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In the current paper, we investigate the bias introduced through the calendar time sampling 
of the price process of financial assets. We analyze results from a Monte Carlo simulation 
which point to the conclusion that the multitude of jumps reported in the literature might 
be, to a large extent, an artifact of the bias introduced through the previous tick sampling 
scheme, used for the time homogenization the price series. We advocate the use of Akima 
cubic splines as an alternative to the popular previous tick method. Monte Carlo simulation 
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1 Introduction

The seminal work of Andersen and Bollerslev (1998) has set the route towards the exploita-

tion of high frequency data for the construction of improved ex-post volatility measurements.

The realization that squared return innovations over the one-day horizon are contaminated

by large idiosyncratic errors which overshadow the true effects of model misspecification,

has highlighted the negative implications of the information loss incurred from discarding

data at higher frequencies and spurred the proliferation of a vast literature examining in-

traday return dynamics1 (Andersen et al., 2004a; Anderesen et al., 2005; Andersen et al.,

2000, 2003; Meddahi, 2002; Barndorff-Nielsen and Shephard, 2002).

Using the quadratic variation theory (Karatzas and Shreve, 1991), Andersen and Boller-

slev (1998) have shown that; as the observation frequency of returns increases from daily

to infinitesimal interval, realized volatility obtained from the cumulative sum of squared

observed returns converges in probability to the true latent volatility. This insight points

to the estimation of realized volatility using the highest possible frequency available in in-

traday returns. Nevertheless, when faced with financial market realities, it becomes evident

that such a technique is crippled by data limitations and market microstructure effects such

as bid-ask spreads (Roll, 1984), nonsynchronous trading effects (Zhou, 1996), discrete price

observations (Harris, 1990, 1991), trading mechanisms (Black, 1976; Amihum and Mendel-

son, 1987) and intraday periodic volatility patterns. Put together, these intraday market

conditions render the convergence to the optimal latent volatility infeasible.

Apart from the microstructure effects induced directly in the return process from the

market itself and which prevent the use of all available high frequency data, an important

source of biases which has been completely overlooked in the literature, is embedded in

the method used to construct time homogeneous data, from the time inhomogeneous ob-

served returns. Currently, there exists only a very limited number of methods used for the

construction of time homogeneous processes and their potential ramifications for volatility

estimation accuracy are yet to be investigated.

In the current paper, we will contribute towards this direction by examining the char-

acteristics of the synthetically created time homogeneous process obtained from the appli-

cation of calendar time sampling schemes, and specifically the previous tick method. The

study is mainly concerned with the analysis of the synthetically constructed return processes

in the context of jump detection.

Jump detection has been a recent topic in the literature of volatility modeling which deals

with the identification of the discontinuous component (jumps) in the return process. The

significant implications of jump exposure on risk management have lead to the propagation

of a stream of papers developing techniques for disentangling the continuous part of the

process and separately modeling the component attributed to jumps (Barndorff-Nielsen

and Shephard, 2004, 2006; Lee and Mason, 2007; Jiang and Oomen, 2008; Aı̈t-Sahalia and

1Andersen et al. (2006) for a review.
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Jacod, 2009; Podolskij and Ziggel, 2008; Corsi et al., 2008, among many others). The main

conclusion from the research is a much stronger than anticipated evidence of frequent jumps

in the data.

In the current work, we will demonstrate, through a Monte Carlo simulation, that the

large number of jumps detected in the literature by the multi-power variation based tests

is due, to a large extend, to the biases induced in the time homogeneous series by the

employed sampling method. We propose the use of Akima cubic splines as an alternative

method for achieving time homogeneous price processes. We demonstrate the superiority

of the proposed method in the context of jump detection by analyzing the size and power

properties of two multi-power variation based tests for jumps in relation to the sampling

scheme employed in the data.

The paper unfolds as follows. In the proceeding section, a brief review of the existing

sampling schemes in the literature is given, with particular focus on calendar time sampling

schemes. The effects from the application of the previous tick method on the distributional

characteristics of the return process are investigated using empirical data from the FX

market. Section three further investigates the weaknesses of the previous tick method in

the context of jump detection. Two standard non-parametric tests for jumps based on

multi-power variation are applied to data from the FX market and the results are reported.

In section four, the idea of cubic spline interpolation is introduced as an alternative to the

previous tick method for sampling high frequency data. Section five investigates the size

and power properties of the two tests for jumps through a Monte Carlo simulation and for

time homogeneous trajectories constructed under the proposed cubic spline interpolation

method. The results are compared to those obtained from the application of two other

calendar time sampling schemes from the literature; the previous tick method and the

linear interpolation method, as well as to the results obtained from the application of tick

time sampling. Concluding remarks are given in section six.

2 Constructing Artificial Time Series

The first step, prior to the estimation and analysis of the various volatility estimators, is

the construction of the time equidistant price process from the time inhomogeneous ob-

served quotes and transactions in the market. Any consequent results are therefore based

on the dynamics and specifications of this artificially constructed price process rather than

the observed one. In the literature, there exist three well-established sampling schemes for

constructing time homogeneous series; namely the calendar time sampling (CTS), trans-

action time sampling (TTS), and business time sampling (BTS)2. CTS schemes have been

the most popular sampling methods in the literature. Their popularity partly stems from

the fact that the majority of techniques developed for the estimation of integrated volatil-

ity and other volatility estimators, as well as for alleviating microstructure effects, assume

2For a discussion, see Dacorogna et al. (2001).
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equidistant observations in physical time and consequently require a CTS scheme for their

application.

2.1 Calendar Time Sampling Schemes
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Figure 1: Linear interpolation (dashed line) and previous tick interpolation (solid line).

Under CTS schemes, observations are required to be equidistant in calendar time. Given

observed prices at times t0 < · · · < tN , one can construct a homogeneous price process at

time τ ∈ [tj , tj+1] using:

p(τ) ≡ ptj (1)

p̃(τ) ≡ ptj +
τ − tj
tj+1 − tj

(ptj+1 − ptj ) (2)

Equation (1) is known as the previous tick method. It was introduced by Wasserfallen and

Zimmermann (1985) and proclaims that each tick is valid until a new tick arrives. Equation
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(2) is known as the linear interpolation method and it was introduced later on by Andersen

and Bollerslev (1997).

The linear interpolation method produces regularly spaced time series by drawing a

straight line between two consecutive observations. Hence, this technique results in smoothed

time series and mitigates the effect of sharp price changes. As argued in Barucci and Renó

(2002), in some sense, a straight line is the ‘minimum variance’ path between two obser-

vations. Therefore, linear interpolation implicitly assumes a minimum volatility between

the observation intervals, introducing in this way an artificial correlation between the sub-

sequent returns of the generated regular time series. In its turn, this leads to a systematic

underestimation of volatility, which becomes larger as the sampling frequency decreases

(Corsi et al., 2001). Hansen and Lunde (2004, 2006) proved that, in theory, the realized

volatility converges in probability to zero as the sampling frequency goes to zero, i.e.

RV(m) p−→ 0 as m→ 0 (3)

Therefore, linear interpolation is not recommended for the construction of artificial price

processes and, as a result, the standard technique in the literature has become the previous

tick method.

Figure 1 depicts the synthetically constructed time series from the application of the two

sampling schemes on a sample data. While the linear interpolation method smooths the

data, the previous tick method results in irregular ’step’ paths, and thus introduces abrupt

changes in the time series. It becomes therefore imperative to investigate how the previous

tick sampling scheme and the introduced ’step’ effect in the sampled price paths affect the

distribution of returns and consequently the estimation accuracy of volatility estimators.

This is done in the proceeding section using empirical data from the FX market.

2.2 Investigating the Previous Tick Method

Despite its popularity, the previous tick (hereafter PT) method, like the linear interpolation,

also suffers from significant drawbacks when applied to high frequency data. In this section,

the effects induced in the artificially created price process from the application of the PT

method are investigated using Foreign Exchange data. Specifically, the mid-quotes recorded

for the EUR/USD currency pair were employed, covering the sampling period between

January 4, 2000 and May 31, 2007, with observations spanning between 21:00 GMT to 21:00

GMT. The data was extracted from the EBS Market Data database, which is currently the

larger of the two electronic venues that make up the inter-dealer spot FX market, after

Reuters. This data has been only recently made available to academic researchers.

Observations recorded between 21:00 GMT on Friday and 21:00 GMT on Sunday are

discarded. In addition, days with low trading activity due to public and bank holidays

are also excluded from the data. Finally, observations which seemed incompatible with

the prevailing market activity are also eliminated using the method described in Barndorff-

Nielsen et al. (2008). The resulting return series consisted of 1820 days. Figure 2 depicts
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Figure 2: Daily closing prices and daily returns of the currency pair EUR/USD for the period from January

4, 2000 to May 31, 2007.

the daily closing prices and daily returns for the dataset.

In order to investigate the effects from the application of the PT method on the dis-

tributional characteristics of the return process, this was applied to the data using various

sampling frequencies, ranging from 5 seconds to half an hour. The sample quantiles and

sample moments for each resulting return process were computed and summarized in tables

1 and 2 respectively. Also documented is the proportion of consecutive identical mid-quotes

in the time series. The first column in each table gives the sampling frequency in seconds

used for the construction of the homogeneous series. The proportion of zero returns in the

series, for each of the sampling frequencies employed, is given in the penultimate column.

The last column documents the proportion of observations in the time homogeneous process

relative to the total number of observations in the inhomogeneous time series. The first row

in each table gives the same information for the raw time inhomogeneous return process.

Although the sample quantiles for the mid quotes remain constant across the vari-

ous frequencies, the results for the return process differ greatly, revealing some important

properties of the bias induced through the calendar time sampling process. While the dis-

tribution of the mid quotes strengthens as the sampling frequency increases, due to the

imputation of a large number of identical quotes in the series, the distribution of the return
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δ Min. 1st Qu. Med. Mean 3rd Qu. Max. % 0s Prop.Obs

Raw -0.176 0.000 0 0 0.000 0.223 53.18 100

5 -0.295 0.000 -0.004 0 0.000 0.311 69.83 76.22

30 -0.326 -0.004 0.000 0 0.004 0.460 42.21 12.70

60 -0.397 -0.004 -0.004 0 0.004 0.511 31.37 6.35

120 -0.447 -0.008 -0.004 0 0.008 0.645 22.22 3.18

180 -0.529 -0.008 -0.004 0 0.008 0.543 17.98 2.12

240 -0.529 -0.008 0.000 0 0.011 0.584 15.33 1.59

300 -0.443 -0.012 -0.008 0 0.012 0.539 13.33 1.27

600 -0.542 -0.016 0.000 0 0.017 0.638 9.05 0.64

900 -0.589 -0.023 0.000 0 0.023 0.683 7.41 0.42

1800 -0.724 -0.031 -0.016 0 0.031 0.826 5.20 0.21

Table 1: Sample quantiles for inhomogeneous data (first row) and artificial data constructed at various

frequencies using the PT method, for the currency pair EUR/USD and for the year 2006.

series is distorted significantly, becoming heavier in the center with thicker tails. When

low frequencies are employed, the value of the minimum recorded return decreases and the

maximum recorded return increases while the number of observations found in the center of

the distribution decreases as well, thus resulting in a flatter distribution with thinner tails.

This is clearly seen in Figure 3 where the histograms of sampled data at five seconds and

thirty minutes are plotted adjacently.

The decrease and increase in the values of the minimum and maximum observations

is almost threefold for frequencies as low as half an hour. All other sample quantiles also

increase dramatically with decreasing frequency. It is worth noting that none of the resulting

time series returned sample quantiles close to those of the inhomogeneous return process.

The first five quantile moments approach those of the time inhomogeneous series only at

the highest sampling frequency of 5 seconds.

The severe transformation of the return distribution directly relates to the method used

in the construction of the regular return process. In the application of the PT method,

the use of high frequencies leads to the introduction of a large number of identical quotes,

significantly high relative to the proportion of observations in the inhomogeneous series.

The phenomenon is particularly grave when very high frequencies are used and during the

less active trading periods of the day. The induced identical quotes are translated into zero

returns which, due to their large number, dominate the distribution and drive its center

higher as well as producing dampen lagged covariances3. This is shown in Figure 4 where

3It has been shown by Zhou (1996) that the negative autocorrelation found in high-frequency data is

attributed to noise. Consequently, practitioners have been sampling at low frequencies in order to avoid the

negative effects that microstructure noise carries on the estimation of the realized volatility at very high

frequencies.
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Figure 3: Histograms of homogeneous returns sampled at 5 second intervals (left panel) 30 minutes intervals

(right panel).

the autocorrelation function of the inhomogeneous returns for the EUR/USD currency pair

is plotted for the year 2006, together with the autocorrelation function of returns sampled

at 30 seconds. The first-order autocorrelation increases to around -0.025, for 30 seconds

sampled returns, from the -0.2 level obtained for the time inhomogeneous series.

Additionally, the PT method strengthens the impact of periodic daily and weekly effects

in the data. This is again the result of introducing a large number of consecutive identical

observations, especially during the less active trading hours of the day. The phenomenon

is clearly observed in Figure 5 where the autocorrelation function spanning a period of one

day is depicted for both the inhomogeneous and thirty seconds sampled returns. While

the autocorrelation function of the synthetically constructed regular series appears strongly

seasonal, on the left panel of Figure 5, the periodic effect fades as the number of lags

increases. In addition, the seasonal patterns corresponding to the hour of the day and the

presence of the traders in the three major geographical trading zones, become pronounced

only in the time equidistant series.

The presence of a large number of zero returns in the data imposes a strong impact on

the tails of the distribution where the true quotes from the data are concentrated. Apart

from the marginalization of the former into the tails of the distribution, most importantly,
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Figure 4: ACF plot of the inhomogeneous returns (upper panel) and homogeneous returns sampled at 30

second intervals (bottom panel).

these are forced to be categorized as outliers. Large series of consecutive zero returns in the

data force the subsequent observations (which are the true returns) to look extreme. This

is a significant negative effect arising from the application of the PT method, which carries

important ramifications for the detection of jumps in the data. It also explains the fatter

tails in the synthetically created return processes when high frequencies are used.

Even though, the number of zero returns in the inhomogeneous series is quite high,

53.18%, this number is expected to decrease dramatically in the sampled time series, and in

roughly the same proportion as the number of observations in the series. Nevertheless, in

the current application the opposite is observed, and the number of zero returns increases to

69.83% for data sampled at five seconds frequency, when the proportion of observations in

the sampled data is only 76.09% of the total number of returns in the time inhomogeneous

series. The same observation applies for all other frequencies examined.

The results in Table 2 reinforce the conclusions drawn from Table 1 regarding the dis-

tribution of the return series. It is clear that as the frequency increases, the kurtosis of the

distribution increases dramatically, thus signifying a larger number of observations gath-

ered in the center of the distribution, as well as a larger number of outliers4. The kurtosis

4This observation was also made in Osler (2005), who found that discreteness in FX rates contributes to

excess kurtosis.
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Figure 5: ACF plot of time inhomogeneous absolute returns (left panel) and time homogeneous absolute

returns sampled at 30 second intervals (right panel) for lags covering a whole day.

δ Mean SD. Skewness Kurtosis % 0s Prop.Obs

Raw 0 0.004 0.163 19.21 53.18 100

5 0 0.004 0.426 88.80 69.83 76.22

30 0 0.009 0.444 60.99 42.21 12.70

60 0 0.013 0.393 51.39 31.37 6.35

120 0 0.019 0.533 43.46 22.22 3.18

180 0 0.023 0.323 33.41 17.98 2.12

240 0 0.026 0.374 31.14 15.33 1.59

300 0 0.029 0.287 23.50 13.33 1.27

600 0 0.041 0.274 18.06 9.05 0.64

900 0 0.051 0.398 18.42 7.41 0.42

1800 0 0.070 0.354 16.86 5.20 0.21

Table 2: Summary statistics for inhomogeneous data (first row) and artificial data constructed at various

frequencies using the PT method.

of the data increases dramatically, almost fivefold, from 19.21 to 88.80, when five-seconds

frequency is used and decreases to 16.86 when half an hour sampling frequency is used.

Only at fifteen minutes frequency, the kurtosis is almost at the same level as that of the
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inhomogeneous series (18.42).

The skewness of the distribution also increases significantly at higher frequencies. This

is another indication of the creation of artificial outliers in the data and the existence of a

large number of zero returns. The first and second moments of the distribution on the other

hand, decrease and increase respectively with decreasing frequencies. This effect can again

be attributed to the overpowering of the real observations in the data by the zero returns,

which drive the mean lower and act in increasing the variability in the data.

It is therefore concluded from the above analysis, that the PT method introduces a

large number of zero returns which dominate the artificially constructed time series, pre-

dominantly during the less liquid periods in the sample. The impact of zero returns becomes

very important for the higher moments of the distribution, but carries a smaller effect on

the estimation of realized volatility, for which the quadratic variation theory remains a vi-

able property. It is therefore important to investigate the level of distortions introduced

by the large number of zero returns from the application of the PT method on the esti-

mation of other volatility estimators, and consequently, on the performance of the tests in

the literature which make use of these estimators to disentangle the discontinuous part of

the return process from the continuous one. In the proceeding section the properties of the

popular multi-power variation based tests from the literature are investigated in relation to

the sampling scheme and sampling frequency employed in the data.

3 Jump Detections and the Previous Tick Method

It is evident from the analysis in section 2, that the PT method artificially introduces a large

number of outliers in the data. In order to investigate the potential impact of these outliers

on the diffusion process of the artificially constructed return series, in this section the PT

method is examined in the context of jump detection. The analysis has been primarily

inspired by the large number of jumps detected in the literature. To this day there is no

empirical evidence as to whether these jumps can be justified by economic announcements.

Some authors have being convinced that jumps are a common feature of financial returns.

As stated by Barndorff-Nielsen and Shephard (2006), “. . . empirical work points [us] to the

conclusion that jumps are common”. The main contribution of the current paper is therefore

to investigate whether jumps are indeed common in financial returns, or an artifact of the

synthetically constructed time equidistant return series.

In order to answer the question as to whether the large number of jumps recorded in the

literature is biased by the sampling scheme used to construct the time equidistant returns,

the jump detection tests of Barndorff-Nielsen and Shephard (2004, 2006) (henceforth BNS)

and the tests obtained from the robust volatility estimators of Andersen et al. (2009) are

applied to time equidistant FX data constructed using the PT method. The analysis was

again carried out using a number of frequencies ranging from thirty seconds to fifteen

minutes, in order to also examine the impact of the frequency on the proportion of the
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jumps detected. In what follows, a brief introduction to the notation of the jump detection

tests is given together with the main results.

3.1 Multi-Power Variation Based Tests for Jumps

Let [Yδ]t
5 denote the realized quadratic variation (QV) process defined as,

[Yδ]t =

[t/δ]∑
j=1

y2j , (4)

where δ > 0 denotes the length of the time span used to construct the homogeneous price

process, t ≥ 0 denotes the day and yj is the intraday return at sampling point j calculated

by,

yj = Yjδ − Y(j−1)δ, for j = 1, 2, . . . , [t/δ]. (5)

The theory of bipower variation (BPV) is based on the assumption that the quadratic

variation process [Yδ]t can be defined as the sum of a purely discontinuous component and

a continuous part of the local martingale component of Y , such as,

[Yδ]t = [Y c
δ ]t + [Y d

δ ]t (6)

Furthermore, [Yδ]t is assumed to be a member of the Browian semimartingale plus jump

class, with zero drift,

[Yδ]t =

∫ t

t−1
σsdWs+ Zt (7)

where Zt =
∑Nt

j=1 cj denotes the jump process, N is a counting process assumed finite for

all t, and cj are nonzero random variables. σ denotes the cádlág volatility process and W

the standard Brownian motion. As shown by BNS, the bipower process can be defined as,

{Yδ}
[1,1]
t =

[t/δ]∑
j=2

|yj−1||yj | = µ21

∫ t

t−1
σ2sds = µ21[Y

c
δ ]t, (8)

Consequently, by subtracting the realized bipower variation from the realized quadratic

variation process one can obtain an estimate of the discontinuous component of QV,

[Yδ]t − µ−21 {Yδ}
[1,1]
t =

Nt∑
j=1

cj = [Y d
δ ]t (9)

For the investigation of the existence of jumps in the data, BNS recommend the use of

the adjusted ratio jump statistic defined by,

Ĵδi =
δ(−1/2)√

θ ·max(1, q̃i/{ṽi}2)

(
ṽi
v̂i
− 1

)
(10)

5Throughout the section we will use the same notation as in BNS.
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where θ = (π2/4) + π − 5 ≈ 0.6090, ṽi denotes the sequence of T daily realized BPVs,

ṽi =
M

M − 1
µ−21

M∑
j=2

|yj−1,i||yj,i|, i = 1, 2, . . . , T (11)

where M = 1/δ. v̂i denotes the sequence of T daily realized quadratic variations,

v̂i =

M∑
j=1

y2j,i, i = 1, 2, . . . , T, (12)

and q̃i denotes the sequence of daily realized quad-power quarticities,

q̃i =
M2

M − 3
µ−41

M∑
j=4

|yj−3,i||yj−2,i||yj−1,i||yj,i|, i = 1, 2, . . . , T (13)

Andersen et al. (2004b) also suggested the use of the realized tri-power quarticity, in the

place of the quad-power quarticity, as a more jump-robust alternative. This is defined by,

t̃i =
M2

M − 2
µ−34/3

M∑
j=3

|yj−2,i|4/3|yj−1,i|4/3|yj,i|4/3, i = 1, 2, . . . , T (14)

Recently, Andersen et al. (2009)(henceforth ADS) have proposed a new set of estima-

tors as an alternative to the bipower variation. As the authors claim, unlike the bipower

variation, the new estimators are robust to jumps, microstructure noise, and the occurrence

of flat trading in the return process. These are based on the minimum and median of con-

secutive absolute intraday returns for the estimation of a jump robust volatility measure

and are defined by,

v̂
(min)
i =

π

π − 2

( M

M − 1

) M∑
j=1

min(|yj−1,i|, |yj,i|)2, i = 1, 2, . . . , T (15)

v̂
(med)
i =

π

6− 4
√

3 + π

( M

M − 2

) M∑
j=2

med(|yj−2,i|, |yj−1,i|, |yj,i|)2, i = 1, 2, . . . , T (16)

The minimum realized volatility estimator (v̂
(min)
i ) is more robust to jumps than the

BPV, as it always takes the minimum of two consecutive intraday absolute returns6. How-

ever, this estimator suffers from the presence of zero returns in the sample. In order to

alleviate this problem, the authors suggest the use of the median realized volatility (v̂
(med)
i ).

In the current paper, the adjusted ratio jump statistics of BNS and ADS will be imple-

mented using the realized tri-power variation and median realized variance for the two tests

6Given that jumps are of finite activity, the probability of having two adjacent jumps will be zero.
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respectively, i.e,

J̃δi =
δ(−1/2)√

θ ·max(1, t̃i/{ṽi}2)

(
ṽi
v̂i
− 1

)
(17)

Ĵ
(med)
δi =

(
1− v̂

(med)
i
v̂i

)
√

0.96 1
M max(1, q̃

(med)
i /v̂

(med)
i )

(18)

where q̃
(med)
i is given by:

q̃
(med)
i = M

3π

9π + 72− 52
√

3

( M

M − 2

) M∑
j=2

med(|yj−2,i|, |yj−1,i|, |yj,i|)4, i = 1, 2, . . . , T

(19)

3.2 Jump Tests Results

In this section, the adjusted ratio jump test statistics defined above are applied to the

EUR/USD currency pair for the sample period January 2000 to May 2007. The results are

shown in tables 3, 4 and 5. For each δ, which denotes the sampling frequency in seconds,

the following quantities are calculated and recorded in Table 3. The sum of the first five

autocorrelations in the synthetic returns is recorded in the second column of the table.

The third, fourth, fifth and sixth columns record the average value of the daily quadratic

variation, daily bipower variation, daily minimum realized volatility and median realized

volatility estimators respectively. The average daily tri-power quarticity and median realized

quarticity are shown in columns seven and eight. Finally columns nine and ten list the

proportion of zero returns in the data and the proportion of observations in the synthetic

returns relative to the original inhomogeneous data, respectively.

The results in the second column of Table 3 reinforce the conclusions from section two

that the PT method weakens the first order autocorrelation of the synthetic return series

when compared to the raw data. At the highest frequency of five seconds, the first five

autocorrelations sum up to -0.09 compared to -0.200 in the raw data. Furthermore, this

sum increases significantly with decreasing frequency.

In terms of the daily average volatility estimators, it is observed that the bipower varia-

tion is lower than the minimum and median realized volatility at the highest frequencies of 5

and 30 seconds but is much higher than the other two estimators at lower frequencies of one

minute and beyond. The lower value of the bipower variation at the highest frequencies of

5 and 30 seconds might be the result of the large number of zero returns found in the return

process at those frequencies, which biases downwards the bipower variation estimator.

When the daily average volatility estimators are compared to the corresponding quan-

tities estimated for the raw data, it is evident that these are much lower. This observation

once more highlights the negative effect that zero returns carry on the calculation of the

jump robust volatility estimators. The realized quarticity estimators, on the other hand,
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EUR/USD 01/04/2000 - 05/31/2007

δ ACFs QV BPV MinRV MedRV TPQ MedRQ % 0s % Obs

Raw -0.200 0.616 0.551 0.714 0.639 0.0001 0.0001 43.88 100

5 -0.090 0.470 0.356 0.428 0.435 0.0001 0.0002 65.58 83.00

30 0.032 0.397 0.339 0.346 0.347 0.0008 0.0008 38.26 13.83

60 0.010 0.400 0.351 0.346 0.345 0.0014 0.0012 28.06 6.92

120 -0.022 0.408 0.362 0.347 0.349 0.0021 0.0022 19.61 3.46

180 -0.040 0.414 0.369 0.350 0.352 0.0025 0.0022 15.67 2.31

240 -0.048 0.416 0.372 0.352 0.354 0.0034 0.0030 13.38 1.73

300 -0.044 0.415 0.370 0.348 0.351 0.0027 0.0030 11.72 1.38

600 -0.017 0.410 0.367 0.343 0.346 0.0046 0.0048 7.87 0.69

900 -0.006 0.406 0.357 0.333 0.336 0.0050 0.0058 6.39 0.46

1800 0.002 0.392 0.341 0.314 0.316 0.0073 0.0076 4.39 0.23

Table 3: Results from the application of the adjusted ratio jump statistic to the time series obtained using

the PT method.

behave very similarly to those obtained for the time inhomogeneous series at the highest

frequency of five seconds, while at the lower frequencies employed, these are much larger.

It becomes clear in column nine of the table, where the percentage of zero returns in

the time homogeneous and time inhomogeneous series is recorded, that the number of zero

returns dominates the series at the highest frequency of five seconds, while this decreases

disproportionately to the number of observations in the data at lower frequencies.

δ % Diff (BPV) % Diff (MinRV) % Diff (MedRV)

5 24.26 8.94 7.45

30 14.61 12.85 12.59

60 12.25 13.50 13.75

120 11.27 14.95 14.46

180 10.87 15.46 14.98

240 10.58 15.38 14.90

300 10.84 16.14 15.42

600 10.49 16.34 15.61

900 12.07 17.98 17.24

1800 13.01 19.90 19.39

Table 4: Percentage difference of jump robust volatility estimators (BPV, MinRV, MedRV) against the

quadratic variation.

Table 4 records the percentage difference between the quadratic variation and the jump
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robust volatility estimators recorded in columns 4, 5 and 6 of Table 3. This quantity is a

preliminary indicator of the level of the discontinuous component in the data. The results

illustrate that, on average, 13.02% of the days in the sample have jumps when the bipower

variation is considered as a jump robust estimator. This number is 15.14% and 14.58%

for the minimum and median realized volatility estimators. However, despite the fact that

on average, across all sampling frequencies, the minimum and median realized volatility

result in a slightly larger proportion of jumps detected, for the highest frequencies of 5 and

30 seconds, the percentage difference between these and the quadratic variation is much

smaller than that between the bipower variation, while the reverse is observed for lower

frequencies, greater or equal to one minute. This can again be attributed to the presence of

a large number of zero returns in the data which biases the bipower variation downwards,

while the median and minimum realized volatilities remain by construction more robust to

the presence of flat trading in the data.

EUR/USD 01/04/2000 - 05/31/2007

% Rejection (J̃δi) % Rejection (Ĵ
(med)
δi )

δ 5% 1% 0.1% 5% 1% 0.1%

5 99.67 99.51 99.29 91.04 84.12 72.09

30 96.98 93.19 88.08 87.36 75.27 57.09

60 87.80 75.66 59.73 78.19 61.26 41.26

120 70.93 52.80 33.30 67.31 46.48 26.10

180 56.10 37.42 20.66 56.76 36.26 19.51

240 49.34 29.89 15.05 47.75 29.51 16.59

300 43.79 24.84 13.35 44.12 25.71 11.81

600 31.21 17.14 7.69 30.93 18.30 9.12

900 27.42 15.11 6.87 27.97 16.65 7.75

1800 23.52 12.97 5.77 23.96 13.90 6.21

Table 5: The level of rejections of the test statistic applied to the time series obtained using the PT method

and for 5%, 1% and 0.1% significant levels.

Table 5 documents the results from the application of the two test statistics in equa-

tions (3.17) and (3.18) for three significant levels; 5%, 1% and 0.1%. The results indicate

that the percentage of time series for which the test statistics are rejected decreases dra-

matically as the sampling frequency decreases. This instability might be due to the bias

induced through the large number of zero returns in the series. These zero returns drive

the quantities of bipower variation and tri-power quarticity downwards, and thus, cause the

test statistics to be heavily downward biased, particularly at high frequencies. In addition,

the J̃δi test statistic results in a much larger number of jumps detected than the Ĵ
(med)
δi test

statistic, which is more robust to microstructure noise and zero returns in the process, for
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all significant levels examined and for frequencies higher than three minutes.

Figure 6: Rejection percentages for the J̃δi test statistic (left panel) and Ĵ
(med)
δi test statistic (right panel)

plot together with the percentage of zero returns in the artificial data set at the various sampling frequencies

examined (this is denoted by the solid line with filled circles).

The high correlation between the percentage of zero returns in the data and the number

of jumps detected, as evidenced by Figure 6 where the percentage rejections of the two

test statistics are plotted at the various sampling frequencies examined, together with the

percentage of zero returns in the data, might be an indication that there is indeed a strong

causal relation between the induced zero returns and the number of jumps detected by

the test statistics. Furthermore, the much smaller percentage of jumps indicated by the

difference between the realized volatility and the jump robust volatility estimators in Table

4, than the one detected by the application of the jump tests to the data, hint that the

jump statistics might be upward biased.

We believe that the ‘step’ paths produced by the PT method might be potentially the

main factor leading to the detection of a very large number of jumps at high frequencies

from the application of the ratio jump statistics. In the proceeding section, we propose the

use of Akima cubic splines as an alternative to the PT method for sampling high frequency

data. The analysis focuses on the advantages of Akima cubic splines in the context of jump

detection.
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4 Cubic Spline Interpolation

Interpolating splines and their mathematical representations were first explained in Schoen-

berg (1946a,b). In the early seventies, Cox (1972); de Boor (1972); Gordon and Riesenfeld

(1974) employed splines as a method for designing free form curves and surfaces. They con-

sequently found extensive applications in the automotive and aerospace industry (Ahlberg

et al., 1967; Boehm and Farin, 1984; de Boor, 1986) and more recently in computer graph-

ics, image processing and image reconstruction applications (Keys, 1981; Hou and Andrews,

1978; Unser et al., 1991; Parrot et al., 1993; Jensen and Anastassiou, 1993).

Spline interpolation is based on the concept of fitting continuous-time functions through

discrete time points. These functions are constructed in the form of polynomials which sat-

isfy certain continuity conditions and boundary constraints, and present some important

advantages over other interpolation techniques. Amongst them, is the stability of the re-

sulted series and the simplicity of the calculations involved in their construction. The set

of linear equations which need to be solved for the construction of the polynomials are very

well-conditioned on the observed time points and, therefore, the polynomial coefficients can

be calculated precisely. This allows the calculation scheme to remain stable, even for large

number of points in the series. Furthermore, spline-based interpolating methods are very

simple and easy to implement in any software package.

Amongst the various spline interpolation techniques, cubic-spline interpolation has been

one of the most popular in the literature. This particular type of splines was found to

outperform other interpolating schemes in a number of empirical applications. Parker et al.

(1983), in an early paper comparing various interpolation techniques for image resampling,

concluded that cubic splines resulted in better results than the other interpolating functions

examined. Meijering (2000) in another comparison study of interpolation techniques applied

to medical images, also found that cubic splines resulted in a considerable reduction of the

interpolation error when compared to other interpolation techniques. The same conclusions

were drawn in the work of Truong et al. (2000); Jiao and Heath (2004).

Nevertheless, cubic splines suffer from the frequently encountered problem of overshoots

and oscillations when data is interpolated at points in the vicinity of steep gradients, pro-

duced by rapidly changing data values (Fried and Zietz, 1973; Wolberg and Alfy, 2002). To

overcome this problem, a number of alternative methods have been suggested in the liter-

ature in the work Fritsch and Carlson (1980); Fritsch and Butland (1993); Akima (1970,

1991); Hyman (1983); Huynh (1993). In the current paper, the cubic splines-based inter-

polation method developed by Akima (1970) is implemented for the time homogenization

of the prices process prior to the application of the jump test statistics.

4.1 Akima Interpolation

Akima (1970) proposed an alternative method to cubic splines to alleviate the interpolating

series from overshoots and oscillation, which determines polynomial coefficients locally.
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Thus, the coefficients of the cubic polynomial are fixed between every pair of successive

data points with specified slopes. These slopes are determined locally as the weighted

average of the slopes of the line segments connecting the interpolated point with the points

in its proximity. Given that no functional form for the whole curve is assumed, and that the

interpolated value is determined by the value of the items on its periphery rather than by the

value of all of the data points, Akima’s proposed method results in improved interpolation

accuracy and oscillations are consequently avoided.

Figure 7: Example of interpolated series using Akima interpolation (solid line) and the PT method (dashed

line).

For a set of observed points xi, 1 ≤ i ≤ N , the Akima interpolation function is defined

by,

s(x) = a0 + a1(x− xi) + a2(x− xi)2 + a3(x− xi)3, xi ≤ x ≤ xi + 1 (20)

The coefficients of the cubic polynomial (a0, a1, a2, and a3) for each interval [xi, xi + 1]

are determined using the function values at the end points of the interval (s(xi) and s(xi+1))

and their first derivatives (s(xi)
′ and s(xi+1)

′),

a0 = s(xi), (21)

a1 = s(xi)
′, (22)

a2 = −[2(s(xi)
′ −mi) + (s(xi+1)

′ −mi)]/(xi+1 − xi), (23)

a3 = [(s(xi)
′ −mi) + (s(x′i+1 −mi)]/[(xi+1 − xi)2], (24)
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where mi is the slope of the line segment connecting points xi and xi+1 defined by,

mi = (s(xi+1)− s(xi)/(xi+1 − xi). (25)

Figure 7 depicts an interpolated price process using Akima interpolation (solid line) and

the PT method (dashed line). It is illustrated in the graph that the Akima interpolation

method results in a more ‘natural’ looking process than the PT method, while at the same

time it avoids the creation of artificial flat pricing, which is seen in the ‘step’ effect of the PT

sample line. Another important advantage of the Akima interpolation method, when this

is applied to financial data is that, unlike other cubic spline techniques, it does not impose

a continuity condition on the derivatives of the interpolated process. A condition which

is inconsistent with the asset pricing theory, which employs models based on Brownian

motions.

The Akima interpolation method was applied to time homogenize the price process of

the currency pair EUR/USD for the period between January 2000 and May 2007, as it was

done in the previous section using the PT method. The results from the application are

reported in tables 6 and 7.

EUR/USD 01/04/2000 - 05/31/2007

δ ACFs QV BPV MinRV MedRV TPQ MedRQ % 0s % Obs

Raw -0.200 0.616 0.551 0.714 0.639 0.0001 0.0001 43.88 100

5 -0.036 0.450 0.420 0.452 0.436 0.0002 0.0002 24.28 83.00

30 0.004 0.428 0.389 0.383 0.382 0.0009 0.0010 12.25 13.83

60 -0.016 0.427 0.389 0.377 0.375 0.0015 0.0013 8.24 6.92

120 -0.044 0.429 0.389 0.371 0.372 0.0023 0.0024 5.27 3.46

180 -0.059 0.431 0.389 0.368 0.370 0.0026 0.0023 4.07 2.31

240 -0.064 0.432 0.387 0.366 0.369 0.0035 0.0041 3.40 1.73

300 -0.058 0.428 0.384 0.363 0.365 0.0034 0.0040 2.99 1.38

600 -0.024 0.417 0.375 0.352 0.354 0.0048 0.0053 1.96 0.69

900 -0.010 0.410 0.362 0.338 0.342 0.0050 0.0065 1.57 0.46

1800 0.001 0.394 0.342 0.316 0.318 0.0073 0.0077 1.19 0.23

Table 6: Various volatility estimators obtained from data sampled at various frequencies using the Akima

interpolation method.

Akima interpolation, like the PT method, results in lower first-order autocorrelations.

However, Akima interpolation produces 72.2% less zero returns than the PT method, across

all the sampling frequencies examined. The smaller number of zero returns induced by the

Akima interpolation method is reflected in the values of the volatility estimators in columns

3, 4 and 5 of Table 6. These are higher for the series constructed under Akima interpolation

than for those constructed under the PT method. The difference in the values of the various
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Figure 8: Volatility estimators under the Akima Interpolation (solid lines with triangles) and PT method

(solid line with circles). The quadratic variation estimator (QV) is depicted in the upper right plot and the

bipower variation estimator (BPV) in the upper left. The minimum variance volatility estimator (MinRV)

is depicted in the bottom right plot and the minimum variance (MedRV) estimator in the bottom left plot.

volatility estimators relative to the sampling method employed is visually illustrated in the

four plots of Figure 8.

It is observed from Figure 8 that the largest difference between the two interpolating

schemes is realized in the estimation of the bipower variation, which is also the volatility

estimator the most sensitive to the presence of zero returns in the data. On the other hand,

the MedRV and MinRV estimators behave very similarly under the two sampling schemes.

This is again due to the robustness of these estimators to zero returns in the data.

The percentage difference between the quadratic variation and the jump robust volatility
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estimators in columns 4, 5 and 6 of the table is 9.94%, 13.33% and 13.38% respectively,

compared to 13.02%, 15.14% and 14.58% for the series constructed under the PT method.

Therefore one should expect a smaller number of jumps in the synthetic returns under the

Akima interpolation than in the return series constructed under the PT method.

Table 7 confirms the hypothesis formulated from the results in Table 6. The return

process constructed using the Akima interpolation resulted in a much smaller number of

jumps than the one constructed using the PT method. This is clearly depicted in Figure 9

for the two jump test statistics and for 1% significance level.

In the proceeding section, a Monte Carlo simulation is carried out with the scope of

discriminating the impact of the artificially induced zero returns on the level of jumps

detected in the synthetically constructed return processes. The two interpolating methods

presented in the paper are implemented together with the linear interpolation method. A

comparison is carried out in terms of the size and power of the various jump test relative

to the sampling scheme employed for the time homogenization of the return series.

EUR/USD 01/04/2000 - 05/31/2007

% Rejection (J̃δi) % Rejection (Ĵ
(med)
δi )

δ 5% 1% 0.1% 5% 1% 0.1%

5 92.53 87.25 80.77 60.33 43.90 28.30

30 87.91 78.08 62.53 80.88 64.56 43.79

60 73.02 55.00 36.59 69.62 50.11 31.48

120 60.71 40.77 22.58 59.95 38.46 20.71

180 48.41 31.04 16.92 51.26 30.77 15.71

240 44.23 26.76 13.46 45.49 27.09 14.56

300 40.00 22.53 11.87 41.37 23.63 10.27

600 29.78 16.10 7.53 30.27 17.36 8.63

900 26.26 14.67 6.32 27.36 16.10 7.25

1800 23.46 12.47 5.71 24.12 13.57 6.48

Table 7: The level of rejections of the test statistic applied to the time series obtained using Akima

interpolation and for 5%, 1% and 0.1% significant levels.

5 Monte Carlo Simulation

5.1 Simulation Design

The scope of this section is the investigation of the performance of the BNS and ADS test

statistics, in terms of size and power, under three different calendar time sampling schemes,

namely the Akima interpolation, linear interpolation and the PT method. An extensive

Monte Carlo simulation experiment is carried out to shed some light on the potential impact
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Figure 9: Percentage of jumps detected by the J̃δi test statistic (left panel) and Ĵ
(med)
δi test statistic (right

panel) in the synthetic return process constructed using Akima interpolation (solid line with triangles) and

that using PT method (solid line with circles) at various sampling frequencies and at 5% significant level.

of consecutive zero returns, artificially induced in the price process through the use of the

PT sampling scheme, on the test statistics of the BNS and ADS jump tests.

As shown in the previous section, the Akima interpolation does not induce any arti-

ficial zero returns in the time-homogeneous price process. Consequently, it is interesting

to see if the proportion of jumps detected is sensitive to the method used for the time-

homogenization of the price process, and therefore the presence of a large proportion of

zero returns. For completion of the analysis, the results obtained from the homogenization

of the price process after the application of the linear interpolation are also reported.

5.1.1 Mean Intraday Durations

For the purpose of applying the three calendar time sampling schemes to the simulated

trajectories of prices, the realistic assumption was made that transactions arrive in the

market at random times. The intraday durations of the transactions were simulated under

three different scenarios for the mean intraday duration. The first scenario consisted of

mean intraday durations of 5 seconds, typically the mean intraday duration observed in

the FX market. The second scenario consisted of mean intraday durations of 15 seconds,

typically the empirical mean intraday duration observed in the S & P 500 futures market.

Finally, the third scenario consisted of mean intraday durations of 30 seconds, to represent

the empirical mean intraday duration of less liquid assets in the market.

In order to construct an empirically relevant intraday duration pattern, a cubic spline

was fitted in the intraday duration pattern of each day in the sample of the EUR/USD

currency pair, and the average duration across each point in time was obtained for the
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1820 days in the sample. This was scaled accordingly to obtain the required mean intraday

durations of 5, 15 and 30 seconds.

Figure 10 illustrates the general shape of the diurnal pattern found in the FX data,

which spans for 24 hours, from 21:00 GMT of the previous day to 21:00 GMT of the

next day. Duration is higher after 21:00 GMT and falls after 23:00 GMT, when the Far

East markets open. The second decrease in duration observed in the graph is caused by

the European markets opening at around 7:00 GMT. Finally, after the opening of the

US markets, at around 14:00 GMT, duration reaches its lowest level. Duration therefore

decreases significantly when there is an overlap in the trading hours of the most active

markets such as Tokyo, New York and London, and it starts increasing again when markets

close.
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Figure 10: Approximate intraday duration pattern in EUR/USD currency pair, estimated using cubic

spline interpolation.
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5.1.2 Simulated Sample Paths

The simulated sample paths were constructed using three different data generating pro-

cesses; the Heston stochastic volatility model, the log-linear one factor stochastic volatility

model and the log-linear two factor stochastic volatility model. These are defined as,

• Heston Stochastic Volatility Model:

dSt = Stµdt+
√
vtdW

(p)
t

dvt = αv(θ − vt)dt+ ξ
√
vtdW

(v)
t

Cov[W
(p)
t ,W

(v)
t ] = ρdt

• Log-Linear One-Factor Stochastic Volatility Model (LL1F):

dSt = µdt+ exp[β0 + β1vt]dW
(p)
t ,

dvt = αvvtdt+ dW
(v)
t ,

Cov[W
(p)
t ,W

(v)
t ] = ρdt

• Log-Linear Two-Factor Stochastic Volatility Model (LL2F):

dSt = µdt+ sexp[β0 + β1v1t + β2v2t]dW
(p)
t ,

dv1t = αv1v1tdt+ dW
(v1)
t ,

dv2t = αv2v2tdt+ [1 + βv2v2t]dW
(v2)
t ,

Cov[W
(p)
t ,W

(v1)
t ] = ρ1dt

Cov[W
(p)
t ,W

(v2)
t ] = ρ2dt

where St denotes the spot volatility at time t and µ the (risk neutral) drift. vt, v1t and

v2t are stochastic volatility factors, ξ is the volatility of the volatility, W (p),W (v),W (v1),

and W (v2) are standard Brownian motions, αv the mean reversion rate and θ the long run

variance. The process v1t is a standard Gaussian process, while v2t exhibits a feedback term

in the diffusion function. The spliced exponential function sexp ensures a solution to LL2F

exists (see Chernov et al., 2003, for details).

For the simulation of the sample paths from the Heston stochastic volatility model, the

initial parameters documented in Zhang et al. (2005) were used where αv = 5, µ = 0.05,

θ = 0.04, ξ = 0.5 and ρ = −0.4. For the LL1F and LL2F stochastic volatility models,

the parametrization employed in Huang and Tauchen (2005) was followed. Hence for the

LL1F model the parameters used were: µ = 0.03, ρ = −0.620, β0 = 0 and β1 = 0.125.

Three different scenarios of mean reversion were considered covering slow, moderate and

fast mean reversion (av = −0.00137,−0.100,−1.386). The corresponding parameters for

the LL2F stochastic volatility model were µ = 0.03, β0 = −1.2, β1 = 0.04, β2 = 1.5,

av1 = −0.00137, av2 = −1.386, βv2 = 0.25, ρ1 = −0.3 and ρ2 = −0.3.
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The Heston stochastic volatility model is often used in the literature as a benchmark

model in studies of volatility modeling. The log-linear one factor stochastic volatility model

exhibits more erratic volatility paths than the Heston stochastic volatility model. It has

been studied by Chernov et al. (2003), together with the two factor stochastic volatility

models (LL2F). Under the LL2F specification the volatility process becomes more erratic

than under the LL1F specification, and is also characterized by larger price movements.

Chernov et al. (2003) claim that the log-linear one-factor volatility model is not able to

capture well all the moments of the distribution of financial assets, and that the two factors

in LL2F model, one being extremely persistent and the other strongly mean reverting with

feedback in volatility, are necessary for better capturing the dynamics of asset returns.

There has been extensive support in the literature for the above claim, such as in the work

of Chacko and Viceira (2005); Engle and Lee (1999); Gallant et al. (1999); Alizadeh et al.

(2002); Bollerslev and Zhou (2002).

The Euler discretization scheme was used for simulating the sample paths from the three

data generating processes described above. For each of the three stochastic volatility models,

a total of 10000 trading days were simulated with variable number of transactions in each

day. The number of daily transactions is dependent on the mean intraday duration assumed

in the sample. The simulated daily paths span for 24 hours, so as to imitate transactions in

the FX market. Each simulated day was sampled using five different sampling frequencies,

ranging from 30 seconds to 15 minutes. The proceeding section discusses the results from

the Monte Carlo simulation described above.

5.2 Simulation Results

In this section, we investigate the performance of the BNS and ADS jump tests in relation to

the interpolating method used for the construction of the time equidistant price processes.

The results on tick time are also shown7.

5.2.1 Size Analysis

Table 8 and Table 9 summarize the results for the size analysis of the BNS and ADS test

respectively for five different sampling frequencies; namely 30 seconds, 1 minutes, 2 minutes,

5 minutes and 15 minutes and for 1% significant level (results for other significant levels are

found in the appendix).

For 15 and 30 seconds mean intraday durations (MID), the frequency at which the BNS

test attains a size close to the nominal was 1 and 2 minutes respectively under the Akima

spline and linear interpolations and 5 minutes or lower under the PT sampling scheme. The

same conclusions are drawn from the simulated trajectories with 5 seconds MID. Under

the Akima spline and linear interpolation methods, the BNS test already converges to the

7It should be noted that the two tests considered were constructed under the assumption of equidistant

time steps, therefore it is not clear whether the asymptotics of the tests still remain viable under this type

of specification.

25



nominal size at 30 seconds sampling frequencies, while under the PT sampling scheme, the

test remains heavily oversized for sampling frequencies higher than 2 minutes.

The results are similar for the simulated paths constructed under the Heston stochastic

volatility model and the log linear one factor stochastic volatility model with slow, medium

and fast mean reversion. For the trajectories constructed under the log linear two factor

volatility model, it is observed that due to the very erratic nature of the sample paths, the

test becomes oversized at the lower frequencies under the Akima and linear interpolation

sampling schemes, while under the PT method, the BNS test remains heavily oversized at

all sampling frequencies considered.

Hence, the BNS converges to the nominal size at higher frequencies for time series

constructed under the Akima interpolation method than under the PT method. The test

performs similarly when applied to time series constructed under the linear interpolation

method to those constructed under the Akima interpolation method; although in the latter

case the size properties of the test are slightly better and these are less undersized under the

Akima interpolation sampling scheme than under the linear interpolation sampling scheme.

Thus, it can be concluded that the large number of zero returns introduced in the

time series from the application of the PT method causes the BNS test to be oversized at

high frequencies . The sensitivity of the test to the presence of zero returns in the time

series constructed under the PT method is further highlighted from the results obtained

across the sample paths simulated assuming different mean intraday duration patterns. It

is observed that the longer the mean intraday duration in the series, the more biased is

the test to the presence of zero returns, resulting in extreme size results reaching 100% for

1% nominal 30 seconds sampling frequency and 30 seconds mean intraday duration, and

decreasing to around 70% for 15 seconds mean intraday duration and to 2% for 5 seconds

mean intraday duration. Figure 11 depicts the size results from the application of the BNS

tests on trajectories simulated under the LL1F stochastic volatility model with medium

mean reversion, for the three sampling schemes and three MID patterns. It is obvious from

the plot that the test statistic applied to trajectories sampled under the PT method results

in poor size results when compared to the results obtained for the other two sampling

schemes.

However, under the Akima and linear interpolation methods the sample paths over

smoothed at the highest frequencies, thus resulting in the test being undersized. Neverthe-

less, the test attains better size properties at higher frequencies under the two aforemen-

tioned interpolation methods than under the PT method.

The results obtained for the ADS test are slightly better under all three sampling

schemes, compared to the results obtained for the BNS test. However, the improvement

is not significant at the highest frequencies, and the ADS test is still undersized under the

Akima spline and linear interpolation and extremely oversized under the PT method for 15

and 30 seconds MID. However, the distortions in the size obtained under the PT sampling

scheme are a lot smaller for the ADS test than the BNS test, especially for the trajectories
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Figure 11: Size results for the BNS test applied to simulated paths from the LL1F stochastic volatility

model with medium mean reversion sampled under three sampling schemes; Akima interpolation (upper left

panel), linear interpolation (upper right panel) and previous tick method (lower panel) for three different

MID patterns. The lower left panel presents the results using the same scale for the y-axis as the one used

for the construction of the upper panel plots.
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simulated under the LL2F stochastic volatility model.

Hence, the ADS test is capable of correcting, to a large extent, the bias induced through

the large number of clustered zero returns from the application of the PT method. Never-

theless, the correction is not adequate and the test attains a good size only at low frequen-

cies, lower than those obtained under the Akima spline and linear interpolation sampling

schemes.

It can therefore be concluded that the MID of asset returns and the sampling scheme

employed for the time homogenization of the price series play a pivotal role for the perfor-

mance of the various tests for jumps based on multi-power variation. Overall, it is deduced

from the analysis that the Akima spline and linear interpolation give the opportunity to

sample at higher frequencies in deep and liquid markets, where as shown by Chaboud et al.

(2009), microstructure noise is less of an issue. On the other hand, the PT method requires

the practitioner to go to lower frequencies, even at liquid markets like the S & P Futures

market, in order to attain good size properties for the two aforementioned jump tests. In

addition, the lower the liquidity in the data, the lower the sampling frequency required by

the tests to attain good size and power properties. Hence, for 30 seconds MID, the Akima

spline and linear interpolations attain good size and power at 2 minutes, while the sampling

frequency is 5 minutes or lower for the PT method.

Table 10 documents the results from the application of the two test statistics on the raw

simulated trajectories, assuming a tick time sampling scheme for the data. Under the tick

time specification, both tests are significantly oversized for all the five models considered,

with the ADS test over-rejecting slightly more jumps. The distortions get smaller as one

moves from 5 to 15 and from 15 to 30 seconds MID. Nevertheless, as mentioned before, it

remains to be seen if the asymptotics of the two tests still apply under this type of sampling

specification.

5.2.2 Power Analysis

In order to investigate the power properties of the two tests, we introduce Poisson type

jumps into the process and analyze the capabilities of the BNS and ADS test to detect the

right jumps, with respect to the sampling scheme employed in the data. The jumps are

assumed to be normally distributed with variance σ2 and constant jump intensity λ. In

the current analysis three different types of jumps were considered, ranging from large and

infrequent (λ = 0.05, σ2 = 2.5) to small and frequent jumps (λ = 1, σ2 = 0.5).

The results from the power analysis are presented in tables 11-20 for 1% significant

level8. For every sampling frequency and sampling scheme employed in the analysis, a two

by two matrix is recorded, with the power of the test listed on the diagonal of the matrix.

The percentage of correctly detected jumps is given on the upper diagonal entry of the

matrix, while the percentage of correctly detected days with no jumps is given on the lower

diagonal entry of the matrix. The percentage of falsely detected jumps is given on the lower

8Results for 5% and 0.1% significant levels are found in the Appendix.
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Multipower Variation Ratio Test (BNS)

MID: 5 seconds MID: 15 seconds MID: 30 seconds

Freq. Akima Linear PT Akima Linear PT Akima Linear PT

Heston

30s 1.09 1.10 1.98 0.28 0.13 69.39 0.00 0.00 100.00

1 min 1.28 1.28 1.33 1.04 0.87 2.69 0.36 0.18 53.90

2 min 1.13 1.07 1.11 1.18 1.09 1.32 1.06 0.97 2.64

5 min 1.26 1.25 1.21 1.29 1.29 1.32 1.23 1.27 1.29

15 min 1.26 1.27 1.21 1.26 1.28 1.26 1.28 1.29 1.17

LL1F (slow)

30s 0.97 0.93 1.84 0.25 0.08 68.20 0.00 0.00 100.00

1 min 0.97 0.94 1.25 0.94 0.83 2.52 0.47 0.26 53.34

2 min 0.94 0.90 0.98 0.99 0.93 1.12 0.87 0.87 2.57

5 min 1.18 1.16 1.20 1.25 1.22 1.11 1.11 1.18 1.25

15 min 1.28 1.34 1.28 1.31 1.33 1.31 1.29 1.30 1.36

LL1F (medium)

30s 0.97 0.89 2.03 0.33 0.14 67.91 0.00 0.00 100.00

1 min 1.13 1.07 1.51 1.05 0.97 2.44 0.49 0.25 53.33

2 min 1.15 1.18 1.23 1.15 1.20 1.31 1.06 0.93 2.58

5 min 1.20 1.24 1.09 1.10 1.06 1.22 1.33 1.31 1.27

15 min 1.50 1.48 1.50 1.48 1.52 1.44 1.55 1.54 1.27

LL1F (fast)

30s 1.20 1.08 1.90 0.31 0.12 68.36 0.00 0.00 100.00

1 min 0.83 0.82 1.20 0.77 0.71 2.53 0.39 0.13 52.31

2 min 1.10 1.03 1.07 1.05 1.07 1.09 0.82 0.74 2.31

5 min 1.25 1.21 1.43 1.25 1.21 1.23 1.17 1.23 1.34

15 min 1.21 1.19 1.19 1.22 1.24 1.24 1.20 1.25 1.22

LL2F

30s 1.34 1.28 2.37 0.64 0.39 46.66 0.07 0.03 96.99

1 min 1.82 1.79 2.00 1.47 1.29 3.03 0.82 0.57 38.70

2 min 1.81 1.88 1.99 1.93 1.91 2.22 1.69 1.58 3.13

5 min 2.54 2.65 2.61 2.57 2.60 2.60 2.51 2.57 2.83

15 min 3.67 3.67 3.70 3.66 3.55 3.73 3.58 3.50 3.53

Table 8: Size Analysis: BNS test at 1% significant level.

triangular and the percentage of jumps not detected by the test statistic is given on the

upper triangular of the matrix.
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MedRV Ratio Test (ADS)

MID: 5 seconds MID: 15 seconds MID: 30 seconds

Freq. Akima Linear PT Akima Linear PT Akima Linear PT

Heston

30s 1.21 1.18 2.16 0.55 0.18 26.60 0.02 0.00 100.00

1 min 1.08 1.08 1.23 0.94 0.89 2.72 0.56 0.25 17.41

2 min 0.97 1.01 1.02 1.03 1.07 1.30 1.11 0.97 2.04

5 min 1.02 1.02 1.07 1.01 1.01 1.07 1.02 0.98 1.02

15 min 1.08 1.09 1.14 1.05 1.04 1.05 1.07 1.08 1.04

LL1F (slow)

30s 1.22 1.11 2.06 0.44 0.18 24.68 0.00 0.00 100.00

1 min 0.91 0.90 1.18 0.88 0.72 2.31 0.48 0.33 17.37

2 min 0.88 0.89 1.03 0.86 0.85 0.96 0.86 0.77 1.89

5 min 1.04 1.03 1.16 1.09 1.13 1.02 1.13 1.08 1.18

15 min 1.07 1.10 1.09 1.16 1.16 1.18 1.14 1.14 0.99

LL1F (medium)

30s 0.96 0.79 1.97 0.50 0.23 24.91 0.00 0.00 100.00

1 min 0.97 1.01 1.11 0.94 0.86 2.21 0.74 0.49 16.99

2 min 1.00 0.98 0.95 0.96 0.95 1.13 0.88 0.77 2.04

5 min 1.05 1.08 1.16 1.04 1.10 1.14 0.98 0.99 1.04

15 min 1.09 1.09 1.12 1.14 1.13 1.23 1.07 1.09 1.20

LL1F (fast)

30s 1.01 0.91 1.97 0.39 0.20 24.93 0.01 0.00 100.00

1 min 1.04 0.98 1.08 0.83 0.79 2.21 0.62 0.34 16.62

2 min 0.97 1.00 0.91 0.88 0.80 1.05 0.91 0.74 1.93

5 min 1.04 1.06 1.03 1.07 1.03 1.00 1.08 1.05 1.08

15 min 1.06 1.05 1.01 0.95 0.98 0.94 0.98 1.04 0.89

LL2F

30s 1.35 1.27 2.50 0.85 0.54 18.42 0.17 0.05 87.38

1 min 1.75 1.64 1.69 1.65 1.41 2.73 1.04 0.70 14.52

2 min 1.76 1.78 1.88 1.83 1.79 2.07 1.89 1.72 2.81

5 min 2.66 2.68 2.66 2.50 2.58 2.68 2.49 2.57 2.81

15 min 3.38 3.36 3.35 3.36 3.38 3.34 3.28 3.32 3.25

Table 9: Size Analysis: ADS test at 1% significant level.

In terms of jumps falsely detected, the results conform to those from the size analysis

summarized in tables 8 and 9. Under the Heston stochastic volatility models, the two
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BNS ADS

5% 1% 0.1% 5% 1% 0.1%

Mean Intraday Duration: 5 seconds

HESTON 14.53 3.95 0.66 16.34 5.17 0.84

LL1F(slow) 14.70 4.26 0.95 16.65 5.41 0.85

LL1F(med.) 14.85 4.52 0.79 16.91 5.19 0.82

LL1F(fast) 14.37 4.27 0.77 17.02 4.89 0.86

LL2F 12.02 3.49 0.54 12.86 3.44 0.60

Mean Intraday Duration: 15 seconds

HESTON 10.42 2.67 0.36 10.97 2.90 0.47

LL1F(slow) 10.50 2.92 0.44 11.12 3.15 0.54

LL1F(med.) 9.96 2.86 0.47 10.80 2.89 0.39

LL1F(fast) 10.12 2.46 0.34 11.04 3.11 0.47

LL2F 8.90 2.42 0.35 9.30 2.40 0.39

Mean Intraday Duration: 30 seconds

HESTON 9.70 2.62 0.40 10.10 2.82 0.40

LL1F(slow) 9.39 2.48 0.51 9.63 2.45 0.40

LL1F(med.) 9.07 2.36 0.27 9.53 2.54 0.40

LL1F(fast) 9.23 2.65 0.52 9.96 3.10 0.57

LL2F 9.28 2.62 0.51 9.32 2.60 0.55

Table 10: Size Analysis: Tick time.

tests manage to detect a very large proportion of the true jumps in the sample for all

three types of jumps investigated, large, medium and small size jumps. The percentage of

correctly detected jumps is slightly smaller for the the LL2F stochastic volatility model and

decreases further modestly for the LL1F stochastic volatility models with medium and fast

mean reversions. However, when simulating from the LL1F stochastic volatility model with

slow mean reversion, the performance of both the tests depreciates considerably.

As the MID becomes longer, the percentage of the jump correctly detected by the BNS

test decreases significantly for all stochastic volatility models with the exception of the

Heston stochastic volatility model. The reduction in the number of correctly detected jumps

with longer MID is more severe for the results obtained for the ADS test. A depreciation

in the performance of the two tests is also observed relative to the size and intensity of the

jumps in the data. The percentage of correctly detected jumps decreases with decreasing

jump size and increasing jump intensity, with the exception of the results obtained for the

LL1F stochastic volatility models with slow mean reversion. Under this specification, the
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two tests detect a much larger number of true small sized jumps than of true large and

medium sized jumps. For the LL1F stochastic volatility models with medium and fast

mean reversions, on the other hand, the number of true small sized jumps detected by

the two tests is much smaller than the number of correctly detected medium and large

sized jumps. Furthermore, this number decreases considerably with decreasing sampling

frequency. However, it is to be expected that as one samples at lower frequencies, small

jumps in the data might disappear, as the probability of having two consecutive small jumps

increases considerably at those lower frequencies, due to the large intensity of small jumps

in the data.

With regards to the sampling scheme used in the data, as also observed in the size

analysis, the tests applied to data sampled under the Akima spline and linear interpolation

sampling schemes attain a level of falsely detected jumps close to the significant level at

higher frequencies than the tests applied to data constructed under the PT sampling scheme.

In addition, at those sampling frequencies at which the tests give a size close to the nominal,

the tests applied to data constructed under the Akima spline interpolation result in a higher

percentage of true jumps detected than the tests applied to data constructed under the

linear interpolation and PT sampling schemes. The difference in the performance of the

tests under the three sampling schemes increases considerably for medium and small sized

jumps. These results indicate that, the Akima and linear interpolations, apart from allowing

the practitioner to sample at higher frequencies without introducing artificial biases into

the data, they also allow for the tests to perform a more robust detection of small jumps

in the data than the PT sampling scheme. This is due to the fact that the PT method, in

addition to introducing artificial jumps in the data, it also causes the test statistics to be

downward biased, due to the large number of induced zero returns in the data, which cause

the underestimation of the various volatility estimators, such as the BPV and thus prevent

the test statistics from detecting small and frequent jumps in the series.

Furthermore, the disparity in the performance of the two tests relative to the sampling

scheme employed in the data becomes more apparent with longer MID. This observation

again highlights the sensitivity of the tests to the liquidity in the data, when this is sampled

using calendar time sampling schemes. For 30 seconds MID, the two tests implemented

on data constructed under the PT sampling scheme, detect an extremely large proportion

of false jumps at the highest frequencies considered, reaching 100%. For data constructed

under the Akima and linear interpolation, on the other hand, the two tests detect a smaller

percentage of true jumps at the highest frequencies than at lower frequencies. Hence, the

percentage of true jumps detected increases as the frequency decreases in the case of the

two aforementioned sampling schemes for low liquidity data series. The maximum number

of true jumps detected is attained at those frequencies for which the test also attains a size

close to the nominal.

It was also observed that the ADS test results in a higher percentage of jumps that

remain undetected under the Akima spline and linear interpolation sampling schemes, es-
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pecially at the highest frequencies considered in the analysis, than under the PT method.

This is due to the fact, that unlike the PT, the Akima spline and linear interpolation do not

introduce additional zero returns in the data, and therefore the correction provided by the

ADS test is redundant when applied to data sampled under these two sampling schemes.

Apart from being redundant, it also biases the estimation of the jump-robust volatility

measures downwards, thus resulting in the under-detection of the true jumps in the data.

Interestingly, even under the LL2F stochastic volatility model, the tests applied to data

obtained under both the Akima spline and linear interpolation sampling schemes detect

only a very small proportion of false jumps in the data, unlike the results obtained on data

sampled under the PT scheme, where at the 30 seconds MID, and even for the largest

jumps, the test detects a much larger proportion of false jumps, especially at the highest

frequencies.

Overall, it can be concluded that the Akima interpolation followed by the linear inter-

polation provide a more robust alternative to the PT method for sampling data at time

equidistant points prior to the implementation of multi-power variation based jump tests.

Contrary to the PT method, the two aforementioned interpolation techniques do not sig-

nificantly distort the distribution of returns, and thus allow the test statistics to perform

well at high frequencies and correctly detect the majority of jumps in the data.

Tables 21-22 present the results from the power analysis of the two tests on tick time

data. In accordance with the results obtained for the size analysis, it is observed that both

tests tend to find more jumps under tick time, above the nominal level, than under the

calendar time sampling schemes. However, it is noted that the tests are not able to detect a

large proportion of the small size jumps, while this proportion is much smaller for large and

medium jumps. This was also observed under the calendar time sampling schemes. Again,

the ADS test does slightly worse than the BNS test.

It is important to observe however, that the results are very similar for all three MID

considered, a fact that highlights the sensitivity of the tests when these are applied to data

sampled under the calendar time sampling schemes.
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6 Conclusion

In the current paper, the distributional properties of the time equidistant return series con-

structed under the previous tick method were examined for a number of different sampling

frequencies, extending from 30 seconds to 15 minutes. The purpose of the analysis was

to investigate the extent to which the sampling scheme alters the dynamics of the return

series and the potential impact of these alterations on the estimation of various volatility

estimators. The main conclusions from the analysis suggest that the previous tick method

results in large samples of identical quotes or transactions which, when translated into zero

returns, dominate the distribution of the return series driving its center higher, and thus

leading to the marginalization of the true observations in the tails of the distribution. The

distortions in the dynamics of the return process from the introduction of these zero returns

were confirmed to be quite severe, particularly for the higher moments of the distribution,

such as the kurtosis.

As an immediate consequence of the dominating presence of successive zero returns in the

data, the estimated bipower variation is severely underestimated. Given that this quantity,

together with the integrated quarticity, form the basis for the ratio jump test statistic of

Barndorff-Nielsen & Shephard (2004, 2006) and Andersen, Dobrev & Schaumburg (2009),

any results about the presence of jumps in the data are expected to be seriously biased.

In order to investigate the extend at which the artificially induced zero returns bias the

estimation accuracy of these volatility estimators, and consequently the performance of the

two jump tests, an alternative sampling scheme, the Akima spline interpolation method,

was proposed which avoids the induction of zero return in the sampled data and this was

compared to the PT and linear interpolation sampling schemes. The three sampling schemes

were applied to data simulated under three different liquidity scenarios. The results from

the application of the jump test statistics on the sampled data were analyzed in terms of

size and power and relative to the sampling scheme employed in the data. The properties of

the tests under tick time were also investigated. It was concluded from the results that the

two multi-power variation based tests are extremely sensitive to the liquidity in the data

and that uncovering the most appropriate sampling frequency is crucial for the performance

of the tests under all three different sampling schemes examined.

From the extensive Monte Carlo Simulation, it was concluded that the Akima spline and

linear interpolation attain better size and power properties at higher frequencies than the

previous tick method, with the Akima spline interpolation being slightly better. Finally,

it was proven that the majority of the jumps found by the test under the previous tick

sampling scheme are false, especially at frequencies higher than 5 minutes.

A promising direction for future research would be the development of jump test statis-

tics which operate under the assumption of non-equidistant time intervals, but this is beyond

the scope of this paper.
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