EUROPEAN
JOURNAL
o JEN OF OPERATIONAL
A RESEARCH
ELSEVIER European Journal of Operational Research 134 (2001) 582-591

www.elsevier.com/locate/dsw

Theory and Methodology

Optimal periodic development of a pollution generating tourism
industry

Alfred Greiner *, Gustav Feichtinger °, Josef L. Haunschmied ®*, Peter M. Kort ©,
Richard F. Hart] ¢
* Department of Economics, University of Bielefeld, Vienna, Austria
® Institute of Operations Research and Systems Theory, Vienna University of Technology, Argentinierstrasse 8, 1040 Vienna, Austria

¢ Department of Econometrics and Center, Tilburg University, Vienna, Austria
4 Institute of Management Science, University of Vienna, Vienna, Austria

Received 14 May 1999; accepted 12 October 2000

Abstract

This paper studies how environmental pollution affects optimal development of the tourism industry over time. The
planner has the possibility to stimulate tourism by carrying out service expenditures, like organizing events, advertising,
attracting seasonal workers, etc. The positive effect of these expenditures on tourism is negatively influenced by the
presence of pollution, since the latter element distracts tourists from visiting a particular region. We show that for a
particular scenario service expenditures, tourism as well as pollution exhibit a cyclical development over time. This
policy implies that when pollution is high, tourism activities are reduced in order to give the environment a chance to
recover. Environmentalists advocate this behavior, but in this paper, we show that this policy is also optimal from a
profit maximizing point of view. ® 2001 Elsevier Science B.V. All rights reserved.
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Many tourists want an experience with nature.
About 50 million visitors a year populating
Spanish beaches are significant contributors to air,
water and noise pollution. Up to 50 ski-lifts on a
single Alpine mountain, impacted by traffic jams
100 km long, with an entire valley floor paved for
parking clearly is an overused environment [1].

In many tourist sites, the rewarding phase of
development is characterized by a long and intense
growth of services that, sooner or later, seriously
impact the environment, thus creating rather crit-
ical situations.

Snow-making is one example of a service ex-
penditure that aims to raise the number of tourists.
In [2], several polluting effects of snow-making are
mentioned, like late snow cover, which leads to a
shortened growing and grazing season, increased
risks of gullying, mudslides and soil erosion, etc.
Another example is the investment in the hotel
business in Bulgaria and Hungary in order to
make these resorts competitive in the West Euro-
pean market [3,4]. In the latter paper, it is argued
that if the provincial hotels in Hungary are to
enhance their customer base, additional opportu-
nities must be exploited. Such opportunities exist
in terms of the arts, countryside and sports pur-
suits, historic monuments and country parks.
Additionally, for the increasing number of flexible,
often motorized, self-organizing international vis-
itors as well as the anticipated growing numbers of
domestic tourists, there will be the need for reli-
able, good quality hotel accommodation at mod-
erate cost in both Budapest and throughout the
country. In Nepal, it is expected that the number
of tourists visiting the Royal Bardia National Park
will continue to rise with investment in transport
infrastructure [S].

The present paper studies the negative impact
of tourists on environmental quality. It assumes
that more service expenditures lead to an increased
number of tourists which generates more income
for the region. At the same time pollution in-
creases with the number of tourists, while envi-
ronmental pollution in a region deters tourists
from visiting that region. This intertemporal trade-
off is studied in an optimal control framework.
The aim of this research is not to solve a concrete
problem by solving an empirically justified model

with calibrated parameters. Instead, we intend to
gain qualitative insights into the general problem
by using a rather simple model.

The rest of the paper is organized as follows.
Section 2 introduces the model, which is analysed
in Section 3. Section 4 contains a numerical ex-
ample, and Section 5 discusses the results. Finally,
Section 6 concludes the paper.

2. The model and its necessary optimal conditions

The aim of this paper is to study intertemporal
optimal service expenditures I(¢), measured in
Euro, of a tourism planner who invests money in
services in order to attract tourists. In general, we
omit the time argument ¢ if no ambiguity arises.
Examples of tourist services are the organization
of events, like concerts, exhibitions or the offer of
special programmes, like guided tours in the
mountains. Other flow expenditures which attract
tourists are the cost for seasonal workers, like
waiters, cooks in restaurants and personnel for ski-
lifts. A better trained staff costs more but, on the
other hand, leads to a higher quality of the services
offered for tourists, making the region more at-
tractive, Furthermore, we can think of advertising
expenditures and costs of maintaining the present
infrastructure.

These types of expenditures will be of particular
importance if the region under consideration has
been opened up. This means that our mode] is of
particular relevance for regions in which addi-
tional infrastructure like hotels or ski-lifts will not
raise the number of visiting tourists. Therefore, the
stock of infrastructure is taken to be constant. This
assumption enables us to focus better on the in-
teraction between tourism and the environment.

More concretely, we assume that the change in
the number of tourists T is a linear function of the
effectiveness of services in the sense of attracting
tourists. However, pollution P negatively affects
the attractive power of services I, since a polluted
environment distracts tourists from coming to this
region. We consider a general stock of pollution
without investigating pollution in depth. In our
model formulation pollution is an indicator of
environmental quality measured in physical units.
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As to pollution we adopt an S-shaped specification
implying that more pollution leads to a relatively
strong decline in the growth rate of tourists as long
as pollution is low. If the environment is already
heavily polluted an additional unit of pollution
merely leads to a small decline in the growth rate
of the number of tourists, given a certain amount
of service expenditures. This assumption can be
Jjustified by supposing that tourists visiting a pol-
luted region are primarily interested in the services
offered by the tourist region, and to a lower degree
in a clean environment. Therefore, additional
pollution will not deter many of them from visiting
that region. Further, we assume that a given
amount of investment is less effective, in case the
stock of pollution is higher. The number of tour-
ists, T, then evolves according to

T=gle™™ —bT, T(0)=Ty>0, (1)

with g > 0 a constant parameter indicating how
much one additional Euro raises the change in the
number of tourists visiting the region under con-
sideration, other things being equal. The parame-
ter v > 0 is a constant parameter determining how
much an additional unit of pollution reduces the
change in the number of tourists. The higher v, the
higher will be the negative effect of an increase in
pollution on the growth rate of tourists. The pa-
rameter b 2 0 gives the decline in the number of
tourists due to crowding effects. This means that a
region becomes less attractive when lot of tourists
visit that region, leading to a decrease in the
number of tourists.

Environmental quality is negatively affected by
the presence of tourism, implying that the stock of
pollution, measured in physical units, rises with
the number of tourists visiting the region. Fur-
thermore, there is a natural regeneration process
implying that nature is able to absorb a certain
amount of polluting activities without being
harmed. This is called the absorptive capacity of
nature and is supposed to be of the form
a(P) = mPe™*/*, m, P > 0. The parameter m is a
constant affecting the absolute value of the func-
tion a(P). The larger m the larger «(P). Further,
the specification of «(P) implies that for values of
P lower than P the absorptive capacity is low and

rises with P or, formulated in a different way, if the
environment is relatively clean, i.e., pollution is
low, a given number of tourists cause high dam-
ages. The absorption capacity reaches a peak for
P =P and declines again, meaning that nature
cannot regenerate if the stock of pollution is high.

Summarizing our discussion from above, the
evolution of pollution is given by
P=1T—-mPe """, P(0)=PF >0, (2)
with 7 > 0 a constant parameter giving the rise in
pollution due to an additional tourist.

The objective of the tourist planner is to max-
imize the discounted stream of cash flow generated
by the tourism industry. As to the planner we
suppose that it consists of representatives of dif-
ferent interest groups, like investors and the local
government who decide together about the
amount invested in the region under consideration.
The cash inflow consists of tourism revenue, p7,
while the cash outflow equals the service expendi-
tures, which are assumed to be a quadratic func-
tion of the services. This takes into account that
the higher the services, the more the overhead
generated. Hence, the intertemporal objective be-
comes

max / e™"(pT — (e + 0.5¢,1%)) dt, (3)
0

subject to (1) and (2). We assume that the income
per tourist, p, is determined exogenously, which
can be justified by the presence of strong compe-
tition among different tourist regions. » is the dis-
count rate and should be in the range of the return
on investment of comparable investment projects
or of the return on capital in the tourism sector.

To find the optimal solution we form the cur-
rent-value Hamiltonian (for an introduction to the
optimality conditions of Pontryagin’s maximum
principle see [6] or [7]) which is

H(:) = pT — (¢l +0.5¢2I*) + A (g]f:‘"zp2 — bT)

+ Jo(cT — mPe~"/P) (4)

with 4, i=1,2, shadow prices of T' and P, re-
spectively. 4; has the dimension of Euro per
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number of tourists and 4, has the dimension of
Euro per physical units.

The necessary optimality conditions are given
by

OH (- L e _

¢ a1( ) =0 < [=(ige"" =)/, (5)

L RH() .

AL = P4 aT " (6}
0H (.

is :;-;2—%. (7)

If the maximized Hamiltonian was concave in P,
the necessary optimality conditions would also be
sufficient given that the transversality condition
lim,_, (4 T + A:P) = 0 s fulfilled. Since, in our
model, the maximized Hamiltonian is not globally
concave in P, the necessary conditions are not
sufficient for optimality. Therefore, the trajectories
satisfying the necessary conditions are candidate
optimal solutions.

The expenditures for services I are determined
by the shadow price of tourists A; and by pollution
P. The more an additional tourist increases the
cash flow the higher the service expenditures will
be. Further, pollution negatively affects the num-
ber of tourists and, thus, lowers the cash flow.
Therefore, the shadow price of pollution is ex-
pected to be negative. Moreover, pollution has a
direct negative effect on the service expenditures
which can be seen from (3).

3. Analysis of the canonical system

The dynamic behaviour of our model is given
by (1), (2), (6) and (7). It should be noted that
investment at any moment in time is a function of
the shadow price 4; and of pollution P and is given
by (5). Thus the dynamics is completely described
by the following autonomous differential equation
system:

P =g((hge™ —a)/e)e ™ b, (@)

P =1T - mPe™"", (9)

3RS

A= (r+bih = p~ar, (10)
/i: =z I'/‘Z: -+ 2/‘1 ((/’.Lge":”: - c;)/c:)g\':Pe' v

+ some™ 0 — jampe " F /P, (11

Assuming that a stationary point (T, P", 4, . A;)
exists, the local dynamics around that stationary
state is determined by the eigenvalues of the Ja-
cobian matrix at this stationary point. The Jaco-
bian matrix, i.e., the matrix of the first derivatives
of (8)~(11) with respect to (T. P, 4;, i) at the
stationary point, is given by

—-h a glem:m.” ’-/02 0

J = T axs 0 0
0 0 b+r -1
0 [¢EN asz a
1
with
~4g” AV PT 2gev Pt
ap = - -,
12 JVSETSE PR
m . mpP~
s 7= e b |
gP /P PP
P A _p M
v_z):fﬂl zg/'] ("‘C( +g/'| et P >“~
gy = —=—= 5 3 -
Pef /P caeP
i s a3 2y A
ASmPT 4o, giivHPY) 2g4
2 o= 1 — &S]
Pzel"ﬂ" ‘P c_‘e\:«l’"‘ e Cle\‘:ll"“' vt
4g° A7 v P A
Nl it — 2 — VP,
i c,‘el\'~lf" ) Cwe\'-(f’ )T
m mP”
Ay =r+

eP /P PPt P’

The eigenvalues of that matrix are given by

r " K K\’
l‘x.:.u:;:t (;) "'7—:& (-;) —detJ,

-

with K defined as

~b ge P ey Jan O an 0

0 bh+r
= —b(b+r) + anay — 2tay: (see [8]).

K=

Ay ady
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Looking at the formula for the eigenvalues, one
immediately realizes that the eigenvalues are
symmetric around /2. Since » > 0 holds, this im-
plies that the system is never completely stable (in
the sense that all eigenvalues have negative real
parts), it can be at best saddle-point stable. From
an economic point of view, saddle-point stability
means that all variables are constant in the long
run. That is there is a constant level of investment
which is chosen such that the number of tourists
visiting the region remains constant too. Further,
the stock of pollution is also constant because the
pollution caused by tourists just equals the ab-
sorptive capacity of nature. In this case, we may
speak of a sustainable development since the en-
vironmental quality remains constant in the long
run. The transitional behaviour of the variables in
case of saddle-point stability is characterized by
unimodal time paths if the eigenvalues are real. If
the eigenvalues are complex conjugate, however,
the variables dispose cyclical oscillations until the
stationary point is reached. This means that there
are periods with high investment followed by pe-
riods with low investment. But, in the long run,
investment is constant and just high enough so
that the number of tourists is kept at a constant
level.

Besides convergence to the stationary state in
the long run, the system may show persistent en-
dogenous cycles. This behaviour can be observed if
the dynamic system (8)-(11) undergoes a Hopf
bifurcation (for a complete statement of the Hopf
bifurcation theorem see, e.g., [9]).

Let us find out whether cyclical development of
tourism and pollution may be observed in our
model. From the formula of the eigenvalues (see,
e.g., [8]) we know that K > 0 and detJ > 0 are
necessary conditions for two purely imaginary ei-
genvalues and, thus, for the emergence of a Hopf
bifurcation which leads to stable limit cycles.
Looking at the constant K we see that there are
two effects which may generate a positive K. First,
if P > Pas, can become positive and, thus, the
product asyas has a positive sign for  sufficiently
large. This condition states that pollution must be
in the range where an additional unit of this
variable leads to a decline in the absorptive ca-
pacity of nature. The second effect which may lead

to a positive X is a1 < 0. This condition states that
an increase in the level of pollution has a negative
impact on the evolution of tourists in the steady
state. The determinant is calculated as

detJ = —(bazz -+ T(llz)((b -+ 7‘)6144 + w43)
+ rza4zg2e’2"2(Pﬁ)z/cz.

For a» >0, a4 >0 and ap» <0, ayp >0 and
bax + tay; < 0 are sufficient for a positive sign of
the determinant.

The economic interpretation of cyclical strate-
gies in this model is as follows. A high level of
services attracts tourists and thus leads to an in-
crease in the number of tourists. However, more
tourists also cause more pollution which exerts a
negative influence on the number of tourists and
the latter will decline. This effect is intensified by
the fact that more pollution also reduces the ef-
fectiveness of service expenditures, so that they are
also reduced. When the number of tourists de-
creases, pollution declines, which attracts more
tourists both directly and indirectly by raising
service expenditures. As a consequence, the num-
ber of tourists will rise again. Below, we will give a
more detailed discussion of the limit cycle using a
numerical example.

4. A numerical example

In order to illustrate the possibility of persistent
cycles we resort to a numerical example and
choose the following parameter values:
v = v/0.195/physical unit, g = 0.85 tourist/Euro,
P=m=1, t=0.816 physical units/tourist,
b=0.075, p= 0.1, ¢; =0, ¢; = 0.03225. The dis-
count rate » is the bifurcation parameter.

First, we study the question of how many sta-
tionary states exist. To do so, we proceed as fol-
lows. We solve Eq. (9), P =0, with respect to T
giving T = T(P, -) at the stationary state, with the -
standing for the parameters which take the values
mentioned above. Then we insert 7= T(P,-) in
Eq. (8), 7 = 0, which then depends on A, and P.
Solving this equation with respect to A, gives
A= 4(P, :) at the stationary state. Next, we solve
equation 4, = 0 (10) with respect to A, yielding
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Ay = Aa(4(P,+),-) at the stationary state which can
be written as A, = A:(P,-). Inserting A((P.-) and
#2(P,-) in the left-hand side of Eq. (11) gives the
following function, which we define as f(P.r)
(computations were done with Mathematica, see

Q)

£(P,r)=0.000147061e 2+ 017 p
1.22549 ( —0.1+0.00410264e 039 p(() 075 + r))

3

+ oF

1.22549P( —0.1+0.00410264e "~ p(0.(75 + r))
ef
n 1.22549;-( — 0.1+ 0.00410264¢ 7~ P(0.075 + 1))

Setting f(P,r) = 0 and solving this equation with
respect to P gives a stationary state P™ = P(r) for
our dynamic system (8)-(11). The solution of
f(P,r) =0 crucially depends on the value of the
discount rate r. Fig. 1 shows the combinations of P
and r which satisfy f(P,#) = 0. In particular, we
can identify three different regions:

fPr)=0

°oo o000

0.4
0.3%

0.3
0.24 f(P.,l') =0

» P
4.15 4.2 4.25
0.15

()

L. for r € (0.r) there exists one stationary state,
(Fig. 1(a)

. for r & {r).r) there exist three stationary states,
{Fig. 1(b)):

3. for r € (r.. x) there exists one stationary state.

(Fig. 1(c) and (d)).

where (= 0.071) and (= 0.1361) are the values

for r giving exactly two stationary states. In Fig.

[(b) one realizes that there exist three Ps such that

)

F(P.r} =0 holds for an » € {r.r) fixed.

In the ensuing analysis. we perform a numeric
study of the eigenvalues for sufficiently dense set of
discrete values of r and infer general statements
from these numerical results. In particular. we are
interested in the question of whether endogenous
persistent cycles may occur for certain values of
the discount rate.

In region 1, we set r=20.01, r=0.03 and
r = 0.07. With these values for the discount rate the
stationary state is saddle-point stable. For exam-
ple, for » = 0.03 the stationary point is given by
T = 0449177, P° = 1.08824, 4] = 0.00238647.
Ay = —0.122242 implying [ = 0.049929. The

(b)

fiPr)=0

Fig. 1. Combinations of » and P giving a stationary point for (8)-(11).
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eigenvalues are given by ., =10551312 &
0.553901v/=1 and p,, = ~0.521312 £ 0.553901
V1.

To study the dynamics for region 2, we first set
r = 0.13. For this value of the discount rate the
stationary points are given by T'* = 0.0701502,
P =4.32483, A" =0.345777, /)" = ~0.0356811,
with the eigenvalues p,, = 0.133889 4+ 0.0959579
V=1 and p,, = —0.00388928 £ 0.0959579+/—1.
The second stationary point is given by
2% =(.274707, P?* =2.34966, A" =0.00792001,
A% = —0.120559, with the eigenvalues pu ,=
0.065 4+ 0.322338v/—1, u; =0.321793, and p, =
—0.191793. The third stationary point, finally, is
T =0.376025, P =1.72896, A" =0.00403908,
}é” = —0.121534, with the eigenvalues p ., =
0.335492 & 0.303857v/—1 and 3, = —0.205492 +
0.303857+/—1. This implies that the first and third
stationary points are saddle-point stable while a
one-dimensional invariant stable manifold char-
acterizes the second stationary point. Hence,
practically it is not possible to find initial states
with an optimal path converging to the second
stationary point.

In general, it cannot be determined as to con-
verging to which of the two (saddle-point) stable
stationary points yields the higher value of the

r=0.11295

integral (3). To be exact the existence of two sad-
dle-point stable stationary points does not auto-
matically mean that there are two bounded
candidate optimal solutions. All this may depend
on the initial conditions as to T and P. On the
other hand it is also feasible that the initial values
of T and P are such that converging to the two
stable stationary states yield the same value for (3),
implying that the planner is indifferent between the
two stationary states. Up to now such indifference
points (first occurrence in the literature cf. [10])
have not often been computed. This field is an
important topic for future research.

Varying the discount rate, we observe for
F = ey, = 0.1130763 a Hopf bifurcation at the
first stationary point which gives rise to stable limit
cycles (for these computations we used the soft-
ware LOCBIF [12]). For values of the discount
rate smaller than the critical value r.y, stable limit
cycles can be observed. Fig. 2 shows the limit cycle
in the P-T-I phase diagram with r = 0.11295, i.e,,
with a discount rate of about 11.3%. For
r=0.11295, the first stationary point is given by
T'* = 0.070462, P'* =4.31906, A" = 0.340623,
A% = —0.044093. For r = 0.11295, the second and
third stationary points are unstable and saddle-
point stable, respectively, that is the qualitative

0.225

0.22 I

0.215
0.072
0.07
0.068 T

Fig. 2. Phase portrait of the I-T—P-space.
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dynamics does not change for these stationary
points.

If we further decrease » the first stationary point
becomes unstable, that is the real parts of the ei-
genvalues of the Jacobian evaluated at this rest
point become positive. The second and third sta-
tionary points remain unstable and saddle-point
stable, respectively, when the discount rate is de-
creased (we computed the eigenvalues with r be-
tween » = 0.075 and r = 0.11 using a step size of
0.005).

In region 3, there exists one stationary point
which is saddle-point stable for about r < 1.812.
Setting # = ryy, = 1.811854 another Hopf bifur-
cation can be observed which leads to stable limit
cycles. (Interpreting one time period as one year
implies that the annual discount rate is about
180%. That is the planner is extremely myopic in
this case.).

Discount rates of this or higher size mean
practically an infinite discount rate. However, for
the sake of completeness we add the mathematical
results on large-sized discount values. Increasing
the discount rate further, the system becomes un-
stable and for » =y, = 36.47188 a third Hopf
bifurcation occurs which generates stable limit
cycles. The cycles are observed for values of the
discount rate smaller than the critical value rey,.
For discount rates larger than ryy, the Jacobian

has complex conjugate eigenvalues with two neg-
ative real parts, i.e., it is a saddle-point. For r be-
tween 69 and 70 the eigenvalues become real, with
two having negative signs and two having positive
signs.

5. Discussion of the limit cycle

We now give an economic description of the
way in which persistent oscillations come about.
We focus on this solution since there the economic
interpretations are not trivial. Fig. 3 shows the
cyclical time paths of tourist services, the number
of tourists and the level of pollution with r set to
r=0.11295.

The cycle can be divided into several phases.

Phase 1. We start with a clean environment and
a medium number of tourists at ¢ = #,. Since P is
small, a given level of service expenditures leads to
a large number of tourists. In this short phase all
three variables, i.e., P, I, and T increase.

Phase 2: After the services [ ‘peak’ at time £, it
is reduced in order to reduce costs and to prevent
the environmental pollution from rising beyond a
(justifiable) level. Due to the still relatively high
level of tourist services, the number of tourists, T,
still increases, and so does pollution, P. This phase

P I T
4.33 0.225 | {0.073
4.32 0.221 |} {o.071
4.31 0.218 | 0.069

T 20 30 40 '5'0 50
r=0.11295 t

Fig. 3. Time paths of the control variable I, and the state variables T and P.
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ends with the ‘tourist boom’ in #. These two
phases might be denoted as ‘booming regime’.

Phase 3: Now, both I and T fall, while P still
increases. Saturation of tourism is reached, but
pollution increases until it reaches its peak at time
ts. This holds because the number of tourists is still
relatively high so that pollution does not yet de-
cline. Further, a rising level of pollution negatively
affects the absorptive capacity of nature which
tends to raise pollution.

Phase 4: From now on the development is the
mirror image of the first three phases. Therefore,
we only give a short description. Shortly after #,
ie., in £, tourist service expenditures are mini-
mized to counter-act the high pollution. All these
variables, I, T, and P decrease during this period.

Phase 5: Due to high pollution and low service
expenditures increasingly more tourists are de-
terred from visiting the region we consider. Thus,
at the end of this period the number of tourists
reaches its minimum. Definitely, this and the for-
mer phases might be denoted as ‘declining regime’.

Phase 6: In this period, both I and T increase,
while P still decreases. This means that we have a
recovery governed by the same ‘spirit of launch-
ing’. In #; the cycle starts anew.

The essence of this ‘endless story” is that a
profit-maximizing planner will protect the envi-
ronment by an adequate, i.e., in our case an os-
cillatory service expenditure policy. Or, to put in
other words: even if environmental quality is no
explicit target of the planner, it plays implicitly an
important role by attracting tourists (or by deter-
ring them from a polluted area).

6. Conclusion

In this paper, we considered the optimal service
expenditure policy a tourism planner follows. As-
suming that tourists are attracted by tourist ser-
vices and a clean environment which, however,
suffers from a large number of tourists we could
demonstrate that an oscillatory service expenditure
policy may be optimal. This means that, in the
long run, the planner does not invest a constant
amount in tourist services. As a consequence, the
number of tourists as well as the state of the en-

vironment show cyclical oscillations, too. This
implies that regions, which are less attractive for
some time, may recover and attract tourists in the
future. It should be mentioned that the cash flow
generated by tourists and, thus, the revenue gen-
erated by the tourism industry in this region, is
also subject to oscillations given the cycles in the
number of tourists.

As to the formulation of our model, other
assumptions would make sense, too. First, it
could be imagined that a stock of tourist infra-
structure attracts tourists. In the model, this
would mean that a third state variable must be
added. Further, the level of pollution could enter
the objective functional directly, i.e., the planner
takes into account that a clean environment
yields immediate benefits for the population in
the region under consideration. We are aware
that our version is just one possibility to model
the interaction between investment in tourist
services, the number of tourists and the state of
the environment. But we think that the model,
although highly stylized, does make sense and
vields insights into the problem studied in this
paper. Other, possibly more complex, variants are
left for future work.

A last point we want to mention concerns the
empirical relevance of our model. Looking at some
tourist regions in the Alps it seems to be true that
tourist regions are characterized by flourishing
phases followed by phases of stagnation. However,
to our knowledge there do not exist thorough
empirical studies which try to explain this devel-
opment empirically. This is an open but never-
theless important topic which is also left to future
work.
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