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Abstract 

In the framework of interval transferable-utility (TU) games, we introduce a generalization of the equal allocation of 
nonseparable cost (EANSC). Further, we extend the reduced game introduced by Moulin (1985) to interval TU 
games. By applying this extended reduction, two axiomatizations of this extended EANSC are proposed.
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1 Introduction

In a standard TU game, the utility produced by a coalition or the payoff
assigned to a player could be computed as a single real value. How-
ever, the utilities or the payoffs may not be computed precisely in real
situations, but it is sensible to verify rational intervals to which it be-
long. Methods of interval arithmetic and analysis (cf. Moore, 1979) have
played a key role for new models of games based on interval uncertainty.
A interval TU game, originally introduced by Branzei et al. (2003,2004)
in the context of bankruptcy situations, is a generalization of a standard
TU game in which all the utilities or all the payoffs could be rather ex-
pressed in the form of closed intervals. Similar to standard TU games,
solutions on interval TU games could be applied in many fields such as
economics, political sciences, accounting and even management. Related
results may be found in Alparslan Gök et al. (2008,2009,2010), Branzei
et al. (2003,2004,2010) and so on.

Consistency, originally introduced by Harsanyi (1959) under the name
of bilateral equilibrium, is a crucial property of solutions. Consistency
allows us to deduce, from the desirability of an outcome for some prob-
lem, the desirability of its restriction to each subgroup for the associated
reduced game the subgroup faces. If a solution is not consistent, then a
subgroup of agents might not respect the original compromise but revise
the payoff distribution within the subgroup. The fundamental property
of solutions has always been investigated in various classes of problems
by applying reduced games. Various definitions of a reduced game have
been proposed, depending upon exactly how the agents outside of the
subgroup should be paid off.

Here we focus on the solution concept of the equal allocation of non-
separable costs (EANSC). The EANSC is a well-known solution concept
in cooperative game theory. In the framework of standard TU games,
Moulin (1985) introduced the complement reduced game to axiomatize
the EANSC. Inspired by Hart and Mas-Colell (1989), Hwang (2009) char-
acterized the EANSC by means of two-person standardness and related
consistency. These mentioned above raise one question in the framework
of interval TU games:

• whether these remarkable results of the EANSC could be described
in the framework of interval TU games.

The note is aimed at answering the question. In this note, we firstly
extend the EANSC and the complement reduction to interval TU games.
Inspired by Hwang (2009) and Moulin (1985), we further characterize this
extended EANSC by means of related consistency.
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2 Preliminaries

Here we follow the notation and terminology of the published papers
(2008,2009,2010). Let U be the universe of players and N ⊆ U be a set
of players. A interval TU game is a pair (N, w) where N is a non-empty
and finite set of players and w : 2N → I(R) is a characteristic function
such that w(∅) = [0, 0]. For each S ∈ 2N , the worth interval w(S) of the
coalition S in the interval game (N, w) is of the form [w(S), w(S)], where
w(S) is the minimal reward which coalition S could receive on its own
and w(S) is the maximal reward which coalition S could get. Denote the
class of all interval TU games with player set N by IGN . We also denote
by I(R)N the set of all such interval payoff vectors.

Let I, J ∈ I(R) with I = [I, I], J = [J, J ], |I| = I − I and α ≥ 0.
Then,

I + J = [I + J, I + J ],
αI = [αI, αI].

(1)

By equation (1) we see that I(R) has a cone structure. We define
I−J , only if |I| ≥ |J |, by I−J = [I−J, I−J ]. Note that I−J ≥ I−J .

The model of interval TU games is an extension of the model of
classical TU games. We recall that a classical TU game1 < N, v > is
defined by v : 2N → R and v(∅) = 0. A classical TU game < N, v >
is monotonic if v(S) ≤ v(T ) for all S, T ∈ 2N with S ⊆ T . We call
an interval TU game (N, w) size monotonic if its length TU game
< N, |w| > is monotonic, where |w|(S) = w(S)−w(S) for all S ⊆ N . We
denote by SMIGN the class of size monotonic interval games with player
set N . Let (N, w) ∈ SMIGN , we call (N, w) full monotonic if for all
S ⊆ N , |w|(S) ≥

∑
i∈S

[
|w|(S)−|w|(S\{i})

]
. We denote by FMIGN the

class of full monotonic interval games with player set N . In the sequel,
we focus on the set of games, FMIG, where FMIG = ∪N⊆UFMIGN .

A solution on FMIG is a map φ assigning to each interval TU game
(N, w) ∈ FMIG an element φ(N, w) ∈ I(R)N .

Definition 1 The interval equal allocation of nonseparable costs
(IEANSC), η, is the function on FMIG which associates with each
(N, w) ∈ FMIG and each i ∈ N the value

ηi(N, w) = ηi(N, w) +
1

|N |
·
[
w(N)−

∑
k∈N

ηk(N, w)
]
,

1We use < N, v > and (N, v) to denote a classical TU game and an interval TU
game respectively.
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where ηi(N, w) =
[
w(N)−w(N\{i})

]
. The value ηi(N, w) is the interval

marginal contributions of player i.

3 Main results

In this section, we show that there exists reduced game that can be used
to characterize the IEANSC.

Let φ be a solution on FMIG. φ satisfies efficiency (EFF) if for
all (N, w) ∈ FMIG,

∑
i∈N φi(N, w) = w(N). φ satisfies standard for

two-person games (STPG) if for all (N, w) ∈ FMIG with |N | ≤ 2,
φ(N, w) = η(N, w). φ satisfies symmetry (SYM) if for all (N, w) ∈
FMIG with w(S) − w(S \ {i}) = w(S) − w(S \ {k}) for some i, k ∈ N
and for all S ⊆ N , φi(N, w) = φk(N, w). φ satisfies zero-independence
(ZI) if for all (N, v), (N, w) ∈ Γ with v(S) = w(S) +

∑
i∈S bi for some

b ∈ RN and for all S ⊆ N , φ(N, v) = φ(N, w) + b. By Definition 1, it is
easy to see that the IEANSC satisfies EFF, STPG, SYM and ZI.

Next, consider the complement reduction. Given a payoff vector cho-
sen by a solution for some game, and given a subgroup of players, Moulin
(1985) defined the reduced game as that in which each coalition in the
subgroup could attain payoffs to its members only if they are compatible
with the initial payoffs to “all” the members outside of the subgroup. A
natural extended complement reduction on interval TU games is defined
as follows.

Given (N, w) ∈ FMIG, S ⊆ N \ {∅}, and a solution φ, the reduced
game (S, wφ

S) with respect to S and φ is defined by for all T ⊆ S,

wφ
S(T ) =

{
[0, 0] , if T = ∅,
w(T ∪ (N \ S))−

∑
i∈N\S

φi(N, w) , otherwise.

Consistency may be described informally as follows: Let φ be a so-
lution that associates a payoff to every player in every game. For any
two-person group of players in a game, one defines a “ reduced game”
among them by considering the amounts remaining after the rest of the
players are given the payoffs prescribed by φ. Formally, a solution φ sat-
isfies consistency (CON) if for all (N, w) ∈ FMIG with |N | ≥ 2, for
all S ⊆ N with |S| = 2 and for all i ∈ S, φi(N, w) = φi(S, wφ

S).

Lemma 1 The solution η satisfies CON.

Proof. Given (N, w) ∈ FMIG with |N | ≥ 2 and S ⊆ N with |S| = 2.
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By definitions of η and wη
S, for all i ∈ S,

ηi(S, wη
S) =

[
wη

S(S)− wη
S(S \ {i})

]
=

[
w(N)−

∑
k∈N\S

ηk(N, w)− w(N \ {i}) +
∑

k∈N\S
ηk(N, w)

]
=

[
w(N)− w(N \ {i})

]
= ηi(N, w).

(2)
Hence, for all i ∈ S,

ηi(S, wη
S) = ηi(S, wη

S) + 1
|S| ·

[
wη

S(S)−
∑
k∈S

ηk(S, wη
S)

]
= ηi(N, w) + 1

|S| ·
[
wη

S(S)−
∑
k∈S

ηk(N, w)
]

(by equation (1))

= ηi(N, w) + 1
|S| ·

[
w(N)−

∑
k∈N\S

ηk(N, w)−
∑
k∈S

ηk(N, w)
]

= ηi(N, w) + 1
|S| ·

[ ∑
k∈S

ηk(N, w)−
∑
k∈S

ηk(N, w)
]

(by EFF of η)

= ηi(N, w) + 1
|S| ·

[ ∑
k∈S

1
|N | ·

[
w(N)−

∑
p∈N

ηp(N, w)
]]

= ηi(N, w) + 1
|S| ·

[
|S|
|N | ·

[
w(N)−

∑
p∈N

ηp(N, w)
]]

= ηi(N, w) + 1
|N | ·

[
w(N)−

∑
k∈N

ηk(N, w)
]

= ηi(N, w).

Next, we characterize the IEANSC by means of related properties of
two-person standardness and consistency.

Theorem 1 A solution φ on FMIG satisfies STPG and CON if and
only if φ = η.

Proof. By Lemma 1, η satisfies CON. Clearly, η satisfies STPG.
To prove the uniqueness, suppose φ satisfies STPG and CON. By

STPG and CON of φ, it is easy to derive that φ also satisfies EFF;
hence, we omit it. Let (N, w) ∈ FMIG. If |N | ≤ 2, then by STPG of φ,
φ(N, w) = η(N, w). The case |N | > 2: For all i, k ∈ LN with i 6= k, let
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S = {i, k}, we derive that

φi(N, w)− φk(N, w)

= φi(S, wφ
S)− φk(S, wφ

S) (by CON of φ)

= ηi(S, wφ
S)− ηk(S, wφ

S) (by STPG of φ)

= ηi(S, wφ
S)− ηk(S, wφ

S) (by Definition 1)

=
[
wφ

S(S)− wφ
S({k})

]
−

[
wφ

S(S)− wφ
S({i})

]
=

[
wφ

S({i})− wφ
S({k})

]
=

[
w(N \ {k})−

∑
t∈N\S

φt(N, w)− w(N \ {i}) +
∑

t∈N\S
φt(N, w)

]
=

[
w(N \ {k})− w(N \ {i})

]
=

[
w(N)− w(N \ {i})

]
−

[
w(N)− w(N \ {k})

]
(3)

Similarly, η instead of φ in equation (3), we can derive that

ηi(N, w)− ηk(N, w)

=
[
w(N)− w(N \ {i})

]
−

[
w(N)− w(N \ {k})

]
(4)

Hence, by equations (3) and (4),

φi(N, w)− φk(N, w) = ηi(N, w)− ηk(N, w). (5)

This implies that φi(N, w) − ηi(N, w) = d for all (i ∈ N and for some
d ∈ R. It remains to show that d = [0, 0]. By EFF of φ and η and
equation (5),

[0, 0] = w(N)− w(N) =
∑
i∈N

[
φi(N, w)− ηi(N, w)

]
= |N | · d.

Hence, d = 0.

Finally, we characterize the IEANSC by means of related properties
of efficiency, symmetry, zero-independence and consistency.

Lemma 2 If a solution φ on FMIG satisfies EFF, SYM and ZI, then
φ satisfies STPG.

Proof. Assume that a solution φ satisfies EFF, SYM and ZI. Given
(N, v) ∈ Γ with N = {i, k} for some i 6= k. We define a game (N, w) to
be that for all S ⊆ N ,

w(S) = v(S)−
∑
i∈S

ηi(N, v).
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By the definition of w,

w({i, k})− w({k}) = v({i, k})− ηi(N, v)− ηk(N, v)− v({k}) + ηk(N, v)}
= v({i, k})− ηi(N, v)− v({k})}
= v({i, k})− v({k})− ηi(N, v)
= ηi(N, f, v)− ηi(N, f, v)
= [0, 0].

Similarly, w({i, k})−w({i}) = [0, 0]. Since w({i, k})−w({k}) = w({i, k})−
w({i}) = 0, by SYM of φ, φi(N, w) = φk(N, w). By EFF of φ,

w(N) = φi(N, w) + φk(N, w) = 2 · φi(N, w).

Therefore,

φi(N, w) =
w(N)

2
=

1

2
·
[
v(N)− ηi(N, v)− ηk(N, v)

]
.

By ZI of φ,

φi(N, v) = ηi(N, v) +
1

2
·
[
v(N)− ηi(N, v)− ηk(N, v)

]
= ηi(N, v).

Similarly, φk(N, v) = ηk(N, v). Hence, φ satisfies STPG.

Theorem 2 On FMIG, the IEANSC is the only solution satisfying
EFF, SYM, ZI and CON.

Proof. By Definition 1, η satisfies EFF, SYM and ZI. The remaining
proofs follow from Theorem 1 and Lemmas 1, 2.

The following examples are to show that each of the axioms used in
Theorems 1 and 2 is logically independent of the remaining axioms.

Example 1 Define a solution φ by for all (N, w) ∈ FMIG and for all
i ∈ N ,

φi(N, w) = [0, 0].

Clearly, φ satisfies CON, but it violates STPG.

Example 2 Define a solution φ by for all (N, w) ∈ FMIG and for all
i ∈ N ,

φi(N, w) =

{
ηi(N, w) , if |N | ≤ 2,
ηi(N, w)− [ε, ε] , otherwise.

where ε ∈ R \ {0}. Clearly, φ satisfies STPG, but it violates CON.
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Example 3 Define a solution φ by for all (N, w) ∈ FMIG and for all
i ∈ N ,

φi(N, w) = σi(N, w) +
1

|N |
·
[
w(N)−

∑
k∈N

σk(N, w)
]
,

where σi(N, w) = 1
2|N|−1

∑
S⊆N\{i}

[w(S ∪ {i}) − w(S)]. Clearly, φ satisfies

EFF, SYM, ZI, but it violates CON.

Example 4 Define a solution φ by for all (N, w) ∈ FMIG and for all
i ∈ N ,

φi(N, w) =
w(N)

|N |
.

Clearly, φ satisfies EFF, SYM, CON, but it violates ZI.

Example 5 Define a solution φ by for all (N, w) ∈ FMIG and for all
i ∈ N ,

φi(N, w) = w(N)− w(N \ {i}).

Clearly, φ satisfies SYM, ZI, CON, but it violates EFF.

Example 6 Define a solution φ by for all (N, w) ∈ FMIG and for all
i ∈ N ,

φi(N, w) = ηi(N, w) +
ri∑

k∈N

rk

·
[
w(N)−

∑
k∈N

ηk(N, w)
]
,

where R = {rt | t ∈ U} be a collection of positive real numbers. Clearly,
φ satisfies EFF, ZI, CON, but it violates SYM.
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