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EQUILIBRIUM POINTS OF SEMI-INFINITE BIMATRIX GAMES

M.J.M. Jansen and S.H. Tijs

ABSTRACT: In this paper, we consider semi-infinite bimatrix games
with a non-empty equilibrium point set and investigate the structure
of this latter set., Furthermore, we study the relationship of this

set with the equilibria of finite subgames.
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1. INTRODUCTION

In this paper, we combine the approaches in [2] and [6] in
the study of the set of equilibrium points of the mixed extension of
a bounded semi-infinite bimatrix game.

To this end we consider, in section 3, Nash subsets, i.e. sets

of equilibrium points that have the interchangeability property. The
equilibrium point set is the union of the maximal Nash subsets. We
show that a maximal Nash subset is the Cartesian product of a compact
convex set and a closed, convex set with a finite or countably in-
finite number of extreme points. In section 4, these extreme points
are characterized in terms of square submatrices of the payocff matrix
of the first player.

Finally, in section 5, the relationship between the set of
equilibrium points of a bounded semi-infinite bimatrix game and the

equilibria of the finite subgames is considered.

NOTATION: For me N, let N i= {1,2,...,m} and let e be a vector or
sequence with 1 on the m-th place and 0 on the other places. For a
finite set S, |S| is the number of elements of S. The convex hull

of a set S(:]fn is denoted by conv(S). If‘C<:]fn is a convex set,
then wé write ext(C) and relint(C) for the set of extreme points of
C and the relative interior of C, respectively. The closure of a set

A is denoted by cl(a).

2. SEMI-INFINITE BIMATRIX GAMES AND EQUILIBRIUM POINTS

m m
= = KOO
Let A [aij]i=1,j=1 and B [bijji=1,j=1 be two bounded mxw

matrices (me W) with real coefficients.
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et s™ := {peR"™; p20, ziil p. = 1}

1

«©

S

]

1 o
€ % ; =0, . , = 11},
{q 920, iy q

where 21 is the normed linear space, consisting of those infinite

oo
sequences x = (X;,X,s...) of real numbers for which l[xlll t= Zi=1|xil<<w,
s€ .= {ge Sm; there exists an ne N such that qj =0 for all
j>n}.
m o m ,C , .
We call the game <8 ,5 ,E_,E_.> (<S8 ,S5 ,E_,E_>), in which
A"B A" B
E (p,a) = ).~ 1.7 p.a..q. = pAq", and
AEr i=1 &4=1 “i7i3%] !
t m > .C
EB(p,q) = pBgq~-, for all peS” and gqeS (87),

the mixed (c-mixed) extension of the mxw-bimatriz game (A,B). These
games are often denoted by (3,B),.

Let £20. A pair (p,q) € S®xS , is called an e-equilibrium point

if
ﬁAét = max pA&t (2.1)
m
pES
B3 2 sup_ pBq -e (2.2)
ges

If £€=0, then we call an e-~equilibrium point always an equilibrium
point. The set of all equilibrium points (e-equilibrium points) is
denoted by E(A,B) (EE(A,B)).

For the game <Sm,Sc,EA,EB> (e-)equilibrium points are analogously

defined. The set of eguilibrium points (e-equilibrium points) of thisg

game is denoted by EC(A,B) (Ez(A,B)).

1

EXAMPLE 2.1. Let A =[00 ...], B = [0 %—%—...]. Then E(A,B) = 4,

2
E (A,B) = ¢; but, for each ¢ > 0, EE(A,B) # 4 and EZ(A,B) # B.

ol
In Tijs [51, [7], the following theorem was proved.

THEOREM 2.2. Let (A,B) be a bounded mxe-bimatrix game. Then

EE(A,B) # @8, for all ¢ » 0.
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In this paper, we shall make frequent use of the following

equivalence, which can be proved in a straighforward manner.

LEMMA 2.3. Let (A,B) be a bounded semi—infinite mxe-bimatrix game
and let (p,q) € ST x s, Then (p,q) € E(A,B) Zf and only <f C(p) cM(A;q)

and C(q) < M(p;B), where

C(p) := {iel\Tm;pi>0}. clg) := {jexm; qj>0},

M(A;q) := {ie XN ; e.Aqt = max e Aqt} and
m i K k
M(p;B) := {je IN; pBe? 2 pBe]E, for all ke W }.

For the description of the relationship between E(A,B) and
E (A,B), we need the following result of Blackwell and Girshick [1],

p.48.

LEMMA 2.4, Let IACIEEE be an infinite sequence of elements in R°.

Let qe S~ be such that Zj.:lqjvj e R". Then there is a qe s€ such that

L

J=

1qjvj = zj:lqjvi € conv{vl,vz, .
THEOREM 2.5. Let (A,B) be a bounded mxe-bimatrix game. Then

E(A,B) = cl(E_(A,B)). Consequently, E(A,B) # & 1ff E,(A,B) # d.

PROOF." (a) Let (p,q) € E(A,B). We show that E(A,B) Ccl(Ec(A,B)) by
proving that for each € > 0 there is a a9, e s° with Hq—qE “1 < g and
(p,qe) € EC(A,B) . Let £ > 0. As in the proof of theorem 3 in [6], one
can find, with the aid of lemma 2.4, a q € s® with Hq_—qEH1 < g,
C(qe) € C(qg) and qu = Aqt. Then M(A;qe) = M(A;q). Consequently, by
lemma 2.3, (p,qe) € EC(A,B) .

Loty 52
(b) Now we show that cl(E_(A,B)) < E(A,B). Let (p”,q"), (p*,q?)

7o

be a sequence in Ec (aA,B) , converging to some (p,q) € s™x 8%, Then,

v

for all ke W,
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k
e Al B < ofad E, for all fe N_ (2.3)
pkBe;,: < pkB(qk)t, for all je N

t

(o]
In view of the fact that, for a bounded mXw-matrix M, x+>r eiMx (xeS )

is a continuous function on Sm, (2.3) implies that

e.Aqt < pAqt, for all 1 e W
i m
t
pBe;' < pBg , for all je W.
So (p,q) € E(A,B). a

3. THE STRUCTURE OF MAXIMAL NASH SUBSETS

In this section, we only consider bounded semi-infinite bimatrix
games (A,B) with E(A,B) # &.
Let (A,B) be such a bimatrix game of size mx», For (p,a) e 8™ x Sm,

put
{pes™ (p,@) €E(a,B)}

il

X (q)

{qes”; (p,q) €E(A,B)}.

i

L(p)

Then K(E) is a convex, compact subset of s™ and L(S) is a closed, convex

oo
subset of S , as one easily verifies.

DEFINITION 3.1. Let (A,B) be a bounded semi-infinite bimatrix game. A
subset _SCE(A,B) is called a Nash subset for the game (A,B) if for all
(p,a),(p',gq') €S also (p,q'),(p',q) € S. A Nash subset § is called a

maximal Nash subset for the game (A,B) if there exists no Nash subset

for the game (A,B) properly containing S.

REMARK 3.2. If S is a maximal Nash subset for a bimatrix game (A,B),

then § = 1r1(S) ><7r2(s) , where

nl(s) {pe Sm; there exists a qe s® with (p,q) € 5}

My (8) := {ges”; there exists a pe ™ with (p,q) € 8}
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ava ~a11aAd +ha Fratrn onto ~F
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Combining the fact that (ﬁ,q) € E(A,B) with (3.3) and (3.4), we obtain

c(p) € C(p) < M(a;q)

Claq) c M(p;B) c M(p;B).

Consequently, (p,q) € E(A,B) and (3.1) is proved.

(c) Now suppose that L(B) # 1T2(S) . Then, in viev'v of (a) and (b),
1r1(S) XL(}%) is a Nash subset for (A,B) properly containing S. This
contradicts with the fact that § is a maximal Nash subset. So

L(p) = Ty(8). O

4. EXTREME EQUILIBRIUM POINTS
We start with a generalization of a result of H. Mills [4].

LEMMA 4.1. Let (A,B) be a bounded mx~-bimatrix game and let
(p,q) e s"xs”. Then (p,q) € E(A,B) if and only 1f there exist scalars
o and B such that

eiAqt £ 0, for all ice :Nm,

pBe;.: < B, for all jeN (4.1)

and pAqt-i- qut = gt+B.

PROOF.  If (p,q) € E(A,B}), then (4.1) is satisfied if one takes o = pAqt
and B = qut.
If the quadruplet (p,q,0,B) satisfies (4.1), then for iO e C(p),

e Aqt = 0, as one can prove as follows.
0
If e, Aqt < o, then
o

t t t t t
a+B = pAg +pBg = p; e Ag + Z pieiAq +Z pBe . q.
0 o it 3 3]
<p, at ] pia+2qj8=oc+8,
0 i;fio i
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which is impossible. Hence, o = pAqt and pAqt z eiAqt, for all ie I%f (4.2)
i - . t t t t
Similarly, if Jg € C(q), then pBej = B. So B = pBg - and pBg = pBej,

o]
for all je N. Together with (4.2) this implies that (p,q) ¢ E(A,B).

O

Inspired by this lemma, we introduce the convex and closed set

Y

-4} + .
:= {(q,a) €S XR; e,Aq” < a, for all :Lel\Im}.
In [3], Lindenstrauss proved that a closed, bounded and convex
subset of 21 has extreme points and that such a set is the closed
convex hull of its extreme points. In view of this result and remark

3.2 it is meaningful to investigate the extreme points of a maximal

Nash subset.

DEFINITION 4.2. An equilibrium point of a bounded mx«-bimatrix game
(A,B) is called an extreme equilibrium point if it is an extreme
point of some maximal Nash subset for the game (2,B). If (p,q) is an
extreme equilibrium point of (A,B), then we call p (g) an extreme

strategy for player I (II).

LEMMA 4.3. Let (A,B) be a bounded mxw-bimatrix game. If (p,q) <8 an
extreme equilibrium point of (A,B), then

(1) (q,paq") € ext(Q,),

(2) c(q) is a finite set; even |C(q)]| < m,

(3) the rank of the matrix M = [1 O}’ where

M o= [ equals |C(q) |+1.

aij]ieM(A;q) ijec(q)

PROCF. Suppose that (p,q) € ext(S) and Ee:relint m,(S), where 8 is a

1
maximal Nash subset for (A,B). Then, by theorem 3.3,

(p,q) € ext(wl(s)><L(§)) = gxt ﬂ1(5)><ext L(g). So g€ ext L(ﬁ).
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(a) Now suppose that
t 1 " "
(@,pAq”) = %(q',a') +%(q",a"),

where (q',a'), (g",a") € QA and (g',0') # (g",a"). Note that this last
inequality implies that g' # g".

. t _ ] t m ' L1 J— t i
Since eiAq = %eiA(q ) +lzeiA(q ) 2 %a' +%0" = pAg , for all ice Nm,
we have, for ie M(A;q),

)t = o' and eJ._Z—\(q")t = q",

1

eiA(q

which implies that M(A;q) cM(A;q') and M(A;q) < M(A;q").
Hence, C(p) <M(A;q') and C(P) c M(A:q") .

Since q = %qg' + %q", we can conclude that
c(q') €c(g) <M(P;B) and C(g") €C(q) cM(B;B).

So, in view of lemma 2.3, g',q" € L(}g) while g' # g". This contradicts

the fact that ge ext L(f)) . So (q,pAqt) € ext QA'

(b) Suppose that g¢ s®. In view of lemma 2.4, there exists a &e s
such that Aqt = A&t and C(ci) cC(g) . Thisiimplies that M(A;q) = M(A;Q);
so (f),fl) e E(A,B).

Now consider, for &€ > 0, the vector
qle) := (1+e)g-eq.

Then, for g > 0 sufficiently small, a{e) ¢ s”.

Moreover, C(g(e)) «C(g) U C(&) = C(g) and Aq(e)t= (1+e)Aqt—eA&t

1l

Aq .
Consequently, (ﬁ,q(s)) € BE(A,B), for £ sufficiently small.

However, ¢ = (1+8)—1q(s)+e(1+s)_1€{ and q(e) ,c}eL(EJ) . Since c:i; # qle),
this contradicts the fact that ge ext L(f}) . So ge s€ i.e. Clq) is a

finite set.

(c) Let y := IC(q) l € N. Without loss of generality, we may suppose

that c(q) = {1,2,...,y}. Suppose that rank M < y+l1. Then there exists
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N
a vector y = (yl,...,yy,O,...) e R and a constant se€ R such that
(1) (yl,...,yY,S) # 0

L) .m . =O
(ii) 23=1 Y4

o Y e = ; .
(iid) Zj:l aijyj s 0, for all ieM(A:q).
Consider, for each £ > 0, the wvectors

u(g) := g+ey and vie) := g-ey.

Then there exists an E > 0 such that, for all ge¢ (O,E) ’
(<]

ufe),v(e) €8

and eiAqt < EAqt+ e{s - max ekAqt) , for each 1i¢M(a;q). This implies
kfM(A;q)

that, for all ee¢ (0,€),

e.aiAu(s:)t = eiAqt+ e:eiAyt = EAqt+ ges if 1eM(Ad;q)
and
e.Au(e)t = e,Aqt+ ae.Ayt < e.Aqt+e max e Ayt
i i i i
kgM(A;q)
< f)Aqt+ es if i¢gM(A;q).

Consequently, (u(e) ,§Aqt+ss) € QA’ for all ee (0,€).
v
Similarly, an € can be found such that (v(eg) ,}_%Aqt—ss) € QA, for all

v -~
ee (0,6). So, for 0<e< min {¢ £},
ot t t
(q,PAq") = %((ule) ,PAq +es)+(v(e) ,DAq ~es)),
which contradicts (1). So rank M = y+1.

(d) That IC(q)l < m follows now from (3). []

In the following theorem we associate the extreme strategies of
player II with certain square submatrices of A. Compare this result

with the Vorobev-Kuhn theorem (c¢f. [2], theorem 3.5).

THEOREM 4.4. Let (A,B) be a bounded mxeo-bimatrix game. If (p,q) € E(A,B)
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and pAqt # 0, then the following two assertions are equivalent
(1) g 1s an extreme strategy for player II,
(2) there exists a nonsingular square submatrixz K of A such that

1,t£,-1
1K) .

t t -1t t -
qe = PAQ K "ig and pAq = (1K
[Here Qe is the vector obtained from g by removing the coordinates

corresponding to the columns of A which play no role in K.]

PROOF. (a) We show that (2) implies (1). Let S be a maximal Nash sub-
set for (A,B) containing (p,q) and let f)E relint 'lTl(S) . Suppose that

there are &,éeL(ﬁ) with q = %&-i- %&. Then C(EI) cC(g) and C(:/q) cC(q) .

Since (ﬁ,q) ' (5,51) ' (5,&) € E(p,B), for ieM(A;g), we have

~ v - v
<-3iAqt = lzeiAqt + lzeiAqt < %BAqt+ %ﬁAqt = f)Aqt = eiAqt

~t o ~t v o vVt -
and therefore eiAq = pAq and eiAq = pAg ; so M(A;qg) €cM(A;qg) and

v
M(A;q) ©M(A;q) . Consequently,
~t _ ~t Yt _ .Vt
equK = pAgq and equK = pPAg ,
-~ v
for all suitable values of i. Because K is nonsingular and A and g

~ v v
are probability vectors, this implies that g = - So q = ¢q. There-

fore, qe ext L(ﬁ) .

(b) Suppose that (1) holds. Let ﬁ be the matrix as defined in lemma
4.3(3) and let y := IC(q) ' Since rank M = v+l by that lemma, we
can find y+l rows of M (including the last row) which are linearly

independent. These rows form a nonsingular (y+1)X(y+1)-submatrix
<[}
1 0

Now (qK,ﬁAqt) is the unique solution of the system Xxt = e

~

of M.

theorem is proved if we apply Cramer's rule. 0
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With the aid of theorem 4.4, we can prove the following two

results.

THEOREM 4.5. Let (A,B) be a bounded mxeo-bimatrix game. Let S be a

maximal Nash subset for (A,B) with pe relint m, (8. Then
L(B) = cl(conv(ext(L(g)))
and ext L(p) ©s a finite or a countably infinite set.

o
PROOF. The first assertion about L(p) is a consequence of remark 3.2

and the result of Lindenstrauss mentioned earlier.Further, theorem 4.4
associates with an extreme point of L(E) a certain nonsingular sub-
matrix of A.

It is easy to see that with a nonsingular square submatrix of A there
corresponds at most one such an extreme point. Because A has only a
countably infinite number of square submatrices, we can conclude that

ext L(p) is a finite or countably infinite set. 0

REMARK 4.6. Also ﬂl(S) is the convex hull of its
extreme points. This is a consequence of the theorem of Krein-Milman.

Note that the number of extreme points of m, (S) may be uncountable.

1
An example of this phenomena can be found in the proof of theorem 2
of [6]. That the number of extreme points of L(ﬁ) may be countably
infinite is illustrated by the example where A and B are two 1xw-—

1

matrices with all coefficients equal to zero. Then E(A,B) = S xs"

and ext L(el) = {el,e 1.

2,--.

REMARK 4.7. It follows from the proof of theorem 4.5 that the number

of extreme strategies of player II is at most countably infinite.
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Let (A,B) be a bounded semi-infinite bimatrix game and let
{p,q) € E(7,B). Since'{(p,q)} is a Nash subset, we can find, with the
help of the lemma of Zorn, a maximal Nash subset containing (p,q).
Consequently, every equilibrium point of (A,B) is contained in a

maximal Nash subset and E(A,B) is the union of such subsets.
THEOREM 4.8. The set of equilibrium points of a bounded semi—infinite
bimatrixz game s a union of maximal Nash subsets.

Now we give an example of a bounded semi-infinite bimatrix game

with a countably infinite number of maximal Nash subsets,

0 0 ...
EXAMPIE 4.9. Let A = [ J and let B be the 2Xw-matrix with, for

0o 0 ...
all ne ¥,
-n . -n
bln = cos(2 1) and b2n = sin(2 "m).
Let p* := (cos(2™®m) +sin(2™™m) Y (b, ,b. ).

in""2n

Then, for all ne N, (pn,en)eiE(A,B). Furthermore, the equilibrium
points (pl,el),(pz,ez),... are contained in different maximal Nash

subsets.

5. APPROXIMATION BY FINITE SUBGAMES

In this section, we study the relationship between the set of
equilibrium points of a bounded semi-infinite bimatrix game (A&,B) with

the equilibria of the games (Al’Bl)'(A2’B2)""’ where, for ne N,

m n m n
Ay =1 ij7i=1,3j=1"

N aij i=1,4=1 and Bn := [b

We start with a

DEFINITION 5.1. Let E, ,E be a sequence of closed subsets of s®xg”

112
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(me N). Then we write limsup En for the possibly empty set of points
n—-«
x € ST x Sm, for which there exist a subsequence n(l),n(2),... of 1,2,...

and points Xn(l) 'Xn(2) ; ..~ such that xn(k) € En(k) ;, for all ke N, and
lim x = X.
Koseo n (k)
Note that limsup E, = N cl LU Ek].
n--e ne W kzn

THEOREM 5.2. Let (A,B) be a bounded semi~infinite mxe-bimatrix game.

Then ~
limsup E(A_,B ) = E(A,B),
n-ro
where E(Aann) = {(P!q)7 g = (qlolor---) S Sm: (qu) EE(AnIBn)}-

PROOF. (1) Let (p,q) € E(A,B). We show that E(A,B) ¢ limsup E(An,Bn)N
N>

by proving that for each € > 0, there is'an n(e) e N and a 9. € Sn(E)
. _ < .

with Hq (qE,O,O,...) ”1 g and (p,qE) eE(An(E) 'Bn(s))‘ As in part (a)

of the proof of theorem 2.5, one can find a ag e 5% with Hq—aenl < g

and (p,qs) € EC(A,B) .

Now we can write ae = (qe,0,0,...) , Whexre qee Sn for some ne N.

Obviously, (p,qs) € E(An,Bn) , because

t

pAan

~t ~t t
> - .
PAq_ 2 e.Ag_ = e.A d_r for all ie N ,

t_ ootk t .
pB d_ = pPBq_ = pBej = anej, for all je N .

n(l) ~n(1)

(2) Let (p*'N, gDy, (pR(2) Gr(2)

. m,_ . ®
}s... be a sequence in § XS con-

verging to (p,q) such that

n(k) ~n(k) ~
(7 ) EB(A 10 0B )
We can write an(k) = (qn(k) ,0,0,...), where qn(k) € Sn(k) . Now
~n(k), t _ n(k). t n(k) n(k), t
eiA(q y© o= eiAn(k) (g ) S p An(k) (q )
=t ® A PNt e all i N .

t s
So eiAq < pAqt, for all ie I\Im.

I EEEEEE——S—S—S————————h—————————.......—————_—_—___————.
g = -

NL,

- ———————————————
o - = = e e ————————
gﬂz
i :
: 2
Dl
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n{k), t n (k) t

t _  n(k) S
Bagy @) 2P B 8y

{

pn(k)B an(k)

( )

n(k)
pn(k)Bet‘

Taking limits, we obtain qut < pBeg.

So (p,q) € E(A,B). 0
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