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Abstract

Suppose two parties have to share a surplus of random size. Each
of the two can either commit to a demand prior to the realization of
the surplus - as in the Nash demand game with noise - or remain silent
and wait until the surplus was publicly observed. Adding the strategy
to wait to the noisy Nash demand game results in two strict equilibria,
in each of which one player takes almost the whole surplus, provided
uncertainty is small. If commitments concern only who makes the ¯rst
o®er, the more balanced Nash bargaining solution is approximately
restored. In all cases commitment occurs in equilibrium, even though
this entails the risk of breakdown of negotiations.
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1 Introduction
Bargaining models in economics are a key tool in understanding distribu-
tional con°icts. By abstracting from the concrete matters that are at stake,
they reduce the problem of distribution to its bare bones. Though it appears
as if at such an abstract level not much can be said, economics has made
considerable progress in this area. In particular, Nash ((1950) and (1953))
showed that, in addition to symmetry and the axioms underlying expected
utility, only independence of irrelevant alternatives is needed to pin down the
outcome that will be agreed upon by rational bargaining partners.

But Nash also already felt the need to complement his cooperative so-
lution with a non-cooperative underpinning. Speci¯cally, he addressed the
question whether a stripped-down version of a bargaining process would lead
to the same outcome as the cooperative solution. More generally, the en-
deavour to provide non-cooperative foundations for solution concepts from
cooperative game theory has become known as the \Nash program". Since
Nash's pioneering contribution many non-cooperative bargaining procedures
have been studied and several natural bargaining processes, including models
in which parties alternate in making o®ers (Stºahl (1972), Krelle (1976), and
Rubinstein (1982), among many others) and models in which the proposer is
randomly selected (Rubinstein and Wolinsky (1985), Binmore, Rubinstein,
and Wolinsky (1986), among others) were shown to have (at least in the
2-person case) a unique subgame perfect equilibrium and to lend support to
Nash's cooperative solution. In the bilateral case, when frictions, like dis-
count rates, time costs, or break-down probabilities, are small enough and
of uniform relative magnitude, the equilibrium outcome is near the outcome
of the cooperative Nash bargaining solution, and it converges to it when the
frictions vanish.

Most of the previous work assumes that the underlying bargaining situa-
tion is deterministic, but the frictions that are added to the models to obtain
uniqueness of the non-cooperative solution are frequently of a stochastic na-
ture. Yet, players are typically not given all the strategic options that would
be natural in such a stochastic situation. Nash's (1953) own non-cooperative
model is a clear instance of this. In his \demand game", two players state
simultaneously demands. If the combined demands are feasible, they receive
what they asked for, otherwise they obtain nothing. To select among the
many equilibria of this game, Nash introduces small uncertainty about the
size of the pie and, thereby, obtains a balanced outcome, consistent with
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cooperative bargaining.
In Nash's argument uncertainty is a technical device to select among

equilibria. For the present purpose, however, we prefer to view the pres-
ence of some amount of uncertainty as a matter of realism. Hence, we view
Nash's (1953) solution as (potentially) relevant when there is small uncer-
tainty. But, in this situation, we can only be con¯dent in the prediction if the
non-cooperative game allows the players all the strategic options that they
may want to use. In this respect Nash's model seems less satisfactory. When
there is uncertainty, one natural option is to wait until the uncertainty has
been resolved. But Nash's model does not allow for this: players are forced
to move before they know the size of the pie.

In this paper we investigate what happens to Nash's demand game when
players also have this natural option to wait. We show that, if players are
allowed to postpone their claims until the size of the pie is revealed (and if
uncertainty is small enough), precisely one of them will always choose to do
so. In the resulting equilibria, the player, who chooses not to wait, always
demands almost all the surplus, yielding a distribution far away from the
Nash bargaining solution. These equilibrium outcomes thus resemble the
subgame perfect equilibrium of ultimatum bargaining (GÄuth (1976)), rather
than the Nash bargaining solution. Adding the opportunity to wait to the
Nash demand game, therefore, has dramatic consequences.

Though we phrase this point in terms of an abstract bargaining problem,
it also has implications for models from the industrial organization literature.
(In fact, the endogenous timing models, that we will study here, have grown
out of a literature on oligopolies; see below.) In industrial production, for
instance, the option to postpone claims may correspond to a switch towards
a more °exible production technology. Admittedly, this may be associated
with a di®erent cost function, and this e®ect is ignored when focussing on
a pure bargaining problem. But the advantage of commitment has been an
issue in oligopoly theory ever since von Stackelberg (1951), even when leader
and follower have identical costs. Therefore, we view bilateral bargaining
as an abstract - but sparse - paraphrase for a distributional con°ict under
uncertainty.

The observation that the option to postpone demands leads to an asym-
metric solution also begs a question. How will it be decided, who makes the
¯rst o®er and who waits? A small, but growing literature (Hamilton and
Slutsky (1990), Spencer and Brander (1992), Mailath (1993), Sadanand and
Sadanand (1996), Amir and Grilo (1999), and van Damme and Hurkens
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(1999)) has addressed this issue of endogenous timing in the context of
duopoly models. These papers aim at an endogenous determination of Stack-
elberg versus Cournot behavior. They provide two di®erent game forms that
both allow ¯rms to decide upon whether to become a Stackelberg-leader or
-follower or play Cournot.

In the ¯rst game form, similar to the bargaining game with noise de-
scribed above, ¯rms can either choose an output at stage 1 or wait for stage
2 and then choose. Hamilton and Slutsky (1990) refer to such a game as one
of \action commitment". Such a game form applies when commitment is
inevitably tied to a quantitative demand. Retail ¯rms for durable consump-
tion goods, like automobiles, for instance, may compete by either posting
prices or making it known that prices are negotiable. The ¯rst represents
a commitment, that entails a quantitative claim, the latter corresponds to
waiting and retaining °exibility.

But in other institutional settings, a choice of business strategy may be
involved. For instance, retail ¯rms may choose mail-order distribution sys-
tems, that require them to decide on the assortment of goods and prices
at the stage of printing the catalogue. Competing shopkeepers and chain-
stores will know that mail-order ¯rms are committed, but as long as the
catalogue has not yet been published, mail-order prices remain unknown.
Similarly, contracts with wholesalers may commit a retailer without reveal-
ing to competitors or consumers to what the retailer is committed. Likewise,
in a bargaining context, a di®erent model is required, when negotiations are
carried out by delegates with rigid missions. If it is known that the other side
in the negotiations will send a delegate without the authority to adjust a yet
unknown claim, this is captured by the second game form which Hamilton
and Slutsky (1990) call a \game with observable delay".

In this game, parties simultaneously choose when they intend to make
demands. Only after these intentions are revealed, quantitative demands are
actually stated. In the context of duopoly this means that initially ¯rms
choose whether to strive to become Stackelberg-leader or -follower (two lead-
ers or two followers play Cournot), and only after these positions have become
known, ¯rms choose their outputs. In the context of bargaining it means that
parties can let their partners know whether or not they give up the option
to wait until the surplus is observed.

It turns out that, in the bargaining context, this second timing model
restores the support for the Nash bargaining solution. We show that for
su±ciently small uncertainty, there is a unique subgame perfect equilibrium
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in which the parties split the surplus almost evenly. Hence, if parties can only
credibly communicate that they will not wait (until uncertainty resolves), but
not what they will demand, the Nash bargaining solution reemerges as a good
approximation.

In both versions of the model commitment occurs in equilibrium, even
though this entails a risk of breakdown of negotiations. This is because play-
ers are given the opportunity of an irrevocable commitment which they use
to their advantage, at the expense of e±ciency. Schelling (1966, chp. 3)
already suggested that if commitments are not certain to cause an impasse,
they might constitute a viable bargaining strategy, even when disagreement
is costly. Accordingly, that uncertainty together with parties striving for
commitments may imply the risk of impasse has been shown by Schelling
(1956), Crawford (1982), and Muthoo (1996). In the latter two papers com-
mitments are revokable at a known (Muthoo (1996)) or uncertain (Crawford
(1982)) cost, while the size of the surplus is known. In this paper we assume
irrevocable commitments, but the size of the surplus is uncertain at the time
when commitments are available, in accordance with the noisy Nash demand
game. The conclusion, however, remains: in the presence of uncertainty
commitment opportunities may cause ine±ciencies.

As a by-product we ¯nd a caveat to market models of endogenous timing
under duopoly. With large uncertainty results become highly conditional.
Depending on the timing of commitments and demands, risk aversion, and
(the hazard rate of) the cumulative distribution almost everything can hap-
pen. This caveat also applies to duopoly models with endogenous timing.
While in these models uncertainty and risk aversion are not a driving force,
the shape of the (inverse) demand function and cost functions play a formally
equivalent role.

The remainder of the paper is organized as follows. Section 2 introduces
the modi¯ed Nash demand game and derives its equilibria. Section 3 con-
siders the alternative model of endogenous timing. Section 4 collects some
observations on large uncertainty and risk aversion. Section 5 concludes.

2 Modi¯ed Noisy Nash Demand Game
There are two bargaining parties, players i = 1; 2, who share a surplus that
becomes available if they strike a deal. The size of the surplus is initially
unknown. But both parties hold a common prior, described by a cumulative
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distribution function F of the surplus size z ¸ 0. Accordingly, we will refer
to the game, that will now be described, as the F -demand game.

Under this symmetric uncertainty, each party i = 1; 2 chooses (simulta-
neously with the other) either to make a demand xi ¸ 0 or not to make a
demand. After players have made their choices, a chance move governed by
F publicly reveals the size z of the surplus. If both parties made demands x1
and x2, then player i obtains xi units of the surplus if x1+x2 · z; otherwise,
i.e. if x1 + x2 > z, the demands are incompatible and no deal is struck.
This is like in the Nash demand game. If one party, say, player i, made a
demand xi, and the other not, then player i gets xi units of the surplus and
the other party j = 3¡ i collects the residual z ¡ xi if xi · z; otherwise, i.e.
if xi > z, no deal is struck and both parties obtain zero. Finally, if neither
party made a demand, then players divide the surplus in a prespeci¯ed way
such that each player gets a positive amount. More precisely, player i obtains
¯iz, where ¯i > 0 for i = 1; 2 and ¯1 ´ ¯ = 1 ¡ ¯2.

This rules out that in the absence of uncertainty one party takes the
whole surplus. Since most explicit models of non-cooperative bargaining
under certainty result in such an interior ¯, this is taken as a \reduced form"
of an (unmodelled) ensuing bargaining game under certainty.

Risk attitudes are taken into account by representing the players' prefer-
ences by twice continuously di®erentiable, strictly increasing, and (weakly)
concave utility functions ui, i.e., u0i(x) > 0 and u00i (x) · 0, for all x ¸ 0, for
i = 1; 2, where x denotes what player i receives from the surplus. Normalize
utility such that ui(0) = 0, for i = 1; 2. Strict concavity (u00i < 0) models risk
aversion, linearity (u00i = 0) models risk neutrality.

To ensure that parties are willing to engage in the game we assume that
F (z) = 0, for all z < 0, and that F is twice continuously di®erentiable for all
z > 0 in the interior of the support of F . (The lower bound of the support
could be positive.) Since F (z) is a distribution function, it is nondecreasing,
right-continuous (even at the boundary of its support), and approaches 1 as
z goes to in¯nity. F has a density f = F 0 if it is continuous everywhere. If
F has density f, the hazard rate is h(z) = f(z)= [1 ¡ F (z)]. Where needed,
we will adopt the standard assumption of a monotone hazard rate, i.e. that
h is nondecreasing. The result in the next subsection is independent of any
assumption on the hazard rate.
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2.1 Strict Equilibria
The analysis of the F -demand game is fairly easy. The key insight is that,
whenever the other party demands some y ¸ 0 such that F (y) < 1 before
uncertainty resolves, then to wait is strictly better than any positive demand.
The intuition behind this is simple. By waiting one can always collect the
residual. By also making a demand one cannot get more, but may enlarge
the circumstances under which no deal is struck. And this is independent of
how large the uncertainty is and how risk averse a player is.

Formally, for any demand y ¸ 0 stated by the other party before uncer-
tainty resolves, if player i waits, she obtains wi =

R1
y ui (z ¡ y) dF (z). If she

demands x ¸ 0, she obtains

vi(x; y) = ui(x) [1 ¡ F (x+ y)] (1)

irrespective of whether the other party demands a positive amount y > 0 or
waits and, therefore, currently demands nothing, y = 0. It follows that, for
any demand x ¸ 0 by player i,

Z 1

y
ui (z ¡ y)dF (z) ¸

Z x+y

y
ui (z ¡ y)dF (z) + vi (x; y) ¸ vi (x; y) (2)

If F (y) < 1 the ¯rst inequality is strict, and if, moreover, x > 0 the second
inequality is strict. Hence, if the opponent demands y > 0 such that F (y) <
1, it never pays to also make a demand.

Yet, if F (y) = 1, both weak inequalities in (2) are equalities and waiting
is as good as any demand. In particular, demanding x such that F (x) = 1 is
a best reply. It follows that, as in Nash's (1953) non-cooperative bargaining
model, there are always ine±cient equilibria, where both parties demand xi
such that F (xi) = 1 for i = 1; 2. But these equilibria are weak (non-strict),
because every strategy is a best reply. Since alternative strict equilibria exist,
we henceforth ignore these ine±cient equilibria.

Given that in a strict equilibrium it is never the case that both parties
state positive demands, two possibilities remain. Either both parties wait,
or one makes a demand and the other not.

If both parties wait, each player i obtains

Wi(¯) =
Z 1

0
ui (¯iz) dF (z) (3)

for i = 1; 2. This could potentially be an equilibrium, if the uncertainty is
large enough. But for small uncertainty it cannot.
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To see this, assume that the distribution F is concentrated in the following
sense: there is some small " > 0 such that, with ¹z =

R1
0 z dF (z) > 0 denoting

the mean,
" ¸ maxfF (¹z ¡ "); 1¡ F (¹z + ")g (4)

i.e., most of the mass is concentrated around the mean. Call a distribution
"-concentrated if it satis¯es (4) for " > 0.

Now observe that, by concavity of ui, the payo® from both waiting is
bounded from above by the utility from the respective share in the mean
surplus, i.e. Wi (¯) · ui (¯i¹z) for i = 1; 2. On the other hand, with a su±-
ciently concentrated distribution, and given that the opponent waits, player
i can obtain

Vi (0) = max
x¸0
vi (x; 0) (5)

by deviating to an optimal demand. If F satis¯es (4) for small ", then
vi(x; 0) ¸ (1¡ ")ui(x) for all x · ¹z¡ ". Therefore, Vi (0) ¸ (1 ¡ ") ui (¹z ¡ "),
for all " > 0 su±ciently small. As " goes to zero, the lower bound on
Vi (0) approaches ui(¹z). Since ui (¹z) > ui ( ī¹z) ¸ Wi (¯) for all ¯i < 1, by
continuity, the unique best reply against an opponent, who decides to wait, is
to demand approximately the expected surplus.1 Hence, both parties waiting
cannot be an equilibrium.

Moreover, if the opponent decides to wait, then it is clearly suboptimal
to demand some x such that F (x) = 1 or x = 0. This follows from (1),
because, if F (x) = 1 or x = 0, then vi (x; 0) = 0, while vi (x; 0) > 0 for all
x > 0 such that F (x) < 1. Combining this with (2) we have shown:

Proposition 1 If F is "-concentrated and " > 0 is su±ciently small, then
the F -demand game has precisely two strict equilibria. In each of those one
party demands approximately the expected surplus, and the other party waits.

There are also equilibria in mixed strategies. In those, parties randomize
between waiting and (positive) demands. But no mixed equilibrium is strict.
Hence, in the presence of two strict equilibria we view those as the preferable
solutions.

1The precise shape of the optimal demand depends both on the utility function and the
shape of F . It is given by the implicit solution to the ¯rst-order condition (6) at y = 0.
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3 Endogenous Timing
In the F -demand game, strict equilibria predict an outcome that resembles
ultimatum bargaining rather than the Nash bargaining solution. This is so,
because any attempt to commit to a ¯rst-mover advantage entails a quan-
titative demand. This makes it preferable for the opponent to wait for the
surplus to be revealed and collect the residual.

That a bargaining party can only commit to a demand by stating it, is
certainly plausible for face-to-face bargaining. On the other hand, in face-
to-face bargaining irrevocable commitments are somewhat implausible. The
latter are more compelling in bargaining by delegates with rigid missions.
Also, on some markets one party enjoys a ¯rst-mover advantage by conven-
tion. For instance, for certain goods with negotiable prices, it is common for
the seller to state her ask price in opening the negotiations.

But, if the convention is, that the seller makes the ¯rst o®er in price nego-
tiations, this tells the buyer only that the seller will make the ¯rst proposal,
but not what the ask price is. Likewise, if one party announces that she will
send a delegate with a rigid mission, this informs the other party that she
will be confronted with an o®er, but not about the o®er itself.

The game that we have analyzed above corresponds to a \game of ac-
tion commitment" from the literature on endogenous timing (Hamilton and
Slutsky (1990)). This literature has also introduced \games with observable
delay" which can be used to model the situation where bargaining parties
may, or may not, send delegates with rigid instructions. These later games
are played by the following rules.

At the ¯rst stage, given symmetric uncertainty over the size of the surplus,
the two parties announce (simultaneously) at which time (before or after
uncertainty resolves) they intend to make an irrevocable demand; but they
need not specify the amount they will demand if they choose to move before
uncertainty resolves. Then, after the players' choices are revealed to both, the
game moves to the second stage. If, at the ¯rst stage, both declared that they
will not make demands before uncertainty resolves, the size of the surplus is
revealed and (as above) player i obtains ¯iz unity of the surplus, for i = 1; 2.
If, at the ¯rst stage, both declared that they will make demands before
uncertainty resolves, then the parties simultaneously choose their respective
demands x1 and x2 before the surplus size is revealed. If these demands turn
out to be compatible (x1 + x2 · z), then each player gets exactly what she
demanded; otherwise (if x1+ x2 > z), no deal is struck. Finally, if one party,
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say, i, declared that she will make an early demand, and the other not, player
i states her demand before the surplus size is revealed; after the surplus is
observed, player 3¡ i then decides whether or not to accept i's demand, for
i = 1; 2. Acceptance gives player 3 ¡ i the residual z ¡ xi, while rejection
means that no deal is struck.

The game thus de¯ned will be referred to as the F -delegates game. Note
the essential di®erence with the F -demand game from the previous section.
The present game has a richer subgame structure, as players receive inter-
mediate information. In the subgame, where both players commit to state
demands before uncertainty resolves, each party will state her demand know-
ing that the other party will simultaneously state her demand; similarly, in
the subgame, where only one party commits, this party knows that she will
be the only one stating a demand before uncertainty resolves. We will analyze
this F -delegates game by imposing subgame perfection (Selten (1965)).

3.1 Subgames

First, consider the subgame, where both parties intend to make demands.
(Hence, the parameter ¯ has no role to play in this subgame.) The payo®
function to players i = 1; 2 in this subgame is again given by (1), where
x denotes player i's demand and y the demand by the opponent. Because
vi(0; y) = 0 and vi(x; y) = 0 whenever F (x + y) = 1, and vi(x; y) > 0 for
all x > 0 such that F (x + y) < 1, it follows that for any y with F (y) < 1
the maximum of vi with respect to x is interior. Hence, for F (y) < 1 the
¯rst-order conditions

u0i(x) [1¡ F (x+ y)] ¡ ui(x)f (x+ y) = 0 (6)

must obtain at a payo® maximum. Under a monotone hazard rate the ¯rst-
order condition (6) yields a well-behaved reaction function. Statements (a)
and (b) below are driven by the strict concavity of vi under a monotone
hazard rate. Statement (c) says, quite intuitively, that a more risk averse
individual will make lower demands. (For a proof see the Appendix.)2

Lemma 1 If the hazard rate h is nondecreasing and continuously di®eren-
tiable, then

2Note that the assumption of a monotone hazard rate implies that the support of F
must be connected (either a compact interval or the nonnegative reals).
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(a) the reaction function »i(y) = arg maxx¸0 vi(x; y) is a bounded contin-
uously di®erentiable function with slope ¡1 < »0i(y) · 0,

(b) the maximum Vi(y) = maxx¸0 vi(x; y) is a continuous and strictly
decreasing function of y, and

(c) a global increase in the coe±cient of absolute risk aversion, ri(x) =
¡u00i (x)=u0i(x), shifts the reaction function downwards.

In analogy to duopoly models, such reaction functions give rise to a unique
equilibrium, when both parties intend to make demands, due to a \single-
crossing" property.

Proposition 2 If the hazard rate h is nondecreasing and continuously dif-
ferentiable, there is a unique point x¤ = (x¤1; x¤2) À 0 such that »i

³
x¤3¡i

´
= x¤i

for i = 1; 2.

Proof. By Lemma 1 reaction functions are bounded and nonincreasing.
Hence, there is a rectangle X = [0; »1(0)] £ [0; »2(0)] such that the product
mapping » = »1 £ »2 is a continuous function from X to itself. By Brouwer's
¯xed point theorem, there exists x¤ 2 X such that »(x¤) = x¤. Since x¤ must
be interior and corresponds to an intersection of the graphs of the reaction
functions and since the slope of reaction functions is between zero and ¡1,
it follows that x¤ is unique.

The payo®s from the unique equilibrium of the subgame where both par-
ties intend to make demands are, therefore, given by vi (x¤) for i = 1; 2.

Now consider the subgame where only one party intends to make a de-
mand, and the other not. By subgame perfection, the uncommitted party
accepts, if the surplus exceeds the demand on the table (after the realiza-
tion of the surplus). Therefore, the party that intends to demand, say i,
will choose her demand so as to maximize vi(x; 0) at x = »i(0), yielding her
payo® Vi(0) (see (5)).

The party that waits will collect the residual, if it is nonnegative. Her
expected payo®, therefore, is

wi =
Z 1

»3¡i(0)
ui (z ¡ »3¡i(0)) dF (z) (7)

where i denotes the uncommitted party.
Finally, if neither party intends to make a demand, the surplus is split,

as before, in proportions ¯1 and ¯2 respectively, after it is observed. The
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expected payo®s obtained by both waiting are, accordingly, given by Wi (¯)
(see (3)), for i = 1; 2. This completes the derivation of equilibrium payo®s
from subgames.

3.2 Unique Equilibrium

Now, replace subgames by equilibrium payo®s from the subgames. The trun-
cation is a 2 £ 2 game with strategies ti = 0 if player i intends to make a
demand and ti = 1 if not, for i = 1; 2. Table 1 represents the payo®s for the
two players for all strategy constellations (see Proposition 2, (5), (7), and
(3)).

t2
t1

0 1

0 v1 (x¤)
v2 (x¤)

V1(0)
w2

1 w1
V2(0)

W1(¯1)
W2(¯2)

Table 1 The truncation in matrix form

The di®erence to the modi¯ed noisy Nash demand game is that parties
choose their demands conditional on whether or not the other party intends
to make a demand. This introduces a force towards symmetry. In particular,
condition (2) has no bearing on the solution any more. The key comparison
now is between vi(x¤) and wi. With a su±ciently concentrated distribu-
tion, the former yields approximately half the surplus and the latter almost
nothing.

Proposition 3 If F is "-concentrated, " > 0 is su±ciently small, and F
satis¯es the conditions of Lemma 1, then the F -delegates game has a unique
subgame perfect equilibrium, (t1; t2) = (0; 0). In this equilibrium, payo®s
correspond approximately to the Nash bargaining solution.

Proof. First, we show that x¤ = » (x¤) is an equilibrium of the subgame,
where both parties intend to make demands, if and only if x¤ maximizes the
Nash product

U (x1; x2) = u1 (x1) u2 (x2) [1¡ F (x1 + x2)] (8)
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Let ¹x 2 arg maxx¸0U (x). Then ¹x À 0 and U (¹x) ¸ U (x1; ¹x2) and U (¹x) ¸
U (¹x1; x2) for all x1 ¸ 0 and all x2 ¸ 0 imply that v1 (¹x1; ¹x2) ¸ v1 (x1; ¹x2) and
v2 (¹x2; ¹x1) ¸ v2 (x2; ¹x1) for all x1 ¸ 0 and all x2 ¸ 0. Therefore, ¹x = » (¹x).
Since the ¯xed point of » is unique by Proposition 2, it follows that ¹x = x¤.
Conversely, suppose that x¤ = » (x¤) holds. By interiority the ¯rst order
conditions (6) imply that @U=@xi = 0 for i = 1; 2 at x = x¤. Since U is
concave in x = (x1; x2) and also in each variable xi separately, for i = 1; 2,
this implies that x¤ 2 arg maxx¸0U (x). Hence, x = » (x) if and only if x
maximizes U (x), irrespective of how concentrated F is.

If F satis¯es (4) for successively smaller "'s, then it follows that x¤ =
» (x¤) approaches the maximizer of u1 (x1) u2 (x2)Â (x1 + x2), where Â (z) = 1
if z · ¹z and Â (z) = 0 for all z > ¹z. But this implies that x¤ À 0, even in
the limit as "! 0, because

max
x 0̧
u1 (x1) u2 (x2)Â (x1 + x2) ¸ u1 (¹z=2) u2 (¹z=2) > 0

So, both parties end up with a positive share of the surplus in the equilibrium
of the subgame (t1; t2) = (0; 0) for all " ¸ 0.

Consequently, as " approaches zero, the payo® vi(x¤) approaches a posi-
tive number, for i = 1; 2. The payo®wi approaches zero, because »3¡i(0) !"!0
¹z and all the mass becomes concentrated at z = ¹z, for i = 1; 2. Finally, Vi(0)
approaches ui(¹z) as " goes to zero, and Wi(¯) approaches ui (¯i¹z) < ui(¹z).
Therefore, by continuity, for all " su±ciently small, ti = 0 constitutes a
dominant strategy in the truncation, for i = 1; 2.

This establishes that with su±ciently precise information both players
will intend to make demands and obtain approximately the payo®s from the
Nash bargaining solution. But it is obtained by a somewhat more elaborate
procedure, where players can choose whether to demand simultaneously or
sequentially.

Nash's (1953) approach was to smooth the discontinuous payo® func-
tions of the Nash demand game and, thereby, select among the equilibria.
Uncertainty about the surplus is but one way to smooth. But, under this
interpretation of smoothing, why should the parties not wait until they know
(more about) the surplus? In Proposition 3 we argue that they will choose
not to wait, because under su±ciently small uncertainty it is a dominant
strategy to go for a ¯rst-mover advantage.

Again, the equilibrium is very strong, albeit in the truncation. In this
case it is not only strict, but even in (strictly) dominant strategies (in the
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truncation). Moreover, there are no other (weaker) subgame perfect equilib-
ria.

4 Large Uncertainty
For small uncertainty both models above yield equilibria where at least one
party makes a demand before uncertainty resolves, thereby creating an inef-
¯ciency by a positive probability that no deal is struck. But if uncertainty is
not negligible, risk aversion may induce players to avoid this risk of impasse.

More precisely, Lemma 1(c) states that more risk aversion shifts the reac-
tion function (against a given demand by the other party) downwards. This
implies smaller returns from an early demand to a more risk averse party.
Hence, more uncertainty may create an incentive to wait and see.

In both models waiting is a best reply against an opponent, who also
waits, if and only ifWi (¯) ¸ Vi (0). Below a su±cient condition is given for
this inequality to hold. Intuitively, the condition says that the probability of
impasse at a unilateral commitment must be large enough to make waiting
the more attractive strategy. (A proof is in the Appendix.)

Proposition 4 If F is continuous, the hazard rate h is nondecreasing, and

F (»i(0)) ¸ 1
1 + ¯i

(9)

holds for i = 1; 2, then both parties waiting is an equilibrium, both in the
F -demand game and in the F -delegates game.

To see what Proposition 4 says, consider the natural case ¯ = 1=2. Then
the right hand side of (9) is 2=3; the left hand side is the probability that
the pie falls short of the optimal demand »i (0) at zero. Hence, condition (9)
requires that the probability that the pie is smaller than the optimal demand
»i (0) is at least 2=3.

If this condition is satis¯ed for both parties, then in both bargaining
scenarios it is an equilibrium that both parties wait. This avoids the risk
that no deal is struck. But at the same time, more uncertainty may create
more equilibria. To illustrate this claim, we turn to a speci¯c example.

Consider distributions F in the class F (z) = caza, for all 0 · z · 1=c,
for some a > 0 and 0 < c · 1, with F (z0) = 0 = 1 ¡ F (z00) for all z0 · 0
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and z00 ¸ 1=c. Moreover, assume that both parties have constant relative risk
aversion, i.e., preferences are represented by ui(x) = xbi for some 0 < bi · 1,
for i = 1; 2. The coe±cient of relative risk aversion is 1¡ bi. If bi = 1, player
i is risk neutral.

Distributions from the above exponential family are naturally ordered
by stochastic dominance (Rothschild and Stiglitz (1970)). Independently of
the parameter c, a distribution F with parameter a stochastically dominates
another such distribution with parameter a0 if and only if a ¸ a0. This holds
for ¯rst-order and, therefore, also for second-order stochastic dominance.
Hence, a higher parameter a corresponds to an unambiguously more favorable
distribution or, more intuitively, to higher stakes.

The parameter c can be used to vary the moments of F . If c = a
1+a ,

the mean is ¯xed at 1 and the variance is a decreasing function of a, with
in¯nite variance as a goes to zero and zero variance as a goes to in¯nity.
If c = (1 + a)¡1

q
a=(2 + a), the variance is ¯xed at 1 and the mean is an

increasing function of a, with zero mean as a goes to zero and in¯nite mean
as a goes to in¯nity.

In this example three of the four relevant payo®s can be calculated ex-
plicitly. If both parties wait, payo®s are given by

Wi (¯) = aca
Z 1=c

0
(¯iz)bi za¡1dz =

a
a + bi

¯bii c¡bi for i = 1; 2. (10)

The distribution F has a monotone (nondecreasing) hazard rate if and
only if a ¸ 1. Hence, by Proposition 2, if a ¸ 1 there is a unique solution
for the subgame, where both parties intend to make demands. If 0 < a < 1,
reaction functions may not be monotone, but direct computation shows that
even in this case there is a unique x¤ such that »i

³
x¤3¡i

´
= x¤i for i = 1; 2.

Substituting this into vi from (5) yields expected payo®s

vi (x¤) =
a

a + b1 + b2

Ã
bi

b1 + b2

!bi Ã
b1 + b2
a + b1 + b2

! bi
a

c¡bi for i = 1; 2. (11)

It remains to solve the asymmetric cases. When choosing her demand against
an opponent, who waits, player i will maximize vi(x; 0) at

»i(0) =
1
c

Ã
bi
a + bi

! 1
a

for i = 1; 2, (12)
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which yields her expected payo®

Vi(0) =
a
a + bi

Ã
bi
a+ bi

! bi
a

c¡bi for i = 1; 2. (13)

The party that waits, on the other hand, obtains the expected utility wi
from the residual given by (7). The latter cannot be evaluated in terms of
elementary functions when bi < 1.

Now, consider the modi¯ed noisy Nash demand game. If the opponent
waits, then, using (10) and (13), one obtains

Vi(0) < Wi (¯) if and only if bi <
a

¯¡ai ¡ 1 ´ g(a; ¯i), (14)

for i = 1; 2. If bi < g(a; ¯i) and b3¡i > g(a; ¯3¡i), then there is a unique
strict equilibrium (rather than two, as in Proposition 1), where player 3¡ i
demands x3¡i = »3¡i(0) and player i waits for the residual, for i = 1; 2.
Hence, if the modi¯ed noisy Nash demand game has a unique asymmetric
equilibrium, the less risk averse party will tend to commit, and the more risk
averse party will tend to wait.

If both parties are su±ciently risk averse (bi ¼ 0 for i = 1; 2) and a > 0,
then both parties waiting is the unique equilibrium, because g(a; ¯i) > 0. If
both parties are su±ciently risk tolerant and the stakes a are very high, so
that bi > g(a; ¯i) for i = 1; 2, then the modi¯ed noisy Nash demand game has
again precisely two asymmetric (strict) equilibria, because lima!1 g(a; ¯i) =
0 < bi for i = 1; 2.

Next, consider the alternative model of endogenous timing. Here, that
both parties wait, that one intends to make a demand and the other not,
and that both intend to make demands can all be equilibria, depending on
parameter values.

That in equilibrium both parties wait occurs if a is small enough. For,
F (»i(0)) = bi=(a + bi) > 1=(1 + ¯i) if and only if bi > a=¯i, from (12).
Therefore, if a is small enough, so that bi > a=¯i for i = 1; 2, then both
parties waiting, (t1; t2) = (1; 1), constitutes a subgame perfect equilibrium of
the endogenous timing game by Proposition 4.

Asymmetric equilibria can obtain if 1 < a < 1:4, risk aversion is small,
and the split in the subgame, where both decided to wait, is su±ciently
balanced, i.e. ¯ ¼ 1=2. Numerical computation shows that at b1 = b2 = 1
and ¯ = 1=2 the di®erence vi (x¤)¡ wi is negative if and only if 1 < a < 1:4.
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Moreover, :854 < g (a; 1=2) < 1 for 1 < a < 1:4, so bi ¼ 1 > g(a; 1=2) ¼
g (a; ¯i) implies Vi (0) > Wi (¯) for i = 1; 2 from (14). Hence, by continuity,
for su±cient risk tolerance and ¯i ¼ 1=2 for i = 1; 2 that one party intends
to make a demand and the other not is a strict equilibrium of the truncation.
(The existence of a third, mixed equilibrium follows.)

That it can be an equilibrium that both parties intend to make demands
follows from Proposition 3, because distributions in the present class satisfy
(4) for " > 0 if "c + "1=a > a=(1 + a) > (1 ¡ ")1=a ¡ "c which becomes
1 + "c > 1 > 1¡ "c as a! 1.

Hence, in both models it entirely depends on parameters of preferences
and the prior which bargaining behavior will prevail. When uncertainty is
not negligible, \anything goes".

This also applies to duopoly models of endogenous timing.

5 Conclusions
This paper considers two natural modi¯cations of the Nash demand game
with noise. In the ¯rst variant, players decide to commit to a demand before
uncertainty resolves or wait until it has resolved. In particular, players are
allowed to remain silent. The e®ect of this change is dramatic. For small
uncertainty, the game has two strict equilibria, in each of which one party
demands approximately the whole surplus, and the other party waits for
the residual. This outcome resembles the subgame perfect equilibrium of
ultimatum bargaining and is very di®erent from the Nash bargaining solution.

In the second variant, players commit to whether or not they will make
a demand, but demands have to be stated only after each player has been
informed whether or not her opponent is also committed. In this variant,
the support for the Nash bargaining solution is restored. The \game with
observable delay", where subgames correspond to intentions of players, yields
a unique subgame perfect equilibrium, where both parties intend to make
demands and divide the surplus evenly, provided uncertainty is small.

Both models, however, yield an ine±ciency, because by stating demands
prior to the resolution of uncertainty players risk a breakdown of negotiations.
But, if uncertainty is small, this e±ciency loss is also small.

If uncertainty is large, \anything goes", i.e., the structure of equilibria de-
pends entirely on preference parameters and the prior distribution. Though
we conduct the analysis in the framework of bargaining, this caveat also
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applies to duopoly models of endogenous timing, that have a close enough
payo® structure. In duopoly models of endogenous timing, the shape of the
pro¯t function plays a formally analogous role as risk aversion and the shape
of F do here. For instance, the example from the previous section, with
a = b1 = b2 = c = 1, ¯ = 1=2, and F uniform on the unit interval, re-
sembles a duopoly model with linear demand function, with slope ¡1 and
intercept 1, and zero marginal costs. Therefore, by appropriately perturbing
demand and cost functions, one may generate both the Cournot (1838) solu-
tion and the equilibrium of the Stackelberg (1951) game. Hence, the caveat
that \anything goes" may also be of relevance for such oligopoly models.

6 Appendix
Proof of Lemma 1: (a) Di®erentiating (6) at a point where it equals zero
with respect to x yields

u00i (x) [1¡ F (x+ y)] ¡ 2u0i(x)f(x + y)¡ ui(x)f 0(x+ y)

= u00i (x) [1¡ F (x+ y)] ¡ 2ui(x)f(x + y)2

1¡ F (x + y) ¡ ui(x)f 0(x + y)

· u00i (x) [1¡ F (x+ y)] ¡ 2ui(x)f(x + y)2

1¡ F (x + y) + ui(x)f(x+ y)
2

1 ¡ F (x+ y)

= u00i (x) [1¡ F (x+ y)] ¡ ui(x)f(x + y)
2

1¡ F (x + y) < 0

because the assumption of a monotone hazard rate,

d
dx

Ã
f(x + y)

1¡ F (x + y)

!
=

f 0(x+ y)
1 ¡ F (x + y) +

Ã
f (x+ y)

1 ¡ F (x+ y)

!2

¸ 0

is equivalent to f (x+y)2= [1 ¡ F (x+ y)] ¸ ¡f 0(x+y) whenever F (x+y) < 1.
Therefore, the maximum of vi(x; y) is unique and given by the solution »i of
(6) with respect to x. By the implicit function theorem »i is a continuous
function of the parameter y. Implicitly di®erentiating (6) yields

d»i
dy

= u0i(»i)f (»i + y) + ui(»i)f 0(»i + y)
u00i (»i) [1 ¡ F (»i + y)] ¡ 2u0i(»i)f (»i + y)¡ ui(»i)f 0(»i + y)

· 0

because at a point where u0i = uif=(1 ¡ F ) holds, u0if + uif 0 = uif2=(1 ¡
F ) + uif 0 ¸ uif2=(1 ¡ F ) ¡ uif2=(1 ¡ F ) = 0, by the monotone hazard
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rate assumption, and @2vi=@x2 < 0 by the second-order condition. That
d»i=dy > ¡1 follows from u0i(»i)f(»i + y) > 0.

The ¯rst order condition (6) holds if and only if u0i(x) ¡ ui(x)h(x+ y) =
0, where h(z) = f(z)= [1 ¡F (z)] is the hazard rate. Since u0i(x)=ui(x) ·
u0i(0)=ui(0) and h(x) is nondecreasing, »i(0) is bounded and, by » 0i(y) · 0,
the whole function »i is bounded.

(b) Next, by the envelope theorem, the derivative of the maximum is
given by @Vi(y)=@y = ¡ui(»i)f(»i + y) < 0, as required in the second claim.

(c) To see the third claim, let ri(x) = ¡u00i (x)=u0i(x) denote the coe±cient
of absolute risk aversion. With the appropriate normalization the utility
function can be written as

ui(x) =
Z x

0
e¡

R ¿
0 ri(t) dtd¿

Now let r̂i(x) > ri(x) and set r¸i (x) = ¸r̂i(x) + (1¡¸)ri(x) for all x ¸ 0 and
all 0 · ¸ · 1. Implicitly di®erentiating the ¯rst-order condition

1¡ h(x+ y)
Z x

0
e
R x
¿
r¸i (t) dtd¿ = 0

(with the hazard rate substituted in) yields

dx
d¸

= h(x+ y)
R x
0

R x
¿ [ri(t) ¡ r̂i(t)] dt e

R x
¿
r¸i (t) dtd¿

h0(x+ y)
R x
0 e

R x
¿
r¸i (t) dtd¿ + h(x+ y)

·
1 + r¸i (x)

R x
0 e

R x
¿
r¸i (t) dtd¿

¸ < 0

Hence, the reaction function »i is decreasing in the risk aversion coe±cient.
This completes the proof of Lemma 1.

Proof of Proposition 4: If F is continuous, it can be written in terms
of its hazard rate by

F (z) = 1¡ e¡
R z
0 h(x) dx, for all z ¸ 0 (15)

By concavity and monotonicity of ui, integrating by parts, the monotone
hazard rate, and (6)

Z 1

0
ui (¯iz) dF (z) =

Z 1

0
ui (¯iz) h(z)e¡

R z
0
h(t) dt dz

¸ ¯i
Z 1

0
ui (z)h(z)e¡

R z
0 h(t)dt dz ¸ ī

Z »i(0)

0
ui (z) h(z)e¡

R z
0 h(t)dt dz
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+ ¯iui(»i(0))e¡
R »i(0)
0

h(z)dz = ī

Z »i(0)

0
u0i (z) e

¡
R z
0
h(t)dt dz

¸ ¯iu0i(»i(0))
Z »i(0)

0
e¡

R z
0
h(t)dt dz = īui(»i(0))h(»i(0))

Z »i(0)

0
e¡

R z
0
h(t) dt dz

¸ ¯iui(»i(0))
Z »i(0)

0
h (z) e¡

R z
0 h(t) dt dz = ¯iui(»i(0))

·
1¡ e¡

R »i (0)
0 h(z) dz

¸
.

Since Vi(0) = ui(»i(0)) exp
n
¡ R »i(0)

0 h(z)dz
o
, it follows that (9) implies

ī

1 + ¯i
¸ e¡

R »i(0)
0 h(z)dz ) ¯iui(»i(0))F (»i(0)) ¸ ui(»i(0))e¡

R »i(0)
0 h(z)dz

)
Z 1

0
ui ( īz) dF (z) ¸ ui(»i(0))e¡

R »i(0)
0

h(z)dz = Vi(0) .

This is precisely the condition required for the statement of the Proposition.
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