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Abstract

Let a high-dimensional random vector X⃗ can be represented as a sum of two

components - a signal S⃗, which belongs to some low-dimensional subspace

S, and a noise component N⃗ . This paper presents a new approach for esti-

mating the subspace S based on the ideas of the Non-Gaussian Component

Analysis. Our approach avoids the technical difficulties that usually exist

in similar methods - it doesn’t require neither the estimation of the inverse

covariance matrix of X⃗ nor the estimation of the covariance matrix of N⃗ .
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1. Introduction and set-up.

Assume that a high-dimensional random variable X⃗ ∈ Rd can be repre-

sented as a sum of two independent components - a low-dimensional signal

(which one can imagine as ”an useful part” or ”an information”) and a noise

component (which has a Normal distribution). More precisely,

X⃗ = S⃗ + N⃗ , (1)

where S⃗ belongs to some low-dimensional subspace S, N⃗ is a normal vector

with zero mean and unknown covariance matrix Γ, and S⃗ is independent of

N⃗ . Denote the dimension of S⃗ by m; up to this paper, m is fixed such that

the representation (1) is unique (the existence of such m is proved by Theis

and Kawanabe, 2007).

The aim of this paper is to estimate vectors from the subspace S, which

we call the signal subspace. A very related task, estimation of so called

the non-Gaussian subspace I (the definition will be given below) is widely

studied in the literature. The original method known as Non-Gaussian Com-

ponent Analysis (NGCA) was proposed by Blanchard et al, 2006a, and later

improved by Kawanabe et al., 2007, Dalalyan et al., 2007, Sugiyama et al.,

2008, Diederichs et al., 2010.

In almost all papers mentioned above, the problem of estimation of the

vectors from S is not considered in details; the natural estimators require the

estimation of the unknown matrix Γ. The exception is an article Sugiyama

et al., 2008, where one estimator is proposed. But practical usage of this

method meets another problem - the estimation of the inverse covariance

matrix.
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Each of these tasks, estimation of the unknown matrix Γ and inverse

covariance matrix, is an obstacle in real-world applications of the method.

In this article, we propose a new approach, which avoids the mentioned

problems.

The main theoretical fact is given in theorem 1. Together with lemma 2,

this result yields a method of estimation. For proving the main result, one

needs a special representation of the density of X⃗, which is given in lemma

7, discussed in section 3, and proved in section 4.

2. Estimation of the signal subspace

We begin with the main result.

Theorem 1. Let T : Rd → Σ−1/2S be the linear transformation defined as

Tx⃗ := PrΣ−1/2S{Σ−1/2x⃗}, (2)

where by Σ we denote the covariance matrix of X⃗. Then

S = Σ (KerT)⊥ . (3)

In Blanchard et al., 2006a, a transformation T is considered instead of

T:

T x⃗ := PrΓ−1/2S{Γ−1/2x⃗}.

In that paper, the subspace (Ker T )⊥ is called the non-Gaussian subspace

and is in fact the main object of interest. We would like to stress here, that

T ̸= T, and equalities like (3) are wrong for T .

The linear transformation T acts on x⃗ in the following way: firstly, S and

x⃗ are transformed by matrix Σ−1/2; secondly, the transformed x⃗ is projected

on the transformed S. Figure 1 illustrates this action.

3



Figure 1: The action of the linear transformation T: 1. x⃗ is transformed by S; 2. trans-

formed x⃗ is projected on transformed S.

One of the main results of the NGCA approach gives the practical method

for estimating vectors from (Ker T )⊥. Similar result can be formulated for

the subspace (KerT)⊥ also.

Lemma 2. Assume that a structural assumption (1) is fulfilled. Then for

any function ψ ∈ C1(Rd,R) there exists a vector β ∈ (Ker T)⊥ such that

E[∇ψ(X⃗)]− β = Σ−1E
[
X⃗ψ(X⃗)

]
. (4)

Corollary 3. Let a structural assumption (1) be fulfilled and let a function

ψ ∈ C1(Rd,R) be such that E
[
X⃗ψ(X⃗)

]
= 0. Then

E
[
∇ψ(X⃗)

]
∈ (Ker T)⊥ .

Theorem 1 and lemma 2 yield a method for finding vectors from the

subspace S.

The first step. On the first step, one estimates vectors from the sub-

space (Ker T)⊥ using lemma 2. Theoretically, the best way for the estima-

tion is to find a function ψ such that E
[
X⃗ψ(X⃗)

]
= 0, and then to use the

corollary. In practice, it is difficult to find such functions; usually it is more
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realistic to consider some ψ such that E
[
X⃗ψ(X⃗)

]
is close to zero (but not

exactly zero). In this case, according to lemma 2, the vector E
[
∇ψ(X⃗)

]
is

close to some vector from the subspace (Ker T)⊥. For discussing practical

issues about finding functions ψ, we refer to Diederichs, PhD dissertation,

2007.

The second step. Denote the vectors obtained on the first step by β̂i.

Now one can use theorem 1 and estimate vectors from the signal subspace

by Σ̂β̂i, where Σ̂ is an estimator of the matrix Σ.

Note that the inverse covariance matrix is presented in the formulae (4)

but our approach doesn’t require the estimation of it. In fact, lemma 2 is used

only for theoretical justification of the first step; practical method described

above doesn’t need neither the estimation of Σ−1 nor the estimation of Σ.

On the second step, on uses only the representation (3), which also allows to

avoid the estimation of the inverse covariance matrix.

3. Density representation

The proofs of the facts formulated in the previous section lie on some

special representation of the density function of X⃗. Certain representations

can be also found in previous papers about NGCA. Such facts are stated in

the following form: if structural assumption (1) is fulfilled than the density

function of a random vector X⃗ ∈ Rd can be represented as

p(x⃗) = g(T x⃗)ϕA(x⃗), (5)

where T : Rd → E is a linear transformation (E - some subspace with dim E =

m), g : E → R - a function, and A - a d × d symmetric positive matrix.
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Usually the formulae (5) is proven for A = Σ, see e.g. Kawanabe et al.,

2007; rarely for A = Γ, see Sugiyama, 2008. Another way is to start with

the representation (5) without giving the motivation in the spirit of (1), see

e.g. Blanchard et al., 2006b.

The main result of this section can be briefly explained as follows: one

can find a function g such that (5) is fulfilled with T = T and A = Γ. The

precise formulation is given below in lemma 4.

The existence of the representation in the form (5) can be easily shown

as follows. Note that the model (1) can be equivalently formulated via linear

mixing model:

X⃗ = ASX⃗S + ANX⃗N , (6)

where X⃗S ∈ Rm, X⃗N ∈ Rd−m are two random variables; X⃗N is a normal

vector with unknown covariance matrix; X⃗S is independent of X⃗N ; AS ∈

Matr(d ×m), AN ∈ Matr(d × (d −m)) are two deterministic matrices such

that columns of these matrices are independent. In this formulation, the

signal subspace is spanned by the columns of matrix AS.

From (6), one can easily see that the vector X is in fact a linear transfor-

mation of the vector X⃗ ′ := (X⃗S; X⃗N) (vector X⃗
′ is a concatenation of vectors

X⃗S and X⃗N). This yields that p(x) ∝ g(X⃗S)ϕ(X⃗N), where by g we denote

the density of the m-dimensional non-Gaussian component, and by ϕ - the

density function of the normally distributed random variable X⃗N . Thus, the

representation (5) is proven with T = Γ.

The next theorem gives the exact representation for the density of X⃗ that

is needed for our purposes.

6



Lemma 4. Let the structural assumption (1) be fulfilled . Then the density

function of the random vector X⃗ can be represented in the following way:

p(x⃗) = g(Tx⃗)ϕΣ(x⃗), (7)

where

• T : Rd → S ′, S ′ := Σ−1/2S,

Tx⃗ = PrS′{Σ−1/2x⃗}, (8)

by Σ we denote the covariance matrix of X⃗.

• g : S ′ → R,

g(⃗t) = |Σ−1/2|
q
(
t⃗
)

ϕm

(
t⃗
) , (9)

where q(·) is the density function of the random variable TX⃗, and ϕm(·)

is the density function of the m - dimensional standard normal vector.

The proof of this fact begins the next section.

4. Proofs of the main facts

Proof of the lemma 4

Step 1. Denote by X⃗ ′ = Σ−1/2X⃗ the standardized vector,

Σ−1/2X⃗ = Σ−1/2S⃗ + Σ−1/2N⃗ . (10)

Introduce the notation

S⃗ ′ = Σ−1/2S⃗, N⃗ ′ = Σ−1/2N⃗ . (11)
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The first component in (10) belongs to the subspace S ′ := Σ−1/2S. Denote

by N′ the subspace that is orthogonal to S ′. One can proof that N′ = Σ1/2S⊥

(see Sugiyama et al., 2008).

Vector N′ can be decomposed into the sum of two vectors, N⃗ ′ = N⃗S′+N⃗N′ ,

where N⃗S′ ∈ S ′, N⃗N′ ∈ N′. So, we consider the following decomposition of

X⃗ ′:

X⃗ ′ = S⃗ ′ + N⃗S′︸ ︷︷ ︸
∈ S ′

+ N⃗N′︸︷︷︸
∈ N′

.

It is worth mentioning that the density function doesn’t depend on a basis.

This means that for a calculation of the density function the basis can be

changed arbitrarily. Let us choose it such that the first m vectors v⃗1, ..., v⃗m

compose a basis of S ′ and the next d−m vectors v⃗m+1, ..., v⃗d compose a basis

of N′. In the following, we assume that this change is already made.

Step 2. By definition, X⃗ ′ is a standardized vector. This step shows that

the vectors Z⃗ ′ = S⃗ ′ + N⃗S′ and N⃗N′ are also standardized.

Id = Cov X⃗ ′ = E
[
X⃗ ′X⃗ ′T

]
= E

[
Z⃗ ′Z⃗ ′T

]
+E

[
N⃗N′N⃗T

N′

]
+E

[
S⃗ ′N⃗T

N′

]
+E

[
N⃗S′N⃗T

N′

]
+E

[
N⃗N′S⃗ ′T

]
+E

[
N⃗N′N⃗T

S′

]
(12)

Note some facts:

(i) By the change of the basis, the last d −m components of the vectors

S⃗ ′, Z⃗ ′, N⃗S′ and the first m components of the vector N⃗N′ are equal to

zero.

(ii) The vectors S⃗ ′ = Σ−1/2S⃗ and N⃗N′ = Pr N′{Σ−1/2N⃗} are independent as

functions of the independent vectors S⃗ and N⃗ .
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(iii) EN⃗N′ = E
[
PrN′{Σ−1/2N⃗}

]
= 0, because of EN⃗ = 0 and (i).

Now it’s easy to see that the third and the fifth summands in (12) are

equal to zero. In fact,

E
[
S⃗ ′N⃗T

N′

]
= ES⃗ ′ ENT

N′ = 0.

So, one can rewrite (12) in the following way

Id = E
[
Z⃗ ′Z⃗ ′T

]
+ E

[
N⃗N′N⃗T

N′

]
+ E

[
N⃗S′N⃗T

N′

]
+ E

[
N⃗N′N⃗T

S′

]
. (13)

Decompose the vectors Z⃗ ′, N⃗S′ and N⃗N′ into the basis v⃗1, .., v⃗d:

Z⃗ ′ =
m∑
i=1

ziv⃗i; N⃗S′ =
m∑
i=1

niv⃗i; N⃗N′ =
d∑

i=m+1

niv⃗i, (14)

where all coefficients zi and ni are random values.

Equality (13) can be rewritten as follows:

Id =
m∑

i,i′=1

E [zizi′ ] v⃗iv⃗
⊤
i′ +

d∑
i,i′=m+1

E [nini′ ] v⃗iv⃗
⊤
i′

+
m∑
i=1

d∑
i′=m+1

E [nini′ ] v⃗iv⃗
⊤
i′ +

d∑
i=m+1

m∑
i′=1

E [nini′ ] v⃗iv⃗
⊤
i′

Then the second term in the right hand side is equal to Id−m, i.e.

E
[
N⃗N′N⃗T

N′

]
=

d∑
i,i′=m+1

E [nini′ ] v⃗iv⃗
⊤
i′ = Id−m.

Thus, the (d−m) - dimensional vector N⃗N′ has the standard normal distri-

bution. Denote the density function by ϕd−m(x).

Step 3. Denote by F ′(x⃗′) and p′(x⃗′) the distribution function and the

density function of the vector X⃗ ′.

F ′(x⃗′) = P
{
X⃗ ′ 6 x⃗′

}
= P

{
Z⃗ ′ + N⃗N′ 6 x⃗′

}
(15)
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Note some facts:

(i) Vectors Z⃗ ′ = S⃗ ′ + N⃗S′ and N⃗N′ are independent. In fact, vectors

S⃗ ′ = Σ−1/2S⃗ and N⃗ ′ = Σ−1/2N⃗ are independent. Then vectors S⃗ ′,

N⃗N′ and N⃗S′ are jointly independent (this follows from the choice of

the basis). Finally, Z⃗ ′ and N⃗N′ are independent as functions of inde-

pendent variables.

(ii) The basis choice (14) enables us to split the inequality

Z⃗ ′ + N⃗N′ 6 x⃗′ =
d∑

i=1

xiv⃗i

into two:

Z⃗ ′ 6
m∑
i=1

xiv⃗i =: x⃗S′ , N⃗N′ 6
d∑

i=m+1

xiv⃗i =: x⃗N′ .

The function F ′ can be rewritten in the following way:

F ′(x⃗′) = P
{
Z⃗ ′ + N⃗N′ 6 x⃗′

}
= P

{
Z⃗ ′ 6 x⃗S′ , N⃗N′ 6 x⃗N′

}
= P

{
Z⃗ ′ 6 x⃗S′

}
P
{
N⃗N′ 6 x⃗N′

}
.

Taking derivatives of the both parts of the last formula gives the representa-

tion of the density function of X⃗ ′.

p(x⃗′) = q(x⃗S′)ϕd−m(x⃗N′) =
q (x⃗S′)

ϕm (x⃗S′)
ϕd(x⃗

′) =
q(PrS′{x⃗′})
ϕm(PrS′{x⃗′})

ϕd(x⃗
′),

where by q(·) denote the density function of the random vector Z⃗ ′ = S⃗ ′ +

N⃗S′ = PrS′{X⃗}.
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Step 4. The last step derives representation of the density function of

the vector X⃗ = Σ1/2X⃗ from the density function of X⃗ ′. According to the

well-known formula for a density transformation,

p(x⃗) = |Σ−1/2| p′(Σ−1/2x⃗) = |Σ−1/2|
q
(
PrS′{Σ−1/2x⃗}

)
ϕm (PrS′{Σ−1/2x⃗})

ϕd(Σ
−1/2x⃗).

The remark ϕd(Σ
−1/2x⃗) = ϕΣ(x⃗) concludes the proof.

Proof of the lemma 2. Here we prove a more general result:

Lemma 5. Assume that the density function of a random vector X⃗ ∈ Rd can

be represented in the form (5), where T : Rd → E is any linear transformation

(E - any subspace), g : E → R - any function, and A - any d× d symmetric

positive matrix.

Assume that a structural assumption (1) is fulfilled. Then for any func-

tion ψ ∈ C1(Rd,R) there exists a vector β ∈ (Ker T )⊥ such that

E[∇ψ(X⃗)]− β = Σ−1E
[
X⃗ψ(X⃗)

]
. (16)

Proof. Integration by parts yields

E ∇ψ(X⃗) =

∫
∇ [ψ(x⃗)] p(x⃗)dx = −

∫
ψ(x⃗)∇ [p(x⃗)] dx. (17)

The gradient of the density function can be represented as a sum of two

components:

∇p(x⃗) = ∇ [log p(x⃗)] p(x⃗) = ∇ [log g(T x⃗)] p(x⃗) +∇ [log ϕA(x⃗)] p(x⃗).

The summands in the right hand side can be transformed in the following

way:

∇ [log g(T x⃗)] p(x⃗) =
∇g(T x⃗)
g(T x⃗)

p(x⃗)

= ∇ [g(T x⃗)]ϕA(x⃗) = T⊤∇{T x⃗} [g(T x⃗)]ϕA(x⃗)
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∇ [log ϕA(x⃗)] p(x⃗) = −Σ−1x⃗p(x⃗).

Denote β = T⊤Λ⃗. Then

E ∇ψ(X⃗)− β = −T⊤
∫
ψ(x⃗)∇{T x⃗} [g(T x⃗)]ϕA(x⃗)p(x⃗)dx = T⊤Λ⃗

∈ Im(T⊤) = (KerT )⊥ ,

where Λ⃗ = −
∫
ψ(x⃗)∇{T x⃗} [g(T x⃗)]ϕA(x⃗)p(x⃗)dx. This completes the proof.

Proof of the theorem 1

The proof is straightforward:

KerT =
{
x⃗ : Σ−1/2x⃗ ⊥ Σ−1/2S

}
=

{
x⃗ : ∃s⃗ ∈ S | x⃗⊤

(
Σ−1/2

)⊤
Σ−1/2s⃗ = 0

}
=

{
x⃗ : ∃s⃗ ∈ S | x⃗⊤ Σ−1s⃗ = 0

}
=

{
x⃗ : x⃗ ⊥ Σ−1S

}
.

Here we use the symmetry of the matrix Σ−1/2.
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