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Abstract

In this paper, a non-di¤erentiability is identi�ed as a new mechanism that

creates history dependence in dynamic economic models. A unique characteristic

is that this occurs although no unstable steady state exists. This is shown by

studying a capital accumulation model in which the revenue function exhibits a

kink. It can be expected that history dependence will occur in other models with

non-di¤erentiabilities as well.
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1 Introduction

Recent work on dynamic economics has stressed the fact that economic outcomes may

be history-dependent. The term history-dependence has been made popular by the work

of W.B. Arthur describing economic paths of new technologies that exhibit increasing

returns and positive feedbacks (see, e.g., Arthur 1989, 1994). Positive feedbacks may

arise locally, and can already be found in early models in development economics using

convex - concave production functions. From the onset it has been recognized that

such convex-concave production functions may imply multiple steady states - usually,

two saddle-points and one unstable middle steady-state in between. As a consequence,

the long-term behavior of the economy will be history-dependent. According to the

conditions prevailing in the �rst phases of development, the economy will converge to

either one or the other saddle-point. Consequently, there exists a threshold where the

dynamics leading to these two di¤erent long-term solutions separate. Following the

pioneering articles of Skiba (1978) and Dechert and Nishimura (1983), such thresholds

have been occasionally called �Skiba points�in the economic literature (see, e.g., Brock

and Malliaris, 1989, and Feichtinger and Hartl, 1986). Recently, these thresholds have

often been called DNS-points because of the contributions of Dechert, Nishimura and

Skiba to the discovery of this phenomenon of thresholds.

History-dependence means that, depending on the initial conditions, the optimal solu-

tions of the dynamic system considered converge towards two or more distinct attractors.

These attractors can be saddle-points or boundary equilibria such as the origin (if the

feasible state-space is bounded by non-negativity conditions). In higher-dimensional

models, limit cycles may also occur as attractors. The existence of two or more steady-
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states usually implies the existence of at least one unstable steady-state. Furthermore,

the existence of optimal paths converging to di¤erent attractors implies the existence

of a threshold, i.e. of a DNS-point, on which the decision-maker is indi¤erent between

choosing one of these optimal paths.

A common denominator of most existing contributions in this area is that a non-

concavity is introduced to explain history-dependent outcomes. Although there are

several economic characteristics leading to �convexities�with respect to a state, �increas-

ing returns�dominates by far. The hypothesis of increasing returns is picked up also in

other areas, e.g. in regulatory economics and in endogenous growth theory pioneered

by Romer (1986); see also Barro and Sala-I-Martin (1995), Ciccone and Matsuyama

(1996), or Santos (1999). Of course, increasing returns are capable of generating history-

dependent outcomes too, even for the e¢ cient, i.e. �planned�, economy; see Matsuyama

(1991) and Ladron-de-Guevara et al. (1999).

In this paper we identify a yet unknown mechanism that causes the occurrence of history

dependence. In particular we show that a non-di¤erentiability with respect to the state

variable in a dynamic economic problem can also be a source for multiple long run

equilibria. A remarkable characteristic of the resulting solution is that this history

dependence appears without simultaneous occurrence of an unstable steady state. To

the best of our knowledge this is a completely new feature. We apply the well known

capital accumulation framework to make our point but our analysis is not restricted to

this application area.

The paper is organized as follows. Sections 2 contains the general analysis of a capital

accumulation model. The existence of the DNS-point is veri�ed in a linear quadratic
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framework in Section 3, and Section 4 concludes.

2 General Analysis

It is convenient to adopt the capital accumulation framework for our model. Let the

state k denote the capital stock and the control u be the investment rate. The revenue

function is given by r(k) while the investment costs are c(u). The discount rate is �

while � denotes the depreciation rate. This leads to the following model:

max
u

Z 1

0

e��t [r(k)� c(u)] dt; (1)

_k = u� �k; k(0) = k0; (2)

where labor is assumed to be proportional to capital stock so that it does not need to be

explicitly included. The function c (u) includes the costs of acquisition and adjustment

costs. It is convex and increasing in u; i.e., c (0) = 0; c0 > 0; c00 > 0: The function r (k) ;

with r (0) = 0; is increasing, r0 > 0; while the second order derivative is negative, r00 < 0:

So far everything is standard; see, e.g., Lucas (1967) and Gould (1968).

The new element we introduce is that at one point, k = �, the function r is not di¤er-

entiable in such a way that the �rst order derivative jumps upwards: r0 (�+) > r0 (��) :

The interpretation, for instance1, can be that the �rm has the possibility to produce

using some old software or technology that the �rm owns, which gives revenue r1 (k).

1An alternative interpretation would be that when capital stock and, in turn, production is low,
only the home market is served. If the production rate is larger it pays for the �rm to serve a second
market but then a �xed cost per unit of time is incurred because of, e,g, new outlets, new personnel,
etc.
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In addition, the �rm has the option to license or subscribe to a new software or tech-

nology which makes capital stock more productive, in the sense that it leads to a higher

revenue r2 (k) as well as a higher marginal revenue, r02 (k) > r01 (k). It is only cost

e¤ective to do so if the capital stock is su¢ ciently large, because of the existence of

a �xed license or subscription fee, g: Then, it holds that r1 (�) = r2 (�) � g and that

r0 (�+) = r02 (�) > r
0
1 (�) = r

0 (��) so that

r(k) = r1 (k) for k � � and

r(k) = r2 (k)� g for k > �.

Pontryagin�s maximum principle is used to obtain the necessary optimality conditions.

The Hamiltonian is

H = r (k)� c (u) + q[u� �k]

which leads to [see Clarke (1983)]

@H=@u = 0 i.e. c0 (u) = q: (3)

and

_q = �q � @H=@k = (�+ �)q � r0 (k) : (4)

Since Huu < 0, maximization of the Hamiltonian yields a unique solution. It follows

that u is continuous over time (see Feichtinger and Hartl 1986, Corollary 6.2).
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As usual, we can obtain from the previous two equations that

_u =
1

c00 (u)
[(�+ �)c0 (u)� r0 (k)] : (5)

The above di¤erential equations (4) and (5) are not valid for k = �: There, the Hamil-

tonian is non-di¤erentiable and Clarke�s (1983) maximum principle prescribes that the

adjoint equation is replaced by the di¤erential inclusion

_q 2 [(�+ �)q � r02 (�) ; (�+ �)q � r01 (�)] : (6)

This implies that for k = �; equation (5) must be replaced by

_u 2
�

1

c00 (u)
[(�+ �)c0 (u)� r02 (k)] ;

1

c00 (u)
[(�+ �)c0 (u)� r01 (k)]

�
: (7)

We continue by applying the phase diagram analysis in the state-control space. The

dynamic system is given by (2) and (5). The _k = 0 isocline, u = �k; is upward sloping.

The _u = 0 isocline is decreasing almost everywhere:

@u

@k

����
_u=0

=
r00

(�+ �)c00
< 0 for k 6= �:

while it exhibits an upward jump at k = �:

From the above results on the shape of the isoclines it follows that one or two positive

equilibria can exist. These equilibria are always saddle point stable. This follows from

the general observation that an equilibrium is a saddle point if and only if the derivative
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of the _k = 0-isocline is larger than the derivative of the _u = 0-isocline there:

det

2664
@ _k

@k

@ _k

@u
@ _u

@k

@ _u

@u

3775 < 0 i¤ du

dk

����
_k=0

= �
@ _k
@k

@ _k
@u

> �
@ _u
@k
@ _u
@u

=
du

dk

����
_u=0

;

because @ _k=@u = 1 > 0 and @ _u=@u = � + � > 0: Since we already found that the

_k = 0-isocline is increasing and the _u = 0-isocline is decreasing, both steady states are

saddle points. Usually, between two saddle points one would expect an unstable steady

state. Here, this is not the case and we will demonstrate that the kink in the revenue

function at k = � plays the same role as an unstable steady state.

We are interested in the case where two steady states exist. Proposition 1 identi�es the

scenario in which this happens.

Proposition 1. Two equilibria exist i¤

r01 (�)

�+ �
< c0 (��) <

r02 (�)

�+ �
: (8)

The proof directly follows from (2) and (7). The corresponding phase diagram is depicted

in Figure 1.

Insert Figure 1 about here

At k = � the jump in the _u = 0 isocline occurs and thus the trajectories exhibit a kink

there. The bold lines represent the optimal policy functions while the dotted lines are

candidates which are not optimal. The thin solid lines are the unstable branches or

other trajectories of the dynamical system and the dash-dotted lines are the isoclines.

As can be inferred from Figure 1, there are two candidate long run equilibria, �kL and
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�kH . For initial values of capital stock lower than kLB it is always optimal to converge

to �kL, while convergence to �kH always occurs for k0 > kUB. In the �overlap region�

between kLB and kUB there are two solution candidates, because either convergence to

�kL or convergence to �kH is possible.

Using the same arguments as in Dechert (1983), in the �overlap region�between kLB

and kUB a unique threshold kDNS can be identi�ed where the �rm is indi¤erent between

the two candidate policies. Then, for initial values of capital stock lower than kDNS it is

always optimal to converge to �kL, while convergence to �kH always occurs for k0 > kDNS.

Note that � contrary to Dechert (1983) � this threshold exists in the absence of an

unstable steady state.

Figure 1 covers the case that the overlap region does not contain one of the two steady

states, i.e., �kL < kLB < � < kUB < �kH . The following proposition explains that in the

remaining cases where two steady states exist, only one of them is a long run optimal

equilibrium.

Proposition 2. If a steady state is contained in the overlap region, convergence to that

particular steady state can never be optimal.

Proof. It is known from Dechert (1983) that the minimum of the Hamiltonian H for a

�xed value of k is reached at the _k = 0 isocline. Furthermore the value of the objective

functional evaluated at any point of a bounded solution candidate equalsH=�; see Michel

(1982). Now consider e.g. the situation where at �kL a solution candidate converging to

�kH exists. Then from the above we can conclude that this solution candidate o¤ers a

higher value of the objective than the other solution candidate which is staying at �kL.�

In the next section we treat an example in which the above results are illustrated while
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most values can be computed analytically.

3 Example

Following Barucci (1998) we assume quadratic revenue and cost functions. The di¤er-

ences are that the second order derivative of the revenue function is negative and we

also assume that the revenue function has a convex kink:

r(k) = max
�
aLk � bk2; aHk � bk2 � g

	
; c(u) = cu+ du2:

We require all parameters aL, aH , b, c, d, g, �, and � to be positive and aL < aH :

The characteristic values of the capital stock, for which revenue r(k) reaches its maxi-

mum, and where the kink occurs, respectively, are

kmax =
aH
2b
; � =

g

aH � aL
: (9)

We restrict ourselves to the scenario where revenue is increasing in the relevant region

0 < k < kmax, implying that:

g <
aL (aH � aL)

2b
: (10)

In this case the _k = 0-isocline is the upward sloping straight line u = �k and the

_u = 0-isocline is given by the downward sloping straight line(s)

u =
1

2d(�+ �)
[ai � (�+ �)c� 2bk]; (11)
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where ai equals aL for k < �; and aH for k > �; respectively. There is an upward jump

of size aH�aL
2d(�+�)

at k = �.

The steady states must satisfy:

�ki =
ai � (�+ �) c
2�d (�+ �) + 2b

: (12)

for i = L;H. In order to have multiple steady states, we impose aL > (�+ �) c; because

otherwise �kL becomes negative. It is easily obtained that �kL < � < �kH holds i¤

(aL � (�+ �) c) (aH � aL)
2�d (�+ �) + 2b

< g <
(aH � (�+ �) c) (aH � aL)

2�d (�+ �) + 2b
: (13)

and that values of g in this interval automatically satisfy (10).

Apparently, in each of the two regions k < � and k > � the canonical system formed by

(2) and the isocline _u = 0 is linear and can be solved analytically. Following Hartl and

Kort (2000), we obtain that

k = �ki +
�
k0 � �ki

�
e�1t (14)

u = ��ki +
�
k0 � �ki

�
(�+ �1) e

�1t (15)

where �1 is the negative eigenvalue of the Jacobian of the dynamic system (2) and the

isocline _u = 0:

�1 =
��

q
(�+ 2�)2 + 4b

d

2
(16)

From (14) and (15), we also obtain analytical expressions for the candidate policy func-
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tions (saddle point paths), showing that the saddle point paths are decreasing straight

lines:

u = ��ki +
�
k � �ki

�
(�+ �1) (17)

We now investigate the location of the DNS-threshold and establish the following result.

Proposition 3. The location of the DNS-threshold satis�es

If g <
1

2

�
�kH + �kL

�
(aH � aL) , then kDNS < k� < � (18a)

if g =
1

2

�
�kH + �kL

�
(aH � aL) , then kDNS = k� = �, and (18b)

if g >
1

2

�
�kH + �kL

�
(aH � aL) , then kDNS > k� > �. (18c)

where

k� =
g � d�21

�
�k2H � �k2L

�
(aH � aL)� 2d�21

�
�kH � �kL

� (19)

Proof. Here we only give an outline of the proof, which can be found in full detail

in Hartl and Kort (2002). First, we compute the objective values �L when starting

from k0 < � converging to equilibrium �kL and �H starting from k0 > � converging to

equilibrium �kH . This yields

��L (k) =
�
aL � c�� 2d�21�kL

�
k +

�
d�21 � d�2 � b

�
k2 + d�k2L�

2
1; (20)

��H (k) =
�
aH � c�� 2d�21�kH

�
k +

�
d�21 � d�2 � b

�
k2 + d�k2H�

2
1 � g: (21)

Equating these, and solving for k; yields (19). We note that k� is only an approximation

of the DNS point, since �L and �H only hold on one side of �. On the other side of �;
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the extension of this solution candidate yields a higher value of the objective function

since - because of the kink - revenue is, in fact, higher than assumed in �L and �H .

Thus, we know that kDNS < k� < � if k� < � and that kDNS > k� > � if k� > �. Only

if k� happens to coincide with �, then kDNS = k� = �. The inequality k� Q � can be

reformulated as (18a-c), which completes the proof. �

Note that �1 in (16) and thus also �kH and �kL do not depend on the parameter g which

can be chosen independently. Thus, for any given set of the other parameters, values of g

small enough lead to a situation that the smaller steady state, although strictly positive,

is no equilibrium since it is always optimal to converge to the larger steady state being

the only long run optimal equilibrium here. On the other hand, a su¢ ciently large g

will lead to the situation that k� > �kH , implying that it is never optimal to converge to

the larger steady state. In the next subsection we provide a numerical example in which

the DNS-point occurs.

3.1 Numerical Examples

We now identify di¤erent scenarios by choosing appropriate parameter values. Let us

assume aL = 5; aH = 10; b = 0:1; d = 1; � = 0:2; � = 0:1; and c = 1: From (10) we need

g < 125 to have the revenue function increasing for k < �.

3.1.1 Two equilibria

To consider the case of two equilibria, we choose g = 110: This gives the characteristic

values kmax = 50; � = 22; �kL = 14:688; �kH = 30:313; and k� = 20:234:

In Figure 2 we plot the phase diagram. At � = 22 the jump in the _u = 0 isocline occurs

13



and thus the trajectories exhibits a kink there. Compared to Figure 1, we see that now

isoclines, policy functions and also the unstable paths are straight lines. This is caused

by the quadratic speci�cations for revenue and investment cost functions.

Insert Figure 2 about here

From Proposition 3 we can derive that kDNS < k�. We can now compute this DNS-point

kDNS by �rst obtaining the intersection of policy function uH with k = �. Next, we

can determine the hyperbola like trajectory belonging to the region k < � and ending

in the point (k; u) = (�; uH (�)). This hyperbola like trajectory in question is vertical

when _k = 0, which happens for kLB = 17:697; while the corresponding investment rate

is u = 3:539 3. Capital stock kLB is the lower boundary of the overlap region. Similarly,

also the upper boundary kUB = 24:592 is obtained.

After computing the real value function �H for kLB < k < �, and intersecting it with

�L; we obtain that kDNS = 19:884: More details of this derivation can be found in Hartl

and Kort (2002). In Figure 3, we plot all relevant value function candidates.

Insert Figure 3 about here

Note that in the interval [kLB; �] the value function candidate �H representing solutions

converging to �kH is not given by (21) but by a slightly larger value. In Figure 3,

this is represented by the bold dotted curve in [kDNS; �] and the thin dotted curves in

[kLB; kDNS].

In the numerical example just presented, the DNS-point kDNS was smaller than the kink
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�: From Proposition 3 we derive that for g = 112:5 DNS-point and kink coincide, where

� = k� = kDNS = 22:5. If g is decreased further, then the DNS-point kDNS will be

larger than the kink �:

3.1.2 Only one equilibrium

For su¢ ciently low values of g; the kink � is smaller than the k-value of the intersection

point of the stable path belonging to kH and the unstable path corresponding to kL in

Figure 3. Consequently, the policy function corresponding to kH can be extended to the

left beyond kL: From Proposition 2 we now know that only the larger steady state is a

long run equilibrium. This occurs e.g. for g = 100; where � = 20.

Analogously, for su¢ ciently high values of g; the kink � is larger than the k-value of the

intersection point of the stable path belonging to kL and the unstable path corresponding

to kH in Figure 3. Then, the policy function corresponding to kL can be extended to the

right beyond kH so that only the smaller steady state is a long run equilibrium. This

occurs e.g. for g = 122; where � = 24:4:

4 Conclusions and Extensions

Exploiting the framework of a capital accumulation model, it was established that non-

di¤erentiability can be a source for multiple equilibria. Remarkable was that this occurs

while an unstable steady state does not exist. Within a numerical example we were

able to determine the exact value of the threshold, or DNS point, at which the decision

maker is indi¤erent between choosing one of the optimal paths. As a general result

we established that a necessary condition for a stable steady state to be a long run
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equilibrium is that this steady state should not be part of an overlap region.

The result that a non-di¤erentiability can lead to DNS points is clearly not restricted

to a capital accumulation framework. More generally, this phenomenon can occur in

any dynamic economic model due to a jump in the costate isocline caused by a non-

smoothness of some model function.
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List of Figure Captions

Figure 1. The phase diagram in case of two steady states.

Figure 2. The value function and the DNS-point in the quadratic example.

Figure 3. The phase diagram with two steady states in the quadratic example.
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