-scale assumptions is also explored.

Numerical Simulation

To better understand the properties of the optimal advertising intensity rule, one would
like to know how the optimal intensity changes as various parameters change. Numer-
ical simulation is conducted to show the range of values for AI* based on "best-guess"
estimates of elasticities for the Canadian beef cattle complex in a post-World Trade
Organization (WTO) environment.

For convenience, the optimal advertising intensity will be reported as a percentage,
that is, Al* x 100. As reliable estimates of e and X are not available and Canada holds a
net export position in both live cattle and beef, e and g will assume the values -10, -5,
or -1. These values are thought to be reflective of a wide array of demand responses
for exports of Canadian beef and live cattle. The farmer's share of the consumer's
food dollar (sx) takes the value 0.57, which is the same value used by Wohlgenant
(1993).

Use of the U.S. cost share in modeling a Canadian market is justified on the grounds
that processing sectors and cattle markets in Canada and the United States are linked
through trade and have evolved in a similar pattern. Values for kR and kF are set at 0.11
and 0.31, respectively, which are averages using 1995-98 data obtained from Agriculture
Canada's Livestock Market Review. The opportunity cost of funds invested in advertising
is set to reflect the returns to beef cattle research. Widmer, Fox, and Brinkman report
an internal rate of return to investment in beef cattle research ranging from 59% to
66%. Given this range, p is set equal to 0.6, which reflects a 60% opportunity cost of
invested funds in beef-cattle research. Historically, only Canadian cattle producers have
financed investment in generic advertising, so i is set equal to unity.

Following Davis and Espinoza, and Zhao et al., the remaining elasticities needed to
calculate the optimal advertising intensity are defined in terms of an underlying proba-
bility distribution. Each distribution is repeatedly sampled to generate a large number
of values used to calculate the optimal intensity for each set of draws. Care must be
taken, however, to ensure the chosen distributions generate theoretically consistent
draws (e.g., nonnegative elasticities of substitution).

Goddard and Griffith reported own-price and advertising elasticities for beef in
Canada equal to -0.23 and 0.004, respectively. Since -ar < 0 and P > 0, one can assume
distributions for -a and P with respective means of -0.23 and 0.004. Because il and P
are assumed positive, and typically thought to be inelastic, a beta distribution is
assumed for each. Beta distributions rely on two defining parameters that can be

Cranfield
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Table 2. Elasticity and Parameter Values

Assumed
Elasticity/Data (in absolute value) Symbol Value/Mean

Retail Market:
Own-price demand elasticitya (r) 0.23

* Own-advertising demand elasticity (p) 0.004

Own-price export demand elasticity (e) {-10,-5,-1}

* Trade's share of retail demand" (kR) 0.11

Farm Market:
Elasticity of substitution (o) 0.72

* Live cattle cost shared (sx) 0.57

* Own-price elasticity of supplye ((p) 0.43

· Own-price export demand elasticity (i) {-10, -5,-1

· Trade's share of farm demandb (kF) 0.31

Other:
· Producer's share of contribution to checkoff (i) 1.0

Opportunity cost of invested funds (p) 0.6

Source: Goddard and Griffith
b Source: Agriculture Canada, Livestock Market Review (based on average of annual values over 1995-98)

Source: Wohlgenant (1989)
dSource: Wohlgenant (1993)
e Source: Cranfield and Goddard

specified to match the desired mean of the distribution. For our purposes, r - Be(3, 10)
and p ~ Be(2, 498), with corresponding means of 0.2307 and 0.004.6

Cranfield and Goddard noted own-price supply elasticities for live cattle in western
Canada equal to 0.431. This value is consistent with supply elasticities reported in the
literature (see Marsh for a review of these values). The own-price supply elasticity is
assumed to be nonnegative, and to follow a gamma distribution, (p - F(0.656, 0.656),
with mean value 0.430.7

Unfortunately, estimates of the elasticity of substitution for the Canadian beef-
processing sector are unavailable in the literature. However, Wohlgenant (1989) reports
a substitution elasticity estimate for the U.S. beef and veal sector equal to 0.72. Given
similarities in Canadian and U.S. beef processing sectors, this value will be used in
defining an exponential distribution for the elasticity of substitution: a - exp(0.72),
which has a mean value of 0.72.8 Table 2 summarizes the data and elasticities used to
parameterize the optimal investment rule.

Prior to discussing the distribution of the optimal intensity, attention focuses on how
changes in e and i affect the intensity, but with price, advertising, supply, and substitu-
tion elasticities fixed at their respective means, and all other values set as discussed
previously. Figure 1 shows the optimal advertising intensity (stated in percentage terms)

6The term z - Be(arg,, arg2) indicates the random variable z is distributed as a beta distribution with defining parameters,
arg, and arg2 .

7 The term z - r(arg,, arg2) indicates the random variable z is distributed as a gamma distribution with defining param-
eters, argi and arg,.

8 The term z - exp(arg) indicates the random variable z is distributed as an exponential distribution with defining param-
eter, arg.
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Figure 1. Value of the optimal advertising intensity (stated
in percentage terms) at different values of e as E varies

for different values of i when e varies continuously between 0 and -10. As expected,

the optimal intensity falls as the elasticity of demand for Canadian beef exports be-

comes more elastic. Specifically, as the elasticity of demand for Canadian beef exports

approaches -oo, Canada becomes a small, open market, in which case the retail price will

not change with shifts in the retail demand curve, and so it does not pay to advertise.
A retail price increase is necessary for farmers to benefit from retail advertising because
this increases derived demand for the agricultural input, causing farm price to increase

(assuming a large open economy), and with it producer surplus.
Notice also that the magnitude of the optimal advertising intensity falls as the elas-

ticity of demand for live cattle exports, i, becomes more elastic (compare the graph in
figure 1 of the optimal advertising intensity when i = -1 to that when i = -10). Thus, a

change in the elasticity of export demand for the agricultural good has a direct bearing

on the magnitude of the optimal intensity, but so too does the elasticity of export demand

for the final good.
This last point is further highlighted in figure 2, which shows the optimal advertising

intensity (in percentage terms) when i varies continuously between 0 and -10, and e

assumes the values -1, -5, or -10. For a given value of e, the optimal advertising inten-

sity falls as the demand for Canadian live cattle exports becomes more elastic. Again,
this finding is consistent with the fact that in a small, open market, it does not pay to
advertise. Just as in figure 1, the magnitude of the optimal advertising intensity falls

as the export demand elasticity for beef becomes more elastic. Figures 1 and 2 also

demonstrate that even when one level of a market is large (i.e., exports can affect world

price), it does not pay to advertise if the other market level is small and open (i.e., exports

cannot affect world price).
Figure 3 presents histograms of the optimal investment intensity (again, in percent-

age terms). Values underlying these histograms were calculated by first making 1,000

draws from the assumed distributions for Il, P, (p, and a. For each of the drawn quad-

tuple, AI* is then calculated at the assumed values of kR, sx, kF, Ir, and p, with e = -5,

and i assuming the values of -1, -5, or -10. The key result here is that as the export
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Figure 2. Value of the optimal advertising intensity (stated
in percentage terms) at different values of i as e varies
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Figure 3. Histograms of the optimal advertising intensities
(in percentage terms) when e = -5 and ~ varies

demand elasticity for live cattle becomes less elastic, the distribution of optimal intensi-
ties becomes more dispersed. While not shown, identical qualitative results occur when
e = -1 and e = -10. In fact, the increased dispersion of the optimal advertising intensities
was more noticeable as beef's export demand elasticity became less elastic. As both
export demand elasticities become less elastic, the value of the denominator in equation
(13) falls, thereby increasing the optimal advertising intensity.

Table 3 reports summary statistics for the values of AI* x 100 calculated in the
stochastic simulation. As expected, the mean value of the optimal advertising intensity
increases as the elasticity of export demand for live cattle becomes less elastic and as
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Table 3. Summary Statistics from Stochastic Simulation of the Optimal Adver-
tising Investment Rule

e=-10

Description 1 = -10 = -5= -1

Mean 0.049 0.075 0.137

Standard deviation 0.033 0.053 0.105

Skewness 1.310 1.347 1.505

Kurtosis 3.084 3.178 3.629

Lower bound of 95% Chebyshev confidence interval -0.101 -0.162 -0.334

Upper bound of 95% Chebyshev confidence interval 0.198 0.313 0.608

Maximum p-value 0.472 0.499 0.587

e= -5

Description i = -10 i = -5 = -

Mean 0.052 0.084 0.172

Standard deviation 0.036 0.060 0.138

Skewness 1.313 1.363 1.621

Kurtosis 3.091 3.223 4.045

Lower bound of 95% Chebyshev confidence interval -0.108 -0.183 -0.447

Upper bound of 95% Chebyshev confidence interval 0.212 0.350 0.790

Maximum p-value 0.475 0.509 0.649

e= -1

Description i = -10 i = -5 = -1

Mean 0.055 0.092 0.217

Standard deviation 0.038 0.066 0.187

Skewness 1.316 1.381 1.811

Kurtosis 3.098 3.272 4.916

Lower bound of 95% Chebyshev confidence interval -0.115 -0.205 -0.620

Upper bound of 95% Chebyshev confidence interval 0.225 0.388 1.054

Maximum p-value 0.478 0.520 0.744

Note: Summary statistics have been computed using the simulated values of the optimal advertising intensity stated
in percentage form.

the elasticity of export demand for beef becomes less elastic, ceteris paribus. Standard
deviations echo figure 3, in that the distribution of A* becomes more dispersed as the
trade elasticities become less elastic. Furthermore, measures of skewness are positive
and increase as trade elasticities become less elastic.

Means and standard deviations in table 3 were also used to calculate 95% Chebyshev
confidence intervals. Because the means and standard deviations increase as the trade
elasticities become less elastic, so too does the width of each confidence interval. For
example, when e = -10 and i = -10, the 95% confidence interval is (-0.10, 0.19), in con-
trast to (-0.62,1.05) when e = -1 and 4 = -1.

The lower bounds for all confidence intervals in table 3 are negative, which means,
at the 95% level of significance, the mean optimal advertising intensity (stated in per-
centage terms) is not statistically different from zero. However, this result is a direct
consequence of not accounting for the truncation of the assumed distributions when
calculating the confidence intervals.
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An alternative to conducting distribution-free statistical analysis is to follow Davis

and Espinoza and compute the largestp-value for which a tested null hypothesis would

be rejected. Thisp-value, referred to as the maximump-value, tests the null hypothesis

that Al* x 100 = 0. Table 3 shows the maximum p-values ranging from 0.472 (when e =

-10 and i = -10) to 0.744 (when e = -1 and X = -1). Moreover, for a given value ofe (E),

the maximum p-value falls as i (e) becomes more elastic. Hence, the less elastic the

trade elasticities become, the more likely it is the optimal advertising investment will

be significantly larger than zero-a reflection of the earlier work of Alston, Carman, and

Chalfant, and of Kinnucan (1999).
Finally, table 4 presents the optimal advertising intensities (in percentage terms) as

0 varies across 0.5 (i.e., increasing returns to scale), 1 (i.e., constant returns to scale),

and 2 (i.e., decreasing returns to scale), while all other values are held fixed either at

their assumed values or respective means. As the processing technology moves from

increasing to constant to decreasing returns to scale, the optimal advertising intensity

rises. This finding is expected given the analytical results stated above, and also pro-

vides numerical support for the connection between the optimality rule developed here

and that of Nerlove and Waugh.
Differences in the magnitude of the optimal intensities are noteworthy, however. For

instance, with i = -1 and e = -1, the optimal advertising intensity rises from 0.089% (of

farm-level market revenue) to 0.294% as the scale measure increases from 0.5 to 2. Such

discrepancies in the optimal intensity suggest that accurate measurement of returns

to scale is critical to providing industry with information needed in planning optimal

generic advertising campaigns.

Conclusions

This study sought to derive an optimal investment rule for producer-funded advertising

in a vertically related, competitive market with traded final and agricultural goods and

a processing sector characterized by variable proportions technology and nonconstant

returns to scale. The optimal rule was developed from the perspective of a commodity

agency manager seeking to maximize producers' surplus through appropriate choice of

generic advertising at the retail level.
The optimal advertising intensity depends on the proportional change in farm price

to advertising. Because the impact of advertising must first pass through the marketing

channel, the proportional change in farm price to advertising was derived using an

equilibrium displacement framework which incorporated marketing intermediaries. By

using a dual approach to representing marketing intermediaries, explicit account was

taken of the elasticity of substitution between agricultural and nonagricultural inputs

to the marketing channel. Moreover, the equilibrium displacement model also incorpor-

ated scope for trade of the final and agricultural goods.
The resulting optimal advertising intensity rule is very general and nests earlier

optimal advertising intensity rules derived by Dorfman and Steiner; Nerlove and Waugh;

and Kinnucan (1999), as well as rules based on the same assumptions made by Wohl-

genant (1993) and by Kinnucan, Xiao, andYu. Furthermore, an optimal advertising rule

not previously reported in the literature is nested in the more general model.

Assuming constant returns to scale, it was shown that the optimal advertising inten-

sity has an inverse relationship with the supply elasticity of the agricultural input, the
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Table 4. Optimal Advertising Intensities (in percentage terms) Assuming
Increasing, Constant, and Decreasing Returns to Scale

0 = 0.5 (Increasing Returns to Scale)

= -10 _ = -5 _ = -1

e=-10 0.026 0.041 0.074
e = -5 0.027 0.043 0.081
e = - 1 0.028 0.045 0.089

0 = 1 (Constant Returns to Scale)

= -10 = -5 =-1

e=-10 0.048 0.073 0.121
e = -5 0.052 0.080 0.142
e = - 1 0.054 0.087 0.166

0 = 2 (Decreasing Returns to Scale)

=-10 _ =-5 =-1

e = -10 0.084 0.119 0.177
e = -5 0.094 0.140 0.227
e= -1 0.104 0.163 0.294

elasticity of substitution between agricultural and nonagricultural inputs, and trade
elasticities for the final and agricultural goods. A condition needed for the optimal adver-
tising intensity to vary inversely with the farmer's share of the consumer's food dollar
was identified.

This condition generalizes an earlier result found by Kinnucan (1997). However, the
relationship between the optimal advertising intensity and the farmer's share of the
consumer's food dollar was shown to be ambiguous in general terms, but to vary with
the magnitude of the own-price demand elasticity, the elasticity of substitution, the
trade elasticity, and relative trade volume.

Simulation was used to explore the properties of the optimal advertising intensity
when applied to the Canadian beef cattle industry in the post-WTO environment.
Results are in agreement with those of Alston, Carman, and Chalfant: as the elasticity
of demand for exports becomes more elastic, the optimal advertising intensity falls.
Moreover, the probability of rejecting the null hypothesis that the optimal advertising
intensity equals zero falls as the trade elasticities become more elastic. Assuming
constant returns to scale, and depending on the value of the export demand elasticities,
the mean optimal advertising intensities from the simulation range between 0.05% and
0.22% of farm revenue.

It is important to recognize, however, that the reported optimal advertising intensities
do not reflect the tax incidence of the checkoff needed to raise money for investment in
advertising. As such, results from Chang and Kinnucan imply the reported intensities
are lower bounds on intensities that reflect a tax-shifting effect of checkoff financing.
Freebairn and Alston recently summarized optimal advertising investment rules which
incorporated such tax-shifting effects.

Values obtained from Agriculture Canada's Livestock Market Review place farm-level
market revenue for fed cattle at approximately Can$3.39 billion, suggesting an optimal
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advertising investment between Can$2.84 million and Can$7.36 million. The wide range
of optimal investment level underscores the importance of trade elasticities and
highlights the need for further research to provide reliable estimates of trade elasticities
not only for beef and cattle, but for all traded agricultural and food products for which
producers invest in generic advertising.

[Received January 2001; final revision received December 2001.]
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