

A COMPARISON OF ALGORITHMS FOR THE MULTIVARIATE

By

ISSN 0924

No. 2010–106

A COMPARISON OF ALGORITHMS FOR THE MULTIVARIATE

L1-MEDIAN

 Heinrich Fritz, Peter Filzmoser and

October 2010

ISSN 0924-7815

A COMPARISON OF ALGORITHMS FOR THE MULTIVARIATE

and Christophe Croux

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6418091?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A comparison of algorithms for the
multivariate L1-median

Heinrich Fritz
Vienna University of Technology

Peter Filzmoser
Vienna University of Technology

Christophe Croux
K.U.Leuven & Tilburg University

Abstract

The L1-median is a robust estimator of multivariate location with
good statistical properties. Several algorithms for computing the L1-
median are available. Problem specific algorithms can be used, but
also general optimization routines. The aim is to compare different
algorithms with respect to their precision and runtime. This is pos-
sible because all considered algorithms have been implemented in a
standardized manner in the open source environment R. In most sit-
uations, the algorithm based on the optimization routine NLM (non-
linear minimization) clearly outperforms other approaches. Its low
computation time makes applications for large and high-dimensional
data feasible.

Keywords: Algorithm; Multivariate median; Optimization; Robustness

1

1 Introduction

A prominent generalization of the univariate median to higher dimensions is
the geometric median, also called L1-median. For a data setX = {x1, . . . ,xn}
with each xi ∈ IRp, the L1-median µ̂ is defined as

µ̂(X) = argmin
µ

n∑
i=1

‖xi − µ‖ (1)

where ‖ · ‖ denotes the Euclidean norm. In words, the L1-median is the
point for which the sum of the Euclidean distances to n given data points is
minimal. This problem is formulated in an even more general form by Weber
(1909) (Fermat-Weber problem), as he refers to location issues in industrial
contexts. If the data points are not collinear, the solution to problem (1)
is unique (Weiszfeld, 1937). The L1-median has several further attractive
statistical properties, like:

(a) Its breakdown point is 0.5 (Lopuhaä and Rousseeuw, 1991), i.e., only
if more than 50% of the data points are contaminated, the L1-median
can take values beyond all bounds.

(b) It is location and orthogonally equivariant, that is for any b ∈ IRp and
orthogonal p× p matrix L,

µ̂(LX + b) = Lµ̂(X) + b,

with LX + b = {Lx1 + b, . . . ,Lxn + b}.

Property (a) makes this estimator very attractive from a robustness point
of view. According to property (b), the L1-median is orthogonal equivari-
ant, but not affine equivariant. Orthogonal equivariance is already sufficient
for many situations, like for principal component analysis (PCA). Therefore
several authors consider the L1-median in the context of robust PCA (e.g.,
Croux and Ruiz-Gazen, 2005; Croux et al, 2007).

An iterative algorithm for finding the numerical solution of the L1-median
has been proposed by Weiszfeld (1937). Several other algorithms will be out-
lined in Section 2. The goal of this paper is to compare the algorithms with
respect to their precision and runtime (Section 3). For such a comparison,
a unified implementation of the algorithms has been made using C++ code
embedded in the R-library pcaPP (R Development Core Team, 2010), see
Section 2.3. The final Section 4 concludes.

1

2 Algorithms for computing the L1-median

For the computation of the estimate µ̂ we have to minimize the convex
function

S(µ) =
n∑

i=1

‖xi − µ‖. (2)

The algorithms tested and examined here can generally be divided into two
categories:

2.1 General optimization procedures

The minimization of (2) can be done by numerical algorithms, developed
for general, non-linear optimization purposes. One can either evaluate the
target function S(µ) on several points, or additionally use the first derivative
of S(µ),

∂S(µ)

∂µ
= −

n∑
i=1

xi − µ
‖xi − µ‖

, (3)

or the Hessian matrix

∂2S(µ)

∂µ ∂µt
=

n∑
i=1

(
1

‖xi − µ‖
Ip −

(xi − µ)(xi − µ)t

‖xi − µ‖3

)
, (4)

where Ip is the p× p identity matrix . Since all algorithms are implemented
in the software environment R (R Development Core Team, 2010), we con-
sidered general unconstrained non-linear optimization algorithms which are
accessible in this environment for our purpose:

• NM: Nelder and Mead (1965) proposed a simplex method for minimizing
functions of p variables, also known as downhill simplex method. Values
of the target function are compared at p+1 points, whereas the point with
highest target value is replaced in each iteration. Rather many iterations
are needed till convergence, but as this is one of the most common simplex
algorithms, it is included in this comparison.

• BFGS: Broyden, Fletcher, Goldfarb and Shanno proposed a quasi-Newton
algorithm searching for a stationary point of a function by local quadratic
approximation (see, e.g., Nocedal and Wright, 2006). In contrast to real
Newton methods, this algorithm does not require an analytical compu-
tation of the exact Hessian matrix, as this is approximated internally by

2

the algorithm. Since in high-dimensional situations the computation of
the exact Hessian matrix can be quite time consuming, algorithms that
approximate the Hessian matrix internally are to be preferred in this con-
text.

• CG: Conjugate gradient algorithms are iterative methods, known for their
low memory requirements. Quasi-Newton methods usually converge after
fewer iterations, but a single iteration of a conjugate gradient method is
computationally less intensive. In the subsequent simulations, the version
of Fletcher and Reeves (1964) is applied. The gradient information in
equation (3) is used by this method.

• NLM: Non-linear minimization can be carried out by a Newton-type
algorithm (Dennis and Schnabel, 1983), using the gradient information
from equation (3). It provides two options regarding the Hessian ma-
trix: an analytical representation can be provided, or the Hessian matrix
is again approximated internally by secant methods. Approximating the
Hessian matrix turned out to be the faster approach, particularly when
high-dimensional data sets are processed. Hence in subsequent simula-
tions the Hessian matrix is always approximated rather than analytically
calculated. From the three available optimization types introduced in Den-
nis and Schnabel (1983), Line Search, Double Dogleg, and More-Hebdon,
the first method is applied here, as in this context its convergence charac-
teristics turned out to be most reliable among these three.

2.2 Problem specific algorithms

For the specific problem of computing the L1-median, several algorithms have
been proposed in the literature. Here we mention the algorithm of Weiszfeld
(1937), which is the basis for an improved version by Vardi and Zhang (2000).
Another algorithm, based on the steepest descent, has been introduced by
Hössjer and Croux (1995), and will also be examined here.

• Weiszfeld (1937) formulated an iterative approach for solving the Fermat-
Weber problem for data points x1, . . . ,xn and n non-negative weights.
In this paper all weights are equal. A current (or initial) solution µ̂l is

3

improved by calculating a scaled sum of all observations:

T0(µ) =

n∑
i=1

xi

‖xi−µ‖
n∑

i=1

1
‖xi−µ‖

(5)

µ̂l+1 =

{
T0(µ̂l) if µ̂l /∈ {x1, . . . ,xn}
µ̂l if µ̂l ∈ {x1, . . . ,xn}

(6)

This algorithm converges given that µ̂l /∈ {x1, . . . ,xn} for every iteration
step l ∈ IN .

• VaZh: Vardi and Zhang (2000) improved the behavior of Weiszfeld’s al-
gorithm in case that µ̂l ∈ {x1, . . . ,xn} appears in any iteration. The
resulting algorithm is, apart from the treatment of this particular issue,
quite similar, and for this reason no comparison is made with Weiszfeld’s
original algorithm later on in the simulation study. The proposal of Vardi
and Zhang (2000) is as follows:

T1(µ) =

∑
xi 6=µ

xi

‖xi−µ‖∑
xi 6=µ

1
‖xi−µ‖

(7)

η(µ) =

{
1 if µ = xi, i = 1, . . . , n
0 else

(8)

R(µ) =
∑
xi 6=µ

xi − µ
‖xi − µ‖

(9)

γ(µ) = min

(
1,

η(µ)

‖R(µ)‖

)
(10)

µ̂l+1 = (1− γ(µ̂l))T1(µ̂l) + γ(µ̂l)µ̂l. (11)

The case µ̂l /∈ {x1, . . . ,xn} implies γ(µ̂l) = 0, and the algorithm behaves
exactly as in (5). Otherwise, if µ̂l ∈ {x1, . . . ,xn}, the sum in (7) is
calculated as in (5), but only over the xi 6= µ̂l, whereas observation xi = µ̂l

is added afterwards in (11), applying weight γ(µ̂l).

• HoCr: Hössjer and Croux (1995) proposed an approach which combines
a steepest descent algorithm with step halving. The current solution is
improved by stepping into the direction with steepest descent of the target

4

function. If the target function increases after this step, the step size is
being halved until the target function decreases. If the step size shrinks
to zero without finding a better solution, the algorithm has converged. A
detailed description of the algorithm including pseudocode is given by the
authors. Their algorithm can also be used for the rank based extension of
the L1-median they propose.

For reasons of completeness, let us mention two other algorithms pro-
posed in the literature for computing the L1-median. Gower (1974) pro-
posed a steepest descent algorithm combined with a bisection algorithm.
It is somehow similar to the HoCr algorithm, but the use of the bisection
method instead of step-halving considerably increases the computation time.
Bedall and Zimmermann (1979) proposed to use the Newton-Raphson pro-
cedure with the exact expression (4) for the Hessian matrix, and is similar
to the NLM method with analytical second derivative. It turned out to be
much slower than the NLM procedure. The algorithms of Gower (1974) and
Bedall and Zimmermann (1979) are included in the R-package depth. Due
to their similarity with algorithms already included in the simulation study,
and since they are not competitive in terms of computation speed, we do not
report their performance in this paper.

2.3 Implementation

Due to efficiency issues (runtime and memory), all methods are implemented
in C++ and are embedded in the R-library pcaPP (version 1.8-1). The al-
gorithms based on general optimization methods are simply wrapping the
available routines in R, see Table 1. The routine for non-linear minimization

Algorithm R - Optimizer pcaPP - Routine

Nelder and Mead (NM) nmmin l1median NM

Broyden, Fletcher, Goldfarb and Shanno (BFGS) vmmin l1median BFGS

Conjugate gradient (CG) cgmin l1median CG

Non-linear minimization (NLM) optif9 l1median NLM

Vardi and Zhang (VaZh) l1median VaZh

Hössjer and Croux (HoCr) l1median HoCr

Table 1: Implementation of the optimization methods as wrapper functions.

5

(optif9) originates from the UNCMIN-Fortran package by R.B. Schnabel
which implements Newton and quasi-Newton algorithms for unconstrained
minimization, see Dennis and Schnabel (1983), Schnabel et al (1985). All
other mentioned routines are C-implementations which come along with R.
By default the component-wise median is used as starting value for all men-
tioned algorithms.

The more specific L1-median routines (Vardi and Zhang, 2000; Hössjer
and Croux, 1995) are transcripts of the routines published in the R-library
robustX, whereas the original implementation of the algorithm by Hössjer
and Croux (1995) was made available by the authors. The implementation of
the algorithm of Vardi and Zhang (2000) is changed slightly, as the original
algorithm crashes if µ = xi for more than one i ∈ {1, . . . , n}, see equation (8).
Although this might be a rare situation, equation (8) needs to be changed to

η(µ) =
∑
xi=µ

1 (12)

in order to stabilize the algorithm in such degenerated cases.

2.4 Convergence

When comparing different ways of solving a problem, one major issue is
to create equal and thus fair conditions for each approach which is to be
examined. Here each algorithm can be tested providing exactly the same
input, whereas the output quality can be compared likewise by checking
the value of the target function S (µ̂) of (2). However, it is not as easy to
control the precision of the results of each particular algorithm. Each of
the mentioned algorithms provides an input control parameter τ , which is a
tolerance level influencing the convergence behavior, and is mainly used to
specify the desired precision. Unfortunately this tolerance level is interpreted
differently, as shown in Table 2.

In order to still get comparable results, we have to choose τ appropriately.
This is done by examining first, which tolerance level τ leads to comparable
precision in a particular situation, and then these tolerance levels are applied
in all subsequent simulation settings. Details are provided in the next section.

6

Algorithm Convergence criterion Based on

NM

BFGS S
(
µ̂l−1

)
− S (µ̂l) ≤ τ (S (µ̂l) + τ) Relative change of S (µ̂)

CG

NLM 5 :=

∣∣∣∣ ∂S(µ̂l)

∂µ̂l

∣∣∣∣max{‖µ̂l‖,1}
max{|S(µ̂l)|,1} Maximum scaled gradient

maxi5i ≤ τ with 5 = (51, . . . ,5p)
t

VaZh ‖µ̂l−1 − µ̂l‖1 ≤ τ‖µ̂l‖1 Relative change of µ̂ (L1-norm)

HoCr ‖µ̂l−1 − µ̂l‖2 ≤ τ Change of µ̂ (L2-norm)

Table 2: Convergence criteria for different optimization routines.

3 Comparison of the algorithms

In order to test the performance of the algorithms, several types of artificial
and real data samples are chosen. On a particular data set, the L1-median is
computed with each algorithm discussed above and the resulting estimations
are compared by considering the values of the target function (2). The small-
est resulting target value is used as reference, whereas deviations from this
reference value indicate worse approximations of the L1-median. Throughout
this paper this relative quality measure is referred to as the deviation. The
best algorithm(s) always yield a deviation of exactly zero. In the following
simulated scenarios, each simulation is performed 100 times with data sets
sampled from the same distribution. As measure for overall precision the
95% quantile of the resulting deviations is considered, referred to as the 95%
deviation quantile. The motivation for this measure is that it reflects the
precision of the vast majority of runs, but does not account for single runs
where the convergence behavior was different just by chance. Additionally,
the (median) runtime in seconds is reported for each algorithm. All sim-
ulations are computed on an AMD Athlon 64 X2 4200+ Processor at 2.2
GHz.

In order to stop non converging algorithms from freezing the process,
the maximum number of iterations is set to 500 for each algorithm. If not
stated differently, the simulated data sets consist of n = 1000 observations
and p = 100 variables. The covariance matrix C of the distribution used to

7

generate the data is diagonal with diagonal elements p+1−i, for i = 1, . . . , p.
Outliers are generated by randomly selecting observations from the simulated
data matrix, multiplying them with a value of 10, and shifting them in each
coordinate by the value 10.

3.1 Adjusting tolerance levels for convergence

Before comparing any results of the different algorithms, their convergence
criteria shall be examined and their tolerance levels need to be adjusted,
such that they deliver equal precision for a particular simulation setting. For
that purpose a simple simulation is performed with several tolerance levels
τ , monitoring the resulting precisions. This allows to obtain a tolerance level
for each algorithm leading to similar precisions. In the subsequent simula-
tions, these tolerance levels are used and so the resulting figures are directly
comparable. The algorithms are applied to 100 different p-variate normally
distributed data sets (we used n = 1000 and p = 100 in the following)
with center 0, covariance matrix C (see above) and without outliers. The
tolerance level is altered between 1e-1 and 1e-20. Figure 1 shows the 95%
deviation quantiles of each algorithm computed over different tolerance lev-
els. Note that a 95% deviation quantile of exactly 0 has been truncated to
1e-15 for being able to use logarithmic scales. A value of 1e-15 (or below)
is reached at a tolerance level of 1e-5 for HoCr, at 1e-6 for VaZh, at 1e-9
for CG, and at 1e-11 for NLM. This high precision cannot be reached for
the algorithms BFGS and NM within the considered range of the tolerance
levels; NM seems to be totally unaffected by the choice of the tolerance level.
Also changing the different tuning parameters of the algorithm NM does not
lead to better results in a simulation as presented here.

Considering the computation time of the algorithms with respect to the
used tolerance level (Figure 2), it is noticeable that the algorithm NLM seems
to be rather unaffected by the desired output precision. CG shows a large
increase in runtime when τ is raised from 1e-11 to 1e-13.

Table 3 shows the chosen tolerance levels for subsequent simulations. The
largest level of τ at which each algorithm reaches its best performance (zero
deviation) is chosen and then scaled down by a factor 1e3, compensating for
different simulation scenarios, as the data structure might slightly influence
the convergence behavior. With respect to the high increase of the runtime
of the algorithm CG when τ excesses 1e-11, this algorithm’s tolerance level
is set to 1e-10. As method NM does not seem to be affected by the tolerance

8

Tolerance level

95
%

 d
ev

ia
tio

n
qu

an
til

e

1e
−

15
1e

−
11

1e
−

07
1e

−
03

1e
+

01

1e−3 1e−6 1e−9 1e−12 1e−15 1e−18

NM
BFGS
CG
NLM
VaZh
HoCr

Figure 1: The 95% deviation quantiles of the L1-median target values as a
function of the tolerance level τ .

level, the choice of τ = 1e-10 is admittedly arbitrary.

3.2 Uncorrelated data

The observations are drawn randomly from p-variate normal (Np) and log-
normal (LNp) distributions, respectively, with center 0 and covariance matrix
C. Simulations on multivariate t-distributed data have been computed too,
but as the algorithms perform quite similar as on normally distributed data,
these results are omitted here. In order to get an impression on how the
algorithms are relatively affected by outliers, the percentage of outliers, pout,

9

Tolerance level

M
ed

ia
n

ru
nt

im
e

[s
ec

on
ds

]

1e
−

03
1e

−
02

1e
−

01
1e

+
00

1e
+

01

1e−3 1e−6 1e−9 1e−12 1e−15 1e−18

NM
BFGS
CG
NLM
VaZh
HoCr

Figure 2: Median runtimes [seconds] of the L1-median computation as a
function of the tolerance level τ .

varies between 0% and 40% . Table 4 shows the 95% deviation quantiles
of each algorithm, for the given distributions and different percentages of
outliers. For pout = 0 (and normally distributed data) this is the same sim-
ulation setting as before when the tolerance levels have been chosen, and it
is not surprising that apart from BFGS and NM all algorithms return the
same precision, yielding a 95% deviation quantile of 0. As the concept of
the L1-median may downweight but never completely trims any observation,
added outliers always slightly influence the estimation. However, increas-
ing pout does not influence the algorithms’ relative performance, as none of
the methods can be identified as particularly sensitive to a different out-

10

NM BFGS CG NLM VaZh HoCr

1e-10 1e-17 1e-10 1e-14 1e-9 1e-8

Table 3: Tolerance levels τ as used for each particular algorithm.

lier proportion among the tested candidates. The runtime behavior in this

Distribution pout NM BFGS CG NLM VaZh HoCr

Np (0,C) 0 % 115 1.46e-11 0 0 0 0
10 % 118 2.91e-11 0 0 0 0
20 % 133 1.46e-12 0 0 0 0
30 % 147 0 0 0 0 0
40 % 146 5.82e-11 0 0 0 0

LNp (0,C) 0 % 1.66 1.19e-13 0 0 0 0
10 % 3.51 4.77e-13 0 0 0 0
20 % 5.98 9.09e-13 0 0 0 0
30 % 9.60 9.09e-13 0 0 0 0
40 % 16.20 1.82e-12 0 0 0 0

Table 4: 95% deviation quantiles of L1-median algorithms applied to uncor-
related data.

simulation setting is shown in Table 5. It is not possible to point out one
algorithm which is always the fastest while delivering the best approximation
quality. On normally distributed data, BFGS is the fastest algorithm, but
as seen before it is not as accurate as other methods. The runtimes of the
algorithms seem to be quite independent from the added amount of outliers,
and they are all in about the same range (apart from NM being always the
slowest choice which obviously is caused by convergence issues). Applying
the algorithms on log-normally distributed data, however, yields the best
results for the NLM algorithm. In terms of computation time, NLM is the
only algorithm which is not heavily influenced by the distribution type, nor
by the amount of outliers added. For the algorithms VaZh, HoCr and CG,
the data configuration has a notable effect since their runtimes increase up
to a factor of 6 (CG) when highly contaminated data are processed. The
algorithm of Nelder and Mead (NM) never converges within the 500 allowed
iterations, which explains its high deviation values and longer runtimes.

11

Distribution pout NM BFGS CG NLM VaZh HoCr

Np (0,C) 0 % 0.265 0.032 0.047 0.063 0.062 0.094
10 % 0.266 0.046 0.125 0.063 0.062 0.078
20 % 0.265 0.032 0.047 0.063 0.062 0.078
30 % 0.265 0.031 0.046 0.063 0.062 0.078
40 % 0.265 0.031 0.047 0.063 0.062 0.078

LNp (0,C) 0 % 0.266 0.172 0.047 0.063 0.062 0.078
10 % 0.266 0.172 0.281 0.063 0.062 0.078
20 % 0.265 0.187 0.109 0.078 0.078 0.109
30 % 0.265 0.141 0.211 0.078 0.110 0.141
40 % 0.265 0.109 0.297 0.078 0.218 0.250

Table 5: Median runtimes [seconds] of the L1-median algorithms applied to
uncorrelated data.

3.3 Correlated data

In this section we investigate the effect of a correlation structure within the
simulated data on the performance of the algorithms. Therefore, we use a
covariance matrix C′ for data generation, with elements 1 in the diagonal,
and numbers c as off-diagonal elements. The values of c are set to 0.5, 0.9,
and 0.99 among the different simulation scenarios. In addition, the effect of
the data distribution and the influence of outliers is observed. Table 6 shows
the precision of the algorithms. Their performance does not seem to be really
influenced by the correlation level c, the only difference is observed for the
algorithm HoCr which performs slightly worse for log-normally distributed
highly correlated data.

According to Table 7, the only algorithms unaffected by the correlation
level are NM and NLM. NM again did not converge which explains the con-
stant runtime of 265 milliseconds. NLM however converges almost within
the same time as when applied on uncorrelated data, which is outstanding
among all tested methods. The algorithms CG, HoCr and VaZh require more
computation time for highly correlated data.

12

Distribution pout r NM BFGS CG NLM VaZh HoCr

Np (0,C′) 0 % 0.5 19.2 1.82e-12 0 0 0 0
0.9 23.3 1.82e-12 0 0 0 0

0.99 31.0 1.82e-12 0 0 0 0
30 % 0.5 33.2 7.28e-12 0 0 0 0

0.9 22.1 7.28e-12 0 0 0 0
0.99 57.8 7.28e-12 0 0 0 0

LNp (0,C′) 0 % 0.5 3.09 1.14e-13 0 0 0 0
0.9 2.83 1.14e-13 0 0 0 1.14e-13

0.99 4.34 1.14e-13 0 0 0 2.27e-13
30 % 0.5 3.62 9.09e-13 0 0 0 0

0.9 3.13 9.09e-13 0 0 0 0
0.99 3.42 9.09e-13 0 0 0 9.09e-13

Table 6: 95% deviation quantiles of L1-median algorithms applied to corre-
lated data.

3.4 High-dimensional data with low sample size (p �
n)

Here we generate data according to Np(0, Ip) and LNp(0, Ip), respectively,
for n = 10 and p = 100. As previously, contamination is added and its
percentage is varied. Since the rank of the generated p-dimensional data
is n, it is possible to reduce the dimensionality to n without any loss of
information. This is done by singular value decomposition (SVD) as follows
(compare Serneels et al, 2005). Let X be the simulated data matrix, then
X t = V SU t is the SVD of X t, with U an n × n orthogonal matrix, S a
diagonal matrix including the n singular values in its diagonal, and V a p×n
orthogonal matrix. The matrix X̃ = US has only size n×n, but it contains
the same information as X. Using this dimension reduction, we can apply
the L1-median algorithms to both X and X̃, and compare the resulting
estimates µ̂ and ˆ̃µ, respectively. This can be done by back-transforming the
column vector ˆ̃µ to the original space with V ˆ̃µ, and comparing the results
with the Euclidean distance

δ = ‖µ̂− V ˆ̃µ‖. (13)

13

Distribution pout c NM BFGS CG NLM VaZh HoCr

Np (0,C′) 0 % 0.5 0.265 0.078 0.110 0.063 0.156 0.219
0.9 0.265 0.094 0.296 0.078 0.281 0.422

0.99 0.265 0.125 0.344 0.078 0.468 0.688
30 % 0.5 0.265 0.063 0.297 0.078 0.156 0.188

0.9 0.265 0.078 0.593 0.078 0.250 0.328
0.99 0.265 0.110 0.718 0.078 0.422 0.547

LNp (0,C′) 0 % 0.5 0.266 0.157 0.141 0.078 0.156 0.203
0.9 0.265 0.156 0.211 0.078 0.282 0.359

0.99 0.266 0.140 0.375 0.078 0.453 0.570
30 % 0.5 0.265 0.094 0.539 0.078 0.172 0.203

0.9 0.265 0.156 0.609 0.078 0.265 0.313
0.99 0.266 0.141 1.258 0.078 0.406 0.500

Table 7: Median runtimes [seconds] of the L1-median algorithms applied to
correlated data.

This difference between estimations in transformed and original space is com-
puted 100 times for each simulation setting, and the 95% distance quantile
is reported in Table 8. As the algorithm NLM provided the best results in
previous simulations, it is rather expected that it also performs well in here.
Indeed, this is confirmed, as NLM gives the smallest distances between the
estimations computed in the original and in the transformed space. The only
algorithm which sticks out again due to its instability and inaccuracy is NM,
which has to be stopped after 500 iterations without reaching convergence.

3.5 Degenerated situations

In this subsection we study the behavior of the algorithms at two particular
data structures. First we consider the case of collinear data, secondly the
case where more than half of the data points are coinciding. In these settings
the exact value of the minimum of the objective function (2) is known. The
deviation of an algorithm is now computed relative to the exact optimum.

• If n is even, and all observations are collinear, the L1-median is not
uniquely defined, as any point between the 2 innermost observations is
a proper solution (this is in analogy to the univariate median). As such

14

Distribution pout NM BFGS CG NLM VaZh HoCr

Np (0, Ip) 0 % 3.98 2.71e-07 2.93e-07 7.31e-12 8.49e-10 9.41e-08
10 % 3.81 2.37e-07 2.81e-07 7.41e-12 8.27e-10 1.13e-07
20 % 4.42 2.32e-07 3.21e-07 1.14e-11 1.04e-09 1.21e-07
30 % 4.92 3.54e-07 3.57e-07 1.53e-11 1.06e-09 1.66e-07
40 % 5.71 4.6e-07 4.1e-07 1.77e-11 1.51e-09 2.07e-07

LNp (0, Ip) 0 % 0.0401 2.46e-09 2.57e-09 6.44e-15 8.41e-12 3.74e-10
10 % 0.0376 2.27e-09 2.58e-09 8.19e-15 8.07e-12 1.22e-09
20 % 0.0424 3.29e-09 2.88e-09 1.47e-14 1.17e-11 1.99e-09
30 % 0.0464 5.24e-09 3.69e-09 2.78e-14 1.79e-11 3.56e-09
40 % 0.0591 6.06e-09 6.08e-09 4.97e-14 1.41e-10 7.46e-09

Table 8: 95% distance quantiles of L1-median algorithms applied to the
original and the transformed data sets.

a data structure has rank one, the application of the classical median
is possible yielding the same result as the L1-median. Therefore the
data matrix has to be projected onto the line given by two arbitrary
(different) observations, which in this case coincidences with the first
principal component. The median is computed in this one-dimensional
subspace, whereas the result is transformed back into the original space
afterwards.

Simulations on data sets generated with a covariance matrix with ar-
bitrary values (finite and positive) for the variances, and off-diagonal

elements cij =
√

(ciicjj) ∀i 6= j (perfect collinearity of all variables) and

arbitrary (finite) mean vectors result in Table 9. Apart from two oc-
currences where VaZh gives slightly better results, the algorithms CG,
NLM, VaZh and HoCr show equal performance and return an exact
solution. BFGS still returns good results but seems to have numerical
problems due to its slight imprecision. NM seems to deliver arbitrary
results, which are caused by convergence problems. The runtime com-
parison in Table 10 shows that BFGS is always the fastest algorithm,
followed by NLM which is as fast as in the first simulation setting. The
runtimes of CG, VaZh and HoCr increased by a factor 2-4 compared
to Table 5.

15

Distribution pout NM BFGS CG NLM VaZh HoCr

Np (0,C)) 0 % 6.42e+03 9.09e-13 0 0 0 0
10 % 6.01e+03 3.64e-12 0 0 0 0
20 % 5.66e+03 1.82e-13 0 0 0 0
30 % 5.36e+03 7.28e-12 0 0 0 0
40 % 5.27e+03 7.28e-12 7.28e-12 7.28e-12 0 7.28e-12

LNp (0,C) 0 % 1.08e+04 1.82e-12 9.09e-14 9.09e-14 0 1.82e-12
10 % 1.08e+04 3.82e-12 0 0 0 0
20 % 1.12e+04 7.28e-12 0 0 0 0
30 % 1.23e+04 1.46e-11 0 0 0 0
40 % 1.40e+04 0 0 0 0 0

Table 9: 95% error quantiles of L1-median estimations applied to collinear
data.

• If more than n/2 observations are concentrated in one point, say y, the
solution of the L1-median is µ̂ = y. A simulation setting as in Section
3.2 but with n/2+1 observations set to y = 1 (vector of ones) has been
carried out, expecting the resulting L1-median estimation to be µ̂ = 1.
All algorithms are able to find the known center exactly, thus a table
showing deviation quantiles can be omitted. However, the computation
times differ for some algorithms (Table 11). Although NM converges
to the exact solution in this setting, it converges slowly, resulting in
a considerably higher value for the runtime. Also NLM is unable to
detect this degenerated situation immediately. All other algorithms
stop after a single iteration and thus converge so quickly, that the used
method for measuring time is not able to record such short periods.

The algorithms HoCr and VaZh have to be pointed out here, as they
can handle such occurrences separately: both algorithms are based on
the distances of each observation to the current L1-median estimation,
which is calculated during each iteration. By simply checking how many
observations have zero distance to the current L1-median estimation,
the method can detect such cases and stop the iteration. A different
return code is provided in order to inform the user about such rare
occurrences.

16

Distribution pout NM BFGS CG NLM VaZh HoCr

Np (0,C) 0 % 0.266 0.047 0.094 0.078 0.258 0.446
10 % 0.266 0.047 0.125 0.078 0.250 0.422
20 % 0.266 0.047 0.195 0.078 0.250 0.406
30 % 0.265 0.047 0.172 0.078 0.250 0.391
40 % 0.266 0.047 0.125 0.078 0.282 0.422

LNp (0,C) 0 % 0.266 0.047 0.109 0.093 0.235 0.422
10 % 0.266 0.054 0.148 0.093 0.266 0.453
20 % 0.266 0.047 0.133 0.093 0.250 0.382
30 % 0.266 0.047 0.125 0.079 0.328 0.469
40 % 0.265 0.039 0.125 0.094 0.406 0.578

Table 10: Median runtimes [seconds] of the L1-median algorithms applied to
collinear data.

Although the here examined situations would rarely occur, it is important to
keep in mind that there might be further data configurations which are not
so easy to handle.

3.6 Real data examples

For testing the L1-median algorithms on real data, the data sets bhorizon,
chorizon, humus, moss, bssbot and bsstop, from the R-library mvoutlier

are used. These data contain the concentration of chemical elements in the
soil of certain regions of Europe. Depending on the considered data set, 600
to 800 observations are available for 30-110 variables. Overall, the data are
usually right-skewed, and therefore the algorithms were additionally run on
the log-transformed data. Moreover, there are many equal values (especially
for bsstop) which are caused by detection limit problems (see Reimann et al,
2008). Table 12 gives the deviations as returned by the different algorithms.
Since the tolerance levels have been adjusted before, all methods perform
similar, again with the exception NM. A comparison of runtimes in Table
13 shows that NLM is constantly the fastest approach, outperforming all
other algorithms in terms of computation time, while maintaining the highest
accuracy.

17

Distribution pout NM BFGS CG NLM VaZh HoCr

Np (0,C) 0 % 0.265 0.000 0.000 0.047 0.000 0.000
10 % 0.266 0.000 0.000 0.047 0.000 0.000
20 % 0.266 0.000 0.000 0.047 0.000 0.000
30 % 0.266 0.000 0.000 0.047 0.000 0.000
40 % 0.266 0.000 0.000 0.047 0.000 0.000

LNp (0,C) 0 % 0.266 0.000 0.000 0.047 0.008 0.000
10 % 0.265 0.000 0.000 0.047 0.000 0.000
20 % 0.265 0.000 0.000 0.047 0.000 0.000
30 % 0.266 0.000 0.000 0.047 0.000 0.000
40 % 0.266 0.000 0.000 0.047 0.000 0.000

Table 11: Median runtimes [seconds] of the L1-median algorithms applied to
the degenerated data structure.

4 Conclusions

For computing the L1-median, several specific algorithms can be found in
the literature. In addition, the solution can also be found by general opti-
mization routines, which are widely available in modern software packages.
A fair comparison of these approaches is only possible by a unified software
implementation. This has been done in the R-library pcaPP (version 1.8-1),
using C++ code for the implementation. The implemented algorithms have
been tested for various data configurations. Optimization based on NLM
leads to the smallest value of the target function in all considered settings,
which makes it the first choice as an appropriate algorithm for computing
the L1-median. Moreover, the computation time of this approach turned
out to be to a large extent unaffected by the used distribution family, the
outlier proportion added, the convergence criterion, and even by high corre-
lation values, whereas other algorithms tend to have convergence issues in
some simulation settings. In the tested situations NLM never showed any
problems with convergence, and hence it provides a stable, fast and reli-
able approach, returning results with the highest precision among the tested
algorithms.

Considering the tested data sets and their dimensions, it might be surpris-
ing that the absolute runtime of the algorithms is very low. Thus, whenever
a robust data center needs to be computed, the L1-median is an attractive

18

Data set log NM BFGS CG NLM VaZh HoCr

bhorizon no 1.46e+03 0 0 0 0 0
yes 1.73 0 0 0 0 0

chorizon no 4.99e+04 0 0 0 0 0
yes 95.3 0 0 0 0 0

humus no 501 0 0 0 2.33e-10 0
yes 1 4.55e-13 0 0 0 0

moss no 317 0 0 0 0 0
yes 0.225 2.27e-13 0 0 0 0

bssbot no 80.5 0 0 0 0 0
yes 32.1 4.55e-13 0 0 0 0

bsstop no 71.5 0 0 0 0 0
yes 35.5 0 0 0 0 0

Table 12: Deviations of L1-median algorithms applied to real data sets.

estimator as long as affine equivariance is not required. It is definitely more
attractive than the component-wise median, which has the same breakdown
point, but which is not orthogonal equivariant.

Concluding, we recommend the algorithm NLM, implemented as l1median NLM

in the R-library pcaPP (version 1.8-1), as this particular approach turned out
to deliver results of highest precision in combination with very low compu-
tation time, widely unaffected by the underlying data structure.

Acknowledgments

We would like to thank Martin Mächler from the ETH-Zürich for providing
different L1-median algorithms in the R-library robustX.

References

Bedall F, Zimmermann H (1979) As 143: The mediancentre. Applied Statis-
tics 28:325–328

Croux C, Ruiz-Gazen A (2005) High breakdown estimators for principal com-

19

Data set log NM BFGS CG NLM VaZh HoCr

bhorizon no 0.047 0.000 0.062 0.016 0.063 0.046
yes 0.047 0.031 0.125 0.016 0.016 0.016

chorizon no 0.172 0.062 0.219 0.047 0.094 0.156
yes 0.156 0.078 0.063 0.031 0.063 0.078

humus no 0.031 0.016 0.016 0.000 0.047 0.046
yes 0.046 0.016 0.094 0.016 0.031 0.016

moss no 0.031 0.000 0.016 0.000 0.031 0.031
yes 0.031 0.015 0.016 0.000 0.032 0.031

bssbot no 0.109 0.016 0.047 0.016 0.078 0.094
yes 0.109 0.031 0.031 0.016 0.031 0.047

bsstop no 0.094 0.015 0.047 0.016 0.063 0.047
yes 0.094 0.062 0.328 0.015 0.047 0.032

Table 13: Runtimes [seconds] of the L1-median algorithms applied to real
data sets.

ponents: The projection-pursuit approach revisited. Journal of Multivari-
ate Analysis 95:206–226

Croux C, Filzmoser P, Oliveira M (2007) Algorithms for projection-pursuit
robust principal component analysis. Chemometrics and Intelligent Labo-
ratory Systems 87:218–225

Dennis J, Schnabel R (1983) Numerical Methods for Unconstrained Opti-
mization and Nonlinear Equations. Prentice Hall, New Jersey

Fletcher R, Reeves C (1964) Function minimization by conjugate gradients.
Computer Journal 7:148–154

Gower J (1974) As 78: The mediancentre. Journal of the Royal Statistical
Society 23:466–470

Hössjer O, Croux C (1995) Generalizing univariate signed rank statistics for
testing and estimating a multivariate location parameter. Nonparametric
Statistics 4:293–308

Lopuhaä H, Rousseeuw P (1991) Breakdown points of affine equivariant es-

20

timators of multivariate location and covariance matrices. The Annals of
Statistics 19(1):229–248

Nelder J, Mead R (1965) A simplex algorithm for function minimization.
Computer Journal 7:308–313

Nocedal J, Wright S (2006) Numerical Optimization, 2nd edn. Springer-
Verlag, New York

R Development Core Team (2010) R: A Language and Environment for Sta-
tistical Computing. R Foundation for Statistical Computing, Vienna, Aus-
tria, URL http://www.R-project.org, ISBN 3-900051-07-0

Reimann C, Filzmoser P, Garrett R, Dutter R (2008) Statistical data analysis
explained. Applied environmental statistics with R. John Wiley, Chichester

Schnabel R, Koontz J, Weiss B (1985) A modular system of algorithms for
unconstrained minimization. ACM Trans Math Software 11:419–440

Serneels S, Croux C, Filzmoser P, Van Espen P (2005) Partial robust M-
regression. Chemometrics and Intelligent Laboratory Systems 79:55–64

Vardi Y, Zhang CH (2000) The multivariate l1-median and associated data
depth. Proc National Academy of Science 97(4):1423–1426

Weber A (1909) Über den Standort der Industrien. Mohr, Tübingen

Weiszfeld E (1937) Sur le point pour lequel la somme des distances de n
points donnés est minimum. Tôhoku Mathematical Journal 43:355–386

21

