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Abstract: Recent advances in linking Recency-Frequency-Monetary value (RFM) data

to Customer Lifetime Value (CLV) in non-contractual settings rely on the assumption

of independence between the transaction and spend processes. We propose to model

jointly the inter- and intra-customer dependency between both processes using copulas,

hereby accounting for the double correlation within and across customers. Applied to

a unique data set of securities’ transactions, we find that modeling both associations

enhances the accuracy of CLV predictions, thus improving customer valuation and

selection tasks.
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INTRODUCTION

As firms have to comply with stricter marketing budget constraints, customer life-

time value (CLV) has become a popular metric in marketing research and practice

for customer valuation, customer selection and the allocation of marketing resources

over the customer base (Berger et al. 2002, Gupta et al. 2004, Kumar and Venkatesan

2006, Rust et al. 2004, Venkatesan and Kumar 2004). An accurate estimation of the

future cash flows each customer is likely to generate can efficiently drive firms’ decisions

on how to prioritize marketing efforts on customers that are expected to provide the

highest revenues (Venkatesan et al. 2007).

While several models have been proposed to compute CLV in a continuous-time

non-contractual setting (see Gupta et al. 2006, for a review), probably the most promi-

nent and successful existing approach so far is the stochastic framework of buyer be-

havior proposed by Fader et al. (2005b). The approach builds on the well-known

Pareto/NBD framework introduced by Schmittlein et al. (1987) and links the observed

recency-frequency-monetary value (RFM) measures to the unobserved customers’ la-

tent traits to predict future customer behavior. The Pareto/NBD models the flow of

transactions over time in a non-contractual setting, accounting for dropout. It has

been successfully applied in multiple contexts and industries (Reinartz and Kumar

2000; 2003, Schmittlein and Peterson 1994).

In order to characterize a customer in terms of his/her future cash flows, Fader

et al. (2005b) specify a separate Gamma/Gamma sub-model for the amount spent

per transaction. An assumption made in their CLV calculation is the independence

between the transaction stream and the spend process. This assumption implies that

the model of buyer behavior can be decomposed into two sub-models, and the expected

CLV obtained by multiplying the number of discounted expected transactions by the

expected net cash flow per transaction. They warn that this assumption might be

invalidated in some applications, and call for the development of a model that would

relax the independence assumption.

In this paper, we build up their framework by using copulas to model the depen-

dency between the transaction flow and spend process. A copula describes the joint

behavior of a multivariate random variable after controlling for the marginal behavior
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of the single random variables. Recently, Danaher and Smith (2009) advocated the

use of copula in marketing to model dependency structures. They prove very use-

ful in contexts where the marginal distributions are known and association between

the marginal random variables is anticipated (Danaher and Hardie 2005, Danaher and

Smith 2009). Copulas allow for more flexible association structures than a bivariate

distribution (e.g., log-normal distribution in Abe 2009). In particular, marginals of the

multivariate distribution do not need to be of the same family. In case of independence,

our copula-extended model boils down to the original CLV model proposed by Fader

et al. (2005b).

We use two levels of copulas to model simultaneously the inter- and intra-customer

association between the transaction and the spend processes. The former character-

izes the association between the mean purchase frequency and mean transaction value

across customers. The latter captures the association between the interpurchase time

and a given transaction’s value within each customer’s transaction path. While mod-

eling both associations is needed to avoid biased predictions, it is also managerially

relevant. The inter-customer association characterizes how a permanent change in one

of the two processes impacts the other process. For instance, marketing actions such

as loyalty programs might have an enduring effect on buyers’ behavior (Lewis 2004).

In contrast, the intra-customer association captures the effect of a temporary (or one-

period) change, e.g. a temporary increase in transaction value in reaction to a price

promotion. By incorporating customer characteristics to model the heterogeneity in

both associations, we can detect customer segments with different (inter- and intra-

customer) association intensities, and thus different reactions to (different types of)

marketing incentives.

We find that modeling the double association between the transaction flow and

spend processes has important managerial implications. First, it enhances the accu-

racy of the CLV predictions, thus improving customer valuation and selection. Our

results indeed show that ignoring the dependency between the transaction and the

spend processes leads to an overestimation of the CLV for the customer segment that

show a negative association. Second, we demonstrate that insights on the association

characterizing each customer can be used for marketers’ resource allocation decisions.

In particular, customer segments characterized by a weak association (i.e. close to

zero) turn out to be a better target for a marketing incentive than customer segments

showing a strongly negative association. The reason is that, in case of a negative as-

2



sociation between transaction rate and transaction value, a marketing incentive that

would induce an increase in transaction frequency (resp. value) would be compensated

in part by an decrease in transaction value (resp. frequency), which would ultimately

mitigate the net effect on CLV.

Lately, the question of dependency between the various components of CLV models

has received an increasing attention from marketing scholars. However, to the best

of our knowledge, none of them account for the double association within and across

customers jointly. Borle et al. (2008) and Singh et al. (2009) offer a generalized data

augmentation framework that accounts for the correlation across customers between

both processes, while Jen et al. (2009) focuses on the temporal dependency within

a customer between both constructs and specify a bivariate log-normal hierarchical

Bayesian model of purchase timing and quantity. They find their specification to

improve predictions of customers’ expected income stream. Finally, focusing on the

Pareto/NBD sub-model, Abe (2009) allows for a cross-sectional association between

the transaction and the dropout process.

The remainder of the paper is organized as follows. In the next section, we ex-

plain and motivate the role of the intra- and inter-customer association between the

transaction flow and spend process as a measure of the within- and across-customer

dependency in a CLV context. Next, we introduce the concept of copulas and subse-

quently present the copula-extended CLV modeling framework. In the empirical appli-

cation, we validate our approach on the CDNOW data used by Fader et al. (2005b),

and show how the model can be used to improve CLV prediction in a new empirical

application on customers’ securities transactions in the retail banking sector. In turn,

we then illustrate how our approach can be used to improve customer valuation, se-

lection and resource allocation decisions. Finally, we conclude and present limitations

and suggestions for future research.

INTER- AND INTRA-CUSTOMER ASSOCIATION

IN CLV

At the higher level of association, the inter-customer association measures the re-

lation between the mean transaction rate (frequency) and the mean transaction value
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(monetary value) across customers. When this cross-sectional association is negative,

it indicates that frequent buyers tend to spend less per transaction than infrequent

buyers. That is, customers with a mean transaction rate higher than the population

mean tend to spend less per transaction than customers with a mean transaction rate

lower than the population mean. In contrast, a positive association would suggest

that infrequent buyers also tend to spend more per transaction than infrequent buyers.

While a positive inter-customer association is rather unlikely, we expect a negative

inter-customer association in most cases. For instance, in the context of grocery shop-

ping at supermarkets, a share of customers commonly visits the store once a week and

makes purchases for the whole week, while another part tends to prefer daily shopping

(see e.g. Bell and Lattin 1998). The existence of such customer segments suggests a

negative inter-customer association. In general, the modeling of the inter-customer as-

sociation is motivated by the existence of customers with different socio-demographic

profiles (e.g. different lifestyles and time constraints), different price and promotion

sensitivities (Ainslie and Rossi 1998) or different purchase motives (e.g. professional

purpose or personal use). In a contractual setting, Borle et al. (2008) studies the case of

a membership-based direct marketing company and find a substantive inter-customer

association.

At the lower level of association, the intra-customer association, or the association

within a customer, measures how the value of this customer’s transactions depends

on the time between consecutive transactions (interpurchase time) he/she makes. By

analogy to the association at the higher level, we define a customer with a negative

intra-customer association as one who tends to show a decrease (resp. increase) in

transaction value when his/her purchase frequency temporarily increases (resp. de-

creases). In other words, the longer the time since this customer’s last purchase, the

higher the amount expected to be spent on his/her next transaction, and vice versa.

A negative intra-customer association thus translates the degree to which the buying

behavior of a given customer is compensating over time, i.e. the degree to which an

increase in his/her interpurchase time is compensated or not by an increase in purchase

amount. A detailed treatment of this particular type of temporal association has been

recently provided by Jen et al. (2009).

At the intra-customer level, we expect the specific industry context as well as the

product characteristics to induce the existence of compensating buying patterns. First,

the industry context is likely to raise a different association intensity. For instance, in
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the entertainment industry, purchases of music CDs are known to be driven by the

releases of new titles that match customer preferences, as well as by the calendar of

special occasions (e.g. Valentine day, Christmas, . . . ), which are likely to influence the

temporal pattern of transactions. This can explain why, in the case of the CDNOW

data, the association turned out to be weak. Other contexts where the intra-customer

association might be low can be the temporal patterns of doctor visits in the health

sector, or of night stays in the hotel industry. In contrast, in other industries where

the supply is less driven by the calendar (e.g. grocery retailing), we expect a more

pronounced negative intra-customer association. Charity giving is another context in

which the intra-customer association can be negative and significant. For instance, van

Diepen et al. (2009) find that the recency of a donation decreases the amount that is

donated to the charity, which suggests a negative intra-customer association.

In addition, product characteristics are also likely to affect the intra-customer as-

sociation. First, the possibility to stockpile is likely to strengthen the negative associ-

ation, as consumers might decide to temporarily advance or postpone their purchase

in response to available price promotions (Meyer and Assuncao 1990). In line with

this argument, the degree of perishability of goods will strengthen the negative intra-

customer association (Wansink and Deshpande 1994). Also, utilitarian goods are likely

to show a stronger negative association than hedonic goods as the latter are generally

less responsive to stockpiling than the former and promotions of hedonic goods are

more likely to lead to consumption expansion than promotions of utilitarian products,

which generally lead to a longer interpurchase time (Chandon and Wansink 2002).

[INSERT FIGURE 1 ABOUT HERE]

The inter- and intra-customer association can be visualized in Figure 1, which

exhibits the amount spent per transaction by five imaginary customers as a function

of the interpurchase time. Transactions done by different customer are represented

with different symbols. Average interpurchase times and spend per transaction of each

customer are depicted in bold. In this example, we observe, at the inter-customer level,

a positive correlation between the average interpurchase times and average transaction

values (bold symbols). At the intra-customer level, we observe three customers showing

a positive slope (the crosses, lozenges, and stars), a customer with a non-significant

slope (the squares), and a customer with a negative slope (the circles). Note that a

positive slope between interpurchase times and transaction values should be interpreted
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as a negative association between transaction rate (frequency) and transaction value,

given that a transaction rate is inversely related to an interpurchase time.

The effect of the inter- and intra-customer association on the resulting CLV can

be described as follows. When one assesses the effect of a change in transaction rate

or transaction value on the CLV, a negative association leads to an overestimation

of the change in CLV if the model does not account for dependency, while it will

underestimate it in case of a positive association. In addition, the association across

customers differs from the within-customer dependency in that the former captures

the long-run dependency between the transaction and the spend process, while the

latter measures the short-run dependency. Marketing actions can result either in a

permanent increase in transaction value (e.g. a membership to a loyalty program), or in

a temporary, one-period change in purchase value, e.g. due to a price promotion). The

inter-customer association measures how the average transaction frequency changes

in reaction to the marketing actions that have a permanent effect, while the intra-

customer association measures how the interpurchase time until the next purchase will

be affected by the marketing incentives that have a temporary impact.

COPULAS

Copulas can be used to model the association between two random variables X and

M with marginal distributions F (x) = P (X ≤ x) and G(m) = P (M ≤ m) and joint

distribution function H(x,m) = P (X ≤ x,M ≤ m). While models for the margins F

and G are commonly known, obtaining an explicit expression for the joint distribution

H is generally not straightforward, motivating the use of copulas. The Sklar’s theorem

(Sklar 1959) yields that, for any F and G, there always exists a copula function C such

that

H(x,m) = C(F (x), G(m)). (1)

The copula function C is assumed to be known up to an unknown parameter θ. In
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order to be a copula, the function C has to meet the following three conditions,

(i) C(F, 0) = C(0, G) = 0,

(ii) C(F, 1) = F and C(1, G) = G, (2)

(iii) if F1 ≤ F2 and G1 ≤ G2, then

C(F2, G2) + C(F1, G1)− C(F2, G1)− C(F1, G2) ≥ 0.

If f , g and h are the probability density functions corresponding to F , G and H, the

copula density function c then verifies

h(x,m) = c(F (x), G(m))f(x)g(m). (3)

Various families of copulas exist. The simplest one is the independent copula, which

assumes the independence between X and M , given by C(F (x), G(m)) = F (x).G(m).

The corresponding copula density is then equal to one. One can find a plethora of

other copulas in the literature (see Nelsen 2006, for more detail). The most common

include the Gaussian copula, the Gumbel copula which only allows for a positive (or

negative if taking the negative sign) association between X and M , as well as the

Frank copula, which does not allow for extreme association values. More detail on

these various copulas can be found in Appendix A.

In other to illustrate the peculiarity of each copula, Figure 2 reports the contour

plots corresponding to the joint distribution of two standard-normal random variables

that have a Spearman rank correlation equals to 50%, when specifying (i) an indepen-

dent copula (upper-left plot), (ii) a Gaussian copula (upper-right plot), (iii) a Gumbel

copula (lower-left plot), and (iv) a Frank copula (lower-right plot). While the joint

distribution corresponding to the Gaussian copula is bivariate normal, the joint dis-

tribution corresponding to the Gumbel copula is asymmetric. In turn, the joint dis-

tribution corresponding to the Frank copula yields a weaker association in the tails

compared to the Gaussian copula. The most appropriate copula can be selected based

on goodness-of-fit measure.

[INSERT FIGURE 2 ABOUT HERE]

One of the main advantages of copulas is that they can fit complex association

structures without affecting the marginal distributions. This is particularly interesting
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when the distributions of the single random variables are well-known. The usefulness

has been demonstrated in several marketing applications. For instance, Meade and

Islam (2003) and Sriram et al. (2009) introduce copulas to model the dependency

between the time of adoption of related technologies. Another marketing issue where

multivariate distributions prove useful is the modeling of household’s purchase timing

or incidence across related - complementary or co-incidental - product categories, such

as pasta and pasta sauce (Chintagunta and Haldar 1998), laundry detergent and fabric

softener (Manchanda et al. 1999), or bacon and eggs (Danaher and Hardie 2005). The

latter use the Sarmanov family of distribution (Sarmanov 1966), which is a special form

of copulas. The Sarmanov family of distribution has also been used by Park and Fader

(2004) and Danaher (2007) to model the dependency across multiple websites’ browsing

patterns, and more recently by Schweidel et al. (2008) to account for the correlation

between acquisition and retention times across customers. Danaher and Smith (2009)

demonstrates that the Sarmanov is more limited in its ability to model even moderated-

sized correlation levels than the copulas described in this section. Finally, copulas have

also been used on a regular basis in other research fields, in particular in finance

(Cherubini et al. 2004, Glasserman and Li 2005). We refer to Danaher and Smith

(2009) for a extensive overview of copulas.

MODELING CLV USING COPULAS

In this section, we outline the model for the timing and monetary value of the

transactions made by individual customers. Let mi,j be the monetary value of the jth

transaction of a customer i, and IPTi,j be the interpurchase time preceding his/her

jth transaction. The assumptions on the marginal distributions of the spend process

mi,j and the interpurchase time process IPTi,j are identical as in Fader et al. (2005b).

In particular, the interpurchase time of a customer follows an exponential distribution

with parameter λi, such that the total number of purchases in a unit time interval

follows a Poisson distribution with expected value λi. On the other hand, the dollar

value of a customer’s transaction follows a gamma(p, νi) distribution, having mean

p/νi. We call λi the transaction rate and νi the revenue rate of customer i, and both

are considered as random.1
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We expand the original CLV model in two ways. First, we introduce two levels of

copula to model both the inter- and intra-customer association. Second, we extend

Fader and Hardie (2007) by incorporating time-invariant covariates to account for

observed customer heterogeneity in the expected transaction and revenue rate, as well

as in the inter- and intra-customer association parameters.

Modeling the Association Structure

At the higher level, we define the inter-customer association as the cross-sectional

association between the variables λi and νi. We capture the association through a

copula distribution with parameter θinter. A negative value of θinter indicates a negative

association between the average number of transactions (i.e. the frequency) and the

average transaction value across customers. In other words, a customer making more

transactions than the population average is likely to make lower value transactions

than the population average.

At the lower level, we define the intra-customer association as the association within

customer i between IPTi,j and mi,j, captured through a copula distribution with pa-

rameter θintra. We parameterize the copula such that a negative θintra implies a neg-

ative association between the number of transactions and the transactions’ value, or

a positive association between the interpurchase time and the transactions’ value. A

negative value of θintra indicates that a transaction preceded by a longer interpurchase

time (compared to the customer mean) is likely to be of higher value (compared to the

customer mean).

Modeling Customer Heterogeneity

In line with Fader and Hardie (2007), we adapt the CLV modeling framework by

incorporating time-invariant covariates to model observed customer heterogeneity. The

transaction rate λi and the revenue rate νi both follow Gamma distributions with shape

r and scale α, respectively shape q and scale γ. We allow the hyper-parameters α and γ

to depend on a set of covariates Vi. The covariates can include general customer socio-

demographics as well as company-related customer characteristics. More specifically,

and following Fader and Hardie (2007), we write

E[λi] =
r

αi
=

r

exp(−ρ′Vi)
(4)
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and

E[νi] =
q

γi
=

q

exp(κ′Vi)
. (5)

The parameter ρ captures the effect of the covariates Vi on the expected transaction

rate, while the parameter κ captures the effect of the covariates Vi on the expected

revenue per transaction. According to (4) and (5), a positive value of ρ, respectively

κ, implies a positive effect of the covariate on the transaction rate, respectively the

expected transaction value.

In addition, the association between the flow of transaction and the spend process

is also likely to be heterogenous over the customer base, e.g. some customer segments

might exhibit a negative association, while other segments might show no significant

association. We model the heterogeneity in the association parameters θinter and θintra,

by specifying them as a function of customer covariates Vi

θinter,i = f(η′interVi), (6)

θintra,i = f(η′intraVi), (7)

where f is a link function ensuring that θi stays within the bounds of the copula

family.2 The parameter ηinter captures the effect of a covariate on the strength of the

inter-customer association. Therefore, it can be used to identify the socio-demographics

and company-related profile of segments of customers for which the average number of

transactions is weakly associated with the expected transaction value. Likewise, the

parameter ηintra captures the effect of a covariate on the strength of the intra-customer

association. It can be used to identify customer segments for which the compensating

effect between the transaction flow and spend process is the least pronounced.

Estimation of the Model Parameters

The parameters to be estimated (listed in Appendix B) are collected in the vector

θ. From the observed interpurchase times IPTi,j and transaction values mi,j, for

1 ≤ i ≤ n, with n the sample size, and 1 ≤ j ≤ xi, with xi the number of repeated

transactions made by customer i, we estimate θ by maximizing the log-likelihood∑
i

∑
j

logLi(IPTij,mij|θ). (8)
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Let fi and gi be the density functions of the interpurchase times and the transaction

value respectively, which are allowed to be different for each customer. The corre-

sponding distribution functions are denoted by Fi and Gi. Using Equation (3), we can

write

logLi(IPTij,mij|θ) = log fi(IPTij|θ) + log gi(mij|θ) + log cintra(Fi(IPTij), Gi(mij)|θ),

(9)

with cintra the density of the specified copula distribution (see Appendix A).

Following the semi-parametric maximum likelihood approach for copula estimation

(see for example Genest et al. 1995), we approximate Fi(IPTi,j) by F̂ij = Rij/xi, where

Rij is the rank of the jth interpurchase time, taken over all xi observed values of IPTij,

and similarly for Gi(mi,j). As such, the third term in (9) solely depends on the intra-

customer association, and the parameter ηintra can be estimated separately from the

other ones:

η̂intra = argmax
ηintra

∑
i

∑
j

log cintra(F̂ij, Ĝij|ηintra). (10)

The other hyperparameters in θ are then estimated by maximizing∫ ∫ ∑
i

∑
j

{log fi(IPTij|λ,θ) + log gi(mij|ν,θ)}hi(λ, ν|θ)dλdν (11)

with hi the joint density of the transaction and revenue rate for customer i. This joint

density hi is the product of two Gamma densities and the inter-customer copula density

cinter, the latter depending only on the parameter ηinter.

Explicit expressions for f̃i(λ,θ) =
∑

j log fi(IPTij|λ,θ) and g̃i(ν,θ) =
∑

j log gi(mij|ν,θ)

are given in Fader and Hardie (2005), and were shown to depend only on the frequency,

the recency, the cohort and the average of the past transaction values for the ith cus-

tomer. Expression (11) involves an integration, which cannot be solved analytically.

Therefore, we use Simulated Maximum Likelihood (SML), a standard econometric es-

timation technique (see e.g. Green 2003, pp. 590-594). To do so, we generate random

draws (λ∗i,s, ν
∗
i,s) from the bivariate distribution hi(·|θ), for s = 1, . . . , S = 1000, and

approximate the integral in (11) by the corresponding Monte-Carlo average. More
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specifically, the SML estimator for θ maximizes

1

S

S∑
s=1

n∑
i=1

{f̃i(λ∗i,s,θ) + g̃i(ν
∗
i,s,θ)},

and its computation requires a numerical optimization routine.

The fact that the likelihood can be split in two parts allows to study the two levels

of association separately. If data at the individual transaction level of information are

not available (as it is the case in the first empirical application below), only the inter-

customer association can be estimated. Finally, the estimation procedure also accounts

for the attrition or “death” process (see Appendix B).

CLV Prediction

The customers’ value at horizon H for customer i, CLVi,H , is given by the dis-

counted sum of all net revenues that will be generated within the next H time units.

Let T denote the time the prediction is made, then future transactions may take place

at time points T + t1, T + t2, ... with corresponding transaction values mt1 ,mt2 , . . ..

As in Gupta et al. (2004), we define

CLVi,H =
∑
tj≤H

margin×mtj

(1 + d)tj
, (12)

where margin is a gross margin, supposed constant, and d stands for the discount rate.

Note that the CLVi,H defined in (12) is a random variable.

Once the model is estimated, it is possible to simulate future transaction streams

for every customer, resulting in the simulated distribution of the CLV over the next H

periods. Our approach is similar in spirit to Singh et al. (2009). Details are provided

in Appendix C. Finally, the average over the simulated distribution yields a prediction

of the expected CLV for this customer. Since we simulate the whole distribution of

CLVi,H , it is also possible to construct prediction intervals.
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EMPIRICAL APPLICATIONS

We apply the copula-extended CLV modeling approach to two different datasets,

the CDNOW data3 and a unique dataset containing securities transactions data pro-

vided by an anonymous well-established international financial service institution. The

implementation of the Pareto/NBD sub-model is based on Fader et al. (2005a).

In order to assess which family of copula is most appropriate for each application,

we estimate the copula-extended model using the independent, Gauss, Gumbel and

Frank copulas and compare their fit and out-of-sample predictive performance.

CLV in E-Commerce: the Case of CDNOW

The CDNOW data contains transactions of customers on the online music site

CDNOW (Fader et al. 2005b). The transaction data (number of repeated transactions,

recency, average transaction value and cohort) cover 78 weeks for a sample of 2,357

CDNOW customers who made their first-ever purchase at the website during the first

quarter of 1997. We use the first 39 weeks of 1997 for the estimation of the model

parameters, and keep the remaining 39 weeks as hold-out sample to assess the predictive

performance of the model. We apply the same margin as the original paper, i.e. 30%.

Note that we do not include an intra-customer association copula, nor do we model

the heterogeneity using additional covariates as the data do not contain additional

covariates. We thus have θinter equal across all customers.

We find that the Gauss copula yields the highest log-likelihood (LL) (LL = 53, 815.55

for the independent; LL = 56, 088.19 for the Gauss; LL = 53, 873.46 for the Gumbel;

LL = 54, 631.45 for the Frank). In particular, it provides a substantial improvement

compared to the independent model, suggesting that accounting for a non-zero inter-

customer association improves the model fit. Also, the out-of-sample predictive perfor-

mance of the copulas allowing for dependent transaction and spend processes all out-

perform the independent version as the lower root mean squared errors (RMSE) testify

(RMSE = 23.80 for the independent; RMSE = 22.15 for the Gauss; RMSE = 21.66

for the Gumbel; RMSE = 21.69 for the Frank).

Table 1 reports the parameter estimates of the copula-extended model for the var-

ious types of copulas, together with their significance level.4 Under the Gauss associ-

ation model, the estimated inter-customer association parameter ηinter equals to .41,

which corresponds to θinter = 0.25 (see transformation in footnote 2) and a Spearman’s
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correlation of 23.71%. The Frank copula yields a very similar Spearman’s correlation

of 23.05%. This moderately positive association is in line with the Pearson’s correla-

tion between the average transaction value and the number of transactions of 11.39%

reported in Fader et al. (2005b).5

[INSERT TABLE 1 ABOUT HERE]

CLV in Brokerage: the Case of Securities Transactions Data

Our second application is based on the securities transactions data provided by

a major international financial service institution. The data contain securities trans-

actions made by 2,500 randomly-selected customers who made their first transaction

between January 2001 and December 2003. Transactions include the purchase and sell-

ing of stocks, bonds, mutual funds, derivatives, and similar products between January

2001 and December 2005.6 We keep the last two years (January 2004 to December

2005, H = 24 months) as hold-out sample to assess the predictive performance of the

CLV models.

Following a common rule of thumb in business practice, we compute the monetary

value of a transaction as 1% of the average amount exchanged at each transaction. In

addition, we take as discount rate the weighted average cost of capital disclosed in the

2004 financial statement of the financial service provider, that is d = 8.92% on a year

basis, or a monthly discount rate of 0.71%.

The data also contain socio-demographics and company-related customer charac-

teristics used to model the heterogeneity between customers in the parameters. De-

scriptive statistics for these covariates are reported in Table 2. Customer characteristics

include the age of the customer (which will be mean-centered in the model estimation),

as well as a dummy variable accounting for the type of area where a customer is liv-

ing. This variable takes the value one when the customer lives in the suburb of a city,

and zero otherwise. As company-related customer covariates, we include the cohort a

customer belongs to (which will also be mean-centered in the model estimation). In

addition, we also include a dummy variable taking the value one when the bank is the

customer’s primary bank.

[INSERT TABLE 2 ABOUT HERE]
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We estimate the copula-extended CLV model using the various types of copulas

described earlier and find that the Gumbel copula yields the best model fit (i.e. LL =

−15, 657.37 for the independent; LL = −15, 047.05 for the Gauss; LL = −14, 696.28

for the Gumbel; LL = −15, 436.50 for the Frank) for the securities transaction data.

In addition, the Gumbel copula also yields a slightly superior out-of-sample predic-

tive performance than the other specifications (RMSE = 313.10 for the independent;

RMSE = 314.81 for the Gauss; RMSE = 309.94 for the Gumbel; RMSE = 314.06

for the Frank).

According to the Gumbel copula, the average inter-customer Spearman’s association

between the transaction flow and the spend process amounts to -49.45% (and a median

value of -37.68%). This highly negative association informs us that the frequent buyers

of the financial institution under study tend to spend substantially less per transaction

than the sporadic buyers. In particular, we find that the top 10% most frequent buyers

spend on average 2,138.98 Euros on a transaction while the 10% least frequent buyers

spend on average 2,569.90 Euros per transaction. In other words, a customer spending

little compared to others is also likely to make more frequent transactions than others,

and vice versa.

Not accounting for the dependency structure between the spend and transaction

processes leads to an overestimation of the CLV. We indeed find that the individual

CLV predicted by the independent model are higher than those given by the Gumbel

model for 94.51 % of the customers with a Spearman correlation of at least 10 %

(in absolute value). For customers with an intra-customer correlation below 10 %,

we find almost no difference between the CLV estimates of both models. This result

confirms that, when accounting for the dependency between the transaction and spend

processes, the resulting CLV decreases in presence of a negative association. It also

highlights the relevance of the copula-extended model for customer valuation tasks.

At the lower level of association, the Gumbel copula model yields a negative average

intra-customer Spearman’s association of (-)3.73%. This result is in line with the recent

findings of Jen et al. (2009) who found average temporal association within customers

between 0% and 10% in their applications. This indicates that clients of the banking

service provider do not exhibit a strong compensating buying behavior. Information on

when (resp. how much) they buy (at a given transaction) is not a strong predictor of

how much (resp. when) they actually buy. This is a valuable insight from a marketing

perspective as offering those customers an opportunity to buy earlier than they would
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usually plan to does not imply that they will spend less. The industry context is

likely to drive this relatively small degree of association. Customers might choose to

buy or sell depending on the fluctuations on the stock market, rather than following

a personal agenda. Note that the correlation between the estimated inter- and intra-

customer association parameters amounts to 18.95%, highlighting that both copulas

complement each other in accounting for a different kind of association.

In Table 3, we report the parameter estimates, with their respective significance

levels, for the best-fit (Gumbel) model.7 In the first panel, we report the main model

parameters, which all turn to be significant. Next to it, we report the effect of the cus-

tomer covariates for the Pareto/NBD and Gamma/Gamma sub-models (see Equations

4 and 5).

[INSERT TABLE 3 ABOUT HERE]

We find that the rate at which customers make transaction decreases with the

duration of their relationship with the bank (cohort), and is lower for customers living

in suburbs than elsewhere. In turn, this rate is higher for customers for which the bank

is their primary financial service provider. In addition, the average value of transactions

customers make tends to be higher for primary-bank clients and for clients living in

the suburb of a city than elsewhere.

Finally, the last panel of Table 3 informs us about the determinants of the inter-

and intra-customer association. This information can be used to determine which

customer segments are characterized by a strong vs. weak association. Given the

intercepts’ value ηinter and ηintra, an hypothetical customer having all covariates equal

to zero (i.e. mean age and mean cohort as these covariates have been mean-centered,

not living in suburbs, non-primary bank) would have θinter = 1.00 and θintra = 1.03

(see transformation in footnote 2), which correspond to an inter- and intra-customer

Spearman’s correlations of -0.19% and -4.50%.

Departing from this customer segment, we can assess which customer characteris-

tics affect the inter-customer association. The positive coefficient of age (ηinter = 1.72)

indicates that the older customers the stronger the negative relationship between pur-

chase frequency and transaction value. To interpret this effect, let us consider two

customer segments: a segment of relatively old customers and a segment of relatively

young customers. In the first segment, we expect to find frequent customers to spend

far less per transaction than infrequent customers, while the difference between fre-

quent and infrequent customers will be less prominent in the second segment. Among
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the youngest customers, frequent and infrequent customers will spend about the same

per transaction. We are thus more likely to overestimate the CLV of older customers

than younger ones. Furthermore, younger customers will also show, on average, larger

changes in CLV than older ones for a similar change either in their transaction rate,

or in their transaction value. This makes this group a potentially interesting target

for marketing incentive. For instance, a 3 unit increase in the expected number of

transactions amongst the 50% youngest customers yields an average estimated CLV

increase of 32.85 Euros (corresponding to a relative change of 341.82%), while the

same increase amongst the 50% oldest customers leads to an average increase of 26.98

Euros only (that is, 123.43% relative change). This illustrates that information on

the association structure can be fruitful in marketing resources allocation decisions (as

further illustrated in the next section).

In addition to age, customers living in suburbs of cities (ηinter = .43) and secondary

customers (ηinter = −1.70) also exhibit stronger negative inter-customer association

than the others. Likewise, customers belonging to a younger cohort show a stronger

negative association (ηinter = −.38) than customers acquired a longer time ago. In

conclusion, these results make the young, primary customers not living in suburbs and

belonging to older cohorts potentially attractive targets for marketing incentives as an

induced increase of their spending should have a larger impact on their CLV than it is

the case with others.

[INSERT FIGURE 3 ABOUT HERE]

Turning to the intra-customer association, we can assess whether some customer

segments are more inclined to compensating buying behavior (negative intra-customer

association) than others. Younger customers (ηintra = .04), living in suburbs of cities

(ηintra = −.37), issued from older cohorts (ηintra = −.02), for which the firm under

study is their primary bank (ηintra = −.64) tend to exhibit the least compensating

behavior. When they happen to make a transaction earlier (resp. later) than they

usually do, this group of customers would not per se spend less (resp. more) on this

transaction. As we mentioned before, it renders this group attractive for a marketing

incentive to generate temporarily extra income for the company. These effects can be

clearly visualized from the conditional histograms of the Spearman’s intra-customer

association. Figure 3 exhibits the conditional histogram for age (divided into four

quartiles) on the left-hand side and living area (for both types of living area) on the
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right-hand side. We see that the older the customers (the lighter the bars) the more

the distribution of the intra-customer association moves to the left. Likewise, the

distribution for customers living in suburbs (light bars) is much closer to zero than for

the customers living elsewhere (dark bars).

MANAGERIAL IMPLICATIONS FOR CUSTOMER

SELECTION AND RESOURCE ALLOCATION DE-

CISIONS

The copula-extended model offers a number of benefits for managerial use over the

classical CLV modeling framework proposed by Fader et al. (2005b). In this section,

we illustrate these benefits further using the securities transaction data.

Customer Valuation and Selection Decisions: Improving CLV

Predictions

Customer lifetime valuation is often used as a metric to assess which customers

should be acquired, grown and retained (e.g. Reinartz and Kumar 2003, Rust et al.

2004). In this context, it is important for firms to obtain accurate CLV predictions.

In the previous section, we found that modeling the association structure improves the

accuracy of the CLV predictions and that the independent model tends to overestimate

the individual CLV’s when the association is negative.

Accounting for the association structure can also improve customer selection deci-

sions. Suppose, for instance, that the financial institution under study wants to identify

and select its best customers in terms of CLV. We consider different thresholds going

from the 99% highest CLV percentile to the 55% highest CLV percentile. We then

assess how many customers are selected by each of these selection rules (i.e. those for

which the estimated CLV is higher or equal to the above-mentioned threshold) while

they should not have been selected according to their actual CLV. Such errors can be

viewed as a kind of Type II errors (Malthouse and Blattberg 2005). Table 4 reports

them for both the Gumbel and independent copulas. The number of incorrectly se-
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lected customers is consistently lower when using the Gumbel copula. The difference

is due to the negative association between the transaction flow and spend process,

which leads to an overestimation of the CLV when ignored. In conclusion, our results

highlight the relevance of the copula-extended approach for customer valuation and

selection tasks.

[INSERT TABLE 4 ABOUT HERE]

Resource Allocation Decisions: Assessing the Net Effect of

Marketing Efforts on CLV

While copulas improve customer valuation and selection tasks, they are also bene-

ficial for marketing resource allocation decisions. Among other authors, Berger et al.

(2002) and Venkatesan and Kumar (2004) suggest to assess the impact of marketing ef-

forts on the CLV of each customer and to allocate resources across customers (or target

customers) such that the total CLV over the customer base will be maximized. Gupta

and Zeithaml (2006) have shown that marketing decisions based on CLV improve firms’

financial performance. In this spirit, we propose to incorporate the association between

the transaction and the spend processes into the resource allocation decisions. Indeed,

we argue that a negative association mitigates the net impact of a marketing incentive

on CLV. If such association would be ignored, the total net effect on the CLV would

be lower than expected and the resource allocation decisions might be sub-optimal.

To illustrate this point, we imagine a marketing incentive that would supposedly

lead to a permanent of increase of 3 units in the expected number of transactions of

customers.8 We can then compute a CLV with and without the marketing incentive.

The difference is the expected return on CLV of the action. One can then decide to

target customers who show an expected CLV return at least larger than the action cost,

which we assume to amount to 10 Euros per customer targeted. We then compare the

resulting total CLV gain when selecting the customers using the independent model

versus the Gumbel model.

Under the independent model, we select 2,151 customers out of 2,500, and the total

action cost amounts to 21,510 Euros. In contrast under the Gumbel model, owing

to the mitigating effect of the copula on the CLV, only 1,804 customers cross the

threshold of 10 Euros, and the resulting total action cost amounts to 18,040 Euros.

We then estimate the return of this hypothetical marketing action targeted at these
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2,151 vs. 1,804 customers (estimated using the best-fit model). The 2,151 customers

selected under the independent model yield an estimated total net return (i.e. total

CLV increase minus incentive cost) of 51,392 Euros while the smaller customer subset

of 1,804 customers selected under the Gumbel model yields an estimated total net

return of 52,433 Euros. The Gumbel model thus offers an additional return of 1,041

Euros with a smaller scope of action (i.e. less customers have to be reached).

CONCLUSIONS

While the Pareto/NBD, Gamma/Gamma framework developed by Fader et al.

(2005b) has been successfully adopted as a powerful customer valuation method for

non-contractual settings, the potential association between the transaction and spend

processes has led to some modeling challenges, which have been recently considered by

Borle et al. (2008), Jen et al. (2009) and Singh et al. (2009). In this paper, we propose

a unique approach to account for both association between the average transaction

frequency and average transaction value across customers, as well as the dependency

within each individual customer. We also account for the observed customer hetero-

geneity in both association levels through the inclusion of covariates, making it possible

to identify customer segments with different degrees of association.

Using securities transaction data, we find that customers tend to show a negative

association between their transaction frequency and the value of their transactions.

However, it is interesting to note that, while the association across customers is large,

the association at the intra-customer level turns out to be modest. We show that our

copula-extended framework improves the accuracy of customer valuation tasks and,

thus, positively impacts customer selection decisions. Finally, we explain that the

investigation of the association structure between transaction flow and spend process

help marketing resource allocation decisions, by pointing out which customers exhibit

the strongest reaction to a change in one of the CLV components.

Our study suffers from a number of limitations that open areas for future research.

First, our model does not account for the potential association between the dropout

process and the transaction process, as done in Abe (2009). The aim of this paper was

to focus on the mechanisms of association between the transaction and spend processes
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because the existence of compensating buying behavior is of theoretical and managerial

interest. The extension of the bivariate copula model to a trivariate copula (Danaher

and Smith 2009) to account for the potential association between the transaction,

dropout and spend processes is an interesting area for further development. Another

limitation of our empirical application is the lack of marketing-mix variables, which

would allow us to incorporate each customer’s responsiveness to marketing efforts in the

resource allocation decisions (Reinartz and Venkatesan 2008). An interesting extension

could be to extend our approach to the framework proposed by Venkatesan and Kumar

(2004) for cases when marketing-mix variables are available. Third, our model focuses

on the inter- and intra-customer association structure between the transaction flow and

the spend process but does not account for the possibility of a lead-lag relationship

between both interpurchase times and transaction values. Such an extension would

clearly offer interesting additional insights.
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Notes

1A complete listing of all model assumptions is given in Appendix B.
2In particular,f(η′Vi) = 2/π arctan(η′Vi) for the Gaussian copula, f(η′Vi) = exp(η′Vi) + 1 for the

Gumbel copula and f(η′Vi) = η′Vi for the Frank copula.
3We thank Bruce Hardie who kindly provided us the data set.
4Note that the parameter estimates for the independent copula are the same as the parameters

reported in Fader et al. (2005b), confirming that the specification of an independent copula function

boils down to the original model specification without copula.
5Note that the Pearson’s correlation is a poor measure of dependency when the marginals are not

normally distributed (Danaher and Smith 2009), which explains the difference between our results

and the Pearson’s correlation.
6Note that we remove the automated pension plan transactions from the data set.
7Detailed results for the other copulas are available upon request.
8Note that we do not have marketing-mix data available, preventing us to assess each customer’s

responsiveness to marketing efforts. However, our exercise intends to show that ignoring the potential

association yields different conclusions as to the effect of a change in the number of transactions

or in the transaction value on the expected CLV. To that extent, the lack of actual marketing-mix

information does not harm our argument. Our approach can be extended to the framework proposed

by Venkatesan and Kumar (2004) for cases where marketing-mix data are available.
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Table 1: Comparison of the models’ parameter estimates for the CDNOW data using
the independent (idpt), Gauss, Gumbel and Frank copulas. Significance levels are
indicated with ∗ for p-values lower than .1, ∗∗ for p-values lower than .05 and ∗∗∗ for
p-values lower than .01.

Parameter Idpt Gauss Gumbel Frank

Pareto/NBD Component
Transaction rate shape r 0.55∗∗∗ 0.55∗∗∗ 0.55∗∗∗ 0.55∗∗∗

Transaction rate heterogeneity ρ −2.36∗∗∗ −2.36∗∗∗ −2.36∗∗∗ −2.36∗∗∗

Dropout shape s 0.61∗∗∗ 0.61∗∗∗ 0.61∗∗∗ 0.61∗∗∗

Dropout scale β 11.68∗∗∗ 11.68∗∗∗ 11.67∗∗∗ 11.67∗∗∗

Gamma/Gamma Component
Transaction value shape p 6.25∗∗∗ 6.25∗∗∗ 6.25∗∗∗ 6.27∗∗∗

Heterogeneity shape q 3.74∗∗∗ 3.74∗∗∗ 3.76∗∗∗ 3.76∗∗∗

Revenue rate heterogeneity κ 2.74∗∗∗ 2.74∗∗∗ 2.74∗∗∗ 2.74∗∗∗

Association
ηinter 0.00 0.41∗∗∗ −3.47∗∗ 1.42∗∗∗
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Table 2: Descriptive statistics of the securities transaction data.

Mean Std. Dev. Minimum Maximum

Number of repeated transactions 7.10 15.00 0.00 181.00
Recency (in weeks) 15.19 11.47 0.03 36.47
Average transaction value (in ¿) 2,677.08 2,073.93 26.27 1,8319.95
Age (in years) 50.92 15.83 18.00 80.00
Living area (Dummy, City suburb = 1) 0.22 0.42 0.00 1.00
Cohort (in weeks) 26.36 7.19 12.20 36.47
Primary bank (Dummy) 0.70 0.46 0.00 1.00
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Table 3: Parameters estimates of the Gumbel model for the securities transaction data.
Significance levels are indicated with ∗ for p-values lower than .1, ∗∗ for p-values lower
than .05 and ∗∗∗ for p-values lower than .01.

Pareto/NBD Gamma/Gamma

Transaction rate shape r 0.47∗∗∗ Transaction value shape p 6.69∗∗∗

Dropout shape s 0.20∗∗∗ Heterogeneity shape q 2.24∗∗∗

Dropout scale β 1.51∗∗∗

Covariates Pareto/NBD Gamma/Gamma

Intercept −0.24∗∗∗ 223.74∗∗

Age 0.00 1.34∗

Living Area −0.07∗∗ 12.38∗∗∗

Cohort −0.05∗∗∗ −0.51∗

Primary bank 0.25∗∗∗ 42.07∗∗∗

Association ηinter ηintra

Intercept −6.65∗∗∗ −3.48∗∗∗

Age 1.72∗∗∗ 0.04∗∗∗

Living Area 0.43∗∗∗ −0.37∗∗∗

Cohort −0.38∗∗∗ −0.02∗∗∗

Primary bank −1.70∗∗∗ −0.64∗∗∗
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Table 4: Number of customers incorrectly selected (“type II error”) under the Gumbel
and independent models for different threshold values, from the 99% to the 55% highest
CLV percentile.

Number of Incorrectly Selected Customers

Percentile Gumbel Independent Difference

99% 54 55 1
95% 156 163 7
90% 247 258 11
85% 278 297 19
80% 278 297 19
75% 301 320 19
70% 329 350 21
65% 363 387 24
60% 362 379 17
55% 341 362 21
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Figure 1: Transaction values vs. interpurchase times of five imaginary customers. Customer
averages are reported in bold.
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Figure 2: Contours plots corresponding to the joint distribution of two standard-normal
random variables with Spearman rank correlation equals to 50%, for (i) an independent
copula (upper-left plot), (ii) a Gaussian copula (upper-right plot), (iii) a Gumbel copula
(lower-left plot), and (iv) a Frank copula (lower-right plot).
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Figure 3: Conditional histograms of the intra-customer Spearman’s association conditioning
on age, divided into four quartiles (left) and living area (right).
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APPENDIX A: Copula Density Functions
Here, we list the probability density functions of the copula distributions used in this

paper.

Gaussian copula A first family of copula that can be found in the literature is the

Gaussian or normal copula, with density function

cθ(F,G) =
1

(1− θ2)1/2
exp

(
−1

2
ψ′(R(θ)−1 − I2)ψ

)
, (13)

where −1 < θ < 1, ψ = (Φ−1(F),Φ−1(G))′, Φ is the univariate standard normal

distribution function, R(θ) is the correlation matrix

R(θ) =

(
1 θ

θ 1

)
, (14)

and I2 is the identity matrix of size 2. This copula permits both positive and negative

association between the variables. Values of θ equal to −1, 0 and 1 correspond to

the minimal value of negative association, independence, and the maximum of positive

association. When combined with two normal marginal distributions, the joint distri-

bution is bivariate normal. The Spearman correlation between random variables with

a Gaussian copula distribution equals ρ = 6
π

arcsin(θ/2).

Gumbel copula The density of the Gumbel (or logistic) copula is given by

cθ(F,G) =
C(F,G)[log(F) log(G)]θ−1

FG[(− log(F))θ + (− log(G))ρ]2−1/θ

[(
(− log(F))θ + (− log(G))θ

)1/θ
+ θ − 1

]
.

(15)

where 1 ≤ θ <∞ is the assocation parameter. The copula distribution in (15) is

C(F,G) = exp{−
(
(− log(F))θ + (− log(G))θ

)1/θ}.
The limiting case θ = 1 gives independence while for θ → ∞, one obtains a perfect

dependency. The Gumbel copula is a special case of an Archimedean copula. There is

no closed expression for the Spearman correlation as a function of θ.

Frank copula The density of the Frank Copula is given by

cθ(F,G) =
θ(1− e−θ)e−θ(F+G)

[(1− e−θ)− (1− e−θF)(1− e−θG)]2
, (16)
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where −∞ < θ < ∞. This copula permits both positive and negative association

between the variables. Values of −∞, 0 and∞ correspond respectively to the smallest

possible negative association, to the independent case, and to the largest possible

positive association. The Spearman correlation between random variables with a Frank

copula distribution is given by ρ = 1− 12
θ

(D2(−θ)−D1(−θ)), where Dk is the Debye

function

Dk(θ) =
k

θk

∫ θ

0

tθ

et − 1
dt.
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APPENDIX B: The Copula-Extended CLV Model

A1: Interpurchase times IPTi,j are exponentially distributed with parameter λi.

A2: λi is gamma distributed with constant shape r and scale αi = f(Vi), a

function of the covariates Vi of customer i. We take f(Vi) = exp(−ρ′Vi)

A3: Transaction values mij are gamma distributed with constant shape p, and

scale parameter νi. The latter follow a gamma distribution with shape q

and scale γi = f(Vi). We take f(Vi) = exp(κ′Vi).

A4: The time to death of a customer is exponentially distributed with parameter

µi.

A5: The parameter µi is gamma distributed with scale parameter β and shape

parameter s, both constant over the population.

A6: The transaction rate λi and death rate µi are independent. The revenue

rate νi and death rate µi are independent.

A7: The association between λi and νi is modeled by a copula cinter with pa-

rameter θinter,i = f(η′interVi).

A8: The association between mij and IPTi,j is modeled by a copula cintra with

parameter θintra,i = f(η′intraVi).

The (hyper)parameters of this model are θ = (r, ρ, p, q, κ, β, s, ηinter, ηintra)
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APPENDIX C: Prediction of CLV
Below, we outline how the CLV over the next H time units can be predicted from

the estimated copula-extended model. We use the notations of Appendix B. For a

given customer i with covariates Vi, we compute α̂i = exp(−ρ̂′Vi), γ̂i = exp(κ̂′Vi),

θ̂inter,i = f(V̂ ′i ηinter), and θ̂intra,i = f(V ′i η̂inter). Furthermore, we denote xi the number

of repeated transactions done by customer i, Ti the number of time units between his

first transaction and the moment of prediction, and mi the historical average of the

transaction values. From these quantities, the probability pi that the customer is still

alive at the moment of prediction is computed using formulas (11)-(13) in Schmittlein

et al. (1987). We use the expressions for the posterior distributions of the death,

transaction and revenue rate derived in Schmittlein et al. (1987) and Fader et al.

(2005b). A gamma distribution with shape parameter a and scale parameter b is

denoted gamma(a, b).

For every customer i, we generate M = 3000 values from the distribution of CLVi,H ,

by simulating future transaction streams:

1. We draw a value from a uniform distribution on [0,1]. If this value is larger

than pi, we set CLV ∗ = 0 and consider the customer as “death.” Otherwise, we

continue to simulate the transaction process.

2. We draw a value (U∗1 , U
∗
2 ) from the copula distribution with parameter θ̂inter,i.

Note that most software packages have build-in routines to do this for the copulas

presented in Appendix A.

3. We compute λ∗ as the inverse of the cdf of a gamma(r̂+ xi, α̂i + Ti) distribution

evaluated at U∗1 .

4. We compute ν∗ as the inverse of the cdf of a gamma(p̂xi+q̂, γ̂i+mixi) distribution

evaluated at U∗1 .

5. We draw a value µ∗ ∼ gamma(ŝ, β̂ + Ti).

6. We draw the time of death τ ∗ from an exponential distribution with parameter

µ∗.

7. Set t∗ = 0 and CLV ∗ = 0. While t∗ ≤ H and t∗ ≤ τ ∗

(a) Draw a value (U∗1 , U
∗
2 ) from the copula distribution with parameter θ̂intra,i.
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(b) Compute IPT ∗ as the inverse of an exponential cdf with parameter λ∗ at

U∗1 .

(c) Compute m∗ as the inverse of a the cdf of a gamma(p̂, ν∗) at U∗2 .

(d) Update t∗ ← t∗ + IPT ∗.

(e) Update CLV ∗ ← CLV ∗ +margin (m∗) (1 + d)t
∗
.

Recall that d stands for the discount rate.

As such, we obtain M draws from the estimated distribution of CLVi,H .
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