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Chapter 1

Introduction

This chapter is organized as follows. The economic problem on which this book focuses is

motivated in Section 1.1. The two tools used to study this economic problem, which are

real options theory and game theory, are discussed in Sections 1.2 and 1.3, respectively.

Section 1.4 surveys the contents of this book. In Section 1.5 some promising extensions

of the research presented in this book are listed.

1.1 Technology Investment

Investment expenditures of companies govern economic growth. Especially investments

in new and more efficient technologies are an important determinant. In particular, in the

last two decades an increasing part of the investment expenditures concerns investments

in information and communication technology. Kriebel (1989) notes that (already) in

1989 roughly 50 percent of new corporate capital expenditures by major United States

companies was in information and communication technology. Due to the rapid progress

in these technologies, the technology investment decision of the individual firm has become

a very complex matter. As an example of the very high pace of technological improve-

ment consider the market for personal computers. IBM introduced its Pentium personal

computers in the early 1990s at the same price at which it introduced its 80286 personal

computers in the 1980s. Therefore it took less than a decade to improve on the order of

twenty times in terms of both speed and memory capacities, without increasing the cost

(Yorukoglu (1998)).

In the beginning of the twentieth century technological developments did not show

such a rapid progress compared to recent years. Therefore, the technology investment

problem of the firm mainly was a timing problem, in which the optimal time to replace the

current technology had to be determined. For example, one of the technology investment

decisions of a railway company dealt with the decision when to replace its steam shunters

1



2 1.1. Technology Investment

with diesel shunters. Up to the present day most railway companies still work with diesel

shunters.

Nowadays, a firm should take into account that the current state of the art in infor-

mation and communication technology will be old fashioned in a few years. Thus the

investment decision problem is no longer only a question of when to adopt a new tech-

nology but also a question of which technology should be adopted. Therefore, in order to

design a theoretical framework that is useful to analyze the technology investment deci-

sion, it is important to consider models in which several new technologies appear. The

timing of the technology investment is (still) very relevant. The reason is that due to

the rapid technological progress of information and communication products the prices

of those products drop significantly over time. As an example in Figure 1.1 the price

development is drawn of two Intel Pentium III processors within the Netherlands.

9−1999 10−1999 11−1999 12−1999 1−2000 2−2000 3−2000 4−2000 5−2000
Time

800

1000

1200

1400

1600

P
r
i
c
e
i
n
D
u
t
c
h
G
u
i
l
d
e
r
s

Pentium III 600 Mhz

Pentium III 550 Mhz

Figure 1.1: Price development of two Pentium III processors within the Netherlands (source: Personal
Computer Magazine).

Another significant feature of the last decade is that firms more and more face com-

petition on their output markets. One reason is the abolition of monopolistic markets

created by government. In the Netherlands examples are the opening of the markets for

telecommunication, railway, and power supply. Until September 1995 KPN Telecom was

the only provider on the mobile telecommunication market in the Netherlands. Due to

the legislation of the European Community concerning the liberalization of telecommu-

nication markets, the Dutch government organized a contest with as prize a license to

operate a mobile telephone company. Libertel won that contest and its network came
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into use in September 1995. Telfort entered the market in September 1998 and after that

Ben and Dutchtone started their services at the end of 1998. Currently these five players

are still active on this market. It is obvious that due to the entrance of these four rivals,

KPN Telecom had to change its investment strategy dramatically.

Another reason for the existence of and development towards oligopolistic markets is

the, still ongoing, process of mergers and takeovers, which due to legislation will not end up

with only one supplier in a market. There are plenty of examples of mergers and takeovers

in the last decade. In the car industry we have the merger of Daimler and Chrysler in 1998.

In the telecommunications market examples are the takeover of AirTouch by Vodafone

(partly owner of Libertel) in 1999 and this year’s offer of Vodafone to the shareholders

of Mannesmann, who entitled it a hostile takeover. However, when Vodafone succeeds in

taking over Mannesmann, it has to hive off Orange (which is owned by Mannesmann),

otherwise Vodafone’s market share in the United Kingdom would become too large. The

result of Vodafone’s announcement is that there are already four potential buyers for

Orange: France Telecom, KPN Telecom, NTT DoCoMo, and MCI Worldcom. This

year’s announcement of the merger of the Deutsche Bank and the Dresdner Bank is an

example in the financial market. The lawsuit between Microsoft and the government of

the United States of America is an example of governmental interference to try to reduce

Microsoft’s (supposed) monopoly power. The overall result of these mergers, takeovers,

and governmental interference is that markets with only one supplier and markets with

many suppliers seem to disappear in the long run. Thus, in their private investment

decisions, more and more firms should take into account the investment behavior by its

competitors nowadays.

The existing literature dealing with the technology investment decision of a single

firm can be split up into two categories. The models that belong to the first category,

which is called decision theoretic models, deal with the technology investment decision

of one firm in isolation. On the other hand, in the game theoretic models the optimal

technology investment strategy of the firm is derived while taking explicitly into account

the technology investment actions of the firm’s rival(s). From the economic observations

described above, it can be concluded that there is a strong need to use game theory with

respect to the theoretical modelling of technology investment by the individual firm. A

literature overview of the decision theoretic models and the game theoretic models are

given in the first sections of Chapters 2 and 4, respectively. Part I of this book deals with

decision theoretic models and in Parts II and III two different game theoretic models are

considered.

In the following section we discuss the topic of investment under uncertainty in more

detail, whereas in Section 1.3 we concentrate on investment under competition.



4 1.2. Investment Under Uncertainty

1.2 Investment Under Uncertainty

Investment is defined as the act of incurring an immediate cost in the expectation of

future rewards (see Dixit and Pindyck (1996, p. 3)). Most investment projects possess

the following three characteristics: irreversibility, uncertainty, and possibility of delay.

An investment is irreversible when the investment cost is a sunk cost, that is it is im-

possible to recover the investment cost once the investment is made. This surely holds for

investments in information and communication goods. It is impossible to sell a one-year-

old personal computer for the same price as for which it was bought. More generally, most

industry or firm specific investments are irreversible. For example, the marketing and ad-

vertisement expenditures of KPN Telecom are firm specific and cannot be recovered, i.e.

KPN Telecom cannot sell this investment project to another telecommunication company.

An example of an industry specific investment is the construction of a new mobile net-

work by Libertel. This investment will be (at least partially) sunk, because whenever

it is no longer profitable for Libertel to exploit this network it will not be profitable for

another mobile provider as well. Due to the lemon’s problem (see Akerlof (1970)) a lot of

investments that are not firm or industry specific are also irreversible.

An investment project (almost) always has to deal with uncertainty. For most invest-

ments the future revenues are stochastic, due to uncertainties in, e.g., the firm’s market

share and the market price. It is also possible that the investment cost is uncertain, which

is the case in many infrastructure projects. For example the actual costs of the Ooster-

schelde Stormvloedkering, which is one of the last projects of the Dutch Delta works,

turned out to be much higher than what was forecasted.

From a technical point of view it is almost always possible to defer an investment for

some time. This possibility to delay an investment gives a firm flexibility. Though, eco-

nomically this postponement can be costly in the sense that the firm looses market share

if it refrains from the investment. On the other hand, by postponing an investment the

firm can acquire more information about the investment project, for example concerning

the market conditions.

The net present value method is the commonly used (and taught) method to evaluate

investment projects (see for example Brealey and Myers (1991)). This method states that

an investment should be undertaken when the expected (discounted) present value of the

revenue stream resulting from this investment project exceeds the expected present value

of the expenditures. However, the underlying assumption of the net present value method

contradicts the characteristics of investments we mentioned before. More precisely, the net

present value method assumes that either an investment project is reversible or when it

is irreversible it is a now or never decision, that is, the firm can undertake the investment

project today or never. As a result, applying the net present value method leads to
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suboptimal investment decisions. Especially the ignorance of the possibility to delay is

an important abuse, since most investment projects are irreversible. The real options

literature succeeds in explicitly valuing this so-called option value of waiting.

In the real options theory the analogy between a firm’s investment opportunity and

a financial call option is exploited. A financial call option gives the holder the right, but

not the obligation, to buy one piece of the underlying derivative (e.g. stock, bond) for a

specified price (before or) at a specified time. See Hull (1993) and Merton (1992) for a

detailed exposition of the financial options theory. Similar to a financial call option, an

investment opportunity gives a firm the right, but not the obligation, to carry out some

investment project. Note that, following the analogy, an investment project is an infinitely

lived call option on a dividend paying derivative. From the financial options theory it is

known that such an option should only be exercised when the option is sufficiently deep

in the money, that is when the current price of the underlying derivative is sufficiently

larger than the exercise price. Therefore an investment project should only be undertaken

when the net present value exceeds the option value of waiting.

Due to the close link with financial options theory, most real options models assume

that the revenue stream of the investment project follows some geometric Brownian motion

process. A geometric Brownian motion process is a continuous time stochastic process of

which the increments are distributed according to a normal distribution. In McDonald and

Siegel (1986) the basic continuous time real options model is examined. In that model

a firm can acquire a project, of which the value follows a geometric Brownian motion

process, by making an irreversible investment. McDonald and Siegel derive an explicit

expression for the option value of waiting, and show that for reasonable parameters the

optimal investment trigger is twice as large as the net present value trigger, i.e. for an

investment to be optimal the value of the project should be twice as large compared to

the required value under the net present value method. The basic real options model

has been extended in various ways. An excellent overview is given in Dixit and Pindyck

(1996). In Trigeorgis (1995), Trigeorgis (1996), Smit (1997), Pennings (1998), Lander

and Pinches (1998), and Amram and Kulatilaka (1998) practical applications of the real

options theory are presented and discussed.

However, most of the extensions of the basic real options model assume that the firm is

the only one having the investment opportunity, that is, strategic interactions are ignored.

In the previous section we stressed the importance of taking strategic interactions into

account. In the next section we give an overview of the models that do incorporate these

strategic interactions.
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1.3 Investment Under Competition

Investment models that incorporate strategic interactions make use of game theory. In

most of these models non-cooperative game theory is used since in general the firms are

competing against each other and there is no willingness to cooperate. For a rigorous

introduction to game theory we refer to Fudenberg and Tirole (1991). In Tirole (1988) a

nice overview of industrial organization models is given. In this book we mainly use and

extend the game theoretic concepts presented in Fudenberg and Tirole (1985), in which a

deterministic investment model of two competing firms is extensively analyzed, especially

from a mathematical point of view.

One of the first real options models that incorporates strategic interactions is the

duopoly model in Smets (1991). This model is also considered in Dixit and Pindyck

(1996, Chapter 9) and in Nielsen (1999). As in the basic real options model the revenue

stream of the investment project follows a geometric Brownian motion. However, in this

model the actual revenue stream of one firm depends on the investment decision of the

other firm. Nielsen proves that due to the introduction of a second identical firm, the first

investment will be made sooner. Like in Smets (1991), also in Pennings and Sleuwaegen

(1998) a model of foreign direct investment in a real options setting is studied.

Other continuous time real options models with strategic interactions are studied

in Grenadier (1996), Baldursson (1998), Lambrecht and Perraudin (1999), and Weeds

(1999). Grenadier models the real estate development. In Baldursson’s model the firms

can adjust their capacity continuously over time and optimal strategies to do so are

derived. Lambrecht and Perraudin consider a model with incomplete information, in

which they assume that the other firm’s profitability of the investment project is not

known and there is only one firm that can implement the project. Finally, Weeds models

a research and development race between two firms.

Also related are the models in Smit (1996), Smit and Ankum (1993), Kulatilaka and

Perotti (1998), and Somma (1999). The difference with the contributions mentioned above

is that, instead of a continuous time model where uncertainty is incorporated by, e.g., a

geometric Brownian motion process, in each of these models binomial trees are used to

model strategic interactions between firms. Consequently, most of these models are in

discrete time.

1.4 Overview

This book is divided into three parts. The first part consists of two decision theoretic

models in a real options setting. In the second part three game theoretic technology

adoption models are considered, whereas in the third part three general game theoretic
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real options models are presented.

1.4.1 Decision Theoretic Models

Chapter 2 starts with a literature overview of the decision theoretic models of technology

adoption. The model of Chapter 2, which is a generalization of Farzin et al. (1998), studies

the technology adoption of a single firm. A firm can adopt a better technology by making

an irreversible investment. The investment cost of a certain technology is assumed to

be constant over time. With a better technology the firm can produce more efficiently

and will therefore make higher profits. New technologies arrive over time according to

a stochastic process and the efficiency increment of a new technology is also stochastic.

First we solve the model for the case that the firm may invest only once and after that

the multiple switch case is discussed. The multiple switch case is only solvable when the

efficiency increments of the new technologies are known beforehand. Finally, the optimal

investment strategy is compared with the strategy resulting from the net present value

method. It turns out that in making the investment decision the option value of waiting

cannot be ignored, which is also shown in a numerical example. In the Appendix to

Chapter 2 we give an introduction to a technique that is frequently used in this book:

optimal stopping.

The model of Chapter 2 is extended in Chapter 3 by making the investment cost

decreasing over time. The motivation for this model feature is illustrated in Figure 1.1.

The efficiencies of the new technologies are assumed to be known beforehand. The optimal

investment strategy for the single switch case is derived and compared with its net present

value counterpart. After that, it is explained why it is not possible to solve this model

for the multiple switch case.

1.4.2 Game Theoretic Adoption Models

In Chapter 4 we first give a literature overview of game theoretic models of technology

investment. After that we analyze the most important and basic deterministic model

in this research area (see Reinganum (1981) and Fudenberg and Tirole (1985)) in de-

tail. Two identical firms that are currently active on an output market can make an

irreversible investment that will increase their own and decrease their rival’s profit. The

investment cost is decreasing over time. This investment game is solved using timing

games. In the Appendix to Chapter 4 we present an introduction to this specific class of

games. The player that moves first in a timing game is called the leader and the other

is the follower. Reinganum assumes in her analysis that one of the firms is given the

leader role beforehand. In Fudenberg and Tirole’s analysis the firm roles are determined
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endogenously, that is both firms can become the leader by making the investment before

its rival. It turns out that the result is that each firm’s payoff is equal in equilibrium.

The remainder of Chapter 4 deals with the extension of Stenbacka and Tombak (1994)

to the Reinganum-Fudenberg-Tirole model, which is also is considered in Huisman and

Kort (1998a) and in Götz (2000). Stenbacka and Tombak assume that the time between

the adoption and successful implementation of the new technology is stochastic.

Chapter 5 is based on Huisman and Kort (1998b). The model of that chapter is an

extension of the basic model by incorporating two new technologies and upgrading. At

the beginning of the game none of the two firms is active on the output market. To

become active a firm has to pay a sunk cost, for which the firm receives the current

best technology. The firm can also decide to postpone the entrance and buy the better

technology that becomes available at a known point of time in the future. Furthermore,

there is a possibility to upgrade the current technology with the new technology. There

are learning effects involved in this upgrading strategy, since it is cheaper to buy the new

technology when the firm already produces with the current technology. Two of the nine

possible scenarios are worked out in detail.

Chapter 6, which is based on Huisman and Kort (1999b), extends the model of Chapter

4 by adding uncertainty to the arrival process and by considering multiple new technolo-

gies. Further it is assumed that the two firms can invest only once. After introducing

a new concept in timing games, namely the waiting curve, a general algorithm for solv-

ing this kind of technology investment games is presented. The algorithm is clarified by

applying it to a specific example.

1.4.3 Game Theoretic Real Options Models

In Chapter 7 the model of Huisman and Kort (1999a) is presented. This model differs

from the model in Smets (1991) since in that chapter the firms are already active on

the output market. We show that abolishing the new market assumption considerably

changes the result of Nielsen (1999). No longer it is always the case that the introduction

of a new firm precipitates investment. Furthermore, the model is the stochastic variant

of Fudenberg and Tirole (1985) and we discuss what the effect of the introduction of the

uncertainty is on the equilibrium outcome.

The new market model of Nielsen (1999) is studied in Chapter 8, but then with

asymmetric firms. The asymmetry is modelled via the investment costs of the firms.

Both the case of negative and positive externalities are considered. In case of negative

externalities a firm earns the highest profits when its rival is not active, whereas in the

positive externalities case the firm’s profit is higher when the other firm is also active, e.g.

when there are network effects or when the firms are producing complementary goods. We
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show that also in this asymmetric setting the introduction of a second firm precipitates

investment. The chapter is based on Huisman and Nielsen (2000).

Chapter 9, which is based on Huisman and Kort (2000), brings together Chapters 2,

5, and 7. Two firms can become active on a output market, i.e. a new market model is

considered, by buying a technology. In the beginning only one technology is available,

but at an unknown point of time in the future a better technology becomes available.

Both firms can invest only once and the investment cost is constant over time. We show

how the equilibrium outcome depends on the expected speed of the arrival of the new

technology.

1.5 Extensions

In this section we present some promising extensions of the research of this book.

1.5.1 Incomplete Information

Thijssen et al. (2000) consider a monopolistic firm that can enter a new market by incur-

ring an irreversible investment cost. It is assumed that the market can either be good or

bad. When the market is good it is profitable to start producing and when the market is

bad the firm will never produce. In the beginning of the game the firm believes that the

market is good with probability one-half. At stochastic points in time the firm receives

signals, being either good or bad, about the condition of the market. At these points in

time the firm updates its belief that the market is good in a Bayesian way. The proba-

bilities of receiving a good or a bad signal are such that the uncertainty about the state

of the market vanishes in the long run. As such the model is a promising extension of

the existing real options models, since in the latter models uncertainty never disappears.

An interesting extension of this model is to include strategic interactions by the introduc-

tion of a second firm. The firm that invests first and finds out that the market is good

becomes Stackelberg leader and the other firm the Stackelberg follower. The advantage

of the other firm is that it leaves the risk of investing in a bad market to its competitor,

since after one investment the true status of the market is revealed. In this way there are

incentives to become both the first investor and the second investor.

Pawlina (2000) extends the basic real options model by making the investment cost

subject to a possible upward switch. The value of the project again follows a geometric

Brownian motion process. The firm does not know when the switch in the investment

cost takes place, but has a certain belief about it. As such the model is also an extension

of Lambrecht and Perraudin (1999). Lambrecht and Perraudin assume that once a firm

has invested the other firm is left with a zero payoff. Here the investment cost switch can
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be interpreted as a reduced profitablity resulting from the investment of the other firm,

so that there is still a positive payoff possible for the firm.

1.5.2 Risk Aversion

Most real options models assume that either the firm is risk-neutral or that the markets

are complete, so that any risk in an investment project can be hedged and as a result the

risk free interest rate can be used. In other models (see for example Sarkar (2000)) risk

aversion is modelled by adding a risk premium to the discount rate. In van den Goorbergh

et al. (2000) the real options literature is extended by considering a risk averse firm in

a world with incomplete markets. In the model risk aversion is taken into account by

making the firm’s utility function concave. First, van den Goorbergh et al. derive the

properties that an utility function should possess. After that the existence of a threshold

is proved and a specific utility function is chosen for which a comparative statics analysis

is carried out.



Part I

Decision Theoretic Models





Chapter 2

Constant Investment Cost

2.1 Introduction

The literature on technology adoption can be divided into two classes: the first class is

called decision theoretic models and the second class game theoretic models. See Bridges

et al. (1991) for an overview of literature from both classes. In a decision theoretic model

the profit of the firm is only influenced by its own technology adoption decisions, whereas

in a game theoretic model the profit of the firm is also influenced by the decisions of its

rivals. In the second and third chapter we study decision theoretic models of technology

adoption. This implies that either the firm is a monopolist or a price taker on its output

market. From Chapter 4 onwards strategic interactions are incorporated in the technology

investment problem.

Though Baldwin (1982) does not explicitly model technology adoption, in that pa-

per sequential investments can be looked upon as investments that upgrade the firm’s

technology in use, while the state variable resembles the efficiency of the best technology

that is available. Due to the fact that the investments are not completely reversible, the

firm will only carry out those investment opportunities that yield a net present value that

exceeds a certain threshold. Of course, this threshold is the option value of waiting.

Nair (1995) uses a dynamic programming framework to solve the technology adoption

problem for a firm. First the model is solved for a finite planning horizon before which

a fixed number of new technologies will arrive. Then it is shown that the results can be

extended to a model with an infinite planning horizon by using forecast horizon proce-

dures. A time τ is a forecast horizon when the initial period decision is optimal for all

models with planning horizon larger than τ . The investment cost and revenue function of

a technology may depend on time, which is discrete in the model of Nair. The drawback

of the analysis is that there are no expressions for the option value of waiting.

In Rajagopalan (1999) three technologies are taken into account. The first technology

13
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is the one that the firm uses at the beginning of the (infinite) planning horizon, the second

technology is the best technology available at that point of time, and the third technology

becomes available at a yet unknown point of time in the future. The reason for considering

only three technologies is that the author focuses on the impact of investment costs and

other factors on the replacement time. Once the firm has adopted a newer technology it

can produce against lower marginal costs. Rajagopalan derives how the optimal adoption

time of the second technology depends on the probability distribution of the arrival of the

third technology. He specifies for what parameters it is optimal: (i) to adopt the second

technology immediately, (ii) to wait with adoption for some finite time, and (iii) never to

adopt the second technology.

Balcer and Lippman (1984) model the arrival time and the efficiency of new technolo-

gies in a two step procedure. Every time the discovery potential changes, a new technology

is invented. The time between two consecutive changes of the discovery potential and the

increase of the discovery potential are both stochastic and depend on the current dis-

covery potential. The efficiency of a new technology is a stochastic function of the new

discovery potential and the efficiency of the current best technology. To be able to solve

the model, Balcer and Lippman assume that the firm’s profit increase and the investment

cost are both linear functions of the efficiency of the new technology. They show that the

firm is going to upgrade its current technology with the current best technology if the

technological lag exceeds a certain threshold. Further, if the arrival of a new technology

takes too long, adopting an already existing technology may become optimal.

In the models of Baldwin (1982), Nair (1995), Rajagopalan (1999), and Balcer and

Lippman (1984), a general distribution is used to model the arrival of new technologies.

We use a Poisson process to model the technology arrivals. This implies that the inter-

arrival times are exponentially distributed, i.e. the time elapsed since the last technology

arrival does not influence the probability of a new technology arrival. This will hold espe-

cially when the firm does not have a clue of what is going on at the research companies.

We take the real options approach (see Dixit and Pindyck (1996) for an excellent

survey) to be able to explicitly derive the option value of waiting that is present in

technology investments. Purvis et al. (1995) and Dosi and Moretto (1997) also use the real

options approach to model a technology investment problem, but both models consider

only one new technology. Purvis et al. (1995) try to derive ex ante the effects of uncertainty

and irreversibility on the investment decision of Texas farmers, who can change from

conventional open lot to free stall housing for their dairy. Dosi and Moretto (1997)

show that lowering the uncertainty about future profits is a better policy to stimulate

investment than lowering the investment cost.

Another model that uses the real options approach and incorporates technical change
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is introduced in Ekboir (1997). He studies the effect of partial irreversibility and tech-

nological change on the purchase and sale of capital. Ekboir shows that if the desired

capital stock is in between an upper and a lower bound it is optimal for the firm not to

invest. After hitting the upper (lower) bound the firm purchases (sells) new capital and

due to technical change the average capital productivity increases (decreases). Therefore

both the upper and lower bounds increase (decrease) significantly and the desired capital

level increases (decreases). It is possible that the firm is going to buy (sell) more new

capital, because the desired capital level is not in between the new bounds. This process

stops when the desired capital level is again between the bounds.

The analysis of this chapter adds a multiple switching technology adoption model to

the existing real options literature. On the other hand we extend the traditional decision

theoretic models on technology adoption with a model in which the technologies arrive

according to a Poisson process.

In Section 2.2 the model is described. This model is a generalization of the model

that was introduced in Farzin et al. (1998). The original model of Farzin et al. is used

as an example. The single switch case is solved in Section 2.3 and the multiple switch

case is treated in Section 2.4. In that last section we also point out and correct a mistake

in Farzin et al. (1998). In Section 2.5 the net present value method is used to solve the

technology investment problem and the outcome is compared with the results of Sections

2.2 and 2.3. The last section concludes.

2.2 The Model

A risk-neutral firm is considered, whose profit flow is only determined by its own tech-

nology choice. The efficiency of a technology is completely captured in one parameter,

in such a way that a higher value of the parameter implies a more efficient technology.

We use two symbols to refer to this technology efficiency and the technology itself. The

efficiency of the technology that the firm uses at time t, t ≥ 0, is denoted by ζ (t) . With

θ (t) we refer to the efficiency of the most efficient available technology at time t, t ≥ 0. Of

course it must hold that 0 ≤ ζ (t) ≤ θ (t) , for any t ≥ 0. The firm’s profit flow when the

firm produces with technology ζ, ζ ≥ 0, equals π (ζ) , where π :IR+ →IR is an increasing

function of ζ.

Example 2.1 Let us analyze the firm that is considered in Farzin et al. (1998). The

firm’s production function is given by

h (v, ζ) = ζva, (2.1)



16 2.2. The Model

where v (≥ 0) is a variable input, ζ (≥ 0) is the efficiency parameter, and a ∈ (0, 1) is the

constant output elasticity. Further we assume that the output price and the input price

are fixed and equal to p and w, respectively. The profit flow equals

π (ζ) = max
v

(pζva − wv) . (2.2)

Solving equation (2.2) yields the following expression for the profit flow of the firm

π (ζ) = ϕζb, (2.3)

with

ϕ = (1− a)
( a
w

) a
1−a

p
1

1−a , (2.4)

b =
1

1− a
. (2.5)

Over an infinite planning horizon the firm maximizes its value and discounts with

rate r (> 0). At the beginning of the planning horizon (t = 0) the firm produces with

a technology whose efficiency equals ζ0 (≥ 0) . As time passes new and more efficient

technologies are invented. The firm can not influence the innovation process, i.e. it is

assumed to be exogenous to the firm. We assume that θ (t) follows the following Poisson

jump process:

dθ (t) =

{
u with probability λdt,

0 with probability 1− λdt,
(2.6)

θ (0) = θ0, (2.7)

where θ0 ≥ ζ0. Concerning the size of the jump, u, two cases are considered. In the

first case u is constant and in the second case u is stochastic. Let us introduce some

more notation. Take i ∈ IN. The efficiency and the arrival time of the i-th technology

are denoted by θi and Ti, respectively. We use τ i to refer to the time between the arrival

of technologies i − 1 and i, i.e., τ i = Ti − Ti−1. The jump in the θ process at time Ti is

denoted by ui, thus ui = θi − θi−1. We set T0 = 0 and u0 = 0. N (t) is the stochastic

variable that counts the number of technology arrivals on the interval [0, t) . Therefore,

θ (t) = θ0 +

N(t)∑
n=0

un. (2.8)

Since θ follows a Poisson process with parameter λ, N (t) is distributed according to a

Poisson distribution with parameter λt. In Figure 2.1 two sample paths for the technology

process are plotted. In the left panel the jump size is constant and in the right panel the

jump size is uniformly distributed.
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Figure 2.1: Sample paths of θ (t) . In the left panel the jump size is fixed and equal to u and in the right
panel the jump size is uniformly distributed on [0, 2u]. Parameter values used: λ = 1, u = 0.1, θ0 = 1.

The firm can adopt a new technology by paying a sunk cost I (> 0). In this chapter

the investment cost is assumed to be constant over time, whereas in the next chapter the

investment cost decreases over time. Due to the constant investment costs, the exponential

interarrival times, and due to discounting, the firm will adopt a technology only at its

arrival date.

The problem we want to address concerns the timing of the firm’s technology switches.

Two extreme solutions are easy to identify. The first is to adopt a new technology every

time that one becomes available. The advantage of this strategy is that the firm always

produces with the most efficient technology. The drawback of this strategy is, of course,

the large amount of investment costs that has to be paid. The other extreme solution is

to never adopt a new technology. The advantage is that the firm does not have to pay

any sunk costs. Since the firm keeps on producing with an (in the long term) inefficient

technology, the drawback is that the firm misses the potential higher profits it could

have made when a more efficient technology was adopted. The optimal solution will be

somewhere in between these two extreme solutions.

The problem that the firm faces is an optimal stopping problem. For an introduction

to optimal stopping problems we refer to Appendix 2.A. In our model stopping means

that the firm invests and thus adopts a new technology and continuation resembles waiting

with investing. Therefore, it is obvious that stopping will be optimal for θ large enough

and waiting is optimal for θ low enough. Hence, intuition suggests that there is some

unique value of θ for which the firm is indifferent between investing and waiting. That

specific θ is denoted by θ∗ and is called the critical level or threshold (value). Once the

threshold is known, the investment problem is solved, since it is optimal for the firm to

wait with the investment when θ is below the threshold θ∗ and it is optimal for the firm to

make the investment the first time θ is above the threshold. In Appendix 2.A we present

a theorem that gives sufficient conditions for the uniqueness of the threshold.
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2.3 Single Switch

In order to find the threshold in the single switch case we first derive an expression for the

termination payoff. That is the firm’s value at the moment that the firm undertakes its

investment. By V (ζ) we denote the value of the firm when it produces with technology

ζ forever, thus

V (ζ) =

∞∫
t=0

π (ζ) exp (−rt) dt =
π (ζ)

r
. (2.9)

Equation (2.9) implies that the termination payoff is given by the following expression

V (ζ)− I. (2.10)

The following proposition which is proved in Appendix 2.D gives a sufficient condition

for the existence and uniqueness of the threshold θ∗.

Proposition 2.1 There exists a unique threshold θ∗ ∈ IR+ if the function π is concave in

θ.

Given ζ0 and θ (t) = θ the value of the firm is denoted by F (θ, ζ0). Let θ
∗ be (again)

the unique threshold value. From equation (2.10) we derive that in the stopping region,

{θ| θ ≥ θ∗}, F is given by

F (θ, ζ0) = V (θ)− I. (2.11)

In the continuation region, {θ| θ < θ∗}, F must satisfy the following Bellman equation

(see Appendix 2.A)

rF (θ, ζ0) = π (ζ0) + lim
dt↓0

1

dt
E [dF (θ, ζ0)] . (2.12)

To proceed we must first specify the properties of u, the size of the jump. In Subsection

2.3.1 we assume it to be constant and in Subsection 2.3.2 to be stochastic.

2.3.1 Constant Jump Size

Let us assume that the jump size is constant and equal to some u, u ≥ 0. Thus ui = u for

i ∈ IN. Given that u is a constant we can split up the continuation region into two parts.

In the first part investing is not optimal even after the next jump, i.e. {θ| θ < θ∗ − u} ,
and in the second part investing is optimal after the next jump: {θ| θ∗ − u ≤ θ < θ∗} .
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In the first part of the continuation region, applying Itô’s lemma (see Appendix 2.A)

gives

E [dF (θ, ζ0)] = λdt (F (θ + u, ζ0)− F (θ, ζ0)) + o (dt) . (2.13)

The definition of o (dt) is stated in Appendix 2.C. Substitution of (2.13) in (2.12) gives

rF (θ, ζ0) = π (ζ0) + λ (F (θ + u, ζ0)− F (θ, ζ0)) . (2.14)

From Proposition 2.4 in Appendix 2.B we know that the solution of equation (2.14) is

given by

F (θ, ζ0) = c

(
λ

r + λ

)− θ
u

+
π (ζ0)

r
. (2.15)

To determine the constant c we must use the continuity condition at θ = θ∗−u. Therefore

we need an expression for F in the second part of the continuation region.

The equivalent of equation (2.13) in the second part of the continuation region is

E [dF (θ, ζ0)] = λdt (V (θ + u)− I − F (θ, ζ0)) + o (dt) . (2.16)

Together with (2.12) this last expression leads to

rF (θ, ζ0) = π (ζ0) + λ (V (θ + u)− I − F (θ, ζ0)) . (2.17)

Rewriting gives

F (θ, ζ0) =
π (ζ0)

r + λ
+

λ

r + λ
(V (θ + u)− I) . (2.18)

Solving the continuity condition at θ = θ∗ − u gives

c =

(
λ

r + λ

) θ∗
u

(V (θ∗)− V (ζ0)− I) . (2.19)

Summarizing, the value of the firm is given by

F (θ, ζ0) =


(

λ
r+λ

) θ∗−θ
u (V (θ∗)− V (ζ0)− I) + V (ζ0) if θ < θ∗ − u,

π(ζ0)
r+λ

+ λ
r+λ

(V (θ + u)− I) if θ∗ − u ≤ θ < θ∗,

V (θ)− I if θ ≥ θ∗.

(2.20)

In case θ < θ∗ − u the value of the firm consists of two terms. The second term

resembles the value of the firm when the firm produces with technology ζ0 forever. The

first term is the value of the opportunity to invest, in other words the option value. This

option value is a multiplication of two parts. The last part is the net present value when
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the firm adopts technology θ∗. The firm exchanges the profit flow π (ζ0) for π (θ∗) and

pays I for that exchange. The first part of the option value is the discount factor. The

investment takes place in the future and therefore the net present value has to be properly

discounted. The factor λ
r+λ

is the discounted value of one unit of money that the firms

receives after the next technology arrival (see Lemma 2.3 in Appendix 2.D). This factor

is raised to the power θ∗−θ
u

, because it takes (continuously spoken) exactly that many

arrivals before the firm invests.

The firm is going to switch technologies after the next technology arrival if in the

continuation region it holds that θ∗ − u ≤ θ < θ∗. This implies that the value of the firm

consists of the discounted profit flows generated from now until that technology arrival

(first part) and the discounted value of the termination payoff (second part). Notice that

in the first part λ is added to the discount rate, so that this is another example of the

general notion Dixit and Pindyck (1996) present on page 87: ”... if a profit flow can

stop when a Poisson event with arrival rate λ occurs, then we can calculate the expected

present value of the stream as if it never stops, but adding λ to the discount rate.”

The critical level θ∗ is found by solving the value matching condition (see Dixit and

Pindyck (1996)) at θ = θ∗:

π (ζ0)

r + λ
+

λ

r + λ

(
π (θ∗ + u)

r
− I

)
=

π (θ∗)
r

− I. (2.21)

The value matching condition ensures the continuity of the value function at the threshold,

i.e. the point where the firm is indifferent between investing right away (right-hand side of

equation (2.21)) and investing after the next technology arrival (left-hand side of equation

(2.21)).

Define the adoption time t∗ as follows

t∗ = inf (t| θ (t) ≥ θ∗) . (2.22)

Since the size of the jump is constant we can calculate after how many technology arrivals

the firm is going to switch technologies

n∗ =
⌊
θ∗ − θ0

u

⌋
+ 1, (2.23)

where 	x
 is equal to the integer part of x. Using equation (2.23) it is not hard to see that

Pr (t∗ ≤ t) =
∞∑

n=n∗
Pr (N (t) = n) . (2.24)

The following proposition gives expressions for the expected value and the variance of t∗.

The proof is given in Appendix 2.D.
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Proposition 2.2 The expected value and variance of the adoption time t∗ are equal to

E [t∗] =
n∗

λ
, (2.25)

V ar [t∗] =
n∗

λ2 . (2.26)

Example 2.1 (continued) Let us continue our example. Since the profit function is

convex, we can not apply Proposition 2.1. However, in Appendix 2.A we show that a

sufficient condition for uniqueness is λ
r+λ

≤
(

ζ0

ζ0+u

)b−1

. Solving equation (2.21) for the

parameter set of Farzin et al. (1998), i.e. a = 1
2
, p = 200, w = 50, r = 0.1, λ = 1, u = 0.1,

ζ0 = θ0 = 1 and I = 1600, yields θ∗ = 2.703, so that n∗ = 18. Note that the condition

for uniqueness is satisfied for these parameters. With Proposition 2.2 we find that the

expected value of the adoption time is 18 years with a standard deviation of 4.243 years.

The left part of Figure 2.2 compares the value of the firm and the termination payoff. The

value of the option to invest is plotted in the right part of Figure 2.2, where also the net

present value of the investment is plotted.
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Figure 2.2: In the left part: value of the firm as function of θ and termination payoff as function of θ. In
the right part: value of the option to invest as function of θ and the net present value of the investment
as function of θ.

2.3.2 Stochastic Jump Size

In this subsection we repeat the exercise of Subsection 2.3.1 for a stochastic jump size. We

solve two cases. In the first case we assume that the ui’s are independently and identically

distributed according to a uniform distribution and in the second case we assume that the

ui’s are independent and identical distributed according to an exponential distribution.
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Uniform Distribution

Let u be distributed according to a uniform distribution on the interval [0, u] . As in

Subsection 2.3.1 the continuation region is split up into two regions: {θ| θ < θ∗ − u} and

{θ| θ∗ − u ≤ θ < θ∗}. The Bellman equation for F in the first part of the continuation

region is given by

rF (θ, ζ0) = π (ζ0) + λ

u∫
u=0

(F (θ + u, ζ0)− F (θ, ζ0))
1

u
du. (2.27)

The solution of (2.27) is (see Proposition 2.5 in Appendix 2.B)

F (θ, ζ0) = γ0 exp (γ1θ) +
π (ζ0)

r
, (2.28)

where γ0 will be determined by solving the continuity condition at θ = θ∗ − u and γ1 is

the positive solution of the following equation

λ (exp (uγ1)− 1)− (r + λ)uγ1 = 0. (2.29)

Lemma 2.1 in Appendix 2.B ensures that γ1 exist and is indeed positive.

The firm is going to switch technologies after the next technology arrival with a positive

probability when θ (t) is in the second part of the continuation region. This gives rise to

the following Bellman equation

F (θ, ζ0) =
π (ζ0)

r + λ
+

λ

r + λ

θ∗−θ∫
u=0

F (θ + u, ζ0)
1

u
du

+
λ

r + λ

u∫
u=θ∗−θ

(V (θ + u)− I)
1

u
du. (2.30)

Proposition 2.6 in Appendix 2.B states that the solution of (2.30) is given by

F (θ, ζ0) =
λ

(r + λ)u
(h (θ)− h (θ∗)) exp

(
− λθ

(r + λ)u

)
+

π (ζ0)

r + λ
exp

(
λ (θ∗ − θ)

(r + λ)u

)

+
λ

(r + λ)u
exp

(
λ (θ∗ − θ)

(r + λ)u

) u∫
u=0

(V (θ∗ + u)− I) du, (2.31)

where h (θ) is implicitly defined by

∂h (θ)

∂θ
= (V (θ)− I) exp

(
λθ

(r + λ)u

)
. (2.32)
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An expression for the constant γ0 can be found by equating equations (2.28) and (2.31)

at θ = θ∗ − u.

Summarizing, the value of the firm F is given by

F (θ, ζ0) =



γ0 exp (γ1θ) + V (ζ0)
λ

(r+λ)u
(h (θ)− h (θ∗)) exp

(
− λθ

(r+λ)u

)
if θ < θ∗ − u,

+π(ζ0)
r+λ

exp
(

λ(θ∗−θ)
(r+λ)u

)
+ λ

(r+λ)u
exp
(

λ(θ∗−θ)
(r+λ)u

) u∫
u=0

(V (θ∗ + u)− I) du if θ∗ − u ≤ θ < θ∗,

V (θ)− I if θ ≥ θ∗.

(2.33)

The critical level θ∗ is found by solving the value matching condition at θ = θ∗ :

π (ζ0)

r + λ
+

λ

(r + λ) u

u∫
u=0

(V (θ∗ + u)− I) du =
π (θ∗)
r

− I. (2.34)

We can not give an equivalent of Proposition 2.2 in this case, because there does not

exist a closed form expression for the n-th fold convolution of the uniform distribution.

Example 2.1 (continued) In Appendix 2.A we show that the threshold is unique if ζ0 ≥
u, which is satisfied for our parameters. Solving equation (2.34) for our parameter set and

u = 0.2, thus E [ui] = 0.1 and V ar [ui] = 0.00333, yields θ∗ = 2.713. Thus introducing the

uncertainty in the size of the jump causes a very small change in the threshold, namely

0.36 percent. Using simulation we calculated that the expected value and the standard

deviation of the adoption are equal to 17.79 years and 4.87 years, respectively.

Exponential Distribution

The main difference with the analysis above is that in this case for every θ in the con-

tinuation region there is a positive probability that the next jump is large enough to lift

θ above the threshold. Therefore we do not have to split the continuation region in two

parts. The following Bellman equation must hold in the continuation region

F (θ, ζ0) =
π (ζ0)

r + λ
+

λ

r + λ

θ∗−θ∫
u=0

F (θ + u, ζ0)µ exp (−µu) du

+
λ

r + λ

∞∫
u=θ∗−θ

(V (θ + u)− I)µ exp (−µu) du. (2.35)
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Applying Proposition 2.8 (stated in Appendix 2.B) to equation (2.35) gives

F (θ, ζ0) =
λ

r + λ
exp

(
µ (rθ + λθ∗)

r + λ

) ∞∫
u=θ∗

(V (u)− I)µ exp (−µu) du

+

(
1− λ

r + λ
exp

(
µr (θ − θ∗)

r + λ

))
V (ζ0) . (2.36)

Expressions (2.10) and (2.36) together give the value of the firm

F (θ, ζ0) =


λ

r+λ
exp
(

µ(rθ+λθ∗)
r+λ

) ∞∫
u=θ∗

(V (u)− I)µ exp (−µu) du

+
(
1− λ

r+λ
exp
(

µr(θ−θ∗)
r+λ

))
V (ζ0) if θ < θ∗,

V (θ)− I if θ ≥ θ∗.

(2.37)

The critical level θ∗ is found by solving the value matching condition at θ = θ∗ :

π (ζ0)

r + λ
+

λ

r + λ
exp (µθ∗)

∞∫
u=θ∗

(V (u)− I)µ exp (−µu) du =
π (θ∗)
r

− I. (2.38)

Proposition 2.3 The expected value and the variance of the adoption time t∗ are equal

to

E [t∗] =
µ (θ∗ − θ0) + 1

λ
, (2.39)

V ar [t∗] =
2µ (θ∗ − θ0) + 1

λ2 . (2.40)

Example 2.1 (continued) Let µ = 10 then E [ui] = V ar [ui] = 0.1, i ∈ IN. In Appendix

2.A we derived that the threshold is unique if ζb−1
0 ≥ λ

r
Γ(b)
µb−1 , which is satisfied for our

parameters. Solving equation (2.38) gives θ∗ = 2.732. Table 2.1 shows the thresholds and

the expected value and standard deviation of the adoption times of the three cases. We

conclude that the distribution of the size of the jump does not matter very much. Huisman

(1996) showed that there are also hardly any changes when the interarrival times are

constant instead of exponentially distributed. The standard deviation of the adoption time

in the exponential jump size case is the largest because the variance of the jump size is

the largest in that case.

2.4 Multiple Switches

In this section we solve the technology investment problem if the firm can switch technolo-

gies n times. One of the conclusions of the last section is that the probability distribution

of the size of the jump, degenerate, uniform or exponential, does not influence the out-

come very much. Therefore, in this section, we only explicitly solve the model for the

case that the jump size is constant. After that we discuss the stochastic case.
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ui’s θ∗ E [t∗] Sd [t∗]

constant 2.703 18.00 4.24

uniform 2.713 17.79 4.87

exponential 2.732 18.32 5.97

Table 2.1: Thresholds, expected value and standard deviation of the adoption time in the three different
cases.

2.4.1 Constant Jump Size

The investment problem of the firm consists of n optimal stopping problems, where the

outcome of the i-th optimal stopping problem, the threshold θ∗i , is an input for the (i+ 1)-

th optimal stopping problem. The n-th optimal stopping problem has already been solved

in the previous section.

The value of the firm before the last (the n-th) technology switch is denoted by

Fn

(
θ, ζn−1

)
and equals (cf. equation (2.20)),

Fn

(
θ, ζn−1

)
=



(
λ

r+λ

) θ∗n−θ

u
(
V (θ∗n)− V

(
ζn−1

)− I
)

+V
(
ζn−1

)
if θ < θ∗n − u,

π(ζn−1)
r+λ

+ λ
r+λ

(V (θ + u)− I) if θ∗n − u ≤ θ < θ∗n,

V (θ)− I if θ ≥ θ∗n.

(2.41)

From the analysis of the previous section we know that the threshold θ∗n is defined as the

solution of the following equation

π
(
ζn−1

)
r + λ

+
λ

r + λ
(V (θ∗n + u)− I) = V (θ∗n)− I. (2.42)

Next let us analyze the i-th optimal stopping problem for i ∈ {1, . . . , n− 1}. The

value of the firm when it is about to make its i-th technology switch is given by

Fi

(
θ, ζ i−1

)
=



(
λ

r+λ

) θ∗i −θ

u
(
Fi−1 (θ

∗
i , θ

∗
i )− V

(
ζ i−1

)− I
)

+V
(
ζ i−1

)
if θ < θ∗i − u,

π(ζi−1)
r+λ

+ λ
r+λ

(Fi−1 (θ + u, θ + u)− I) if θ∗i − u ≤ θ < θ∗i ,

Fi−1 (θ, θ)− I if θ ≥ θ∗i .

(2.43)

The threshold θ∗i is the solution of the value matching condition for Fi at θ = θ∗i :

π
(
ζ i−1

)
r + λ

+
λ

r + λ
(Fi−1 (θ

∗
i + u, θ∗i + u)− I) = Fi−1 (θ

∗
i , θ

∗
i )− I. (2.44)

The following theorem states how the n thresholds are calculated.
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Theorem 2.1 The thresholds θ∗i , i ∈ {1, . . . , n} are found by simultaneously solving the

following set of equations

π
(
ζ i−1

)
r + λ

+
λ

r + λ
(Fi−1 (θ

∗
i + u, θ∗i + u)− I) = Fi−1 (θ

∗
i , θ

∗
i )− I, i ∈ {1, . . . , n− 1} ,

π
(
ζn−1

)
r + λ

+
λ

r + λ
(V (θ∗n + u)− I) = V (θ∗n)− I,

where ζ i = inf (θj | θj ≥ θ∗i and j ∈ IN0) , i ∈ {1, . . . , n− 1}, and the functions Fi and V

are defined by equations (2.43) and (2.9), respectively.

Although the theorem tells us what equations we should solve in order to find the

solution to the technology investment problem, it seems impossible to do so in practice.

The problem is caused by the ζ i’s. When the jump size is constant it holds that ζ i =⌊
θ∗i
u

⌋
+ 1, i ∈ {1, . . . , n− 1} , but it is impossible to solve the system of equations after

substitution of these expressions.

In case the jump size is constant the technology investment problem can be solved in

the following way. Therefore we introduce some more notation. Let j denote the number

of the technology currently in use by the firm and k the number of the best technology

available, i.e. at time t we have ζ (t) = θj and θ (t) = θk. Define the following functions

gi (j, k) =

{
max
m≥k

fi+1 (j,m, k) if i ∈ {0, . . . , n− 1} ,
V (θj) if i = n,

(2.45)

and for i ∈ {0, . . . , n− 1},

fi+1 (j,m, k) =

(
1−
(

λ

r + λ

)m−k
)
V (θj) +

(
λ

r + λ

)m−k

gi+1 (m,m) . (2.46)

The function g gives the value of the firm as function of i, j, and k, where i equals the

number of switches the firm has made so far. When the firm’s i-th technology switch is

from technology θj to technology θm and the current best technology is θk, the value of

the firm is given by fi (j,m, k) . Note that

fi+1 (j,m, k) = V (θj) + E [exp (−r (Tm − t))| t ∈ [Tk, Tk+1)] (gi+1 (m,m)− V (θj)) .

(2.47)

From Lemma 2.3 (see Appendix 2.D) we know that

E [exp (−r (Tm − t))| t ∈ [Tk, Tk+1)] =

(
λ

r + λ

)m−k

. (2.48)

Substituting this last equation into equation (2.47) gives equation (2.46). Taking all this

into account brings us to the following theorem.
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Theorem 2.2 Let the efficiencies levels θi, i ∈ IN0 be given and set ζ0 = θ0. Then it is

optimal for the firm to adopt the technologies with the following efficiency levels at the

moment that these technologies become available:

ζ i = θm∗
i
, i ∈ {1, . . . , n} ,

in which

m∗
i = arg max

m≥m∗
i−1

(
fi−1

(
m∗

i−1,m,m∗
i−1

))
, i ∈ {1, . . . , n} ,

where m∗
0 = 0. The value of the firm equals g0 (0, 0).

Note that Theorem 2.2 can be applied for any given set of efficiency levels, i.e. the

jump sizes do not have to be constant.

Example 2.1 (continued) Table 2.2 gives the results of applying Theorem 2.2 to our

parameter set and n ∈ {1, 2, 3, 4, 5} . From that table we conclude that increasing the firm’s

flexibility, i.e. the ability of making more technology switches, increases the firm’s value.

Further we see that the more switches the firm can make, the earlier the first switch is

made.

n 1 2 3 4 5

gn (0, 0) 4172.69 5181.28 5722.92 6041.76 6236.30

ζ1 2.8 2.3 2.2 2.1 2.0

ζ2 - 3.7 3.2 3.0 2.8

ζ3 - - 4.5 4.0 3.6

ζ4 - - - 5.3 4.5

ζ5 - - - - 5.8

Table 2.2: Value of the firm and efficiencies of technologies adopted for n ∈ {1, 2, 3, 4, 5} .

2.4.2 Stochastic Jump Size

Theorem 2.1 also holds in case the jump size is stochastic. The only things that change

are the functions Fi. In the stochastic jump case the values of ζ i, i ∈ {1, . . . , n− 1} ,
are not known beforehand. However, to obtain a solution the efficiency parameters of the

technologies that arrive in the future must be known. Therefore, the best that can be done

is to design an approximation of the solution. For instance, the following approach can be

chosen. In order to obtain approximations of the thresholds set ζ i = θ∗i , i ∈ {1, . . . , n− 1}.
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Of course, after each technology adoption we know the exact value of that ζ i and we update

the new approximations.

Hence, when we replace V (θj) by E [V (θj (t))| t] in equations (2.45) and (2.46), The-

orem 2.2 can be used to make a prediction about the efficiencies of the technologies that

the firm should adopt in case the jump size is stochastic. However after each technology

arrival these predictions must be corrected.

Now we are in a position to point out a mistake in Farzin et al. (1998). The cor-

responding equation to equation (2.44) in case the jump size is uniformly distributed is

given by

π
(
ζ i−1

)
r + λ

+
λ

(r + λ)u

u∫
u=0

(Fi−1 (θ
∗
i + u, θ∗i + u)− I) du = Fi−1 (θ

∗
i , θ

∗
i )− I. (2.49)

Neglecting the possibility that the firm is going to adopt successive technologies, i.e.

θ∗i + u < θ∗i+1, it holds that (cf. equation (2.27))

Fi−1 (θ
∗
i , θ

∗
i ) =

π (θ∗i )
r + λ

+
λ

(r + λ)u

u∫
u=0

Fi−1 (θ
∗
i + u, θ∗i ) du. (2.50)

Substitution of (2.50) into (2.49) gives

π
(
ζ i−1

)
r

+
λ

ru

u∫
u=0

(Fi−1 (θ
∗
i + u, θ∗i + u)− Fi−1 (θ

∗
i + u, θ∗i )) du =

π (θ∗i )
r

− I. (2.51)

Due to the fact that Farzin et al. (1998) did not take into account the dependence of F on

ζ, i.e. the efficiency of the technology that the firm currently uses, they cancelled out the

integral on the left-hand side of equation (2.51). Since the value of the firm is increasing

in the efficiency of the technology in use, we conclude that the optimal triggers are larger

than the ones derived in Farzin et al. (1998, Section 4). Notice that the integral on the

left-hand side of equation (2.51) resembles the value of the option to invest.

2.5 Net Present Value Method

The net present value method states that an investment should be made when the present

value of the cash flows generated by that investment exceeds the investment cost. The

net present value method implicitly assumes that an investment is either reversible or

if irreversible it is a now or never opportunity. Dixit and Pindyck (1996) extensively

discuss that most investment problems do not satisfy these assumptions. In the technology

adoption framework it is clear that the investment is irreversible. As an example think
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of buying a personal computer. Clearly it is possible to postpone such an investment.

Therefore for applying the net present value the investment should be reversible. In

the case of a personal computer this is (almost surely) not true, i.e. the investment is

irreversible.

To incorporate the irreversibility and the possibility to delay an investment, the real

option theory was developed. For a good introduction and overview we refer to Dixit

and Pindyck (1996). In the real option theory investment opportunities are looked upon

as options. The firm has the right but not the obligation to make the investment. At

the moment that the firm invests the option is killed and because the option is valuable

the firm looses money. Therefore the lost option value should be incorporated in the

investment analysis. In the technology investment problem the option to invest is valuable,

because with positive probability the firm can buy a better technology for the same amount

of money if it waits just a little with 7making the investment.

The following theorem states what technologies the firm should adopt if the firm uses

the net present value method to solve the investment problem.

Theorem 2.3 According to the net present value method the firm adopts the technologies

with the following efficiencies:

ζNPV
i = inf

(
θj| θj ≥ θNPV

i and j ∈ IN0

)
, i ∈ {1, . . . , n} ,

where θNPV
i , i ∈ {1, . . . , n} , is the solution of

V
(
θNPV
i

)− I = V
(
ζNPV
i−1

)
, (2.52)

and ζNPV
0 = ζ0.

The theorem is easily verified by looking at equation (2.9). Comparing equations

(2.52) and (2.51) yields the following corollary.

Corollary 2.1 The net present value prescribes the firm to make the investments too

early, i.e. ζNPV
i < ζ i, i ∈ {1, . . . , n} .

Example 2.1 (continued) We calculated the efficiencies of the first five technologies

that should be adopted according to the net present value method. The results are put

in Table 2.3. Comparing this table with the last column of Table 2.2 we see that indeed

ζNPV
i < ζ i for i ∈ {1, 2, 3, 4, 5} .
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i ζNPV
i

1 1.4

2 1.7

3 2.0

4 2.2

5 2.4

Table 2.3: Efficiencies of the first five technologies that should be adopted according to the net present
value method.

2.6 Conclusions

In this chapter we analyzed the technology investment problem of a single firm. New

technologies arrive according to a Poisson jump process and the efficiency increases were

modelled in three ways. It turns out that the probability distribution of the jump size

(degenerate, uniform, or exponential) does not influence the result very much (see Exam-

ple 2.1). This conclusion holds generally whenever the expected value of investing after

the next technology arrival is almost the same for each approach.

It is only possible to completely solve the multiple switch case at the beginning of the

planning period if the efficiencies of the new technologies are known beforehand. This

implies that in the stochastic jump size case the solution of the model must be updated

after each technology arrival.

In Section 2.5 the incorrectness of the net present value method is proved. The example

showed that there is a significant difference between the optimal adoption pattern and

the one proposed by the net present value method.

In the next chapter the model is extended by making the investment costs decreasing

over time.

Appendices

2.A Optimal Stopping

Consider the following dynamic problem of a risk-neutral and value maximizing firm that

discounts against rate r (> 0). The firm has the opportunity to undertake a project. The

value of the project depends on one state variable, x (t) ∈ IR, which evolves stochastically

over time t (≥ 0) according to an Itô process or a Poisson jump process.
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Definition 2.1 The stochastic variable x (t) behaves according to an Itô process if and

only if for t ≥ 0

dx (t) = f (t, x (t)) dt+ g (t, x (t)) dω (t) ,

x (0) = x0,

where dω (t) is an increment of a Wiener process, i.e. dω (t) is distributed according to a

normal distribution with mean 0 and variance dt, and x0 ∈ IR.

Definition 2.2 The stochastic variable x (t) behaves according to a Poisson jump process

if and only if for t ≥ 0

dx (t) =

{
u (t, x (t)) with probability λdt,

0 with probability 1− λdt,

x (0) = x0,

where u (t, x (t)) is deterministic or distributed according to some probability distribution

and x0 ∈ IR.

Let Ω (x (t)) , with Ω : IR → IR, be the termination payoff when the firm undertakes

the project at state x (t) . Before the project is undertaken the firm receives a profit flow

π (x (t)) , with π : IR → IR. This profit flow stops at the moment that the firm undertakes

the project. This investment problem is called an optimal stopping problem (see also

Dixit and Pindyck (1996, Chapter 4)).

Denote the value of the project before stopping by F (x (t)) . Then given state x (t)

and given that the firm has not stopped before, the value of the project is given by

F (x (t)) = max (Ω (x (t)) , π (x (t)) dt+ exp (−rdt)E [F (x (t+ dt))|x (t)]) . (2.53)

The first argument within the maximization operator is equal to the value of stopping at

time t (≥ 0). The second argument equals the value of not stopping at time t, and acting

optimally from time t + dt onwards. This is called the Bellman principle of optimality.

In the continuation region the second argument within the maximization operator is the

largest. This implies that F must satisfy the following so-called Bellman equation in the

continuation region

rF (x (t)) = π (x (t)) + lim
dt↓0

1

dt
E [dF (x (t))] . (2.54)

The expectation in equation (2.54) can be calculated with Itô’s lemma.

Itô’s lemma Let x (t) behave according to an Itô process or a Poisson jump process and let

G (t, x (t)) be a function that is once differentiable with respect to t and twice differentiable
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with respect to x (t). Then

dG (t, x (t)) =
∂G (t, x (t))

∂t
dt+

∂G (t, x (t))

∂x (t)
dx (t) +

1

2

∂2G (t, x (t))

∂ (x (t))2
(dx (t))2 + o (dt) .

For deterministic processes as well as for Poisson process the term (dx (t))2 is of the

order (dt)2 and can therefore be added to the o (dt) term. Since (dx (t))2 is of order dt

for Itô processes it is stated explicitly in Itô’s lemma. For a proof of Itô’s lemma we refer

the interested reader to Karatzas and Shreve (1991).

Suppose that the termination payoff is increasing in x (t) and that the profit flow is

constant. Then intuition suggests that there exists a threshold x∗ such that undertaking

the project is optimal when x (t) > x∗ and waiting is optimal if x (t) < x∗. Hence, the

stopping region is defined to be equal to {x ∈ IR |x ≥ x∗} and the continuation region is

given by {x ∈ IR |x < x∗}.
Let F (x (t)) be the solution of equation (2.54). Then the threshold x∗ is found by

solving the value matching condition at x∗ :

F (x∗) = Ω (x∗) . (2.55)

Whenever the x (t) process can pass the threshold continuously the smooth pasting con-

dition must hold at x∗ :

∂F (x (t))

∂x (t)

∣∣∣∣
x(t)=x∗

=
∂Ω (x (t))

∂x (t)

∣∣∣∣
x(t)=x∗

. (2.56)

The interested reader is referred to Dixit (1991, 1993) for a more rigorous treatment of

smooth pasting and the control of Brownian motion.

The following theorem gives sufficient conditions for the uniqueness of this threshold.

The proof follows Dixit and Pindyck (1996, Appendix 4.B).

Theorem 2.4 Let Φ (x (t+ dt)|x (t)) , with Φ : D → [0, 1] and D ⊆ IR, be a cumulative

probability distribution function such that

E [g (x (t+ dt))| x (t)] =
∫

y∈D

g (y) dΦ (y|x (t)) ,

where g (y) , with g : D → IR, is a given function. Then given that there exists a threshold

x∗, this threshold is unique if the following two conditions are satisfied.

1. The function π (x (t))− rΩ (x (t)) + lim
dt↓0

1
dt
E [dΩ (x (t))| x (t)] is decreasing in x (t) .

2. There is positive persistence of uncertainty, i.e. let x1 < x2 then it holds for all

y ∈ D that Φ (y| x1) > Φ (y| x2) .
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Proof of Theorem 2.4 Define

G (x (t)) = F (x (t))− Ω (x (t)) , (2.57)

then

G (x (t)) = max (0, π (x (t)) dt− Ω (x (t)) + exp (−rdt)E [F (x (t+ dt))|x (t)])
= max(0, π (x (t)) dt− Ω (x (t)) + exp (−rdt)E [Ω (x (t+ dt))| x (t)]

+ exp (−rdt)E [G (x (t+ dt))| x (t)]). (2.58)

Given the two conditions the function G must be decreasing in x (t) . Consider the second

part within the maximization operator. The first condition ensures that the first three

arguments together are decreasing in x (t). If G is decreasing in x (t) , the fourth argument

is also decreasing in x (t) , because of the second condition. This implies that, given a

decreasing function G, the right-hand side of (2.58) is again a decreasing function. A

higher x (t) shifts the probability distribution Φ uniformly to the right and therefore the

expected value decreases. Thus G is decreasing in x (t) which implies that, given that

there exists a threshold x∗, this threshold is unique. �

Note that Theorem 2.4 does not guarantee the existence of a threshold, but if we

can derive a threshold and the conditions are satisfied this threshold is unique. On the

other hand, Theorem 2.4 provides sufficiency conditions which are by no means necessary.

Next we rewrite the conditions in Theorem 2.4 for two specific cases. In the first case x (t)

follows a Brownian motion and in the second case x (t) follows a Poisson jump process.

2.A.1 Brownian Motion Process

Let x (t) follow a Brownian motion with parameters µ and σ for t ≥ 0, i.e.

dx (t) = µdt+ σdω (t) , (2.59)

x (0) = x0, (2.60)

with dω (t) the increment of a Wiener process. Thus dω (t) is distributed according to a

normal distribution with mean 0 and variance dt, which implies that dx (t) is distributed

according to a normal distribution with mean µdt and variance σ2dt. In this case the

cumulative probability distribution Φ is equal to

Φ (y| x) =
y∫

z=−∞

1

σ
√
dt
√
2π

exp

(
−(z − µdt− x)2

σ2dt

)
dz. (2.61)
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From the last equation it follows that the second condition of Theorem 2.4 is satisfied

if x (t) follows a Brownian motion. Now, let us turn to the first condition. Expanding

E [dΩ (x (t))|x (t)] with Itô’s lemma gives

E [dΩ (x (t))| x (t)] = µ
∂Ω (x (t))

∂x (t)
dt+

1

2
σ2∂

2Ω (x (t))

∂ (x (t))2
dt+ o (dt) . (2.62)

Uniqueness of the threshold is guaranteed if the function

π (x (t))− rΩ (x (t)) + µ
∂Ω (x (t))

∂x (t)
+

1

2
σ2∂

2Ω (x (t))

∂ (x (t))2
(2.63)

is decreasing in x (t) .

2.A.2 Poisson Jump Process

Here we assume that x (t) behaves according to the following Poisson jump process for

t ≥ 0:

dx (t) =

{
u with probability λdt,

0 with probability 1− λdt,
(2.64)

x (0) = x0, (2.65)

where u is distributed according to some probability distribution with density function

φ, with φ : S → [0, 1] and S ⊆ IR+. Let z = inf
w∈S

(w) and z = sup
w∈S

(w) . The cumulative

probability distribution Φ is given by

Φ (y| x) =


0 if y − x < z,
y−x∫
z=z

φ (z) dz if z ≤ y − x < z,

1 if y − x ≥ z.

(2.66)

Hence, the second condition of Theorem 2.4 is satisfied in this case. Applying Itô’s lemma

gives for this case

E [dΩ (x (t))| x (t)] = λdt

∫
z∈S

(Ω (x (t) + z)− Ω (x (t)))φ (z) dz + o (dt) . (2.67)

This implies that the first condition of Theorem 2.4 is that the following function should

be decreasing in x (t)

π (x (t))− (r + λ) Ω (x (t)) + λ

∫
z∈S

Ω (x (t) + z)φ (z) dz. (2.68)
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Now we can derive sufficient conditions for the uniqueness of the threshold in Example

2.1. In that example we have

π (θ) = ϕζb0, (2.69)

Ω (θ) =
ϕθb

r
− I. (2.70)

First let the jumps be constant, then equation (2.68) becomes

ϕζb0 − (r + λ)

(
ϕθb

r
− I

)
+ λ

(
ϕ (θ + u)b

r
− I

)
. (2.71)

This last equation is decreasing in θ if and only if

− (r + λ) bθb−1 + λb (θ + u)b−1 < 0. (2.72)

Rewriting equation (2.72) gives

λ

r + λ
<

(
θ

θ + u

)b−1

, (2.73)

which is strongest for θ = θ0. Therefore, given the fact that θ0 = ζ0, equation (2.72) holds

if and only if

λ

r + λ
≤
(

ζ0

ζ0 + u

)b−1

. (2.74)

When the jumps are uniformly distributed a sufficient condition for uniqueness is

ζ0 ≥ u. To see this, note that in this case equation (2.68) equals

ϕζb0 − (r + λ)

(
ϕθb

r
− I

)
+

λ

u (b+ 1)

(
ϕ (θ + u)b+1

r
− ϕθb+1

r
− I

)
, (2.75)

which is decreasing in θ for ζ0 ≥ u since

− (r + λ) bθb−1 +
λ

u

(
(θ + u)b − θb

)
≤ − (r + λ) θb−1 +

λ

u

(
θb + ub − θb

)
= − (r + λ) θb−1 + λub−1

< −λζb−1
0 + λub−1

≤ 0.

Lastly we derive a sufficient condition for the case that the jumps are exponentially

distributed. The equivalent of equation (2.68) is

ϕζb0 − (r + λ)

(
ϕθb

r
− I

)
+ λ

∞∫
z=0

(
ϕ (θ + z)b

r
− I

)
µ exp (−µz) dz. (2.76)
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Differentiating equation (2.76) with respect to θ and multiplying by r
ϕb

gives

− (r + λ) θb−1 + λ

∞∫
z=0

(θ + z)b−1 µ exp (−µz) dz

≤ − (r + λ) θb−1 + λ

∞∫
z=0

θb−1µ exp (−µz) dz + λ

∞∫
z=0

zb−1µ exp (−µz) dz

= −rθb−1 + λ
Γ (b)

µb−1

∞∫
z=0

µb

Γ (b)
zb−1 exp (−µz) dz

= −rθb−1 + λ
Γ (b)

µb−1
,

where Γ (b) is defined by equation (2.111) in Appendix 2.C. Thus the threshold is unique

if

ζb−1
0 ≥ λ

r

Γ (b)

µb−1
. (2.77)

2.B Differential Equations

Proposition 2.4 Let the constants a0, a1, and a2 be positive constants. The solution of

f (x) = a0 + a1f (x+ a2) , (2.78)

is given by

f (x) = c (a1)
− x

a2 +
a0

1− a1

, (2.79)

where c is a constant to be determined by some boundary condition.

Proof of Proposition 2.4 The correctness of the proposition is easily verified after sub-

stitution of equation (2.79) into equation (2.78). �

Proposition 2.5 Let the constants a0, a1, and a2 be positive constants. The solution of

f (x) = a0 + a1

a2∫
y=0

f (x+ y) dy, (2.80)

is given by

f (x) = c0 exp (c1x) +
a0

1− a1a2
, (2.81)
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where c1 is the solution of

a1 (exp (a2c1)− 1)− c1 = 0, (2.82)

and c0 is a constant to be determined by some boundary condition.

Proof of Proposition 2.5 Substitution of equation (2.81) in equation (2.80) and rear-

ranging gives equation (2.82). �

Lemma 2.1 Let a1 and a2 be positive constants. Equation (2.82) has a unique positive

solution c1 if and only if a1a2 < 1.

Proof of Lemma 2.1 Define

g (c1) = a1 (exp (a2c1)− 1)− c1 = 0.

Then the first and second derivative of g are given by

∂g (c1)

∂c1
= a1a2 exp (a2c1)− 1,

and

∂2g (c1)

∂c21
= a1a

2
2 exp (a2c1) > 0,

respectively. Thus the function g is convex and attains its minimum at

c∗1 = − 1

a2

log (a1a2) .

Further it holds that g (0) = 0 and lim
c1→∞

g (c1) = ∞. Therefore the other root will be

positive if and only if c∗1 > 0. Since a2 is positive by assumption, the condition for a

positive root can be written as a1a2 < 1. �

Proposition 2.6 Let a0, a1, a2, and a3 be positive constants and x ∈ [a2 − a3, a2]. The

solution of

f (x) = a0 + a1

 a2−x∫
y=0

f (x+ y) dy +

a3∫
y=a2−x

g (x+ y) dy

 , (2.83)

is given by

f (x) = a1 (h (x)− h (a2)) exp (−a1x)

+

a0 + a1

a3∫
y=0

g (a2 + y) dy

 exp (a1 (a2 − x)) , (2.84)

where

∂h (x)

∂x
= g (x+ a3) exp (a1x) . (2.85)
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Proof of Proposition 2.6 Define ∂F (x)
∂x

= f (x) and ∂G(x)
∂x

= g (x), then equation (2.83)

can be written as

∂F (x)

∂x
= a0 + a1 (F (a2)− F (x) +G (x+ a3)−G (a2)) . (2.86)

Differentiating both sides to x gives

∂2F (x)

∂x2
= −a1

(
∂F (x)

∂x
− ∂G (x+ a3)

∂x

)
. (2.87)

From (2.87) we derive that

∂F (x)

∂x
=

(∫
a1
∂G (x+ a3)

∂x
exp (a1x) dx+ c

)
exp (−a1x) , (2.88)

where c is a constant to be determined. Thus

F (x) =

∫ (∫
a1
∂G (x+ a3)

∂x
exp (a1x) dx+ c

)
exp (−a1x) dx. (2.89)

Using the definition of h (see equation (2.85)) and integrating by parts gives

F (x) = −
(
h (x) +

c

a1

)
exp (−a1x) +G (x+ a3) . (2.90)

Substitution of equation (2.90) in equation (2.86) gives

c =

a0 + a1

a3∫
y=0

g (a2 + y) dy

 exp (a1a2)− a1h (a2) . (2.91)

Equation (2.84) is found by substituting equation (2.91) in equation (2.88) and rearrang-

ing. �

Proposition 2.7 Let a0, a1, a2, a3, and a4 be positive constants and x ∈ [0, a4]. Then

the solution of

∂f (x)

∂x
= a0 + a1 exp (−a2x) + a3 (f (a4)− f (x)) , (2.92)

is given by

f (x) =

(
a1

a2 − a3
exp (−a2a4)− a0

a3

)
exp (a3 (a4 − x))− a1

a2 − a3
exp (−a2x) + c, (2.93)

where c is a constant to be determined by some boundary condition.
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Proof of Proposition 2.7 Differentiating both sides of (2.92) to x gives

∂2f (x)

∂x2
= −a2a1 exp (−a2x)− a3

∂f (x)

∂x
. (2.94)

Solving this differential equation gives

∂f (x)

∂x
= δ0 exp (−a3x) + δ1 exp (−a2x) . (2.95)

Substitution of (2.95) in (2.94) gives

δ1 =
a1a2

a2 − a3

. (2.96)

Integrating equation (2.95) after substitution of equation (2.96 ) gives the following ex-

pression for f :

f (x) = −δ0

a3

exp (−a3x)− a1

a2 − a3

exp (−a2x) + c. (2.97)

Substitution of (2.95) and (2.97) in (2.92) gives

δ0 =

(
a0 − a1a3

a2 − a3

exp (−a2a4)

)
exp (a3a4) . (2.98)

Equation (2.93) is found by substituting equation (2.98) in equation (2.97). �

Proposition 2.8 Let a0, a1, a2 and a3 be positive constants. Then the solution of

f (x) = a0 + a1

 a2−x∫
y=0

f (x+ y) a3 exp (−a3y) dy +

∞∫
y=a2−x

g (x+ y) a3 exp (−a3y) dy

 ,

(2.99)

is given by

f (x) =

a1 exp (a2a3)

∞∫
y=a2

g (y) a3 exp (−a3y) dy − a0a1

1− a1

 exp ((1− a1) a3 (x− a2))

+
a0

1− a1

. (2.100)

Proof of Proposition 2.8 Equation (2.99) can be written as

f (x) = a0 + a1 exp (a3x)

 a2∫
y=x

f (y) a3 exp (−a3y) dy +

∞∫
y=a2

g (y) a3 exp (−a3y) dy

 .

(2.101)
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Define ∂F (x)
∂x

= f (x) a3 exp (−a3x) , then (2.101) becomes

∂F (x)

∂x

1

a3
exp (a3x) = a0 + a1 exp (a3x) (F (a2)− F (x) + a4) , (2.102)

where

a4 =

∞∫
y=a2

g (y) a3 exp (−a3y) dy. (2.103)

So, F must satisfy the following differential equation

∂F (x)

∂x
= a1a3a4 + a0a3 exp (−a3x) + a1a3 (F (a2)− F (x)) . (2.104)

Applying Proposition 2.7 to equation (2.104) gives

F (x) =

(
a0

1− a1
exp (−a3a2)− a4

)
exp (a1a3 (a2 − x))− a0

1− a1
exp (−a3x) + c.

(2.105)

Thus

∂F (x)

∂x
=

(
a1a3a4 − a0a1a3

1− a1
exp (−a3a2)

)
exp (a1a3 (a2 − x)) +

a0a3

1− a1
exp (−a3x) .

(2.106)

From the definition of F it follows that

f (x) =
1

a3

exp (a3x)
∂F (x)

∂x
. (2.107)

Substitution of (2.106) into equation (2.107) gives equation (2.100). �

2.C Definitions

2.C.1 Probability Distributions

Definition 2.3 The variable X is distributed according to a Poisson distribution with

parameter µ > 0 on IN0 if the probability function, pk, of X is given by

pk = Pr (X = k) =
µk

k!
exp (−µ) , for k = 0, 1, 2, . . . . (2.108)

Definition 2.4 The variable X is distributed according to an exponential distribution

with parameter µ > 0 on the interval (0,∞) if the probability density function, p (x), of

X is given by

p (x) = µ exp (−µx) , for x > 0. (2.109)
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Definition 2.5 The variable X is distributed according to a gamma distribution with

parameters µ > 0 and n > 0 on the interval (0,∞) if the probability density function,

p (x), of X is given by

p (x) =
µn

Γ (n)
xn−1 exp (−µx) , for x > 0, (2.110)

where Γ (n) for n > 0 is defined by

Γ (n) =

∞∫
t=0

tn−1 exp (−t) dt. (2.111)

Thus for n ∈ IN we have that Γ (n) = (n− 1)!.

Definition 2.6 The variable X is distributed according to a normal distribution with

parameters µ ∈ IR and σ > 0 on the interval (−∞,∞) if the probability density function,

p (x), of X is given by

p (x) =
1

σ
√
2π

exp

(
−(x− µ)2

2σ2

)
, for x ∈ IR. (2.112)

Definition 2.7 The variable X is distributed according to a uniform distribution on the

interval [a, b] if the probability density function, p (x), of X is given by

p (x) =
1

b− a
, for x ∈ IR. (2.113)

2.C.2 Sets

Definition 2.8 IN is the set of natural numbers without zero, thus IN = {1, 2, 3, . . . }.

Definition 2.9 IN0 is the set of natural numbers including zero, thus IN0 = {0, 1, 2, . . . } .

Definition 2.10 IR is the set of real numbers.

Definition 2.11 IR+ is the set of non-negative real numbers, thus IR+ = {x ∈ IR| x ≥ 0} .

2.C.3 Other

Definition 2.12 o (dt) denotes a quantity which tends faster to zero than dt, i.e.

lim
dt↓0

o (dt)

dt
= 0.
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2.D Lemmas and Proofs

Proof of Proposition 2.1 From the analysis of Subsection 2.A.2 we know that the

threshold is unique if the following function is decreasing in θ

π (ζ0)− (r + λ) (V (θ)− I) + λ

∫
z∈S

(V (θ + z)− I)φ (z) dz, (2.114)

where φ, with φ : S → [0, 1] and S ⊆ IR+, is the probability density function of the

probability distribution of the jump size. Due to the concavity of π and since φ is a

probability density function we have∫
z∈S

∂π (θ + z)

∂θ
φ (z) dz ≤ ∂π (θ)

∂θ
. (2.115)

Differentiating equation (2.114) with respect to θ and substitution of equation (2.115)

into the result gives

−
(
r + λ

r

)
∂π (θ)

∂θ
+

λ

r

∫
z∈S

∂π (θ + z)

∂θ
φ (z) dz

≤ −
(
r + λ

r

)
∂π (θ)

∂θ
+

λ

r

∂π (θ)

∂θ

= −∂π (θ)

∂θ
< 0.

Thus equation (2.114) is decreasing in θ and the threshold is unique. �

Lemma 2.2 Let X be a stochastic variable that is distributed over the interval [0,∞)

according to some distribution with distribution function F (x) = Pr (X ≤ x). Let f (x)

be a continuous and differentiable function on [0,∞) . Then

E [f (X)] =

∞∫
t=0

∂f (t)

∂t
(1− F (t)) dt+ f (0) . (2.116)

Proof of Lemma 2.2 The proof is straightforward:

E [f (X)] =

∞∫
x=0

f (x) dF (x) =

∞∫
x=0

 x∫
t=0

∂f (t)

∂t
dt+ f (0)

 dF (x)

=

∞∫
t=0

 ∞∫
x=t

∂f (t)

∂t
dF (x)

 dt+ f (0)

∞∫
x=0

dF (x)

=

∞∫
t=0

∂f (t)

∂t
(1− F (t)) dt+ f (0) .

�
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Lemma 2.3 The discounted value of one unit of money the firm receives after the n-th

technology arrival from now equals (
λ

r + λ

)n

. (2.117)

Proof of Lemma 2.3 We want to derive an expression for

E
[
exp
(−r
(
TN(t)+n − t

))]
. (2.118)

Since the technologies arrive according to a Poisson process, the time between two tech-

nology arrivals is exponentially distributed. We denote the number of technologies that

arrive over an interval [t, t+ s) by R (s). Thus, it holds that R (s) = N (t+ s) − N (t).

Due to the fact that N is a Poisson process with rate λ, the stochastic variable R (s) is

distributed according to a Poisson distribution with parameter λs. Now it is not hard to

see that

Pr
(
TN(t)+n − t ≤ s

)
=

∞∑
k=n

Pr (R (s) = k) . (2.119)

Using Lemma 2.2 we can derive the following expression for E
[
exp
(−r
(
TN(t)+n − t

))]
:

E
[
exp
(−r
(
TN(t)+n − t

))]
= 1− r

∞∫
s=0

exp (−rs)
(
1− Pr

(
TN(t)+n − t ≤ s

))
ds. (2.120)

Substitution of equation (2.119) into equation (2.120) gives

1− r

∞∫
s=0

exp (−rs)

(
1−

∞∑
k=n

Pr (R (s) = k)

)
ds

= 1− r

∞∫
s=0

exp (−rs)

n−1∑
k=0

Pr (R (s) = k) ds. (2.121)

Since R (s) is Poisson distributed with parameter λs we have

E
[
exp
(−r
(
TN(t)+n − t

))]
= 1− r

n−1∑
k=0

∞∫
s=0

exp (−rs) exp (−λs)
(λs)k

k!
ds

= 1− r
n−1∑
k=0

λk

(r + λ)k+1

∞∫
s=0

(r + λ)k+1 exp (− (r + λ) s) sk

k!
ds. (2.122)
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The integral equals one, since it equals the cumulative distribution of a gamma distributed

variable over its entire domain. Using the fact that

j−1∑
i=0

ai =
1− aj

1− a
, (2.123)

gives

E
[
exp
(−r
(
TN(t)+n − t

))]
= 1− r

(r + λ)

1− ( λ
r+λ

)n
1− ( λ

r+λ

)
=

(
λ

r + λ

)n

. (2.124)

Thus equation (2.117) holds. �

Proof of Proposition 2.2 Use Lemma 2.2 to calculate the expected value of t∗ :

E [t∗] =

∞∫
t=0

(1− Pr (t∗ ≤ t)) dt =

∞∫
t=0

(
1−

∞∑
n=n∗

Pr (N (t) = n)

)
dt

=

∞∫
t=0

n∗−1∑
n=0

Pr (N (t) = n) dt =

∞∫
t=0

n∗−1∑
n=0

exp (−λt)
(λt)n

n!
dt

=
n∗−1∑
n=0

1

λ

∞∫
t=0

λn+1tn

n!
exp (−λt) dt =

n∗

λ
.

In the second step we substitute equation (2.24) and in the fourth step the probability

function of Poisson distribution (see Definition 2.3). The last equality holds, because

the expression that is integrated is the density function of a gamma distribution with

parameters λ and n+ 1 (see also Definition 2.5).

In the same way we derive the following expression for E
[
(t∗)2
]
:

E
[
(t∗)2
]
=

n∗ (n∗ + 1)

λ2 . (2.125)

Thus

V ar [t∗] = E
[
(t∗)2
]− (E [t∗])2 =

n∗

λ2 .

Thereby the proposition is proved. �
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Proof of Proposition 2.3 For this proof we use Lemma 2.2:

E [t∗] =

∞∫
t=0

(1− Pr (t∗ ≤ t)) dt =

∞∫
t=0

(1− Pr (θ (t) ≥ θ∗)) dt =

∞∫
t=0

Pr (θ (t) < θ∗) dt

=

∞∫
t=0

Pr

θ0 +

N(t)∑
n=0

un < θ∗

 dt

=

∞∫
t=0

∞∑
k=0

Pr

N(t)∑
n=0

un < θ∗ − θ0

∣∣∣∣∣∣N (t) = k

Pr (N (t) = k) dt. (2.126)

Noting that the sum of k independent and identically exponentially distributed variables

(with parameter µ) is distributed according to a gamma distribution with parameters µ

and k (see Definition 2.5) and that the probability that u0 is less than θ∗−θ0 is one, gives

E [t∗] =

∞∫
t=0

exp (−λt) +
∞∑
k=1

θ∗−θ0∫
x=0

µk exp (−µx)xk−1

(k − 1)!
dx

(λt)k

k!
exp (−λt)

 dt.

Rewriting gives

E [t∗] =

θ∗−θ0∫
x=0

exp (−µx)
∞∑
k=1

µkxk−1

λ (k − 1)!

∞∫
t=0

λk+1tk

k!
exp (−λt) dtdx+

1

λ
.

Seeing that the second integral equals one (probability density function of gamma distri-

bution) and knowing that
∞∑
k=1

(µx)k−1

(k−1)!
= exp (µx) gives

E [t∗] =
µ

λ

θ∗−θ0∫
x=0

dx+
1

λ
=

µ (θ∗ − θ0) + 1

λ
.

In the same way it can be derived that

E
[
(t∗)2
]
=

2 + 4µ (θ∗ − θ0) + µ2 (θ∗ − θ0)
2

λ2 .

So

V ar [t∗] =
1 + 2µ (θ∗ − θ0)

λ2 .

�





Chapter 3

Decreasing Investment Cost

3.1 Introduction

We consider a firm whose profit is only influenced by its own technology choice. There

are two differences with the model of Chapter 2. First, it is assumed that the efficiency

improvements of the new technologies are known. In practice this does not seem to be

a very restrictive assumption. For example, when Intel launched the Pentium processor

everyone knew that one day they would come up with a processor that is twice as fast as

the Pentium processor. The only thing not known for sure was when this processor would

become available. Second, the prices of new technologies are assumed to drop over time,

implying that a firm needs to invest less in case it decides to buy a new technology at a

later point of time. The reason for this price decrease is that, as time passes, the demand

for a particular technology declines because of market saturation and the invention of

newer technologies that are better than this particular one.

The problem of the firm is (1) to decide whether to invest in a new technology or not,

(2) if the firm decides to invest, which technology to choose, and (3) at what time it is

optimal to invest. The sooner the firm invests the higher the price it has to pay for a new

technology, but the sooner the firm can produce more efficiently. Another disadvantage

of investing very fast is that there exists a risk that a much better technology will become

available just a little later. Both the single switch and multiple switch case will be

analyzed.

The model will be solved using dynamic programming. Similar to the previous chapter

we compare the optimal investment strategy with the one that would have been found

when the widely used net present value method was applied. The net present value method

prescribes that the firm should go ahead with investing as soon as the discounted cash

flow stream exceeds the initial sunk cost investment. In doing so the net present value

method does not take into account the advantage of delaying investment, which arises

47
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from the fact that the later a firm invests in a new technology the lower the sunk cost

investment will be. Also, this method does not take into account the probability that a

better technology will be invented at a later point of time. Hence, applying the net present

value rule will lead to a suboptimal outcome, because the option value of postponing the

investment is not taken into account. In this respect this model contributes to a recent

stream of literature in which investment decisions are analyzed as real options (for an

overview see the well received book by Dixit and Pindyck (1996)).

This chapter is organized as follows. In Section 3.2 we present the basic model, while

in Section 3.3 the optimal investment strategy for the single switch case is derived. The

multiple switch case is discussed in Section 3.4. We compare the optimal strategy with

the one that is the result of applying the net present value rule in Section 3.5. Section

3.6 concludes.

3.2 The Model

Consider a risk-neutral firm whose profit is not influenced by the technology choice of

other firms. Since the firm can make more profits with a more efficient technology we

assume that the firm has a profit function π which is increasing and concave in ζ (≥ 0) , the

technology-efficiency parameter. We analyze a dynamic model with an infinite planning

period and assume that the firm maximizes its value and discounts against rate r (> 0).

Initially, at time t = 0, the firm produces with a technology designated by ζ (0) = ζ0,

with ζ0 ≥ 0. As time passes new technologies become available, and the firm has the

opportunity to adopt a new technology. At time t (≥ 0) the efficiency of the most efficient

available technology is denoted by θ (t) and the efficiency of the technology that the

firm uses is denoted by ζ (t) . We assume that the process of technological evolution is

exogenous to the firm. Technologies become more and more efficient over time, and the

more efficient a technology the larger the associated parameter θ. Thus 0 ≤ ζ (t) ≤ θ (t)

for all t ≥ 0. However, the arrival process of the new technologies is a stochastic process.

On the other hand, the efficiency improvements of the new technologies are assumed to

be known. The i-th new technology has an (known) efficiency level equal to θi (> θi−1)

with i ∈ IN and θ0 ≥ ζ0. In the remainder of this chapter we will use the efficiency level

of a technology to refer to that specific technology. For example we write technology θi

instead of technology i. We denote the number of technology arrivals over the interval

[0, t) by N (t). Therefore θ (t) = θN(t) for all t ≥ 0. For notational convenience we write θ

instead of θ (t) . We assume that N (t) is a Poisson process with rate λ > 0. We denote

the time elapsed between the invention of technology i − 1 and technology i by τ i. We
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define

Ti =

i∑
j=1

τ j ,

thus Ti is equal to the point in time at which technology θi becomes available. Let T (t) ,

with t ≥ 0, be the set which contains the arrival dates of theN (t) technologies that arrived

over the time interval [0, t) . Thus T (t) = ∅ if N (t) = 0 and T (t) =
{
T1, . . . , TN(t)

}
if

N (t) ≥ 1. Further it holds that |T (t)| = N (t) , where |S| is defined to be equal to the

number of elements of a finite set S.

When the firm adopts technology θi at time t it incurs a non negative sunk cost

investment which is denoted by Ii (t) , with Ii : [Ti,∞) → IR+. At the moment that

a new technology becomes available to the market, the investment cost instantaneously

declines with a certain fraction, which is given a Poisson jump. Here the investment cost

is subject to the same Poisson process as the one that determines the arrival rate of new

technologies. The reason for this can be that the suppliers of technologies put the old

technology for sale against a lower price to get rid of these less efficient technologies.

For t ≥ Ti the investment cost Ii (t) decreases according to the following process

dIi (t) =

{
−αiIi (t) dt− βiIi (t) with probability λdt,

−αiIi (t) dt with probability 1− λdt,
(3.1)

Ii (Ti) = Ii0, (3.2)

where Ii0 ≥ 0. αi, with αi ≥ 0, is the parameter that determines the speed of the determin-

istic decline of the investment cost and βi ∈ [0, 1) corresponds to the size of the jump the

investment cost makes when a new technology arrives. The deterministic decline of the

investment cost can be explained by market saturation: the price of a certain technology

decreases over time due to the fact that the demand for that technology decreases.

The following proposition gives the solution of the system of equations (3.1)-(3.2).

The proof is given in Appendix 3.A.

Proposition 3.1 The investment cost of technology i at time t ≥ Ti is equal to

Ii (t) = (1− βi)
N(t)−i Ii0 exp (−αi (t− Ti)) . (3.3)

The general problem facing the firm is: (1) to choose to which technology to switch

and (2) to choose the right moment to switch to that technology.
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3.3 Single Switch

In this section we assume that the firm is allowed to switch technologies only once. One

reason that a firm cannot invest more than once can be that the firm’s financial means

are limited. There are an infinite number of possible investment strategies for the firm.

The first strategy is ”never invest” and the others are of the form: ”invest in technology

θi ”, i ∈ IN. Although there are an infinite number of investment strategies, only a finite

number need to be considered. The reason is that the strategies ”invest in technology

θi” for i sufficiently large may be ignored. Thus, the values of these strategies are the

same as the value of the strategy ”never invest” and therefore they can be ignored for

the moment. An equivalent application of this so-called forecast horizon procedure can

be found in Nair (1995).

We know that the firm is going to invest at some time anyway. The reason for this

is a combination of (i) that the investment costs go to zero as time goes to infinity, (ii)

that the efficiency levels of the new technologies are higher than the efficiency level of the

technology that is currently in use, and (iii) the profit function is increasing and concave

in the efficiency level of the technology in use.

We obtain the optimal investment strategy for the firm by comparing, for all values

of the investment costs Ii, i ∈ IN, the value of the firm under the possible strategies.

Therefore we consider that the firm is going to invest in some technology θi, with i ∈ IN,

determine the optimal time to invest in this technology, and derive the value of the firm

conditional on this investment strategy.

The expected value of the firm at time t, if the firm has not invested yet, is denoted

by F (t, T (t) , ζ0) and is equal to

F (t, T (t) , ζ0) = max
i∈IN

(Fi (t, T (t) , ζ0)) , (3.4)

where Fi (t, T (t) , ζ0) equals the value of the firm at time t if the firm decides to invest in

technology θi, given T (t) and ζ0. In order to derive an expression for Fi (t, T (t) , ζ0) we

first consider the case where technology θi is already available at time t (i ≤ N (t)) and

after that the case where technology θi is not yet invented at time t (i > N (t)).

3.3.1 Technology Being Available

In this subsection we derive the value of the firm when for some i ∈ IN the firm is going

to invest in technology θi and technology θi has already been invented. The only thing

that is left is to determine the timing of the investment. The problem facing the firm is

an optimal stopping problem. For an introduction we refer the reader to Appendix 2.A.

Intuition suggests that there will be a critical level I∗i such that it is optimal for the firm
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to invest when the investment cost is equal or below the critical level, Ii ≤ I∗i , and it

is optimal to wait with investing otherwise, Ii > I∗i . The following proposition, that is

proved in Appendix 3.A, guarantees the uniqueness of the threshold.

Proposition 3.2 The threshold I∗i is unique.

There are two ways for the investment cost to fall below the critical level (see Figure

3.1). One possible way is by a jump and the other possibility is that the investment

cost passes the critical level smoothly. Therefore we can identify three regions for the

investment cost. In the first region the investment cost is above the critical level and it is

not possible that the investment cost falls below the critical level after the next jump. The

second region is characterized by the facts that the investment cost is above the critical

level and that the investment cost will be below the critical level after the next jump. In

the last region the investment cost is below the critical level. The first two regions together

are called the continuation region. The boundary between the continuation region and

the third region is of course the critical level I∗i . The cut-off point between the first and

the second region is determined by the critical level and the size of the jump, so that it

equals
I∗i

(1−βi)
. The next step is to derive expressions for the value of the firm, denoted by

fi (Ii, ζ0), in each of these three regions and an expression for the critical level.

Ti Ti + 1 Ti + 2

t

Ii
∗

Ii0

I
i
(t

)

Ti Ti + 1 Ti + 2

t

Ii
∗

Ii0

I
i
(t

)

Figure 3.1: Sample paths of Ii (t) . In the left panel the investment cost decreases smoothly through the
critical level I∗i and in the right panel the investment cost jumps through the critical level I∗i .

In the termination region, {Ii |0 ≤ Ii ≤ I∗i } , it is optimal to invest right away in tech-

nology θi. Since the firm can make only one technology switch, the firm will produce with

technology θi forever after the switch. Thus, in this region the value of the firm equals

fi (Ii, ζ0) =

∞∫
s=0

π (θi) e
−rsds− Ii =

π (θi)

r
− Ii. (3.5)
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The value function fi must satisfy the following Bellman equation in the continuation

region (cf. Appendix 2.A):

rfi (Ii, ζ0) = π (ζ0) + lim
dt↓0

1

dt
E [dfi (Ii, ζ0)] . (3.6)

In the second part of the continuation region, where
{
Ii

∣∣∣I∗i < Ii ≤ I∗i
(1−βi)

}
, the firm is

going to switch after the next jump of the investment cost. Since the firm can make only

one technology switch, we know that the firm is going to produce with this technology θi

forever after the technology switch. So the value of the firm after the technology switch

equals π(θi)
r

. Expanding E [dfi (Ii, ζ0)] using Itô’s lemma (see Appendix 2.A) and equation

(3.1) gives

E [dfi (Ii, ζ0)] = (1− λdt)

(
−∂fi (Ii, ζ0)

∂Ii
αiIidt

)
+λdt

(
π (θi)

r
− (Ii − αiIidt− βiIi)− fi (Ii, ζ0)

)
+ o (dt) . (3.7)

Substitution of equation (3.7) into (3.6) and rewriting gives

fi (Ii, ζ0) +
∂fi (Ii, ζ0)

∂Ii

αi

r + λ
Ii +

λ (1− βi)

r + λ
Ii =

π (ζ0)

r + λ
+

λ

r + λ

π (θi)

r
. (3.8)

The solution of this differential equation is given by

fi (Ii, ζ0) = BiI
− (r+λ)

αi
i − λ (1− βi)

r + αi + λ
Ii +

π (ζ0)

r + λ
+

λ

r + λ

π (θi)

r
, (3.9)

in which Bi is a constant to be determined. Hence, the value of the firm in the second

region consists of four parts. The first part is equal to the value of the option to invest in

technology θi. Note that this option value increases over time with rate αi (not αi + λβi)

since the firm kills this option after the next technology arrival. The latter is also the

reason for the arrival rate λ being added to the discount rate (see also Subsection 2.3.1).

The second part is the discounted value of the investment cost to be paid when adopting

technology θi. To explain this, let S denote the time till the next technology arrival, so

that

E [exp (−rS) Ii (S)] =

∞∫
s=0

E [exp (−rS) Ii (S)|S = s]λ exp (−λs) ds

=

∞∫
s=0

exp (−rs) (1− βi) Ii exp (−αis)λ exp (−λs) ds

=
λ (1− βi)

r + αi + λ
Ii.
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The third part is the expected value of the discounted profit flow the firm generates from

now until the next technology arrival. Therefore λ is added to the discount rate. The last

part is the discounted value of the firm after the technology switch. A general derivation

and interpretation of the discount factor λ
r+λ

is given by Lemma 2.3 in Appendix 2.D.

Expressions for Bi and the critical level I∗i can be derived by considering the case

that the investment cost decreases smoothly through the critical level. Then the value

matching and smooth pasting conditions must hold at the critical level.

In the first region, i.e.
{
Ii

∣∣∣ I∗i
(1−βi)

< Ii ≤ Ii0

}
, we know that the firm is not going to

switch after the next jump of the investment cost. In this case the function fi must satisfy

the following equation

fi (Ii, ζ0) +
∂fi (Ii, ζ0)

∂Ii

(αi + λβi)

r
Ii =

π (ζ0)

r
. (3.10)

The solution of this differential equation equals

fi (Ii, ζ0) = AiI
− r

αi+λβi
i +

π (ζ0)

r
, (3.11)

where Ai is a constant to be determined later on. From (3.11) we obtain that the value

of the firm in the first region consists of two parts. The first part can be looked upon as

the value of the option to invest in technology θi. The second part is equal to the value of

the firm if it decides to produce with technology ζ0 forever, which then equals the value

of the firm when the firm never exercises the option to invest. The constant Ai can be

determined by making use of the continuity condition at the boundary between the first

and the second region.

Now we can derive expressions for the constants and the cut-off points using the

following three conditions. First the continuity condition at the cut-off point between the

first two regions, which is derived from (3.11) and (3.9):

Ai

(
I∗i

1−βi

)− r
αi+λβi +

π (ζ0)

r

= Bi

(
I∗i

1−βi

)− (r+λ)
αi − λ

r + αi + λ
I∗i +

π (ζ0)

r + λ
+

(
λ

r + λ

)
π (θi)

r
. (3.12)

Second the value matching condition at the cut-off point between the second and the

third region, stating that the firm at this cut-off point is indifferent between investing

right away and waiting just a little bit longer before making the investment:

Bi (I
∗
i )

− (r+λ)
αi − λ (1− βi)

r + αi + λ
I∗i +

π (ζ0)

r + λ
+

(
λ

r + λ

)
π (θi)

r
=

π (θi)

r
− I∗i . (3.13)
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The following smooth pasting condition holds at the cut-off point between the second and

the third region,

∂

∂Ii

[
BiI

− (r+λ)
αi

i − λ (1− βi)

r + αi + λ
Ii +

π (ζ0)

r + λ
+

(
λ

r + λ

)
π (θi)

r

]∣∣∣∣
Ii=I∗i

=
∂

∂Ii

[
π (θi)

r
− Ii

]∣∣∣∣
Ii=I∗i

. (3.14)

Rewriting (3.14) gives the following expression for Bi:

Bi =
αi

r + λ

(
r + αi + λβi

r + αi + λ

)
I∗

(r+λ)
αi

+1

i . (3.15)

Substitution of (3.15) in (3.13) and solving for I∗i gives

I∗i =
π (θi)− π (ζ0)

r + αi + λβi

. (3.16)

An economic interpretation of (3.16) is given in Subsection 3.3.4. Note that the critical

level does only depend on technologies 0 and i. This is for the reason that the critical

level is derived conditional on the fact that the firm is going to switch from technology

ζ0 to technology θi. By combining equations (3.12), (3.15) and (3.16) an expression for

Ai can be derived.

We conclude that the value of the firm at time t conditional on the strategy ”invest

in technology θi” when technology θi is available at time t is given by

fi (Ii, ζ0) =


Ai (Ii)

− r
αi+λβi + π(ζ0)

r
if

I∗i
(1−βi)

< Ii ≤ Ii0,

Bi (Ii)
− (r+λ)

αi − λ(1−βi)
(r+αi+λ)

Ii +
π(ζ0)
(r+λ)

+
(

λ
r+λ

)
π(θi)
r

if I∗i < Ii ≤ I∗i
(1−βi)

,
π(θi)
r

− Ii if 0 ≤ Ii ≤ I∗i .

(3.17)

Using this equation we get the following expression for Fi (t, T (t) , ζ0) with t ≥ Ti :

Fi (t, T (t) , ζ0) = fi (Ii (t) , ζ0) , (3.18)

where Ii (t) is calculated using equation (3.3).

3.3.2 Technology Not Being Available

If at time t technology θi is not yet available for the firm, the value of the firm under

the strategy ”invest in technology θi ” is equal to the sum of the discounted profit flows

generated on the time interval (t, Ti) , where Ti is the moment of time that technology θi
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is invented, and the discounted value of the firm under the strategy ”invest in technology

θi” at time Ti, i.e.

Fi (t, T (t) , ζ0) = E

 Ti−t∫
s=0

π (ζ0) e
−rsds+ Fi (Ti, T (Ti) , ζ0) e

−r(Ti−t)


= E

[
π (ζ0)

r
− π (ζ0)

r
e−r(Ti−t) + Fi (Ti, T (Ti) , ζ0) e

−r(Ti−t)

]
=

π (ζ0)

r
+

(
Fi (Ti, T (Ti) , ζ0)−

π (ζ0)

r

)
E
[
e−r(Ti−t)

]
. (3.19)

From Lemma 2.3 in Appendix 2.D we know that

E
[
e−r(Ti−t)

]
=

(
λ

r + λ

)i−N(t)

. (3.20)

Substitution of the equations (3.18) and (3.20) in equation (3.19) yields for t < Ti,

Fi (t, T (t) , ζ0) =



(
λ

r+λ

)i−N(t)
Ai (Ii0)

− r
αi+λβi + π(ζ0)

r
if

I∗i
(1−βi)

< Ii0,(
λ

r+λ

)i−N(t)
(
Bi (Ii0)

− (r+λ)
αi − λ(1−βi)

(r+αi+λ)
Ii0

)
+
(

λ
r+λ

)i−N(t)+1
(

π(θi)
r

− π(ζ0)
r

)
+ π(ζ0)

r
if I∗i < Ii0 ≤ I∗i

(1−βi)
,(

λ
r+λ

)i−N(t)
(

π(θi)
r

− Ii0

)
+
(
1− ( λ

r+λ

)i−N(t)
)

π(ζ0)
r

if 0 ≤ Ii0 ≤ I∗i .

(3.21)

3.3.3 Optimal Investment Strategy

From the above analysis it can be concluded that the following theorem states the optimal

investment strategy.

Theorem 3.1 Consider a time t (≥ 0) . Let k = argmax
i∈IN

Fi (t, T (t) , ζ0) . Given that the

firm has not invested before, it is optimal for the firm to invest in technology θk at time t

if the following two conditions are fulfilled:

(1) Ik (t) < I∗k , (3.22)

(2) k ≤ N (t) , (3.23)

and otherwise it is optimal to wait with investing. The value functions Fi (t, T (t) , ζ0)

for i ∈ {1, . . . , N (t)} and for i > N (t) are calculated with equation (3.18) and (3.21),

respectively. The investment costs Ii (t) , i ∈ {1, . . . , N (t)} , are calculated with equation

(3.3) and Ii (t) = Ii0 for i > N (t). The optimal switching levels I∗i , for i ∈ IN, are given

by equation (3.16).
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The first condition ensures that the sunk cost investment is already below the critical

value so that it is optimal to invest right now in θk. The second condition says that

technology θk is already available. If at least one of these conditions is not fulfilled, it is

optimal for the firm to keep on producing with the old technology and wait with investing.

As mentioned before, only a finite number of technologies need to be considered. The

reason is that the strategies ”invest in technology θi” for i sufficiently large may be ignored.

Since lim
i→∞
(

λ
r+λ

)i−N(t)
= 0, the value of the firm under the strategy ”invest in technology

θi” for sufficiently large i will equal π(ζ0)
r

(let i go to infinity in equation (3.21)). Thus,

the values of these strategies are the same as the value of the strategy ”never invest” and

therefore they can be ignored for the moment.

Example 3.1 In this example we again analyze the firm from Example 2.1. Thus the

profit flow is equal to π (ζ) = 200ζ2 and the discount rate is given by r = 0.1. We assume

that on average each five years a new technology arrives, i.e. λ = 1
5
, and that the efficiency

of the i-th technology is given by θi = θ0+
1
2
i. Further we set ζ0 = θ0 = 1. The parameters

for the investment cost are the same for all new technologies and equal to Ii0 = I0 = 1600,

αi = α ∈ [0, 0.9] and βi = 0, for all i ∈ IN. We consider an interval of α values rather than

a unique number, because we want to analyze the effect of α on the optimal investment

strategy of the firm.

For the parameter values concerned it holds that I∗4 ≥ I0, which implies that it is

optimal to adopt technology θ4 at its arrival date. Consider the decision problem of the

firm at time T4. Investing in technology θ4 gives a payoff of

π (θ4)

r
− I0 = 16400.

When the firm waits for the next technology its expected value equals

π (ζ0)

r
+

λ

r + λ

(
π (θ5)− π (ζ0)

r
− I0

)
= 15933.

It turns out that the expected value of the firm is even lower when it waits for better

technologies than technology θ5. Therefore the optimal strategy at time T4 is to adopt

technology θ4.

Further it can be obtained that technologies θ1 and θ2 will never be adopted by the firm,

because waiting for technology θ4 yields (in any case) a higher payoff:

4500 =
π (θ1)

r
<

π (ζ0)

r
+

(
λ

r + λ

)3(
π (θ4)− π (ζ0)

r
− I0

)
= 6267,

and

8000 =
π (θ2)

r
<

π (ζ0)

r
+

(
λ

r + λ

)2(
π (θ4)− π (ζ0)

r
− I0

)
= 8400.
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Adopting technology θ3 can be optimal, since

12500 =
π (θ3)

r
>

π (ζ0)

r
+

λ

r + λ

(
π (θ4)− π (ζ0)

r
− I0

)
= 11600.

Consider the case that technology θ4 is not yet available. Then adopting technology θ3 is

optimal when

π (θ3)

r
− I3 (t) ≥ 11600,

i.e. for t ≥ t∗3, where

t∗3 =
1

α
log

(
16

9

)
.

Thus the probability that the firm adopts technology θ3, given α, equals

Pr (θ3|α) = Pr (T4 − T3 > t∗3) = 1− Pr (T4 − T3 ≤ t∗3) = exp
(
− t∗3

5

)
.

With the complementary probability technology θ4 is adopted:

Pr (θ4| a) = 1− exp
(
− t∗3

5

)
.

These probabilities are plotted in Figure 3.2. Notice that when α = 0 we are back in the

analysis of Chapter 2 and the firm is going to adopt technology θ4 for sure. Increasing α

increases the probability that technology θ3 is adopted. This for the reason that increasing

α increases the probability that the investment cost of technology θ3 has decreased enough

to make its adoption optimal.

0 0.2 0.4 0.6 0.8
α

0

0.2

0.4

0.6

0.8

1

P
r

(•
|

α) Pr( θ3| α)

Pr( θ4| α)

Figure 3.2: Probability of adopting technology θ3 and probability of adopting technology θ4, both as
function of α.
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3.3.4 Comparative Statics

By partially differentiating equation (3.16) we can show that the critical switching level I∗i
will be higher, implying that the firm is willing to pay more for technology θi, the smaller

the discount rate, the higher the efficiency level of the new technology, and the lower the

efficiency level of the technology that is currently used. The intuition for these effects

is straightforward: the opportunity cost of waiting in anticipation of a lower investment

cost consists of the discounted forgone profits during the waiting period, which clearly

will be greater the smaller is r. A relatively higher efficiency level of the new technology,

or a relatively lower efficiency level of the technology currently in use, makes a technology

switch more attractive. Therefore the optimal switching level will be higher, which implies

an earlier technology adoption.

Further we see that the critical switching level I∗i will be lower, the higher αi, the

higher λ and the higher βi. This means that the firm anticipates to a more rapid decline

of the sunk cost investment by waiting for a smaller sunk investment cost.

3.4 Multiple Switches

In this section we try to extend the analysis of the previous section to the case where

the firm is allowed to make n technology switches. Let Gn

(
t, T (t) , ζn−1

)
denote the

value of the firm before the n-th technology switch at time t when the firm produces with

technology ζn−1 and the arrival dates of new technologies are summarized in T (t). Then

we know that

Gn

(
t, T (t) , ζn−1

)
= F
(
t, T (t) , ζn−1

)
, (3.24)

where F is defined by equation (3.4). In the same fashion we define the value of the firm

before the i-th technology switch, with i ∈ {1, . . . , n− 1} :

Gi

(
t, T (t) , ζ i−1

)
= max

j∈{k|θk>ζi−1}
Gij

(
t, T (t) , ζ i−1

)
. (3.25)

In the last equation Gij is the expected value if the firm makes its i-th technology switch to

technology θj. Assume for the moment that technology θj is available at time t, j ≤ N (t),

and that there exists a unique threshold I∗ij . Hence, adopting technology θj is optimal if

the investment cost is equal or below the threshold and waiting is optimal when the

investment cost is larger than the threshold. By gij
(
Ij, T (t) , ζ i−1

)
we denote the value of

the firm when ζ i−1 is the current technology in use, the firm is going to adopt technology

j, which is available, but the investment cost Ij is currently above the critical level I∗ij and
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T (t) is the set with arrival dates. Then gij must satisfy the following Bellman equation

rgij
(
Ij, T (t) , ζ i−1

)
= π
(
ζ i−1

)
+ lim

dt↓0
1

dt
E
[
dgij
(
Ij, T (t) , ζ i−1

)]
. (3.26)

Expanding E [dgij ] , given that adopting technology θj is not optimal after the next tech-

nology arrival, i.e.
(
1− βj

)
Ij ≥ I∗ij, with Itô’s lemma gives

E
[
dgij
(
Ij, T (t) , ζ i−1

)]
= λdt

(
gij
((
1− βj

)
Ij, T (t) ∪ {t+ dt})− gij

(
Ij , T (t) , ζ i−1

))
+(1− λdt)

(
−∂gij

(
Ij, T (t) , ζ i−1

)
∂Ij

αjIjdt

)
+ o (dt) . (3.27)

Substitution of equation (3.27) into equation (3.26) gives

(r + λ) gij
(
Ij , T (t) , ζ i−1

)
= π

(
ζ i−1

)
+ λgij

((
1− βj

)
Ij , T (t) ∪ {t} , ζ i−1

)
−∂gij

(
Ij, T (t) , ζ i−1

)
∂Ij

αjIj. (3.28)

Following the steps of the previous section we first have to solve the last equation for gij .

However, it is impossible to derive a closed form expression for gij from equation (3.28).

The problem is mainly caused by the fact that in the model of this chapter, contrary to

the model of Chapter 2, at time t we can not ignore the technologies with efficiencies in the

interval (ζ (t) , θ (t)). In the previous chapter a technology was either adopted at its arrival

date or not at all. However, in this chapter we have to take into account all technologies,

since it is possible that due to a late arrival of another technology it is optimal to adopt

an already existing technology (cf. Example 3.1). Further in the multiple switch case

the firm’s value under the strategy ”the following technology to adopt is technology θj”

increases not only as a result of the decrease of the investment cost of technology θj,

but also through the decreases in the investment costs of technologies θj+1, . . . , θN(t) and

the arrival of new technologies. Since we need an explicit equation for gij to be able to

compare the multiple and single switch cases, we conclude that the multiple switch case

can, unfortunately, not be explicitly solved. Though, it may be possible that equation

(3.28) can be solved numerically.

3.5 Net Present Value Method

In this section we derive the investment strategy according to the net present value method

and compare the result with the optimal investment strategy derived in the previous

sections.

Consider the case in which the firm adopts technology θi. If at time, say t = t0,

investment in technology θi is delayed in our model, the firm can invest later in this
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technology θi against a lower cost than if it had invested at time t0. Therefore the value

of the option to postpone the adoption of technology θi will be positive. Consequently,

the critical switching level of I determined by the net present value method will be larger

than that determined by equation (3.16).

The following holds for the net present value switching level INPV
i for switching from

technology ζ0 to technology θi:

π (ζ0)

r
=

π (θi)

r
− INPV

i . (3.29)

We can rewrite (3.29) as follows:

INPV
i =

π (θi)− π (ζ0)

r
. (3.30)

If we compare (3.30) with (3.16) it is not hard to see that the optimal switching level

is smaller than the one obtained according to the net present value method. This implies

that it is optimal to switch later, i.e. the firm anticipates at the decrease of the investment

cost. As with a financial call option it is optimal to wait with exercising until the option is

sufficiently deep in the money. Note that when the investment cost equals the net present

value switching level, the investment option is at the money.

When the investment cost equals the critical level, the discounted gains from invest-

ing (the change in profit flow) with discounting rate ρ (> 0) are exactly offset by the

investment cost:

I∗i =

∞∫
t=0

(π (θi)− π (ζ0)) e
−ρtdt =

π (θi)− π (ζ0)

ρ
. (3.31)

From (3.31) we obtain that the net present value prescribes to discount with the interest

rate: ρ = r. According to the optimal investment strategy the discount rate must be

ρ = r + αi + λβi (cf. (3.16)). This implies that the rate at which the investment cost

decreases has to be added to the interest rate.

Theorem 3.2 Consider a time t (≥ 0) . Let k = arg max
i∈{1,... ,N(t)}

(Fi (t, T (t) , ζ0)) . Given

that the firm has not invested before, according to the net present value method, the firm

invests at time t in technology θk if the following condition is fulfilled:

Ik (t) < INPV
k . (3.32)

Comparing this with the optimal investment strategy we see that the net present value

method leads to wrong investment decisions, because it ignores (1) the decrease of the

investment costs and (2) the fact that more efficient technologies will become available
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in the future. The first point is reflected in the critical levels (compare equation (3.16)

and (3.30)). The second in the set of technologies over which is maximized (compare

definitions of k in Theorems 3.1 and 3.2).

Example 3.1 (continued) For our parameter set it holds that INPV
i > I0, for all i ∈ IN.

This implies that according to the net present value method the firm adopts technology 1

at time T1.

3.6 Conclusions

The objective of this chapter was to analyze optimal technology adoption of a firm, while

the sunk cost investments of each available technology decrease over time.

In the one switch case it is optimal for a firm to invest in a technology if three conditions

are fulfilled: (1) compared to other technologies, the value of the firm is maximized by

investing in that particular technology, (2) the investment cost of that technology is below

its critical value (the option to invest is sufficiently deep in the money), and (3) that this

particular technology is already invented.

Unfortunately, it turned out that the multiple switch case is too complex to solve.

Appendix

3.A Proofs

Proof of Proposition 3.1 For t ∈ [Ti, Ti+1) the investment cost Ii (t) is the solution of

dIi (t) = −αiIi (t) dt, (3.33)

Ii (Ti) = Ii0. (3.34)

The solution of this system of equations is

Ii (t) = Ii0 exp (−αi (t− Ti)) , for t ∈ [Ti, Ti+1) . (3.35)

At time t = Ti+1 the investment cost instantaneously decreases with factor βi, thus

Ii (Ti+1) = Ii0 exp (−αi (Ti+1 − Ti))− βiIi0 exp (−αi (Ti+1 − Ti))

= (1− βi) Ii0 exp (−αi (Ti+1 − Ti)) . (3.36)

Over the interval [Ti+1, Ti+2) the decrease of the investment cost is again given by equation

(3.33), but now the initial investment cost level is given by equation (3.36). Hence, for



62 3.A. Proofs

t ∈ [Ti+1, Ti+2) we have

Ii (t) = (1− βi) Ii0 exp (−αi (Ti+1 − Ti)) exp (−αi (t− Ti+1))

= (1− βi) Ii0 exp (−αi (t− Ti)) . (3.37)

The investment cost at time t = Ti+2 equals

Ii (Ti+2) = (1− βi) Ii0 exp (−αi (Ti+2 − Ti))− βi (1− βi) Ii0 exp (−αi (Ti+2 − Ti))

= (1− βi)
2 Ii0 exp (−αi (Ti+2 − Ti)) . (3.38)

The number of technology arrivals and decreases in the investment cost Ii (t) on the

interval [Ti, t) is equal to N (t) − i. Repeating the steps above N (t) − i times gives

equation (3.3). �

Proof of Proposition 3.2 This proposition is just an application of Theorem 2.4 in

Appendix 2.A. Note that the threshold works the other way around in this chapter.

When the investment cost is above the threshold, the firm waits with investing and if

the investment cost is below the threshold investing is optimal. Therefore the function

mentioned in the first condition of Theorem 2.4 must be increasing in Ii (t) . The function

is given by

π (ζ0)− r

(
π (θi)

r
− Ii (t)

)
− lim

dt↓0
1

dt
E [dIi (t)| Ii (t)] . (3.39)

Expanding equation (3.39) with Itô’s lemma gives

π (ζ0)− π (θi) + rIi (t) + λβiIi (t) + αiIi (t) , (3.40)

which is clearly increasing in Ii (t) . The second condition is also fulfilled, because the

investment cost is decreasing over time. Given two values of the investment cost, Ii1 and

Ii2 such that Ii1 < Ii2, it holds that Pr (Ii (t) ≤ I| Ii1) > Pr (Ii (t) ≤ I| Ii2) . �
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Chapter 4

One New Technology

4.1 Introduction

A feature of the last decade is that firms more and more face competition on their output

markets. One reason is the abolition of monopolistic markets created by government. In

the Netherlands examples are the opening of the markets for telecommunication, railway

and power supply. Another reason is the, still ongoing, process of mergers, which due to

legislation will not end with a market with only one supplier. The result is that markets

with only one supplier and markets with many suppliers seem to disappear. Thus, in its

own investment decision, a firm should take into account the investment behavior by its

competitors, which is dealt with in this paper.

The existing literature on technology adoption models can be divided into two cate-

gories. The models in the first category are decision theoretic models that analyze the

technology investment decision of a single firm. In the most advanced models there

are multiple new technologies that arrive over time according to a stochastic process.

Examples are Balcer and Lippman (1984), Nair (1995), Rajagopalan et al. (1998) and

Farzin et al. (1998) (see also Chapters 2 and 3 of this thesis). These models analyze the

investment decision of one firm in isolation, so that the effects of competition are not

incorporated.

The second category models are game theoretic models. Two (or more) firms compete

on an output market and produce goods using a particular technology. Then, a new and

more efficient technology is invented, and the question is at what time the firms should

adopt it. Reinganum (1981) was the first to analyze this kind of model. She considered a

duopoly with identical firms, in which there is no uncertainty in the innovation process,

and one new technology is considered. The investment expenditure required to adopt

the new technology decreases over time and the efficiency improvement is known. If a

firm adopts the new technology before the other one does, it makes substantial profits at

65
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the expense of the other firm. On the other hand the investment cost being decreasing

over time provides an incentive to wait with investing. Reinganum assumes that the

firms precommit themselves to adoption times, so she automatically obtains open loop

equilibria.

Fudenberg and Tirole (1985) proved that in the open loop equilibria the leader (the

firm that invests first) earns more than the follower (the firm that invests second). Since

precommitment seems not to be very realistic in the strategic setting of a duopoly, Fu-

denberg and Tirole extended Reinganum’s model by relaxing this assumption and by not

determining beforehand which firm is the leader. They therefore allow firms to preempt

each other. After extending the standard Nash equilibrium concept, closed loop equilibria

are obtained. It turns out that the equilibria exhibit rent equalization.

The Reinganum-Fudenberg-Tirole model has been (and still is) the starting point of

many technology adoption models in a duopoly setting. Hendricks (1992) adds uncertainty

to the model, by assuming that a firm is uncertain about the innovative capabilities of

its rival. A firm is either an innovator or an imitator and only the firm itself knows what

type it is. Hendricks assumes that an imitator can only play the follower role in the game.

The result of adding this uncertainty is that in case there are large preemption gains there

is no longer rent equalization in equilibrium. Firms that are innovators have an incentive

to delay the adoption, since with positive probability they believe that their rival is an

imitator. The advantage of adding the uncertainty is that Hendricks can apply the normal

Nash equilibrium concept. Hendricks also discusses what the result is of extending the

model even further by making the profitability of the technology uncertain. He argues

that two cases can occur. The first is equivalent to the one described above and in the

second case the firms end up in an attrition game. In an attrition game each player wants

the other player to move as first. However, given that a player has to move first, the

best thing for this player is to move as early as possible. We refer to Appendix 4.A.3

for a more formal treatment of attrition games. In that appendix we use the equilibrium

concepts introduced in Hendricks et al. (1988).

Hoppe (2000) formalizes Hendricks’s discussion on uncertain profitability. She starts

with the Reinganum-Fudenberg-Tirole model and assumes that the innovation is either

good or bad. Hoppe shows for what parameter values the model results in a preemption

game or an attrition game. She does not use the equilibrium concepts introduced by

Hendricks et al. (1988), that is Hoppe, does not mention the equilibria with symmetric

strategies for her attrition games.

Stenbacka and Tombak (1994) extended the Reinganum-Fudenberg-Tirole model by

making the time between adoption and successful implementation stochastic. To motivate

this model feature, Yorukoglu (1998) argues that information technology capital may
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require significant experience to operate efficiently. For instance, an econometric study

by Brynjolfsson et al. (1991) finds lags of two or three years before the organizational

impacts of information technology become effective. Due to the lack of mathematical

precision the paper of Stenbacka and Tombak led to two follow up papers, namely by Götz

(2000) and by Huisman and Kort (1998a). Both papers correct mistakes of Stenbacka and

Tombak. Götz studies the original model with asymmetric firms, whereas Huisman and

Kort concentrate on the symmetric firm case.

The chapter is organized as follows. In Section 4.2 we describe and present the results

of the basic technology adoption model, i.e. the model that was introduced in Reinganum

(1981) and extensively studied in Fudenberg and Tirole (1985). The extension to the

Reinganum-Fudenberg-Tirole model as presented in Stenbacka and Tombak (1994) and

studied in Götz (2000) and in Huisman and Kort (1998a) is considered in Section 4.3.

The last section concludes.

4.2 Reinganum-Fudenberg-Tirole Model

In this section we present and analyze the game theoretic technology adoption model that

was introduced by Reinganum (1981). There are two identical firms active on an output

market. The firms are labelled 1 and 2. An infinite planning horizon is considered, on

which the risk-neutral firms maximize their value at discount rate r (> 0). Initially the

firms produce with a technology of which the efficiency is denoted by θ0. At time t = 0

a new technology, with efficiency θ1 (> θ0) becomes available and the firms must decide

when to adopt that technology. We assume that the firms do not have any market power

on the technology market, that is they are one of many firms on the technology market.

When a firm adopts the new technology it incurs an investment cost, I, which is a convex

decreasing function of time t (≥ 0):

I (t) > 0,
∂I (t)

∂t
≤ 0 and

∂2I (t)

∂t2
≥ 0. (4.1)

There can be three reasons for the decrease of the investment cost of a particular technol-

ogy: (1) it becomes old-fashioned, (2) the firms that are most eager to buy the technology

have already bought it so that technology suppliers have to drop their price in order

to find additional buyers, and (3) due to learning by doing the technology supplier can

produce the technology in a cheaper way.

The profit function of a firm i is denoted by π (θi, θj) where θi and θj are the efficiencies

of the technologies in use by firm i and firm j, respectively, where i, j ∈ {1, 2} and i �= j.

There is a first mover advantage in the sense that the gains for being first to adopt
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the new technology are higher than for being second:

π (θ1, θ0)− π (θ0, θ0) > π (θ1, θ1)− π (θ0, θ1) ≥ 0, (4.2)

The four possible profit flows are assumed to be ranked in the following way:

π (θ1, θ0) > π (θ1, θ1) ≥ π (θ0, θ0) ≥ π (θ0, θ1) ≥ 0. (4.3)

Thus, we assume that a firm can make higher profits when it uses a more efficient tech-

nology itself and when its rival uses a less efficient technology. The following assumption

rules out immediate adoption:

rI (0)− ∂I (t)

∂t

∣∣∣∣
t=0

> π (θ1, θ0)− π (θ0, θ0) . (4.4)

Equation (4.4) states that, at time t = 0, the marginal costs of adoption are larger than

the marginal benefits of adopting. The costs of adoption at time t are equal to

−I (t) exp (−rt) , (4.5)

so that the marginal costs equal(
rI (t)− ∂I (t)

∂t

)
exp (−rt) . (4.6)

The firm that invests first is called the leader and the other firm is called the follower.

In Subsection 4.2.1 the open loop equilibrium of the model is presented. The feedback

equilibrium is discussed in Subsection 4.2.2. In these first two subsections the firm roles

(leader or follower) are assigned exogenous to the firms. This assumption is relaxed in

Subsection 4.2.3.

4.2.1 Open loop Equilibrium

In an open loop equilibrium both firms precommit themselves to an adoption time at the

beginning of the game, i.e. the firms do not take into account that they can influence the

other firm’s adoption time. The adoption time of the leader and follower are denoted by

tL and tF , respectively. By definition, the leader adopts at the same time or before the

follower, i.e. 0 ≤ tL ≤ tF . Given the adoption times tL and tF , the value of the leader
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equals

VL (tL, tF ) =

tL∫
t=0

π (θ0, θ0) exp (−rt) dt+

tF∫
t=tL

π (θ1, θ0) exp (−rt) dt

+

∞∫
t=tF

π (θ1, θ1) exp (−rt) dt− I (tL) exp (−rtL)

=
π (θ0, θ0)

r
+ exp (−rtL)

(
π (θ1, θ0)− π (θ0, θ0)

r
− I (tL)

)
+exp (−rtF )

(
π (θ1, θ1)− π (θ1, θ0)

r

)
. (4.7)

In the same way the value of the follower, VF (tL, tF ) , can be derived. The follower’s value

is given by

VF (tL, tF ) =
π (θ0, θ0)

r
+ exp (−rtL)

(
π (θ0, θ1)− π (θ0, θ0)

r

)
+exp (−rtF )

(
π (θ1, θ1)− π (θ0, θ1)

r
− I (tF )

)
. (4.8)

The open loop equilibria are equal to the intersection points of the reaction curves of

the follower and the leader. The reaction function for the follower is derived by calculating,

for each fixed adoption time tL of the leader, the adoption time of the follower, RF (tL),

that maximizes the follower’s value, taking into account the fact that by definition the

follower has to adopt after the leader: RF (tL) ≥ tL. In the same way the reaction function

of the leader is derived by taking a fixed adoption time tF of the follower and deriving the

best reply of the leader RL (tF ) , under the condition that the leader has to adopt before

the follower: RL (tF ) ≤ tF .

The procedure described above implies that the reaction curves are built up by the

first order conditions of maximizing the value functions and the 45 degree line. The 45

degree line is the line that resembles joint-adoption of the leader and the follower. Note

that we do not claim that the reaction functions are continuous. In fact, in Section 4.3

we present an example where the reaction functions are not continuous.

The first order condition for maximizing VF (tL, tF ) over tF is

π (θ1, θ1)− π (θ0, θ1)− rI (tF ) +
∂I (t)

∂t

∣∣∣∣
t=tF

= 0. (4.9)

Let TF be the solution of equation (4.9). Equations (4.1), (4.2), and (4.4) ensure the

existence of a unique positive maximum. The reaction function of the follower is given by

RF (tL) =

{
TF if tL ≤ TF ,

tL if tL > TF .
(4.10)
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The value VL (tL, tF ) of the leader is maximized with respect to tL if

π (θ1, θ0)− π (θ0, θ0)− rI (tL) +
∂I (t)

∂t

∣∣∣∣
t=tL

= 0. (4.11)

The solution of equation (4.11) is denoted by TL. As with TF , equations (4.1), (4.2)

and (4.4) ensure the existence of a unique positive maximum. Further, these equations

imply that 0 < TL < TF . Therefore, we conclude that there is diffusion in the open loop

equilibrium timings. The leader’s reaction function equals

RL (tF ) =

{
tF if tF < TL,

TL if tF ≥ TL.
(4.12)

In Figure 4.1 the reaction curves of the leader and follower are plotted. The analysis

0 TL TF
tL

0

TF

TL

t
F

RF( tL)

RL( tF)

Figure 4.1: Reaction curves of leader and follower.

above results in the following proposition that summarizes the open loop equilibrium. For

a more formal proof we refer to Reinganum (1981).

Proposition 4.1 The open loop equilibrium with exogenous firm roles is as follows. The

leader adopts the technology at time TL (> 0) and the follower adopts the technology at time

TF (> TL), where TL and TF are found by solving equations (4.11) and (4.9), respectively.

4.2.2 Feedback Equilibrium

In a feedback equilibrium the leader takes into account that its investment decision affects

the decision of the follower. The follower’s reaction is the same as in the open loop case. To

determine the equilibrium we plot the leader’s payoff as function of its own adoption date

and take the adoption date of the follower equal to its optimal reaction. The equilibrium
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is given by the adoption time at which the leader’s payoff is at its maximum and the

optimal reaction of the follower on that adoption date.

Define the following three functions

L (t) = VL (t, RF (t)) , (4.13)

F (t) = VF (t, RF (t)) , (4.14)

M (t) = VL (t, t) . (4.15)

The function L (t) (F (t)) is equal to the expected discounted value at time t = 0 of the

leader (follower) when the leader invests at time t. M (t) resembles the discounted value

at time t = 0 of the firm when there is joint-adoption at time t.

The definition of TF implies that joint-adoption is not optimal before TF , i.e.

M (t) < L (t) , t < TF , (4.16)

M (t) < F (t) , t < TF , (4.17)

and is optimal after time TF :

L (t) = F (t) = M (t) , t ≥ TF . (4.18)

Define TC to be equal to

TC = argmax
t≥0

M (t) . (4.19)

Thus TC is the solution of

π (θ1, θ1)− π (θ0, θ0)− rI (TC) +
∂I (t)

∂t

∣∣∣∣
t=TC

= 0. (4.20)

Equations (4.1)-(4.3) guarantee that TC is positive, exists, and maximizesM. These equa-

tions imply that TC > TF .

From the definitions of L, F, and M we derive that F and M are increasing on the

interval [0, TF ] and that L is increasing on the interval [0, TL) and decreasing on the

interval (TL, TF ] . Further, M is increasing on the interval (TF , TC) and decreasing for

t > TC . Hence, there exist three cases. In case A it holds that L (TL) > M (TC) . Case B

is characterized by L (TL) < M (TC) and case C by L (TL) = M (TC) . In Figures 4.2 and

4.3 the three functions are plotted for cases A and B, respectively.

The analysis above implies that there are two candidates for the feedback equilibrium:

(1) (TL, TF ) and (2) (TC , TC) . The following proposition summarizes the analysis.

Proposition 4.2 If L (TL) > M (TC) the equilibrium is as follows: the leader adopts

the technology at time TL and the follower adopts the technology at time TF . If L (TL) <

M (TC) the equilibrium is of the joint-adoption type, where the leader and the follower

adopt the technology at time TC. If L (TL) = M (TC) both equilibria exist.
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Figure 4.2: Case A: L (TL) > M (TC) .
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Figure 4.3: Case B: L (TL) < M (TC) .
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4.2.3 Endogenous Firm Roles

In this subsection the firm roles will no longer be exogenously given. This is more realistic

since generally firm roles will not be assigned beforehand in practice. This implies that a

firm can (only) become leader by investing as first. Fudenberg and Tirole (1985) were the

first to analyze the model of Reinganum with endogenous firm roles. The reason of doing

this further analysis is that the payoff to the leader exceeds the payoff to the follower in

case A, i.e. L (TL) > F (TL) . Therefore it is in each firm’s interest to be the leader and

end up with the higher payoff. In order to incorporate this feature of endogenous firm

roles in the equilibrium concept, Fudenberg and Tirole developed the so-called perfect

equilibrium concept for timing games (see also Appendix 4.A).

We analyze this problem by using Figures 4.2 and 4.3. We add case C to case B. Thus,

case B is, from now on, characterized by L (TL) ≤ M (TC). Consider case A. Both firms

want to become leader and adopt at time TL. As a result a firm will try to preempt the

other firm by investing at time TL−ε, but then the other will try to preempt by adopting

at time TL − 2ε and so forth and so on. This process stops at time TP , where time TP is

defined as:

TP = min (t ∈ (0, TL) |L (t) = F (t)) . (4.21)

Thus, the preemption process stops at the time at which the expected values of the leader

and follower are equal. This phenomenon is called rent equalization. In the equilibrium

of case A, one of the firms preempts at time TP and the other firm will react by adopting

at time TF > TP .

To analyze case B, first define time TS:

TS = min (t ∈ (TF , TC ] |M (t) = L (TL)) . (4.22)

In case B there are multiple equilibria, which can be split up in two classes. The first

class consists of the (TP , TF ) diffusion equilibria. The second class is a continuum of

joint-adoption outcomes indexed by the date of adoption t ∈ [TS, TC ].

We summarize the analysis in the following proposition (see also Fudenberg and Tirole

(1985, Proposition 2)).

Proposition 4.3 (A) If L (TL) > M (TC) there exists a unique equilibrium distribution

over outcomes. With probability one-half, firm 1 adopts at time TP and firm 2 adopts at

TF , and with probability one-half the roles of the firms are reversed. Thus the equilibrium

exhibits diffusion; and with probability one the adoption dates are TP and TF .

(B) If L (TL) ≤ M (TC) two classes of equilibria exist. The first class are the (TP , TF )

diffusion equilibria. The second class is a continuum of joint-adoption outcomes indexed

by the date of adoption t ∈ [TS, TC ].
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The proof can be found in Fudenberg and Tirole (1985). The equilibrium strategies

that result in the mentioned equilibria are given in Appendix 4.A. Fudenberg and Tirole

prove that the probability of a mistake in the diffusion equilibrium, i.e. that both firms

adopt simultaneously at time TP which leads to very low profits, is zero. They derive the

following properties of the equilibria.

Proposition 4.4 Joint-adoption equilibria are Pareto-ranked by their date of adoption,

later adoption being more efficient from the firm’s point of view.

The implication of Proposition 4.4 is that in case B the most reasonable outcome to

expect is the joint-adoption at time TC , because it Pareto-dominates all other equilibria.

4.3 Stenbacka and Tombak’s Extension

In this section we analyze the extension to the Reinganum-Fudenberg-Tirole model intro-

duced in Stenbacka and Tombak (1994). This extension is also studied in Götz (2000) and

Huisman and Kort (1998a). The time between adoption and successful implementation is

uncertain and assumed to be exponentially distributed with rate λ. Note that, contrary

to Stenbacka and Tombak, we assume that the hazard rates of the firms are the same.

4.3.1 Open loop Equilibrium

The expected value of the leader if the leader adopts at time tL (≥ 0) and the follower

adopts at time tF (≥ tL) equals (see Stenbacka and Tombak (1994))

E [VL (tL, tF )] = π(θ0,θ0)
r

+ λ
r+λ

exp (−rtL)
(

π(θ1,θ0)−π(θ0,θ0)
r

)
+ λ

r+λ
exp (−rtF )

(
π(θ1,θ1)−π(θ1,θ0)

r

)
+ λ

r+λ
exp (− (r + λ) tF + λtL)

(
π(θ0,θ1)−π(θ1,θ1)−π(θ0,θ0)+π(θ1,θ0)

r+2λ

)
−I (tL) exp (−rtL) . (4.23)

The expected value of the follower is given by

E [VF (tL, tF )] = π(θ0,θ0)
r

+ λ
r+λ

exp (−rtL)
(

π(θ0,θ1)−π(θ0,θ0)
r

)
+ λ

r+λ
exp (−rtF )

(
π(θ1,θ1)−π(θ0,θ1)

r

)
+ λ

r+λ
exp (− (r + λ) tF + λtL)

(
π(θ0,θ1)−π(θ1,θ1)−π(θ0,θ0)+π(θ1,θ0)

r+2λ

)
−I (tF ) exp (−rtF ) . (4.24)
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Differentiating equation (4.23) with respect to tL gives

λ
r+λ

(π (θ1, θ0)− π (θ0, θ0))− rI (tL) +
∂I (t)

∂t

∣∣∣∣
t=tL

− λ2

(r+λ)(r+2λ)
(4.25)

× exp (− (r + λ) (tF − tL)) (π (θ0, θ1)− π (θ1, θ1)− π (θ0, θ0) + π (θ1, θ0)) = 0.

When, given tF , there exists a solution of equation (4.25) such that it is smaller or equal

to tF , this solution is denoted by τL (tF ) . Define τ̂L = sup (t ≥ 0| τL (t) = t) . Then

RL (tF ) =

{
tF if tF < τ̂L,

τL (tF ) if tF ≥ τ̂L.
(4.26)

Differentiating equation (4.24) with respect to tF gives the following first order condi-

tion

λ
r+λ

(π (θ1, θ1)− π (θ0, θ1))− rI (tF ) +
∂I (t)

∂t

∣∣∣∣
t=tF

(4.27)

+ λ
(r+2λ)

exp (−λ (tF − tL)) (π (θ0, θ1)− π (θ1, θ1)− π (θ0, θ0) + π (θ1, θ0)) = 0.

The solution of the last equation (if it exists) is denoted by τF (tL) . We define TF =

inf (t ≥ 0 |τF (t) = t) , i.e. TF is the first point in time for which the optimal reaction for

the follower to adoption of the leader at time tL is also adopting at time tL. It is obvious

that the reaction function of the follower is equal to the 45 degree line for all tL > TF .

This results in the following expression for the reaction curve of the follower

RF (tL) =

{
τF (tL) if tL ≤ TF ,

tL if tL > TF .
(4.28)

Götz (2000) shows that there always exists a unique date t∗S which satisfies

t∗S = τF (t∗S) = τL (t
∗
S) . (4.29)

Götz also proves that (t∗S, t
∗
S) is not an open loop equilibrium for λ larger than a certain

threshold λ0. That is, the point (t∗S, t
∗
S) is not contained in the set of intersection points

of the reaction curves. The reason is that, for at least one player, the point (t∗S, t
∗
S) is not

on its reaction curve, because the second order condition is not satisfied for that point.

Assume that the point (t∗S, t
∗
S) is not on the reaction curve of the follower. Then the first

order condition of the follower, given that the leader adopts at time t∗S, has two solutions:

t∗S and RF (t∗S). The second order condition is satisfied for the point (t∗S, RF (t∗S)) . This

implies that the reaction curve of the follower is discontinuous at time TF ,

lim
ξ↓0

RF (TF − ξ) = τF (TF ) > TF , (4.30)
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while

E [VF (TF , TF )] = E [VF (TF , τF (TF ))] . (4.31)

Thus, if the leader adopts at time TF , the follower is indifferent between adopting at time

τF (TF ) and adopting at time TF . Suppose that the follower chooses TF , then it is in the

leader’s interest to adopt at time τL (TF ) (< TF ) , so that (TF , TF ) is not an equilibrium.

Therefore, the equilibrium is of the diffusion type in this case. Note that this is consistent

with Reinganum (1981) (λ = ∞). The timing of the diffusion equilibrium in this case,

(t∗L, t
∗
F ), is the solution of {

RF (tL) = tF ,

RL (tF ) = tL.
(4.32)

For λ ≤ λ0 the reaction functions are continuous and RF (t∗S) = t∗S = TF , thus (TF , TF )

is a solution of (4.32). Here, there is certainly a joint-adoption equilibrium and there can

also be a diffusion equilibrium.

The result above implies the incorrectness of part (a) of Proposition 1 of Stenbacka and

Tombak (1994, p. 399): In an open loop equilibrium the extent of dispersion between the

adoption timings will be increased if the degree of uncertainty is increased. This part of the

proposition is incorrect if we find a parameter setting for which the equilibrium is of the

diffusion type for large λ and of the joint-adoption type for small λ. The following example

contradicts Stenbacka and Tombak’s Proposition 1 in this way, which is also mentioned

in Götz (2000). In the same example it is also shown that part (b) of Stenbacka and

Tombak’s Proposition 1 is incorrect: In an open loop equilibrium the extent of dispersion

between the adoption timings will be increased if the advantages of being the first to succeed

decrease relative to the gains from being the second to succeed. This is not mentioned in

Götz (2000).

Example 4.1 We complete the example Stenbacka and Tombak use to illustrate case (b)

of their Proposition 1 and which Götz has extended. Stenbacka and Tombak start out with

a Cournot duopoly model with linear inverse demand function p = a − q1 − q2, constant

marginal costs, c, an innovation that reduces the marginal cost to c− ε. It can be derived

that

π (θ1, θ0) =
1

9
(a− c+ 2ε)2 ,

π (θ1, θ1) =
1

9
(a− c+ ε)2 ,

π (θ0, θ0) =
1

9
(a− c)2 ,

π (θ0, θ1) =
1

9
(a− c− ε)2 .
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As in Götz (2000), we take the investment cost I at time t equal to I (t) = 1000e−0.2t,

a = 9, ε = 1, c = 1 and the discount rate r = 0.05. In Figure 4.4 the reaction curves of

the leader and the follower are plotted for λ = 1 and λ = 3. Figure 4.5 shows the reaction

curves of the leader and the follower for λ = 4. Note that Götz also plots reaction curves,

but for the individual firms. Where we assign the leader and follower role beforehand,

Götz has to do it afterwards. He only plots the reaction functions for λ = 1 and λ = 3.

He argues that there is not a joint-adoption equilibrium for λ = 4, but he does not plot the

reaction curves for this case. Note that for λ = 4 the reaction curves are discontinuous.

Thus in this example the threshold λ0 will be somewhere within the interval (3, 4). In
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Figure 4.4: Reaction curves for λ = 1 (left panel) and λ = 3 (right panel).
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Figure 4.5: Reaction curves for λ = 4 and for ε = 1 (left panel) and ε = 0.5 (right panel).

Table 4.1 the equilibria for the three different scenarios are summarized. Comparing the

third and the first plot we see that increasing the uncertainty (lower λ) leads to a decreased

extent of dispersion of the adoption timings, which implies the incorrectness of part (a)

of Proposition 1 of Stenbacka and Tombak (1994).
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λ (t∗L, t
∗
F ) (t∗S, t

∗
S)

1 none (21.20, 21.20)

3 (20.83, 21.26) (21.04, 21.04)

4 (20.77, 21.29) none

Table 4.1: Equilibria for different values of λ and ε = 1.

In the next scenario we take λ = 4 and ε = 0.5. The reaction functions are plotted in

the right panel of Figure 4.5 and in Table 4.2 the equilibria are listed. By comparing the

fourth and third scenario we see that an increase of ε (the cost reduction from successful

implementation) results in an increase of the extent of dispersion, which disproves part

(b) of Stenbacka and Tombak’s Proposition 1.

(t∗L, t
∗
F ) (t∗S, t

∗
S)

(24.59, 24.69) (24.64, 24.64)

Table 4.2: Equilibria for λ = 4 and ε = 0.5.

4.3.2 Feedback Equilibrium

Like in Subsection 4.2.2, to determine the feedback equilibrium we plot the leader’s payoff

as function of its own adoption date and take the adoption date of the follower equal to

its optimal reaction.

Another method to find the feedback equilibrium is used by Götz (2000). He also

starts with the reaction function of the follower and plots isoprofit curves of the leader in

the same figure. The equilibrium is found by the point that is on the follower’s reaction

curve and yields the highest profit for the leader.

The method to derive the feedback equilibrium, used by Stenbacka and Tombak (1994)

will not lead to the right solutions. As in the open loop case they draw reaction curves for

both the leader and follower and consider the intersections as equilibria. However, in the

feedback case the leader affects the follower’s decision, which implies that the leader does

not take a follower’s decision for granted. This makes it impossible to draw a reaction

curve for the leader. This explains the different results between Stenbacka and Tombak

on the one side and Götz and this chapter on the other side. Stenbacka and Tombak

(will) only find dispersed leader-follower adoption times, whereas we will show that joint-

adoption can also be a feedback equilibrium. If we find an equilibrium with dispersed

timings, these timings are a solution of the system of first order conditions of Stenbacka
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and Tombak. See Appendix 4.B for a formal proof of the fact that the system of first

order conditions does not have a joint-adoption solution. This contradicts the claim by

Stenbacka and Tombak (1994) that there also exists a joint-adoption solution for that

system of equations. The reasons are: (1) the only feasible pairs of timings are the ones

on the reaction curve of the follower, the timings being dispersed, which implies that the

reaction curve of the follower equals the first order condition of the follower, and (2) the

value of the leader must be maximized, which gives the first order condition of the leader.

Define the following three functions

L (t) = E [VL (t, RF (t))] , (4.33)

F (t) = E [VF (t, RF (t))] , (4.34)

M (t) = E [VL (t, t)] . (4.35)

The function L (t) (F (t)) is equal to the expected discounted value at time zero of the

leader (follower) when the leader invests at time t. M (t) resembles the value of the firm

when there is joint-adoption at time t. Remember that the best reply adoption time of

the follower when the leader invests at time t is denoted by RF (t).

Joint-adoption is by definition not optimal before TF , i.e.

M (t) < L (t) , t < TF , (4.36)

M (t) < F (t) , t < TF , (4.37)

and is optimal after time TF :

L (t) = F (t) = M (t) , t ≥ TF . (4.38)

As long as RF (t) > t, the expected payoff of the follower increases when the leader

adopts later. This is because a later adoption date for the leader implies that the ex-

pected implementation date of the leader will also be later, which makes him a less strong

competitor, so that the follower can reach higher profits. Hence, on the interval [0, TF )

the function F is increasing in t. On that interval, the leader curve is first increasing and

then decreasing in t. This is a result of the following proposition (see also Stenbacka and

Tombak (1994, Proposition 2)).

Proposition 4.5 It holds that

TL < t∗L ≤ t∗F < RF (TL) , (4.39)

where TL = arg max
t∈[0,TF )

L (t) and (t∗L, t
∗
F ) is the open loop equilibrium.
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Note that these TL and RF (TL) are the solutions of the system of first order conditions

of Stenbacka and Tombak (1994) in the feedback case. Intuitively the proposition is un-

derstandable since the reaction function of the follower is such that ∂tF
∂tL

< 0 (differentiate

equation (4.27) with respect to tL). Hence, the leader knows that when it adopts earlier

the follower will adopt later. This strategic interaction, which is present in the feedback

setup, thus leads to a larger expected time interval on which the leader collects first im-

plementor profits. Compared to open loop, this gives an extra incentive for the leader

to adopt earlier. This tendency to adopt earlier, however, is tempered by the increase

in investment costs. Since the proof of Stenbacka and Tombak (1994) is not correct, we

give a correct proof in Appendix 4.B. The reasons why their proof is not correct are: (1)

the so-called additional terms in Stenbacka and Tombak’s equation (11) (cf. Stenbacka

and Tombak (1994, p. 401)) are not all negative, and (2) these three terms are dependent

on TL. This implies that a more careful mathematical treatment is needed to prove the

claim.

If the reaction function of the follower is discontinuous at time TF (e.g. see the left

panel of Figure 4.5) the leader curve makes a discontinuous jump downwards at time

TF . The reason is that before TF the follower adopts later than the leader so that the

leader enjoys higher profits than the follower during a time interval with positive length

in expectation, while from TF onwards expected leader and follower value are equal.

Stenbacka and Tombak (1994) define TC to be equal to

TC = argmax
t≥0

M (t) . (4.40)

They call TC the cooperative adoption time, but we will argue below that this can also

be the equilibrium adoption time of the non-cooperative game. Since for all t ∈ [0, TF ):

(1) F (t) > M (t), (2) F (t) is increasing in t, and (3) F (TF ) = M (TF ) , it holds that

TC ≥ TF . Differentiating E [VL (t, t)] with respect to t gives the following equation that

defines TC implicitly:

λ
(r+λ)(r+2λ)

(2λπ (θ1, θ1) + r (π (θ1, θ0) + π (θ0, θ1))− 2 (r + λ)π (θ0, θ0)) (4.41)

−rI (TC) +
∂I (t)

∂t

∣∣∣∣
t=TC

= 0.

The second order condition for TC to be a maximum is given by

r
∂I (t)

∂t

∣∣∣∣
t=TC

− ∂2I (t)

∂t2

∣∣∣∣
t=TC

< 0, (4.42)

which is satisfied due to equation (4.1).

The analysis above implies that there are two candidates for the feedback equilibrium:

(1) (TL, RF (TL)) and (2) (TC , TC) . The following proposition summarizes the analysis.
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Proposition 4.6 If E [VL (TL, RF (TL))] > E [VL (TC , TC)] the equilibrium is as follows:

the leader adopts the technology at time TL and the follower adopts the technology at

time RF (TL) . If E [VL (TL, RF (TL))] < E [VL (TC , TC)] the equilibrium is of the joint

adoption type, where the leader and the follower adopt the technology at time TC. If

E [VL (TL, RF (TL))] = E [VL (TC , TC)] both of the two described equilibria exist.

Example 4.1 (continued) In Figures 4.6-4.7 we have plotted the payoff functions, L (t),

F (t), and M (t) for the first three scenarios of the example of the previous section. In

Table 4.3 we have summarized the equilibrium timings. Note that the feedback equilibrium

(TC , TC) is not an open loop equilibrium. The reason is that if the leader knows for sure

that the follower is going to adopt at time TC he can do better by adopting before TC .

See also Figure 4.8 in which we have plotted the value of the leader as function of its own

adoption time under the assumption that the follower is going to adopt at time TC for sure

(λ = 1). We may conclude that adopting at time TC (= 24.64) is not optimal for the leader.

But still the strategic interaction makes (TC , TC) the feedback equilibrium. This shows the

incorrectness of the construction of the equilibria of Stenbacka and Tombak: (TC , TC) will

not be on their ”leader’s reaction curve”, whereas it is the equilibrium. From the previous

section we know that for λ = 4 the reaction curve of the follower is discontinuous at time

TF , in the right panel of Figure 4.7 we have zoomed at that point to show that the leader

payoff curve is indeed discontinuous at that point in time.
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Figure 4.6: Payoff curves for λ = 1 (left panel) and λ = 3 (right panel).

4.3.3 Endogenous Firm Roles

In this section we make the firm roles endogenous. This means that both firms have equal

chances to become the leader. Of course, the firm that invests first actually becomes
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Figure 4.7: Payoff curves for λ = 4.

λ (TC , TC) M (TC)

1 (24.64, 24.64) 150.7

3 (24.50, 24.50) 151.0

4 (24.48, 24.48) 151.0

Table 4.3: Equilibria for different values of λ.
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Figure 4.8: Expected value of the leader given that the follower adopts at time TC .
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the leader. The analysis of Subsection 4.2.3 can also be applied to the payoff functions

defined by equations (4.33)-(4.35). Since there are no changes we refer to that section for

the formal statement and the properties of the equilibria.

Example 4.1 (continued) In all of the three parameter settings of the example of Sec-

tion 4 we are in case B. In Table 4.4 we have summarized the characteristics of the

equilibria. If we change the parameters π (θ1, θ0) and r into π (θ1, θ0) = 15 and r = 0.08

we are in case A. The equilibrium timings and payoffs are given in Table 4.5 and the

leader, follower and joint-adoption curves are plotted in Figure 4.9. Note that the equi-

librium payoffs L (TP ) are lower than M (∞) = π(θ0,θ0)
r

= 88.89, which is the payoff to

each firm if both keep on producing with the old technology. This striking result means

that both firms can do better by sticking to producing with their old technology forever,

provided that their competitor does the same. Still, strategic interactions drive them to the

preemption equilibrium just mentioned, so that these interactions have a disastrous effect

on both firms’ performance.

λ (TP , RF (TP )) L (TP ) (TL, RF (TL)) TS M (TS) TC M (TC)

1 (17.29, 21.50) 147.3 (20.63, 21.36) 21.32 150.0 24.64 150.7

3 (17.13, 21.35) 147.5 (20.54, 21.32) 21.34 150.2 24.50 151.0

4 (17.11, 21.33) 147.6 (20.58, 21.31) 21.35 150.3 24.48 151.0

Table 4.4: Characteristics of equilibria for different values of λ.
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Figure 4.9: Payoff curves for π (θ1, θ0) = 15, λ = 1, and r = 0.08.
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(TP , RF (TP )) L (TP ) (TL, TF ) L (TL) TC M (TC)

(14.18, 22.22) 87.66 (18.10, 22.16) 92.27 24.96 91.20

Table 4.5: Equilibrium for π (θ1, θ0) = 15, λ = 1, and r = 0.08.

4.4 Conclusions

We conclude that the introduction of uncertainty does not change the main results derived

by Fudenberg and Tirole (1985). In the feedback framework with endogenous firm roles

we end up with the same two cases.

A point for further research is to extend the analysis to a model with unequal hazard

rates. This would lead us back to the original and very interesting setup of Stenbacka

and Tombak (1994). The necessity for the review of their analysis and results should be

clear by now.

Appendices

4.A Timing Games with Two Identical Players

We restrict our attention as much as possible to equilibria with symmetric strategies. The

reason is that in a game with identical players, identical strategies are the most logical

ones. Timing games can be divided in two classes: preemption games and attrition games.

In a timing game there are two players, 1 and 2, that have to decide when to make a

single move at some time t in the interval [0, 1] . This is without loss of generality. For

example, a game with an infinite horizon can be transformed into this framework by a

change of the time variable, take t = u
u+1

, where u ∈ [0,∞) . If we denote one player by i

then the other player is denoted by j.

The player that moves first is called the leader and its payoff equals L (t) , and the

other player is called the follower and earns F (t). If both players move simultaneously at

time t they both get a payoff equal to M (t) .

We assume that the payoff functions L (t) and F (t) are continuous on the time interval

[0, 1] . When one (or both) of the payoff functions is discontinuous (as in Example 4.1 for

λ = 4 and ε = 1) the timing game can be solved by splitting up the original timing game.

The split up times are the times at which one of the payoff functions is discontinuous. In

the first step, the last timing game is solved. The second last timing game is solved in

the second step, where the results of the first step are used.

If no player has moved by time 1, they both receive M (1) . This can be interpreted
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as the equilibrium payoff of another game that is played if both players have not moved

by time 1. Since by joint-moving the follower can at least obtain M (t), it holds that

F (t) ≥ M (t) . (4.43)

If there exist a point in time t ∈ [0, 1] for which there is a so-called first mover

advantage:

L (t) > F (t) , (4.44)

the timing game is called a preemption game. If for all t ∈ [0, 1]:

F (t) > L (t) , (4.45)

the game is called an attrition game.

The equilibrium concepts used are those introduced in Fudenberg and Tirole (1985)

for preemption games and in Hendricks et al. (1988) for attrition games. The approach

of Simon (1987a,b) for timing games is almost equivalent to Fudenberg and Tirole’s. In

Section 4.A.2 we point out the main difference. In Chapter 8 we have to apply Simon’s

equilibrium concept since it is the only one that can be used for games with asymmetric

players. Hendricks and Wilson (1992) also provide an equilibrium concept for preemption

games in continuous time, but they restrict themselves to strategies of only one function.

However, as argued in Fudenberg and Tirole (1985) and in Simon and Stinchcombe (1989),

strategies in preemption games must consist of two functions in order to describe mixed

strategies in continuous time that are the limit of discrete time mixed strategies.

We start with describing the strategy spaces, value functions, and the equilibrium

concept in Subsection 4.A.1. After that we analyze a particular class of preemption

games in Subsection 4.A.2, and some attrition games in Subsection 4.A.3.

4.A.1 Strategy Spaces, Payoff Functions, and Equilibrium

We use the strategy spaces that where introduced in Fudenberg and Tirole (1985). We

will first restate their definitions. They start out with defining simple continuous time

strategies (such that different ”types” of atoms can be distinguished), payoffs, and the

Nash equilibrium. After that they extend the strategies to closed loop strategies and

define the perfect equilibrium.

Definition 4.1 A simple strategy for player i in the game starting at time t is a pair of

real-valued functions (Gi, αi) : [t, 1]× [t, 1] → [0, 1]× [0, 1] satisfying:

1. Gi is non-decreasing and right-continuous.
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2. αi (s) > 0 =⇒ Gi (s) = 1.

3. αi is right-differentiable.

4. If αi (s) = 0 and s = inf (u ≥ t|αi (u) > 0) , then αi (·) has positive right derivative

at s.

Condition 1 ensures that Gi is a cumulative distribution function. Gi (s) is the cu-

mulative probability that player i has moved by time s given that both players have not

moved before time s. αi (s) measures the intensity of atoms in the interval [s, s+ ds] ,

thus condition 2 requires that if αi (s) is positive then player i is sure to move by time s.

The last two conditions are imposed for technical convenience. The function value α1 (s)

(α2 (s)) should be interpreted as the probability that firm 1 (2) chooses row (column) 1

in the matrix game of which the payoffs are depicted in Figure 4.10. Playing the game

costs no time and if player 1 chooses row 2 and player 2 column 2 the game is repeated.

If necessary the game will be repeated infinitely often.

( F( s) ,L( s) )

( M( s) ,M( s) )

repeat game

( L( s) ,F( s) )α1( s)

1−α1( s)

α2( s) 1−α2( s)

player 1

player 2

Figure 4.10: Payoffs (first entry for player 1 and second entry for player 2) and strategies of matrix game
played at time t.

We need some more notation in order to define the payoffs resulting from a pair of

simple strategies. Define

τ i (t) =

{
1 if αi (s) = 0 ∀s ∈ [t, 1] ,

inf (s ∈ [t, 1]|αi (s) > 0) otherwise.
(4.46)

At τ i (t) the first interval of atoms in player i’s strategy starts. Define

τ (t) = min (τ 1 (t) , τ 2 (t)) .
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Thus in the subgame starting at time t, one of the players has ended the game for sure

by time τ (t). Define

G−
i (s) = lim

u↑s
Gi (u) , (4.47)

which is the left-hand limit of Gi (·) at s. The game begins at t ≥ 0; so impose G−
i (t) = 0,

i = 1, 2. Define

ai (s) = lim
ξ↓0

(Gi (s)−Gi (s− ξ)) = Gi (s)−G−
i (s) , (4.48)

which is the size of the jump in Gi at time s (≥ t).

Define

V i (t, (G1, α1) , (G2, α2)) , (4.49)

to be the payoff of player i in the subgame starting at time t if player j plays the simple

strategy (Gj, αj) , j = 1, 2. Then payoffs are equal to

V i (t, (G1, α1) , (G2, α2)) (4.50)

=

τ(t)−∫
s=t

(L (s) (1−Gj (s)) dGi (s) + F (s) (1−Gi (s)) dGj (s))

+
∑
s<τ(t)

ai (s) aj (s)M (s)

+
(
1−G−

i (τ (t))
) (

1−G−
j (τ (t))

)
W i (τ (t) , (G1, α1) , (G2, α2)) ,

where, if τ j (t) > τ i (t) ,

W i (τ , (G1, α1) , (G2, α2)) (4.51)

=

(
aj (τ)

1−G−
j (τ)

)
((1− αi (τ))F (τ) + αi (τ)M (τ))

+

(
1−Gj (τ)

1−G−
j (t)

)
L (τ) ,

and, if τ i (t) > τ j (t) ,

W i (τ , (G1, α1) , (G2, α2)) (4.52)

=

(
ai (τ)

1−G−
i (τ)

)
((1− αj (τ))L (τ) + αj (τ)M (τ))

+

(
1−Gi (τ)

1−G−
i (τ)

)
F (τ) ,
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while if τ i (t) = τ j (t) ,

W i (τ , (G1, α1) , (G2, α2)) (4.53)

=


M (τ) if αi (τ) = αj (τ) = 1,
αi(τ)(1−αj(τ))L(τ)+αj(τ)(1−αi(τ))F (τ)+αi(τ)αj(τ)M(τ)

(αi(τ)+αj(τ)−αi(τ)αj(τ))
if 0 < αi (τ) + αj (τ) < 2,

α′
i(τ)L(τ)+α′

j(τ)F (τ)

α′
i(τ)+α′

j(τ)
if αi (τ) = αj (τ) = 0.

The first two parts of equation (4.50) also appear in the value function of a player if

the usual mixed strategy concept is used. With usual mixed strategy concept is meant

the strategy concept in which a mixed strategy is represented by only one function, i.e.

a distribution function. With probability
(
1−G−

i (τ (t))
) (

1−G−
j (τ (t))

)
none of the

players has moved by time τ (t) . At least one of the cumulative distributions Gi (·) then
jumps to one. If τ j (t) > τ i (t) = τ then the payoffs are computed as the limits of discrete

time payoffs when firm i moves with probability αi (τ) at each period and firm j moves

with probability
aj(τ)

1−G−
j (τ)

at the first instant and with probability zero thereafter. This

corresponds to a situation in which firm j plays an isolated jump, of size aj (τ), at time τ

and firm i adopts continuously with intensity αi (τ) . Firm j does not have an interval of

atoms at τ because τ j (t) > τ . If τ 1 (t) = τ 2 (t) = τ , the probabilities of getting L, F , and

M are computed from discrete-time limits with constant probabilities of moves αi (τ) and

αj (τ). If αi (τ) = αj (τ) = 0 the payoffs are computed by a first-order Taylor expansion.

Using the value functions we can define the Nash equilibrium of a game starting at

time t.

Definition 4.2 A pair of simple strategies {(Gi, αi) , i = 1, 2} is a Nash equilibrium of the

game starting at time t (with neither player having moved yet) if each player i’s strategy

maximizes his payoff V i (t, ·, ·) holding the other player’s strategy fixed.

Next we recall Fudenberg and Tirole’s definition of a closed loop strategy.

Definition 4.3 A closed loop strategy for player i is a collection of simple strategies

{(Gt
i (·) , αt

i (·)) , t ∈ [0, 1]} satisfying the intertemporal consistency conditions:

1. Gt
i (v) = Gt

i (u) + (1−Gt
i (u))G

u
i (v) for t ≤ u ≤ v ≤ 1.

2. αt
i (v) = αu

i (v) = αi (v) for t ≤ u ≤ v ≤ 1.

The reason for the need of a whole family of strategies is that to test for perfectness,

the strategies must be defined even conditional on zero-probability events. Condition

1 ensures that the family of strategies is consistent between non-zero-probability events;

that is, if Gt
i puts positive weight on times from v on, then Gt

i should be consistent between
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time t and v. Condition 2 is a similar consistency condition. Note that we corrected the

mistakes in Fudenberg and Tirole (1985)’s arguments of the functions in the intertemporal

consistency conditions.

Definition 4.4 A pair of closed loop strategies {{(Gt
i (·) , αt

i (·)) , t ∈ [0, 1]} , i = 1, 2} is a

perfect equilibrium if for every t, the pair of simple strategies {(Gt
i (·) , αt

i (·)) , i = 1, 2} is

a Nash equilibrium.

4.A.2 Preemption Games

In this section a particular class of preemption games is analyzed. We make the following

additional assumptions on the value functions.

A1 M (t) is continuous on [0, 1] .

A2 ∃TF ∈ (0, 1) such that L (t) = F (t) = M (t) ∀t ∈ [TF , 1] and F (t) > M (t) ∀t ∈
[0, TF ).

A3 F (t) is strictly increasing on [0, TF ].

A4 L (t)− F (t) is quasi concave on [0, 1] .

As mentioned before, in a preemption game there is an incentive for the players to

become the leader. Define time TP as the first point in time at which the payoff of the

leader is larger or equal than the payoff of the follower

TP = min (t ∈ [0, 1]|L (t) ≥ F (t)) . (4.54)

Define TL as the point in time at which the leader curve is maximal on the interval [0, TF ]:

TL = arg max
t∈[0,TF ]

L (t) . (4.55)

Lemma 4.1 TP ≤ TL.

Proof of Lemma 4.1 Suppose TP > TL. Then since F is increasing and with the defi-

nition of TP :

L (TP ) = F (TP ) ≥ F (TL) > L (TL) ,

which is a contradiction with the definition of TL. �

Define TC as the point in time at which the joint-moving curve is at its maximum:

TC = arg max
t∈[0,1]

M (t) . (4.56)
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Lemma 4.2 TC ≥ TF .

Proof of Lemma 4.2 Since F is increasing on [0, TF ], M (t) ≤ F (t) for t ∈ [0, 1], and

M (TF ) = F (TF ), it holds that M (s) < M (TF ) for s ∈ [0, TF ], so that TC ≥ TF . �

We distinguish two cases. In the first case it holds that L (TL) > M (TC) and in the

second case L (TL) ≤ M (TC). An example of the first (second) case is depicted in Figure

4.2 (4.3).

Case 1: L (TL) > M (TC)

Both players would like to move at time TL, since that would give them the largest possible

payoff. Joint-movement is not optimal since F (t) > M (t) for t ∈ [0, TL) . Knowing this,

one player, say player 1, will try to preempt player 2 by stopping at time TL− ε, but then

player 2 tries to preempt player 1 by moving at time TL−2ε and so forth and so on. This

preemption process stops at time TP . Either the leader and follower curves are equal at

time TP , which is called rent equalization, or there is no rent equalization and TP = 0.

Fudenberg and Tirole (1985) prove that if there is rent equalization the probability of a

mistake, that is both players stopping at time TP , is zero. If there is no rent equalization,

the probability of a mistake is positive. The equilibrium strategy for each player is given

by (cf. Fudenberg and Tirole (1985)):

Gt (s) =

{
0 s ∈ [t, TP ) ,

1 s ∈ [TP , 1] ,
(4.57)

α (s) =


0 s ∈ [t, TP ) ,
L(s)−F (s)
L(s)−M(s)

s ∈ (TP , TC) ,

1 s ∈ [TC , 1] .

(4.58)

Let us derive α (s) for s ∈ (TP , TC) . Suppress the time arguments and denote the

payoff of a player i by Pi (αi, αj) , with i, j ∈ {1, 2} and i �= j. From Figure 4.10 it follows

that

Pi (αi, αj) = αiαjM + αi (1− αj)L+ (1− αi)αjF + (1− αi) (1− αj)Pi (αi, αj) .

(4.59)

Rewriting gives

Pi (αi, αj) =
αiαjM + αi (1− αj)L+ (1− αi)αjF

1− (1− αi) (1− αj)
. (4.60)

To find the optimal value for αi we differentiate (4.60) with respect to αi and put this

expression equal to zero. This eventually leads to the following equality:

∂Pi (αi, αj)

∂αi

=
αj ((1− αj)L− F + αjM)

(1− (1− αi) (1− αj))
2 = 0. (4.61)
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It is easily verified that
∂2Pi(αi,αj)

∂α2
i

< 0, so that satisfying (4.61) indeed leads to a maximum

value of the player. Since we only consider symmetrical strategies we impose that

αi = αj = α. (4.62)

Combining (4.61) and (4.62) leads to the following optimal value for α:

α =
L− F

L−M
. (4.63)

Consider a subgame that starts at time s for which L (s) ≥ F (s) . The probability

that a player stops the game at time s, Pr (one| s) , equals

Pr (one| s) = α (s) (1− α (s)) + (1− α (s)) (1− α (s)) Pr (one| s) ,

so that

Pr (one| s) =
1− α (s)

2− α (s)
, (4.64)

and the probability that both players stop the game at s, Pr (two| s) , equals

Pr (two| s) = α (s)α (s) + (1− α (s)) (1− α (s)) Pr (two| s) ,

so that

Pr (two| s) =
α (s)

2− α (s)
. (4.65)

Thus each player stops the game itself with probability 1−α(s)
2−α(s)

and with probability α(s)
2−α(s)

both players stop the game. If there is no rent equalization, i.e. L �= F , by (4.63) and

(4.65) the probability of a mistake is positive.

If at time t = TP there is rent equalization, i.e. L = F , by (4.63) it holds that

α (TP ) = 0 and the probabilities are equal to

Pr (one| s) =
1

2
, (4.66)

Pr (two| s) = 0. (4.67)

By (4.66) we get that the probability that one player becomes leader at time TP is equal

for both players (one-half). Moreover, from equation (4.67) it follows that when there is

rent equalization, i.e. L = F , the probability of a mistake, that is both players stopping

at time TP and thus gaining the lowest possible payoff M , is zero. Mathematically this

means that αi (TP ) = 0 for both players (i = 1, 2).

The first mover advantage (L (s) > F (s)) results in equilibrium strategies in which

both players take a positive chance of making a mistake in order to get the leader payoff.
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Substitution of equations (4.57) and (4.58) into equation (4.50) shows that a player sets his

intensity α (·) such that his expected value equals the follower value: the expected payoff

E [V i (t, ·, ·)] for each player i (= 1, 2) of the subgame starting at some time t ∈ [0, 1]

equals:

E
[
V i (t, ·, ·)] = { F (TP ) t ∈ [0, TP ] ,

F (t) t ∈ (TP , 1] .
(4.68)

We summarize in the following proposition. For a formal proof we refer to Fudenberg and

Tirole (1985).

Proposition 4.7 The equilibrium strategies for the preemption game that satisfies as-

sumptions A1-A4 and for which L (TL) > M (TC) are given by equations (4.57) and

(4.58). The expected payoff for each player is given by equation (4.68).

Case 2: L (TL) ≤ M (TC)

In this scenario there are multiple equilibria. The equilibria can be divided into two types.

The first type is the preemption equilibrium defined in the previous subsection and the

second type is a so-called joint-movement equilibrium.

Define

TS = min (t ≥ TF |M (t) = L (TL)) . (4.69)

There are an infinite number of type 2 equilibria. Each equilibrium is characterized by

its movement date u, where u ∈ [TS, TC ]. Equilibrium strategies are given by

Gt (s) =

{
0 s ∈ [t, u) ,

1 s ∈ [u, 1] ,
(4.70)

α (s) =

{
0 s ∈ [t, u) ,

1 s ∈ [u, 1] .
(4.71)

Fudenberg and Tirole (1985) argue that the Pareto-superior joint moving equilibrium,

both moving at time TC , is the most reasonable outcome of the game.

Proposition 4.8 The preemption game that satisfies assumptions A1-A4 and for which

it holds that L (TL) ≤ M (TC) has two types of equilibrium strategies. The first type is

given by equations (4.57)-(4.58) and the second type by equations (4.70)-(4.71). The most

reasonable outcome of the game is joint-movement at time TC.

Now we are in a position to point out the main difference with the approach above

and the one developed in Simon (1987a,b). In case 2 the most reasonable outcome is the

only equilibrium if Simon’s equilibrium concept is used.
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4.A.3 Attrition Games

In this section we analyze timing games that satisfy the following assumptions:

A5 F (t) > M (t) for t ∈ [0, 1) .

A6 L (t) is strictly decreasing for t ∈ [0, 1) .

Since, contrary to a preemption game, both players do not want to take any chances of

making a mistake in a war of attrition, the only important joint-movement value is M (1).

In other words, the outcome is not influenced by the shape of the joint-movement curve

before time 1 as long as it is below the follower value. This implies for the equilibrium

strategies that α (s) = 0 for s ∈ [0, 1) .

We distinguish two different cases. In the first case L (t) > M (1) for t ∈ [0, 1] and

in the second case L (t∗) = M (1) for some unique t∗ ∈ [0, 1] . In the left (right) panel of

Figure 4.11 the leader, follower, and joint-moving curves are plotted for the first (second)

case.
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Figure 4.11: Payoff curves in case 1 (left panel) and case 2 (right panel).

Case 1: L (t) > M (1) for t ∈ [0, 1]

Hendricks et al. (1988) show that there is no symmetric equilibrium for this game. There

are two asymmetric equilibria. In the first one player 1 stops at time 0 and in the second

one player 2 stops at time 0. Although this result is unsatisfactory it is understandable.

Consider a symmetric strategy. Since L is decreasing and M (1) < L (1) both players will

try not to reach time 1 without one of them having stopped the game before. But, to do

so they have to apply a strategy with Gt
i (s) = 1 for s < 1. But if a player knows that

the other player stops the game before time 1 with probability 1, his optimal strategy is
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not to stop at all, implying that Gt (s) = 0 for s ∈ [t, 1]. Thus there does not exist an

equilibrium with symmetric strategies.

Proposition 4.9 In an attrition game that satisfies assumptions A5-A6 and for which

M (t) < L (t) for t ∈ [0, 1] there does not exist an equilibrium with symmetric strategies.

Case 2: L (t∗) = M (1) for some unique t∗ ∈ [0, 1]

For this scenario there is an equilibrium with symmetric strategies. Hendricks et al. (1988)

show that the equilibrium strategies are given by, if t < t∗ :

Gt (s) =


1− exp

(
s∫

v=t

dL(v)
(F (v)−L(v))

)
s ∈ [t, t∗] ,

1− exp

(
t∗∫

v=t

dL(v)
(F (v)−L(v))

)
s ∈ (t∗, 1) ,

1 s = 1,

(4.72)

at (1) = exp

 t∗∫
v=t

dL (v)

(F (v)− L (v))

 , (4.73)

α (s) =

{
0 s < 1,

1 s = 1,
(4.74)

and if t ≥ t∗,

Gt (s) =

{
0 s ∈ [t, 1) ,

1 s = 1,
(4.75)

at (1) = 1, (4.76)

α (s) =

{
0 s ∈ [t, 1) ,

1 s = 1.
(4.77)

Equations (4.73) and (4.76) imply that there is a discontinuous jump in Gt at time 1. The

same argument as in the previous subsection applies here. If G would be equal to 1 before

time 1 the other player would be better of by setting his G (t) = 0 for all t less than 1.

Thus the positive probability of reaching time 1 while neither of the players has moved,

(at (1))
2
, enforces each player to stop the game before time t∗ with positive probability.

Since in this scenario the players take chances of getting the terminal payoff, contrary to

the previous subsection, an equilibrium with symmetric strategies exists. Note that the

existence of t∗ is needed for the existence of the symmetric equilibrium.

Proposition 4.10 In an attrition game that satisfies assumptions A5-A6 and for which

L (t∗) = M (1) for some unique t∗ ∈ [0, 1] there exists an equilibrium with symmetric

strategies, given by equations (4.72)-(4.77).
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4.B Lemma and Proofs

The following lemma disproves a claim by Stenbacka and Tombak (1994).

Lemma 4.3 There does not exist a unique date t∗∗S = tL = tF which satisfies:

λ(π(θ1,θ0)−π(θ0,θ0))
(r+λ)

+
λ

∂tF
∂tL

e−r(tF −tL)(π(θ1,θ1)−π(θ1,θ0))

(r+λ)

+

(
(r+λ)

∂tF
∂tL

−λ
)
λe−(r+λ)(tF −tL)(π(θ0,θ1)−π(θ1,θ1)−π(θ0,θ0)+π(θ1,θ0))

(r+λ)(r+2λ)

+ ∂I(t)
∂t

∣∣∣
t=tL

− rI (tL) = 0,

λ(π(θ1,θ1)−π(θ0,θ1))
(r+λ)

+ λe−λ(tF −tL)(π(θ0,θ1)−π(θ1,θ1)−π(θ0,θ0)+π(θ1,θ0))
(r+2λ)

+ ∂I(t)
∂t

∣∣∣
t=tF

− rI (tF ) = 0.

(4.78)

Proof of Lemma 4.3 Set tL = tF in (4.78) and substitute the second equation in the

first equation:

λ(π(θ1,θ0)−π(θ0,θ0))
(r+λ)

+
λ

∂tF
∂tL

∣∣∣
tL=tF

(π(θ1,θ1)−π(θ1,θ0))

(r+λ)

+

(
(r+λ)

∂tF
∂tL

∣∣∣
tL=tF

−λ

)
λ(π(θ0,θ1)−π(θ1,θ1)−π(θ0,θ0)+π(θ1,θ0))

(r+λ)(r+2λ)

= λ(π(θ1,θ1)−π(θ0,θ1))
(r+λ)

+ λ(π(θ0,θ1)−π(θ1,θ1)−π(θ0,θ0)+π(θ1,θ0))
(r+2λ)

. (4.79)

Rearranging gives

∂tF
∂tL

∣∣∣
tL=tF

(
λ(π(θ1,θ1)−π(θ1,θ0))

(r+λ)
+ λ(π(θ0,θ1)−π(θ1,θ1)−π(θ0,θ0)+π(θ1,θ0))

(r+2λ)

)
= 0. (4.80)

So that at least one of the following equations has to hold:

∂tF
∂tL

∣∣∣∣
tL=tF

= 0, (4.81)

λ(π(θ1,θ1)−π(θ1,θ0))
(r+λ)

+ λ(π(θ0,θ1)−π(θ1,θ1)−π(θ0,θ0)+π(θ1,θ0))
(r+2λ)

= 0. (4.82)

Stenbacka and Tombak (1994) derived that

∂tF
∂tL

=

λ2e−λ(tF −tL)(π(θ1,θ0)−π(θ1,θ1)−π(θ0,θ0)+π(θ0,θ1))
(r+2λ)

λ2e−λ(tF −tL)(π(θ1,θ0)−π(θ1,θ1)−π(θ0,θ0)+π(θ0,θ1))
(r+2λ)

+ r ∂I(t)
∂t

∣∣∣
t=tF

− ∂2I(t)
∂t2

∣∣∣
t=tF

. (4.83)

Due to equations (4.2) and (4.83), equation (4.81) can not hold. Rewriting equation (4.82)

gives

λ2 (π (θ1, θ1)− π (θ1, θ0)) + λ (r + λ) (π (θ0, θ1)− π (θ0, θ0))

(r + λ) (r + 2λ)
= 0. (4.84)

Due to equation (4.3) this equation can not hold. �
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Proof of Proposition 4.5 The first-order condition for interior solutions for the leader

in the feedback game is

λ (π (θ0, θ0)− π (θ1, θ0))

(r + λ)
− λ∂tF

∂tL
e−r(tF−TL) (π (θ1, θ1)− π (θ1, θ0))

(r + λ)

+
λ∂tF

∂tL
e−(r+λ)(tF−TL) (π (θ1, θ1)− π (θ1, θ0))

(r + 2λ)

−λ2e−(r+λ)(tF−TL) (π (θ1, θ1)− π (θ1, θ0))

(r + λ) (r + 2λ)

+
λ
(
λ− (r + λ) ∂tF

∂tL

)
e−(r+λ)(tF−TL) (π (θ0, θ1)− π (θ0, θ0))

(r + λ) (r + 2λ)

+ rI (TL)− ∂I (t)

∂t

∣∣∣∣
t=TL

= 0. (4.85)

Note that we correct for the (two) sign mistakes in Stenbacka and Tombak’s equation

(11). In the open loop case the first order condition is given by the following equation:

λ (π (θ0, θ0)− π (θ1, θ0))

(r + λ)
− λ2e−(r+λ)(tF−t∗L) (π (θ1, θ1)− π (θ1, θ0))

(r + λ) (r + 2λ)

+
λ2e−(r+λ)(tF−t∗L) (π (θ0, θ1)− π (θ0, θ0))

(r + λ) (r + 2λ)
+ rI (t∗L)−

∂I (t)

∂t

∣∣∣∣
t=t∗L

= 0. (4.86)

Now, define the following function:

f (tL) =
λ (π (θ0, θ0)− π (θ1, θ0))

(r + λ)
− λ2e−(r+λ)(tF−tL) (π (θ1, θ1)− π (θ1, θ0))

(r + λ) (r + 2λ)

+
λ2e−(r+λ)(tF−tL) (π (θ0, θ1)− π (θ0, θ0))

(r + λ) (r + 2λ)
+ rI (tL)− ∂I (t)

∂t

∣∣∣∣
t=tL

. (4.87)

From (4.86) and (4.87) it follows that

f (t∗L) = 0. (4.88)

Provided that the second order condition holds (cf. Stenbacka and Tombak (1994, p. 409)),

it can be shown that
∂f (tL)

∂tL
< 0. (4.89)

Furthermore, observe that (4.85) can be written into

f (TL)−
λ∂tF

∂tL
e−r(tF−TL) (π (θ1, θ1)− π (θ1, θ0))

(r + λ)

+
λ∂tF

∂tL
e−(r+λ)(tF−TL) (π (θ1, θ1)− π (θ1, θ0))

(r + 2λ)

−λ∂tF
∂tL

e−(r+λ)(tF−TL) (π (θ0, θ1)− π (θ0, θ0))

(r + 2λ)
= 0. (4.90)
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Since the sum of the three terms is negative, it follows from (4.90) that

f (TL) > 0. (4.91)

Now (4.89), (4.90), and (4.91) imply that TL < t∗L. �





Chapter 5

Two New Technologies

5.1 Introduction

One of the features of the models concerning the investment of new technologies considered

in the previous chapter is that only one new technology was available. The availability of

more consecutive new technologies complicates the technology investment decision con-

siderably, since every time the firm evaluates an investment in a new technology it has to

take into account that at a later point of time a more efficient technology will be invented.

The aim of this chapter is to provide a first step in analyzing the problem of when

a firm could adopt an existing technology knowing that a better technology will become

available later, while it has to fight for a market share with an identical firm on the

output market. Two technologies are considered: an existing one which can be adopted

immediately, and a new one which is more efficient and enters the input market at a

known future date. Learning is incorporated in the sense that it is less costly to adopt

and successfully implement the new technology if it has adopted the current technology

before. As such this framework is taken from Grenadier and Weiss (1997). In that paper

the future date at which the new technology becomes available is uncertain and only

one firm is considered. So, compared to Grenadier and Weiss (1997) we exchange the

uncertainty for competition on the output market. In this way we are able to identify the

strategic aspects of this problem.

Two scenarios are worked out in detail: one where the new technology is cheap, and one

where the new technology is so expensive that it is not optimal for both firms to produce

with the new technology. In the latter case we show that on a particular time interval

it is optimal for one firm to invest right away in the current technology while the other

firm waits with investment in order to adopt the new technology as soon as it becomes

available. Which firm will do better depends on the comparison between the temporary

monopoly profits gained by the first investor before the new technology arrives, versus

99
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the higher revenue the other firm obtains after the arrival date of the new technology

due to the fact that it produces with a more efficient technology. In case the monopoly

profits are outweighed by the higher revenue associated with the new technology, second

mover advantages arise. To our knowledge, the way second mover advantages are caused

here has not occurred in the literature yet. Different second mover advantages have been

found by Hendricks (1992) and Dutta et al. (1995). In Hendricks (1992) they are caused

by ex ante uncertainty in the profitability of adoption (see also Hoppe (2000)), while in

Dutta et al. (1995) the quality of the product improves over time. These second mover

advantages may lead to a better understanding of the fact that from empirical studies

it could not always be concluded that early entrants perform better than later entrants.

Apart from the numerous studies that found persistent market-share advantages to first

entrants, there are many examples of pioneering firms that did not survive the competition

of later entrants. Dutta et al. (1995) mention the case of EMI, which developed the first

CT scanner but lost its market place because it lacked a technological infrastructure and

marketing base in the medical field.

The contents of this chapter is as follows. The model is introduced in Section 5.2.

In Section 5.3 the solution procedure is explained and optimal investment strategies are

analyzed in detail for two specific scenarios. Section 5.4 concludes.

5.2 The Model

The model is based on Grenadier and Weiss (1997), but here a duopoly with two identical

risk-neutral and value maximizing firms is considered, while in Grenadier and Weiss (1997)

the analysis is focussed on a single firm. To produce goods the firms need to acquire a

certain technology. Initially, at time t = 0, they can invest in a current technology, of

which the efficiency is denoted by θ1 (> 0). At time t = T (≥ 0), a new and more efficient

technology becomes available for adoption, with efficiency θ2 (> θ1). In our analysis time

T is assumed to be known beforehand (contrary to Grenadier and Weiss (1997), where

T depends on the realization of a Wiener process that governs the state of technological

knowledge). When a firm does not produce we denote this by θ0 = 0. The firm’s profits

per unit of time, while it produces with technology θi and the other firm with technology

θj, are equal to π(θi, θj), with i, j ∈ {0, 1, 2}. We assume that for j ∈ {0, 1, 2}:

π (θ0, θj) = 0, (5.1)

and for i ∈ {1, 2} and j ∈ {0, 1, 2}:

π (θi, θj) > 0. (5.2)
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If Pij denotes the value of the firm while this firm itself produces with technology θi

forever and the other firm with technology θj forever, it holds that

Pij =

∞∫
s=0

π(θi, θj)e
−rsds =

π(θi, θj)

r
, (5.3)

where r (> 0) is the constant discount rate.

If the new technology is not available for adoption yet, i.e. t < T , the firm has the

possibility to invest in the current technology, where the investment expenditure equals

Ce (> 0). Then the firm’s payoff is P1j−Ce, where j = 1 when the other firm is producing

with technology θ1 and j = 0 when the other firm refrains from producing.

From time T onwards the firm can choose to adopt the new technology. If the firm

has invested in the current technology before, it may replace this technology for the new

one. Then the payoff of investing in the new technology is P2i−P1j −Cu, where Cu (> 0)

stands for the cost of upgrading. Note that in the formulation of the payoff it is taken

into account that the other firm can change its technology too at time T .

If the firm adopts the new technology without having invested in the current technology

before, the payoff of this investment is P2i − Cl, with Cl > 0. At the moment the new

technology arrives the demand for the current technology will fall so that it makes sense

that the acquisition cost of the current technology will fall too. This makes that if the

firm did not buy the current technology before, it may become profitable to adopt this

technology after time T . The payoff of this transaction is P1i − Cd, with Cd > 0.

Concerning the levels of the different cost parameters we impose that

Cu < Cl < Ce + Cu, (5.4)

Cd < Ce. (5.5)

The first inequality in (5.4) denotes the learning effect in the sense that it is less costly to

adopt and successfully implement the new technology if the firm already produces goods.

The second inequality assures that no arbitrage is possible, i.e. it is always more costly

to immediately start producing with the current technology and replacing it later by the

new one, than to refrain from production initially in order to wait for the new technology

to arrive.

The value of a particular technology falls over time, because (1) it becomes old-

fashioned, (2) the firms that are most eager to buy the technology have already bought

it so that technology suppliers have to drop their price in order to find additional buyers,

and (3) due to learning by doing the technology supplier can produce the technology
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in a cheaper way. For these reasons we assume here that technology investments are

irreversible.

Next, we specify how the profit streams are related to each other. Note that from (5.3)

it can be obtained that profits per unit of time π(θi, θj) are related to each other in the

same way as the discounted profit streams Pij. First, it holds that when the firm produces

with a given technology the highest profit it can obtain is the monopoly profit, which the

firm receives if the other firm does not produce. Second, its profits will be lowest when

the other firm is a strong competitor in the sense that it produces in the most efficient

manner by using the modern technology. This leads to

Pi0 > Pi1 > Pi2 for i ∈ {1, 2} . (5.6)

Furthermore, by upgrading its technology, thus exchanging the current technology for the

new technology, the firm gains more, the less competitive the other firm is. Of course,

since the new technology is more efficient, the profit stream always increases due to this

exchange. Mathematically, this can be expressed as

P20 − P10 > P21 − P11 > P22 − P12 > 0. (5.7)

Finally, in order to limit the number of possible cases, we focus on the scenarios where

for each technology investment the discounted future profit stream exceeds the immediate

expenditure. Due to (5.4), (5.5), and (5.6) it can be concluded that this is assured by

P12 > Ce and P22 > Cl. (5.8)

5.3 Solution Procedure

5.3.1 Candidate Strategies for Optimality

Since for every technology investment the discounted future profit stream exceeds the

immediate cost expenditure (cf. (5.8)), it is optimal for each firm to invest at least once.

This implies that, given that we are at time t = 0, each firm has four candidate strategies

for optimality (cf. Grenadier and Weiss (1997)). Note that due to discounting the firms

will either invest at time t = 0 or at time t = T.

The first strategy is called theCompulsive strategy . Here the firm invests right away

in the current technology, and replaces this current technology by the new one as soon as

the latter becomes available. The payoff of the Compulsive strategy equals

P1j − Ce + exp (−rT )) (P2i − P1j − Cu) . (5.9)
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In (5.9), as well as below in (5.10), (5.11), and (5.12), the other firm produces with

technology θj before time T and with technology θi after time T , with j ≤ i. Of course,

if j or i equals 0 it is meant that the other firm does not produce at all.

The second strategy is the Buy and Hold strategy by which it is meant that the firm

invests right away in the current strategy and keeps on producing with it forever. The

firm’s payoff then equals

P1j − Ce + exp (−rT ) (P1i − P1j) . (5.10)

The third strategy is the Leapfrog strategy . Then the firm waits for the new technology

to arrive and adopts it then. The payoff of this strategy is

exp (−rT ) (P2i − Cl) . (5.11)

The fourth strategy is to wait for the new technology to arrive, and at that moment

invest in the current technology, which then can be bought against a cheaper price. The

payoff of this so-called Laggard strategy then equals

exp (−rT ) (P1i − Cd) . (5.12)

5.3.2 Equilibrium Strategies

The equilibrium strategies of both firms depend on the scenarios in which they have to

operate. It holds that in some scenarios upgrading is optimal, implying that the payoff of

the Compulsive strategy exceeds the payoff of the Buy and Hold strategy, while in other

ones it is not. Another factor that distinguishes the different scenarios are the payoffs

of the Leapfrog and the Laggard strategies: the Leapfrog payoff can exceed the Laggard

payoff but it can be the other way round too. Here it also has to be taken into account

that the ranking of the payoffs depends on what the other firm is doing: producing with

the current technology or with the new one. On the other hand, all scenarios have in

common that when the firm exchanges the current technology for the new technology, it

gains more when the other firm produces with the current technology instead of the new

technology (cf. (5.7)).

In Table 5.1 all possible scenarios are listed. In total there are nine scenarios, each

giving a different solution. It would lead to using up too much space and unnecessary

repetitions if in the sequel we would study all these solutions. Instead we describe two

of these solutions in detail in the next subsections. In order to still cover many different

aspects of optimal technology investments we choose rather opposite scenarios. In the

first case it is relatively cheap to acquire the new technology, while in the second case the

new technology is expensive and the learning effect is negligible.
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Scenario Specifications

1 P22 − P12 < P21 − P11 ≤ Cl − Cd, Cu

2 P22 − P12 ≤ Cl − Cd < P21 − P11 ≤ Cu

3 P22 − P12 ≤ Cu < P21 − P11 ≤ Cl − Cd

4 P22 − P12 ≤ Cl − Cd, Cu < P21 − P11

5 Cl − Cd < P22 − P12 < P21 − P11 ≤ Cu

6 Cl − Cd < P22 − P12 ≤ Cu < P21 − P11

7 Cu < P22 − P12 < P21 − P11 ≤ Cl − Cd

8 Cu < P22 − P12 ≤ Cl − Cd < P21 − P11

9 Cl − Cd, Cu < P22 − P12 < P21 − P11

Table 5.1: Possible scenarios and their specifications.

In both subsections we start out by analyzing the case of exogenous firm roles, i.e.,

despite the fact that both firms are identical one of them is given the leader role before-

hand. This implies that only this firm is allowed to invest first. The other firm is the

follower, which can choose between investing at the same time as the leader resulting in

joint adoption, or investing later. The resulting solution is taken as a starting point to

consider the more realistic case of endogenous firm roles, meaning that beforehand it is

not known which firm will be the leader.

5.3.3 Equilibrium Strategies if the New Technology is Cheap

The scenario we have in mind here is number 9 in Table 5.1, from which it can be obtained

that it must hold that

P21 − P11 > P22 − P12 > max (Cu, Cl − Cd) . (5.13)

Due to (5.9) and (5.10) we can conclude that under (5.11) Compulsive dominates Buy

and Hold, while (5.11) and (5.12) imply that Leapfrog dominates Laggard.

Exogenous Firm Roles

Despite of the fact that both firms are identical one of them gets the leader role beforehand

so that the other firm is the follower. Straightforward calculations lead to the equilibrium

strategies that are presented in Table 5.2. Concerning the notation, Txy,z means that: (i)

if the second technology arrives exactly at this point of time a firm is indifferent between

strategy x and y, given that the other firm performs strategy z, and (ii) if the second

technology arrives before (after) time Txy,z the firm prefers strategy x (y) , given that
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the other firm uses strategy z. Here the names of the strategies are abbreviated (C:

Compulsive, Le: Leapfrog, La: Laggard, and B: Buy and Hold). So, if for instance the

arrival date of the second technology T ∈ [0, TLeC,Le] , according to Table 5.2 both firms

should follow a Leapfrog strategy. With equations (5.9) and (5.11) we derived that

TLeC,Le =
1

r
log

(
P10 − Cl + Cu

P10 − Ce

)
, (5.14)

TLeC,C =
1

r
log

(
P11 − Cl + Cu

P11 − Ce

)
. (5.15)

Equations (5.4) and (5.6) imply that

0 < TLeC,Le < TLeC,C . (5.16)

T interval Leader Follower

[0, TLeC,Le] Leapfrog Leapfrog

(TLeC,Le, TLeC,C ] Compulsive Leapfrog

(TLeC,C ,∞) Compulsive Compulsive

Table 5.2: Equilibrium strategies in scenario 9 as function of T, the arrival time of the second technology,
when the firm roles are assigned exogenously.

Since in scenario 9 the new technology is attractive, only those strategies occur under

which this technology will be bought: Compulsive and Leapfrog. On the first interval

[0, TLeC,Le] the arrival of the new technology is that near that for both firms it is optimal

to wait with investment until the new technology becomes available. This explains the

occurrence of the Leapfrog strategy on this interval.

On the time interval (TLeC,Le, TLeC,C ] T is a bit further away, which implies that, given

that the leader announces a Compulsive strategy, the follower will prefer Leapfrog, i.e.

refrain from immediate investment in order to wait for the new technology to arrive. The

explanation is that the time interval in which the current technology will be used is too

short to make investing in the current technology profitable. Also the learning effect,

i.e. implementing the new technology is cheaper when the firm has already production

experience due to using the current technology, cannot make up for this (cf. (5.4)). But,

given that the follower will not adopt the current technology so that it will not produce

before time T , by investing in the current technology the leader can become a monopolist

until the time that the new technology arrives.

When the point of time at which the new technology appears on the market lies

relatively far in the future, it is optimal for both firms to apply the Compulsive strategy,
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i.e. buy the current technology immediately and upgrade at time T. This explains why

for both firms the Compulsive strategy is optimal when the arrival date of the second

technology lies somewhere in the interval (TLeC,C ,∞).

Endogenous Firm Roles

Since firms are identical there seems to be no reason why one of these firms should be

given the leader role beforehand. This makes the outcome of the exogenous firm roles

case hard to accept. However, here we use this outcome to generate the equilibria of the

case where it is not known beforehand which firm will invest first. The fact that firms are

identical and rational also implies that it is reasonable to impose that firms behave in the

same manner, since no reason of why they should act differently can be given. Therefore

we restrict ourselves to symmetric strategies.

Denote the value of the leader and the follower as function of T, the arrival time of the

second technology, by L (T ) and F (T ) , respectively. When both firms apply the leader’s

strategy, their payoff equals M (T ) . From Table 5.2 and equations (5.9) and (5.11) it

follows that

L (T ) =


exp (−rT ) (P22 − Cl) if T ∈ [0, TLeC,Le] ,

P10 − Ce + exp (−rT ) (P22 − P10 − Cu) if T ∈ (TLeC,Le, TLeC,C ] ,

P11 − Ce + exp (−rT ) (P22 − P11 − Cu) if T ∈ (TLeC,C ,∞) ,

(5.17)

F (T ) =

{
exp (−rT ) (P22 − Cl) if T ∈ [0, TLeC,C ] ,

P11 − Ce + exp (−rT ) (P22 − P11 − Cu) if T ∈ (TLeC,C ,∞) ,
(5.18)

M (T ) =

{
exp (−rT ) (P22 − Cl) if T ∈ [0, TLeC,Le] ,

P11 − Ce + exp (−rT ) (P22 − P11 − Cu) if T ∈ (TLeC,Le,∞) .
(5.19)

In Figure 5.1 the payoffs are plotted. This figure should be read as a feedback diagram.

Note that contrary to the payoff figures in Chapter 4, the figure shows the payoffs of both

firms as function of the arrival time of the second technology T instead of the payoffs as

function of time t.

Looking at Figure 5.1 we see that, apart from the interval (TLeC,Le, TLeC,C ], in the case

of exogenous firm roles the firms choose for the same strategy, meaning that they invest

at the same time in the same technology. Hence, there is no difference in the behavior of

leader and follower so that we end up with the same equilibria as in the case of endogenous

firm roles.

So, what is left to do is to determine the equilibria on the interval (TLeC,Le, TLeC,C ].

From Figure 5.1 we obtain that the firm that invests first gets the highest payoff, since
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Figure 5.1: Payoffs in scenario 9 as function of T, the arrival time of the second technology, when the
firm roles are endogenously determined.

L (T ) > F (T ) for T ∈ (TLeC,Le, TLeC,C ] . In case both firms invest at the same time, they

both get M (T ) . This game is a preemption game. In Appendix 4.A.2 it was shown that

the equilibrium strategy for each firm is given by the following pair of functions

G (s) = 1, (5.20)

α (s) =
L (s)− F (s)

L (s)−M (s)
, (5.21)

where s ∈ (TLeC,Le, TLeC,C ] . Recall that G (s) is the cumulative probability that a firm

invests at time s given that there was no investment before time s and that α (s) measures

the intensity of that probability of investment (cf. Appendix 4.A.2).

Of course, both firms do not want to invest at the same time, because it leaves them

with the lowest possible payoff M . In Appendix 4.A.2 we derived that the probability of

occurrence of such a mistake is

α (s)

2− α (s)
, (5.22)

which naturally increases with α (s). Due to the fact that for s ∈ (TLeC,Le, TLeC,C ] L (s) >

F (s) ≥ M (s) , equation (5.21) learns that α (s) is strictly positive, so that the probability

of making a mistake is strictly greater than zero. In a similar way it can be obtained that
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the probability of a firm being the first investor equals

1− α (s)

2− α (s)
. (5.23)

Due to symmetry this is also the probability of ending up being follower. Since the

probability of simultaneous adoption increases with α (s), it follows that the probability

of being the first investor decreases with α (s), which is at first sight a strange result. But

it is not that strange, because if one firm increases its probability to invest, the other firm

does the same. This results in a higher probability of making a mistake, which leaves less

room for the equal probabilities of being the first investor.

Substitution of the Compulsive and the Leapfrog payoffs, which are given by (5.9)

and (5.11), respectively, into (5.21) results in the following expression for α (s) for s ∈
(TLeC,Le, TLeC,C ]:

α (s) =
P10 − Ce + exp (−rs) (−P10 + Cl − Cu)

(P10 − P11) (1− exp (−rs))
. (5.24)

To see how α develops over time, differentiate (5.24) with respect to s, and eventually

obtain

∂α (s)

∂s
=

r exp (−rs) (Ce − Cl + Cu)

(P10 − P11) (1− exp (−rs))2
> 0, (5.25)

where the inequality sign follows from (5.4). The implication is that if we consider two

games, one where the second technology arrives at time T1 and the other one where the

second technology arrives at time T2 , where T1 and T2 are related such that TLeC,Le <

T1 < T2 < TLeC,C , then the probability of making the simultaneous adoption mistake in

the game where the second technology arrives at time T1 is smaller than in the game where

the second technology arrives at time T2. To understand this result, consider Figure 5.1:

(1) the difference between the payoff from being the leader and the payoff of the follower

increases, so that the relative profitability of winning the investment race rises, and (2)

the difference between the follower payoff and the payoff that results from simultaneous

investment decreases so that firms more and more prefer to win the investment race rather

than to make the joint adoption mistake.

Furthermore from (5.24) and the fact that the probability of the joint adoption mistake

increases with α (s), the following ceteris paribus results can be derived: the joint adoption

mistake is more likely to occur for lower values of Ce or Cu, or for higher values of P10,

P11, Cl, or r.
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5.3.4 Equilibrium Strategies if Learning is Negligible and the

New Technology is Expensive

In this subsection scenario 2 of Table 5.1 is analyzed. From that table we obtain that in

this scenario it holds that

P21 − Cu − P11 ≤ 0, (5.26)

P21 − Cl > P11 − Cd, (5.27)

P22 − Cl ≤ P12 − Cd. (5.28)

In Table 5.1 we see that the cost of upgrading is large in this scenario. This means that,

even in case the firm is already active on this market by producing with the current tech-

nology, the learning effect is that low that it is still costly to buy and implement the new

technology. From (5.26) it can be concluded that, given that the other firm produces with

the current technology, it is not profitable to upgrade so that the Compulsive strategy will

not be optimal. The same holds when the other firm produces with the new technology,

because then exchanging the current technology for the new one is even less profitable.

Taking into account the payoffs of the Leapfrog and the Laggard strategy (cf. (5.11)

and (5.12)), we can derive from (5.27) and (5.28) that the Leapfrog strategy is more prof-

itable than the Laggard strategy if the other firm produces with the current technology,

while it is the other way round when the other firm produces with the new technology.

Since we already concluded that upgrading is never optimal, it follows that in this sce-

nario demand on the output market is too small for two firms producing with the more

expensive new technology.

Exogenous Firm Roles

Again we first consider the case where one firm is the leader and the other firm the follower.

The equilibrium strategies are presented in Table 5.3. Time TB,Le is defined such that at

that time the payoffs of Buy and Hold and Leapfrog are equal. With equations (5.10),

(5.11), and (5.12) we derive that

TLaB,Le =
1

r
log

(
P10 − Cd

P10 − Ce

)
, (5.29)

TB,Le =
1

r
log

(
P21 − Cl − P12 + P10

P10 − Ce

)
, (5.30)

TLeB,B =
1

r
log

(
P21 − Cl

P11 − Ce

)
. (5.31)

From equations (5.5) and (5.27) it follows that

0 < TLaB,Le < TB,Le. (5.32)
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Further, we derive that

TB,Le < TLeB,B, (5.33)

if and only if the following equation holds,

P11 − Ce

P21 − Cl

<
P10 − P11

P10 − P12

. (5.34)

T interval Leader Follower

[0, TB,Le] Leapfrog Laggard

(TB,Le, TLeB,B] Buy and Hold Leapfrog

(TLeB,B ,∞) Buy and Hold Buy and Hold

Table 5.3: Equilibrium strategies in scenario 2 as function of T, the arrival time of the second technology,
when the firm roles are assigned exogenously.

Since in this scenario the cost of upgrading is too high for a replacement of the current

technology by the new technology to be profitable, the Compulsive strategy will never be

applied. On the interval [0, TLaB,Le] the arrival time of the new technology is that close

that for both firms it is not optimal to invest immediately. One firm will adopt the new

technology as soon as it arrives. The other firm waits until time T to acquire the current

technology, since from this time onwards the acquisition cost of the current technology

is lower (cf. (5.5)). Note that, given the fact that one firm plays Leapfrog, expression

(5.28) implies that for the other firm the Laggard strategy is most profitable. The reason

is that the demand for output is too low for the two firms to produce both with the new

expensive technology.

On the time interval (TLaB,Le, TLeB,B ] T is a bit further away, which implies that, given

that the leader follows a Buy and Hold strategy, the follower will prefer Leapfrog. The

earnings that arise from producing with the current technology on the time interval before

time T are not large enough for the follower to justify the immediate acquisition of the

current technology. Note that, given that the leader applies a Buy and Hold strategy, for

the follower the Leapfrog payoff is higher than the Laggard payoff (cf. (5.27)). The fact

that the follower plays Leapfrog implies that until the new technology arrives the leader

is the only producer on the market. This monopoly position increases revenue before

time T , compared to the situation where both firms apply Buy and Hold. On the other

hand, after time T the Buy and Hold strategy will generate less revenue, because then

the other firm captures a larger share of the market since it produces more efficiently with

the new technology. Hence, two opposite effects are working on the Buy and Hold payoff
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once the follower switches to Leapfrog. In Table 5.3 and in Figure 5.2 (presented later

on) the monopoly effect is assumed to dominate, which explains the downward jump of

the Buy and Hold (leader) payoff right at TLeB,B. But the reverse can also be true. After

straightforward calculations it can be concluded that the jump is indeed downward in case

(5.34) holds. We see that in any case at the beginning of the interval (TLaB,Le, TLeB,B ]

the Buy and Hold payoff is less than the Leapfrog payoff so that the first investor earns

less than the follower. Recall that TB,Le is the point of time at which the payoffs of

Buy and Hold and Leapfrog are equal (see Figure 5.2, note that TB,Le does not exist in

case (5.34) does not hold). Then, on the interval (TLaB,Le, TB,Le] (or (TLaB,Le, TLeB,B ] if

(5.34) does not hold) the leader refrains from investment and applies a Leapfrog strategy.

The follower is not allowed to invest earlier than the leader, so he has to choose between

Leapfrog and Laggard. The follower’s choice will be Laggard, since this leaves him with

the highest payoff (cf. (5.34)). In case equation (5.34) holds we have to consider the

interval (TB,Le, TLeB,B]. For the leader it is optimal to apply the Buy and Hold strategy

and the follower responds by using the Leapfrog strategy.

When the point of time T at which the new technology appears on the market is rela-

tively far away, it is optimal for both firms to start producing with the current technology.

Therefore, both firms apply the Buy and Hold strategy if the arrival time of the second

technology belongs to the interval (TLeB,B,∞) .

Endogenous Firm Roles

Here it is not specified beforehand which firm will be the first investor, so that both

firms can be leader or follower. As said before this seems the proper way to analyze a

duopoly with identical firms. Since firms are identical, we restrict ourselves to symmetric

strategies. From Table 5.3 and equations (5.10), (5.11), and (5.12) it follows that (with

one modification which will be explained right after (5.37))

L (T ) =


exp (−rT ) (P21 − Cl) if T ∈ [0, TLaB,Le] ,

P10 − Ce + exp (−rT ) (P12 − P10) if T ∈ (TLaB,Le, TLeB,B ] ,

P11 − Ce if T ∈ (TLeB,B,∞) ,

(5.35)

F (T ) =


exp (−rT ) (P12 − Cd) if T ∈ [0, TLaB,Le] ,

exp (−rT ) (P21 − Cl) if T ∈ (TLaB,Le, TLeB,B ] ,

P11 − Ce if T ∈ (TLeB,B,∞) ,

(5.36)

M (T ) =

{
exp (−rT ) (P22 − Cl) if T ∈ [0, TLaB,Le] ,

P11 − Ce if T ∈ (TLaB,Le,∞) .
(5.37)
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Note that now the leader plays the Buy and Hold strategy in the games where the

second technology arrives somewhere in the interval (TLaB,Le, TB,Le] , because a firm can

only become leader by investing as first. The expected value of waiting equals the Laggard

payoff which is less than the payoff resulting from the Buy and Hold strategy. Therefore

one firm will invest in the current technology. In Figure 5.2 the payoffs are plotted.

0 TLaB, Le TB,Le TLeB,B
T

L
(T

),
F

(T
),

M
(T

)

L( T)

F( T)

M( T)

Figure 5.2: Payoffs in scenario 2 as function of T, the arrival time of the second technology, when the
firm roles are endogenously determined.

From Figure 5.2 it is obtained that only for the interval (TLeB,B,∞) the strategies of

both firms are identical, implying that the equilibrium for games where T ∈ (TLeB,B ,∞)

is the same for the exogenous and the endogenous firm roles case.

To solve the whole problem we divide the remaining time interval into three subin-

tervals and treat the three cases in order of timing. For the games with arrival date of

the second technology in the interval [0, TLaB,Le] the optimal strategies are Leapfrog and

Laggard, i.e. no investment takes place before time T. The firms wait until the arrival

of the new technology after which the following game will be played. Without loss of

generality we set T = 0 for the moment. Since the highest payoff can be obtained by

a Leapfrog strategy (provided that the other firm plays Laggard), it is attractive to be

the first investor in the new technology. However, when both firms apply the strategy

invest right away in the new technology at time T , with probability one they end up with

the payoff M (0), which is less than what could be obtained by investing in the current

technology, F (0) . Hence, it seems that a mixed strategy is called for in this preemption

game. The equilibrium strategy is given by the following pair of functions (see Appendix



Chapter 5. Two New Technologies 113

4.A.2 for details)

G (0) = 1, (5.38)

α (0) =
L (0)− F (0)

L (0)−M (0)
=

P21 − Cl − (P12 − Cd)

P21 − P22

. (5.39)

The worse thing that can happen is that both firms invest in the new technology at the

same time, leaving them with a low payoff M (0) = P22 − Cl. Analogous to the previous

subsection, the probability that this happens is given by equation (5.22). The expected

value of the firm resulting from the optimal mixed strategy described by equations (5.38)

and (5.39) equals the payoff associated with the Laggard strategy (see Appendix 4.A.2

where it was shown that the expected payoff in a preemption game equals the follower

payoff). Therefore, the value of the firm is also equal to the Laggard payoff if T ∈
(0, TLaB,Le], and from Figure 5.2 it can be concluded that this value decreases in T .

It turns out to be convenient to divide the interval (TLaB,Le, TLeB,B ] into two parts:

(TLaB,Le, TB,Le] and (TB,Le, TLeB,B]. Note that TB,Le ∈ (TLaB,Le, TLeB,B ] only in case (5.34)

holds. If (5.34) does not hold, then during the whole interval (TLaB,Le, TLeB,B] the Buy

and Hold payoff falls below the Leapfrog payoff. Let us first consider (TLaB,Le, TB,Le].

Here the new technology will become available soon, which implies that the Leapfrog

strategy is more profitable than Buy and Hold. Therefore, the payoff of the first investor

is lower than the payoff of the follower, so that a second mover advantage arises. Hence,

each firm prefers to be the follower, but if it has to be the first investor, it prefers to

invest earlier rather than later, because the Buy and Hold payoff falls over time. Thus

the game is an attrition game. A possible strategy would be to refrain from investment

during this interval, waiting for the other firm to invest. Since with identical firms there

is no reason to believe why the other firm would act differently, nothing happens on this

interval. This implies that both firms end up with playing the game at time T , which is

described above. The expected value of the firm obtained from playing this game equals

the Laggard payoff, and this payoff lies below the payoffs of both Buy and Hold and

Leapfrog. In Appendix 4.A.3 the subgame perfect equilibrium is given for an attrition

game with identical players, as it occurs here. The equilibrium strategy is described by

(note that due to the difference in definition of the payoff functions L, F , and M in this

chapter the argument of the functions is T − v instead of v)

G(s) = 1− exp

 s∫
v=0

dL (T − v)

F (T − v)− L(T − v)

 , (5.40)

α (s) = 0, (5.41)
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where s ∈ [0, T ). Equation (5.41) implies that the probability that the two firms move ex-

actly at the same time is zero, which explains whyM does not affect the mixed investment

strategy in (5.40).

From (5.40) it is easily obtained that for T ∈ (TLaB,Le, TB,Le] it holds that

lim
s↑T

G(s) < 1.

Note that, if this were not the case, the symmetric investment strategy is not a Nash

equilibrium. The reason is that when

lim
s↑T

G(s) = 1,

then one of the firms could do better by refraining from investment during the interval

[0, T ), since this firm knows for sure that its competitor will have invested at some time

before T .

Substitution of the relevant formulas for the payoffs into (5.40) leads to

G(s) = 1− exp

 s∫
v=0

r exp (−r (T − v)) (P12 − P10)

Ce − P10 + exp (−r (T − v)) (P21 − Cl − P12 + P10)
dv

 . (5.42)

The firm’s willingness to invest increases with the relative performance of Buy and Hold

compared to Leapfrog. In this light the following ceteris paribus results, that are derived

from (5.42), are easy to understand: G goes up with r, T , P10, Cl, and goes down with

Ce and P21.

Finally, we analyze games for which T ∈ (TB,Le, TLeB,B ]. Solving this case leads to

analogous results as in the previous subsection. In the symmetric equilibrium both firms

use the following strategy

G (s) = 1, (5.43)

α (s) =
L (s)− F (s)

L (s)−M (s)
, (5.44)

where s ∈ (TB,Le, TLeB,B ]. Right at the start of the game one of the firms will invest in

the current technology. The other firm refrains from investment until time T at which

it will adopt the new technology. The probability that both firms invest in the current

technology exactly at the same time is again given by equation (5.22). It is unclear how

α (s) develops over time, since two opposite effects are working here: (1) the difference in

payoffs between leading and following decreases over time which has a negative effect on

α (s), and (2) the difference in payoffs between leading and joint adoption decreases as

time passes which has a positive effect on α (s).
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5.4 Conclusions

This chapter treats the technology adoption decision of the firm in a duopoly framework.

One of the main difficulties concerning the technology investment decision in practice is

that in the future better technologies than now available will be invented. The model in

this chapter tries to capture this important aspect by considering two technologies: one

which is available immediately, and the other one which is more efficient and becomes

available at a known point of time in the future. By doing so, work of Reinganum (1981),

Fudenberg and Tirole (1985), Hendricks (1992), and Stenbacka and Tombak (1994), who

consider only one technology, is extended. Moreover, learning is incorporated in the way

that adoption of the current technology makes it less costly to adopt and implement the

new technology.

We focussed on the scenario where for every technology investment it holds that the

discounted future profit stream exceeds the immediate expenditure. In case the arrival

date of the new technology lies far in the future, the future presence of a new technology

does not prevent that investing in the current technology is still optimal. When this date

comes nearer it is not optimal anymore for both firms to invest in the current technology

right away. Hence, one of the firms has to refrain from investment, which implies that

by investing in the current technology the other firm obtains monopoly profits until the

arrival date of the new technology. To capture these monopoly profits a firm must try

to invest earlier than its competitor. In this way the preemption equilibria arise that

we already know from, e.g., Fudenberg and Tirole (1985), but here no rent equalization

occurs as was the case in that paper. A consequence of the absence of rent equalization

is that a positive probability arises that both firms invest at the same time, leaving them

with a very low payoff (in Fudenberg and Tirole (1985) the probability of occurrence of

this mistake was zero due to rent equalization).

Another new element in our chapter is the occurrence of second mover advantages in

technology adoption problems. This happens in scenarios where technology upgrading

is not optimal so that firms have to make a choice between investing in the current

technology right away and keep on producing with it, or waiting with investment until

the new technology arrives. The advantage of the immediate investor is that monopoly

profits are gained until the arrival of the new technology, while the investor in the new

technology has the advantage of producing with a better technology once it is available. A

second mover advantage arises when the advantage of producing with the new technology

in the future leads to a higher payoff than the current temporary monopoly profits.

An immediate extension of the model in this chapter is to add uncertainty. A distinc-

tion can be made between uncertainty concerning the arrival date of new technologies or

uncertainty concerning the efficiency of new technologies. For instance, in case of micro-
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chips the technical parameters and specifications of future designs are known beforehand,

but the arrival date is uncertain since the appearance of the technology depends on re-

search and development and the market factors affecting the introduction of the product

(see Chapter 6 and Nair (1995)).

Another interesting topic of future research is to incorporate asymmetric information

in the sense that a firm does not know how profitable a particular innovation is for its

opponent. However, as time passes the firm learns about the other firm’s profit function

from the observed investment behavior of the other firm. Based on this observation it will

update its conjecture about the other firm’s profit function (see Lambrecht and Perraudin

(1999)).



Chapter 6

Multiple New Technologies

6.1 Introduction

In this chapter we extend the models of Chapters 4 and 5 by adding uncertainty to the

innovation process and by considering multiple new technologies. The new technologies

are invented at previously unknown points of time. A comparable framework is considered

in the duopoly model by Gaimon (1989). The difference is that in that paper a continuous

stream of new technologies arrives over time, which is known beforehand by the firms.

The investment decision problem of this chapter is solved by introducing the waiting

curve as a new concept in timing games. The waiting curve is equal to the expected

equilibrium payoff of the firm when both firms wait with making an investment (at least)

until the next technology has arrived. Therefore the waiting curve resembles the option

to invest in some future technology that is not invented yet.

The remainder of this chapter is organized as follows. In Section 6.2 the investment

decision problem of the firm is described. We reformulate the investment decision problem

as a timing game, and design an algorithm to solve it in Section 6.3. In Section 6.4

we apply the algorithm to an information technology investment problem. Concluding

remarks are given in Section 6.5.

6.2 The Model

In this section we describe the model of this chapter. A duopoly is considered where both

firms maximize their value over an infinite planning horizon. We define T (≥ 0) to be the

time elapsed since the start of the game. The first assumption is that firms are identical.

Each firm has a profit function π (θx, θy), where θx (≥ 0) equals the technology-efficiency

parameter of the technology that the firm uses itself and θy (≥ 0) that of its opponent. The

profit function of each firm is non-negative, increasing and concave in its own technology-

117
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efficiency parameter and decreasing in its rival technology-efficiency parameter. This for

the reasons that (i) a firm can make more profits when it produces with a more efficient

technology, (ii) the growth of the profits will be limited (due to output market saturation

and the fact that production costs are always positive), and (iii) a firm will make less

profits when its rival uses a more efficient technology. In formulas this means that

π (θx, θy) ≥ 0, (6.1)

∂π (θx, θy)

∂θx
> 0, (6.2)

∂π (θx, θy)

∂θy
< 0, (6.3)

∂2π (θx, θy)

∂θ2
x

< 0. (6.4)

We analyze a dynamic model with an infinite planning horizon. Risk-neutral firms

are considered, which discount the stream of future profits at a constant rate r (> 0).

Initially, at time T = 0 each firm produces with a technology of which the efficiency

is designated by θ0 (≥ 0). As time passes new technologies become available at discrete

points of time. Technologies become more and more efficient over time, and the more

efficient a technology the larger the associated parameter θ. The i-th technology has an

efficiency represented by θi (> θi−1), for i ∈ IN. We define Ti (≥ 0) to be equal to the

point in time at which technology i becomes available, i ∈ IN, and T0 = 0. Each firm

has the opportunity to adopt at time T (≥ 0) one of the technologies being available at

time T by investing I (ti) to adopt technology i, where ti (≥ 0) is the length of the time

period passed since the introduction of technology i, i.e. ti = T − Ti. We assume the

second hand market for these capital goods to be negligible (e.g. information technology

products) so that this investment is irreversible. The differences between the technologies

are all captured in the different values for the efficiency parameter θ, so that, without loss

of generality, investment expenditures (= I (·)) can be set equal for all technologies. The

investment cost I (·) is non-negative, decreasing and convex in time:

I (t) > 0, (6.5)

∂I (t)

∂t
< 0, (6.6)
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∂2I (t)

∂t2
> 0. (6.7)

Such a decrease can be motivated by the fact that better technologies become available as

time passes so that the demand for the current technology decreases over time. Another

factor can be learning by doing in the production process of the technology supplier.

Furthermore, we assume, as anywhere else, that the process of technological evolution

(innovation supply) is exogenous to the firms. The arrival process of the new technologies

is a stochastic process. We assume that the associated increases in θ are known before-

hand. In practice this occurs, for example, in the case of micro-chips where the technical

parameters and specifications of future designs are known beforehand, but the arrival date

is uncertain since the appearance of technology depends on research and development and

market factors affecting the introduction of the product (see also Nair (1995)).

At time T the number N (T ) refers to the technology that became last available. To

incorporate the uncertainty in the innovation process we assume that N (T ) is a Poisson

process with rate λ (> 0). The interarrival time τ i (≥ 0) is the time between the invention

times of the (i− 1)-th and i-th technology: τ i = Ti − Ti−1, i ∈ IN. As a result of the

Poisson arrival process the τ i’s are independently and identically distributed according to

an exponential distribution with parameter λ.

6.3 Timing Game

For simplicity reasons we restrict ourselves to the case where firms can only make one

technology switch. This typically holds for firms whose financial means are limited. We

transform the investment decision problem into a two player timing game. In Appendix

4.A a rigorous treatment of timing games is given. Here we repeat the important features.

In a timing game each player has to decide when to make a single move. The player that

moves first is called the leader and the other is the follower. Since firms are identical there

seems to be no reason why one of these firms should be given the leader role beforehand.

Therefore, we strive at obtaining equilibria where it is not known beforehand which firm

will invest first. In the general setting of a timing game the payoff of a player depends

on its own date of moving and the other player’s date of moving. In case one player has

already moved, the problem for the other player is a one person decision problem. A

player can react instantaneously to its opponent’s action.

Four payoff curves are important in our timing game. Each payoff curve is a function

of time t (≥ 0), which is the time passed since the last technology has become available for

the firms: t (T ) = T − TN(T ). In the remainder of this chapter we write t instead of t (T )

whenever there is no confusion possible. Let the leader move at time t. Then the value

of the follower, which is the outcome of the one person’s decision problem, is denoted by
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F (t) . The value of the leader is given by L (t) , in which the optimal action of the follower

is included. In case of a simultaneous move at time t the value of a player is denoted by

M (t) . Since simultaneous moving is always possible for the follower, it holds that

F (t) ≥ M (t) , for t ≥ 0. (6.8)

The fourth curve is called the waiting curve, which is a new concept within the area of

timing games. Here, the waiting curve is used to transform the investment decision prob-

lem under consideration into a timing game. The waiting curve represents the expected

payoff of a firm if both firms do not move (at least) until the next arrival of a new tech-

nology and act optimally afterwards. This implies that we need to know the equilibrium

outcome of the game that starts after the arrival of a new technology. As a result we have

to consider a finite number of new technologies. Due to discounting this assumption is

not too strict. In order to find the right number of new technologies to take into account

in the model, the following algorithm, which is a weak forecast horizon procedure, can be

used:

Step 0 Solve the model with one technology.

Step 1 Add one extra technology to the model and solve the model.

Step 2 If the results of the last two models are very different go to step 1, otherwise the

right number of technologies has been found.

A model with n new technologies is solved as follows. Start with solving the timing

game that starts after the arrival of the n-th technology. This game is a classical timing

game, since it contains no waiting curve. The equilibrium outcomes of this game are

used to construct the waiting curve for the game that starts at some time during the

interval [Tn−1, Tn) . Solve this game and use the equilibrium outcomes to construct the

waiting curve for the game that starts somewhere at the time interval [Tn−2, Tn−1) . This

procedure goes on until the game that starts at time T1 = 0 is solved.

This section describes the construction of the four payoff curves. In Subsection 6.3.1

we derive the value of a firm given each firm’s strategy. Using this value function, we

determine the leader, follower and joint-moving curves in Subsection 6.3.2. In Subsection

6.3.3 possible equilibria of timing games without waiting curve are considered. The waiting

curve is constructed in Subsection 6.3.4. In Subsection 6.3.5 we explain the implication of

adding the waiting curve for the possible equilibria of timing games. Finally, in Subsection

6.3.6 the algorithm for solving the investment decision problem with a finite number of

new technologies is summarized.
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6.3.1 Value Function

In the investment decision problem firms not only have to decide when to adopt a tech-

nology, but also which technology to adopt. Define V (S, i, T, j) as the expected value

at time T of a firm that adopts technology i at time S ≥ T itself, while its rival adopts

technology j at time T. Of course, it must be true that T ≥ Tj and S ≥ Ti. The expected

value of the firm at time T equals

V (S, i, T, j) = E

 S−T∫
u=0

π (θ0, θj) exp (−ru) du (6.9)

+

∞∫
u=S−T

π (θi, θj) exp (−ru) du− I (S − Ti) exp (−r (S − T ))

 .
The expected value of the firm’s opponent at time T is equal to

V (T, j, S, i) = E

 S−T∫
u=0

π (θj, θ0) exp (−ru) du (6.10)

+

∞∫
u=S−T

π (θj, θi) exp (−ru) du− I (T − Tj)

 .
Rewriting (6.9) gives

V (S, i, T, j) =
π (θ0, θj)

r
(1− E [exp (−r (S − T ))]) (6.11)

+
π (θi, θj)

r
E [exp (−r (S − T ))]− I (S − Ti)E [exp (−r (S − T ))] .

Equation (6.10) can be written as follows

V (T, j, S, i) =
π (θj, θ0)

r
(1− E [exp (−r (S − T ))]) (6.12)

+
π (θj, θi)

r
E [exp (−r (S − T ))]− I (T − Tj) .

For determining the value functions (6.11) and (6.12) there is one thing left to derive: an

expression for E [exp (−r (S − T ))] . Recall that N (T ) is the index of the most efficient

technology that is available at time T . We distinguish two cases: in the first case the

second investor wants to invest in an already existing technology, while in the second case

this firm plans to invest in a technology that does not exist yet. In the first case, it holds

that N (T ) ≥ i, and therefore the value of S is known for sure at time T :

E [exp (−r (S − T ))|N (T ) ≥ i] = exp (−r (S − T )) . (6.13)



122 6.3. Timing Game

Now consider the second case where N (T ) < i, then

E [exp (−r (S − T ))|N (T ) < i] = exp (−r (S − Ti))E [exp (−r (Ti − T ))|N (T ) < i] .

(6.14)

Lemma 2.3 states that

E [exp (−r (Ti − T ))|N (T ) < i] =

(
λ

r + λ

)i−N(T )

. (6.15)

With the help of equation (6.15) we derive that

E [exp (−r (S − T ))] =

{
exp (−r (S − T )) if S < TN(T )+1,

exp (−r (S − Ti))
(

λ
r+λ

)i−N(T )
if S ≥ TN(T )+1.

(6.16)

6.3.2 Leader, Follower and Joint-Moving Curves

At each point of time T the leader can choose to immediately invest in a technology j

from the finite set {1, 2, . . . , N (T )} . Given an adoption strategy of the leader (T, j) the

optimal reaction of the follower can be calculated in two steps.

In the first step, derive for each technology i the optimal adoption date S∗
i for the

follower. Since the follower’s payoff depends on the adoption strategy the other firm uses,

S∗
i is a function of T and j. Therefore,

S∗
i (T, j) = arg max

u≥max(Ti,T )
V (u, i, T, j) . (6.17)

In order to be more specific about S∗
i (T, j) consider the following scenario: the leader has

already adopted technology j and technology i has just been invented. The follower can

either adopt technology i right away or delay adoption. Let wF
i (j) denote the optimal

waiting time for the follower, that is the length of the time period between invention and

optimal adoption of technology i. Solving the maximization problem (6.17) yields that

wF
i (j) = 0 if

π (θi, θj)− π (θ0, θj) ≥ rI (0)− ∂I (t)

∂t

∣∣∣∣
t=0

, (6.18)

and that wF
i (j) is implicitly determined by

π (θi, θj)− π (θ0, θj) = rI
(
wF

i (j)
)− ∂I (t)

∂t

∣∣∣∣
t=wF

i (j)

, (6.19)

otherwise. Equation (6.19) states that the marginal costs (the left-hand side) and the

marginal benefits (the right-hand side) are equal at time wF
i (j). The marginal costs are
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equal to the opportunity costs of the investment, rI (t), and the costs resulting from

the fact that the firm invests right away so that it does not take advantage from I

being decreasing over time. If at time Ti the marginal benefits exceed the marginal

costs (cf. equation (6.18)) the firm should adopt immediately so that wF
i (j) = 0. Using

the definition of wF
i (j) and since π (θi, θj) is increasing in θi, we know that there exists

an î (j) such that wF
i (j) = 0 for all i ≥ î (j).

We extend this particular scenario to the general case and conclude that the optimal

adoption time S∗
i (T, j) is equal to

S∗
i (T, j) =

{
T if T ≥ Ti + wF

i (j) ,

Ti + wF
i (j) if T < Ti + wF

i (j) .
(6.20)

In the second step, we use (6.20) to determine the technology i∗ that maximizes the

follower’s payoff, given that the leader invests at time T in technology j:

i∗ (T, j) = argmax
k

V (S∗
k (T, j) , k, T, j) . (6.21)

The leader, on its turn, takes into account the follower’s investment behavior in choosing

at time T the technology j∗ (T ) that results in the largest payoff:

j∗ (T ) = arg max
k∈{1,2,... ,N(T )}

V
(
T, k, S∗

i∗(T,k) (T, k) , i
∗ (T, k)

)
. (6.22)

The process described above results in the following value functions for the timing game

that starts at time Tk ≤ T :

L (t) = L (T − Tk) = (1− exp (−r (T − Tk)))
π (θ0, θ0)

r
(6.23)

+ exp (−r (T − Tk))V
(
T, j∗ (T ) , S∗

i∗(T,j∗(T )) (T, j
∗ (T )) , i∗ (T, j∗ (T ))

)
,

F (t) = F (T − Tk) = (1− exp (−r (T − Tk)))
π (θ0, θ0)

r
(6.24)

+ exp (−r (T − Tk))V
(
S∗
i∗(T,j∗(T )) (T, j

∗ (T )) , i∗ (T, j∗ (T )) , T, j∗ (T )
)
,

M (t) = M (T − Tk) = (1− exp (−r (T − Tk)))
π (θ0, θ0)

r
(6.25)

+ exp (−r (T − Tk))V (T, j∗ (T ) , T, j∗ (T )) .

6.3.3 Equilibria for Timing Games without Waiting Curve

In this subsection possible equilibria for classical timing games, i.e. timing games without

waiting curves, are presented. In our model with n new technologies, the game that starts

after time Tn is a classical timing game.

Classical timing games can be divided in two classes. The first class consists of the so-

called preemption games and the elements of the second class are called attrition games.
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Preemption games are characterized by the fact that there exists a point of time where

there is a first mover advantage:

∃t ∈ [0,∞) such that L (t) > F (t) . (6.26)

In an attrition game the follower’s payoff exceeds the leader’s payoff at all times:

F (t) > L (t) for all t ∈ [0,∞) . (6.27)

In general a (classical) timing game can be split up into countably many subgames,

where each subgame is a preemption game or an attrition game. Due to the definitions of

preemption and attrition games, the split up points will be the points at which the function

L (t)− F (t) changes its sign. The equilibrium of a general timing game is found by first

solving the last subgame, then using the resulting value functions of the equilibrium of

this subgame in the second last subgame and so forth and so on.

Since we analyze identical firms we are especially interested in equilibria with sym-

metric strategies. For identical and rational firms there is no reason why they should act

differently. For a rigorous treatment and a literature overview of classical timing games

we refer to Appendix 4.A.

The equilibrium outcome of the timing game that starts after time Tn depends on

the interarrival time τn. We denote the (expected) equilibrium outcome of the game that

starts after time Tn by Ωn (τn). If the game has more than one equilibrium, we use the

most reasonable equilibrium in the calculations, being the equilibrium under which the

player’s payoffs are maximal (the Pareto optimal equilibrium, cf. Appendix 4.A).

6.3.4 Waiting Curve

In general, the equilibrium outcome of the game that starts in the interval [Tk, Tk+1) is

denoted by Ωk (τ k), with k ∈ {0, . . . , n− 1} . Using this notation, the waiting curve for a

game that starts in the interval [Tk−1, Tk) equals

W (t) = W (T − Tk−1) = (1− exp (−r (T − Tk−1)))
π (θ0, θ0)

r
+ exp (−r (T − Tk−1))

×
∞∫

τk=0

 τk∫
u=0

π (θ0, θ0) exp (−ru) du+ exp (−rτ k) Ωk (τ k)

λ exp (−λτ k) dτ k. (6.28)

The first part represents the profits made by the firm on the time interval [Tk−1, T ] . The

second part resembles the expected payoff of the firm from time T onwards conditioned

on the interarrival time τ k.

The waiting curve represents the option to invest in some future technology that is

not invented yet. As such it is not equal to the option value of waiting since it does not
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take into account the increased profitability over time (due to the decreasing investment

costs) of the already existing technologies.

6.3.5 Equilibria for Timing Games with Waiting Curve

The equilibria of a timing game with waiting curve are found in two steps. In the first

step the timing game is split up into subgames. This is done as is described in Subsection

6.3.3, i.e. the split up points are the points at which the function L (t) − F (t) changes

its sign. In the second step the subgames are solved. The last subgame is solved as first,

then the second last subgame, and so forth and so on.

The first class of subgames with waiting curve are those in which the leader curve

exceeds the waiting curve for all points in time. The implication is that for the leader

investing dominates waiting. Consequently, the equilibria of such a subgame are given by

the equilibria of the corresponding subgame without waiting curve.

In a subgame for which the waiting curve exceeds the leader curve, i.e. W (t) > L (t)

for all t ≥ 0, none of the firms is going to invest as first. This for the reason that waiting

gives them a higher expected value. Therefore, the equilibrium outcome for both firms is

waiting.

If in a subgame the leader curve exceeds the waiting curve for some but not all points

in time, then for at least one firm investing is better than waiting for those points in time.

There are two cases: (i) the subgame without the waiting curve is a preemption game,

and (ii) the subgame without the waiting curve is an attrition game.

In the first case (preemption game) the equilibria of the subgame with waiting curve

are given by the equilibria of the subgame without waiting curve. This is a direct result of

the fact that the equilibria in the subgame without waiting curve are Nash equilibria, i.e.

one firm can not improve his expected value by deviating from the equilibrium strategy.

Contrary, in the second case (attrition game) the firm that is leader can increase its

profit by waiting with investing at the points in time where the waiting curve exceeds

the leader curve. The equilibrium strategies for the part of the subgame where the leader

curve exceeds the waiting curve are given by the equilibrium strategies of the subgame

without waiting curve. At the points in time of the other part of the subgame none of

the firms will invest.

6.3.6 Solution Procedure

In this subsection the solution procedure is summarized. In the first step of the solution

procedure the classical timing game that starts at time Tn is solved. This gives the equi-

librium outcome function Ωn (τn) . Using this equilibrium outcome function we construct
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the waiting curve (6.28) and solve the timing game that starts at a point in time on the

interval [Tn−1, Tn) . The resulting outcomes are incorporated in the function Ωn−1 (τn−1)

which is again used to construct the waiting curve for the timing game that starts some-

where during the time interval [Tn−2, Tn−1). This process is repeated until the game that

starts at T1 is solved.

Combining the equilibrium strategies of each step gives the optimal investment strat-

egy of the firm. The ex-ante probabilities of each equilibrium outcome can be derived

using the calculations of each step. After each realization of an interarrival time these

probabilities must be updated.

6.4 Information Technology Investment Problem

In this section we apply the algorithm of the previous section to a specific information

technology investment problem. Information technology products are heavily dependent

on micro-chips. The memory and arithmetic power of micro-chips develop in an exponen-

tial way over time. This was firstly recognized by Gordon Moore, one of the Intel-founders,

in 1964, who found out that the amount of information on a piece of silicium doubles every

year. This statement is called Moore’s law. Nowadays, Moore’s law still applies although

the doubling time has risen to two to three years. In our calculations it is assumed that on

average every three years a new generation of chips arrives: λ = 1
3
. A new generation of

chips is a generation that is twice as efficient as the preceding generation. After applying

the algorithm stated in the beginning of Section 6.3, it turned out that we need to take

four generations of chips into account. When we normalize the technology parameter of

the current technology to one, this gives rise to the following scheme,

θ0 = 1, (6.29)

θi+1 = 2θi, i ∈ {0, 1, 2, 3} , (6.30)

so that

θi = 2i, i ∈ {0, 1, 2, 3, 4} . (6.31)

Due to the rapid innovation process, prices of information technology products go down

quickly. We assume that

I (t) = I0 exp (−αt) , (6.32)

where

I0 = 50, (6.33)

α = 1. (6.34)
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The strange thing with micro-electronics is that their fast efficiency improvement does

not impress consumers. As an illustration, consider a telephone in which a certain amount

of telephone numbers can be stored. A new generation of chips doubles this amount, but

most likely this will not be a reason for customers to sell their old telephone and buy a new

one. Another example is that a new generation of personal computers will not double the

research output of a scientist. Therefore, a manager of Philips, Claassen (see Rozendaal

(1998)), has argued that utility is a logarithmic function of technology, in the sense that

utility increases with one unit in case technology power becomes ten times as large. For

this reason we assume that profit increases with the technology-efficiency parameter in a

logarithmic way with base 10 (cf. (6.31)):

π (θi, θj) =
10 log

(
2θ2

i

)
10 log (2θj)

=
2i+ 1

j + 1
. (6.35)

The discount rate equals r = 0.05. From equations (6.18), (6.19), (6.32), and (6.35) we

derive that

wF
i (j) =

{
1
α
log
(

(r+α)I0(j+1)
2i

)
if i < 1

2
(j + 1) (r + α) I0,

0 else.
(6.36)

In Appendix 6.A the expected equilibrium outcomes for the subgames starting right

at the invention times T4, T3, and T2 are derived. The results are summarized in Tables

6.1-6.3. In the tables the following leader adoption times are used

tP4 = min
(
t
∣∣V (T4 + t, 4, T4 + wF

4 (4) , 4
)
= V
(
T4 + wF

4 (4) , 4, T4 + t, 4
))

= 0.734579,

tL34 (τ 4) = min
(
t
∣∣V (T4 + t, 3, T4 + wF

4 (3) , 4
)
= V
(
T4 + t, 4, T4 + wF

4 (4) , 4
))

,

SL
34 (τ 4) = arg max

t∈[0,tL34(τ4)]
V
(
T4 + t, 3, T4 + wF

4 (3) , 4
)
,

tP34 (τ 4) = min
(
t
∣∣V (T4 + t, 3, T4 + wF

4 (3) , 4
)
= V
(
T4 + wF

4 (3) , 4, T4 + t, 3
))

,

tP34 = min
(
t
∣∣V (T3 + t, 3, T4 + wF

4 (3) , 4
)
= V
(
T4 + wF

4 (3) , 4, T3 + t, 3
))

= 0.727495,

tL23 (τ 3) = min
(
t
∣∣V (T3 + t, 2, T4 + wF

4 (2) , 4
)
= V
(
T3 + t, 3, T4 + wF

4 (3) , 4
))

,

SL
24 (τ 3) = arg max

t∈[0,tL24(τ3)]
V
(
T3 + t, 2, T4 + wF

4 (2) , 4
)
,

tP24 = min
(
t
∣∣V (T2 + t, 2, T4 + wF

4 (2) , 4
)
= V
(
T4 + wF

4 (2) , 4, T2 + t, 2
))

= 1.81706.

In Tables 6.2 and 6.3 the equilibrium outcomes are conditional on the next technology

not arriving too early. That is the next technology does not arrive before the time at which
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τ 4 region Type Equilibrium

Leader Follower

Technology Time Technology Time

[0, 0.800591) P 4 T4 + tP4 4 T4 + wF
4 (4)

[0.800591, 1.17938) A 3 T4 + tL34 (τ 4) 4 T4 + wF
4 (3)

[1.17938, 1.87931] A 3 T4 + SL
34 (τ 4) 4 T4 + wF

4 (3)

(1.87931, 1.89322) P 3 T4 + tP34 (τ 4) 4 T4 + wF
4 (3)

[1.89322,∞) P 3 T4 4 T4 + wF
4 (3)

Table 6.1: Equilibria and type of subgames starting at time T4 as function of τ4. Type ”P” is preemption
game and type ”A” is attrition game.

τ 3 region Type Equilibrium

Leader Follower

Technology Time Technology Time

[0, 1.24843) P 3 T3 + tP34 4 T4 + wF
4 (3)

[1.24843, 2.94586) A 2 T3 + tL23 (τ 3) 4 T4 + wF
4 (2)

[2.94586, 3.95758) A 2 T3 + SL
24 (τ 3) 4 T4 + wF

4 (2)

[3.95758,∞) A 2 T3 4 T4 + wF
4 (2)

Table 6.2: Equilibria and type of subgames starting at time T3 as function of τ3. Type ”P” is preemption
game and type ”A” is attrition game.

τ 2 region Type Equilibrium

Leader Follower

Technology Time Technology Time

[0,∞) P 2 T2 + tP24 4 T4 + wF
4 (2)

Table 6.3: Equilibria and type of subgames starting at time T2 as function of τ2. Type ”P” is preemption
game.
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the leader changes technologies according to the table. In Appendix 6.A the equilibrium

outcome functions Ωi (τ i) , i = 2, 3, 4, are presented. Let i ∈ {2, 3, 4} . In the game that

starts in the interval [Ti−1, Ti) the equilibrium strategy of a firm depends on τ i. Note

that the higher τ i the more attractive the technologies j ∈ {1, . . . , i− 1} are, due to the

decrease of the investment costs of these technologies during the interval [Tj , Ti).

If technology 4 arrives shortly after technology 3 (see first line of Table 6.1), technology

4 dominates technology 3 and both firms will adopt technology 4. If it takes a little longer

before technology 4 becomes available, technology 3 is the most attractive technology for

the leader to adopt. In the second and third τ 4 region the follower’s value is higher than

the leader’s value. To explain this second mover advantage, consider the second line of

Table 6.1. The value of the gain of market share of the follower during the time interval[
T4 + wF

4 (3) ,∞) outweighs the value of the gain of market share of the leader during

the interval
[
T4 + tL34 (τ 4) , T4 + wF

4 (3)
)
. A late arrival of technology 4 makes technology

3 attractive enough for direct adoption, see the last line of Table 6.1. Tables 6.2 and 6.3

should be interpreted in the same way.

We now analyze the game at the moment where technologies 2, 3, and 4 have not been

invented yet, in a more elaborate way. Using the outcome function Ω2 (τ 2) we construct

the waiting curve for the game that starts at time T1 (cf. (6.28)), which is the invention

time of the first technology:

W (t) =
π (θ0, θ0)

r
(1− exp (−rt)) (6.37)

+

∞∫
τ2=0

 τ2∫
u=0

π (θ0, θ0) exp (−ru) du+ exp (−rτ 2) Ω2 (τ 2)

λ exp (−λτ 2) dτ 2.

The leader, follower and joint-moving curves are derived with the equations presented in

Section 6.3. In Figure 6.1 the four curves are plotted.

From Figure 6.1 the following unique ordering of the curves is derived: F (t) > W (t) >

L (t) > M (t) for all t ∈ [T1, T2) . This implies that each firm likes the other to invest as

first and does not want to invest as first itself. Thus waiting is the optimal strategy for

the firms in the game that starts in the interval [T1, T2) .

Then at time T2 the game starts where technologies 1 and 2 are present, but the

remaining technologies 3 and 4 have not been invented yet. From Table 6.3 we derive

that one firm will adopt technology 2 at time T2 + tP24 and the other firm technology 4 if

the third technology does not arrive before time T2 + tP24. With probability

Pr
(
τ 3 ≥ tP24

)
= exp

(−λtP24

)
= 0.54570, (6.38)

this is the case.
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Figure 6.1: Leader, follower, joint moving and waiting curve for the game that starts at time T1 = 0.

With probability

Pr
(
τ 3 < tP24

)
= 1− exp

(−λtP24

)
= 0.45430, (6.39)

technology 3 arrives before time T2 + tP24. Now, there are two cases. In the first case, τ 3

is smaller than the boundary 1.24843 (see Table 6.2), which occurs with probability

Pr (τ 3 < 1.24843) = 1− exp (−1.24843λ) = 0.34041, (6.40)

and in the second case, 1.24843 < τ 3 < tP24, which occurs with probability

Pr
(
1.24843 ≤ τ 3 < tP24

)
= exp (−1.24843λ)− exp

(−λtP24

)
= 0.11389. (6.41)

Table 6.2 states that, in the first case, the outcome will be adoption of technology 3

at time T3 + tP34 if technology 4 does not arrive before that time. This outcome occurs

with the following probability:

Pr
(
τ 3 < tP24 and τ 4 ≥ tP34

)
= Pr

(
τ 3 < tP24

)
Pr
(
τ 4 ≥ tP34

)
=
(
1− exp

(−λtP24

))
exp
(−λtP34

)
= 0.26711. (6.42)
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Technology 4 arrives before time T3 + tP34, while τ 4 < tP34, with probability

Pr
(
τ 3 < tP24 and τ 4 < tP34

)
= Pr

(
τ 3 < tP24

)
Pr
(
τ 4 < tP34

)
=
(
1− exp

(−λtP24

)) (
1− exp

(−λtP34

))
= 0.073303. (6.43)

In this case the outcome will be a preemption equilibrium in which one firm adopts

technology 4 at time T4 + tP4 and the other firm technology 4 at time T4 +wF
4 (4) . Here it

is important to note that tP34 = 0.727495 is smaller than the first τ 4 boundary 0.800591.

Hence, with probability one the outcomes listed on the lines 2-5 of Table 6.1 will not

occur here.

The second case is a little more complicated. The outcome exhibits adoption of tech-

nology 3 at time T3 + tL23 (τ 3) by one firm, while the other firm adopts technology 4, if

technology 4 arrives after time T3 + tL23 (τ 3) , which happens with probability:

Pr
(
1.24843 ≤ τ 3 < tP24 and τ 4 ≥ tL23 (τ 3)

)
=

tP24∫
τ3=1.24843

Pr
(
τ 4 ≥ tL23 (τ 3)

)
λ exp (−λτ 3) dτ 3

=

tP24∫
τ3=1.24843

exp
(−λtL23 (τ 3)

)
λ exp (−λτ 3) dτ 3

= 0.086802. (6.44)

Otherwise the outcome is of the preemption type (first line of Table 6.1) if τ 4 < 0.800591

or of the attrition type (second line of Table 6.1) if τ 4 ≥ 0.800591. The probability that

the preemption equilibrium occurs is equal to

Pr
(
1.24843 ≤ τ 3 < tP24, τ 4 < tL23 (τ 3) , and τ 4 < 0.800591

)
=

tP24∫
τ3=1.24843

Pr
(
τ 4 < min

(
tL23 (τ 3) , 0.800591

))
λ exp (−λτ 3) dτ 3

= 0.026273. (6.45)
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With probability

Pr
(
1.24843 ≤ τ 3 < tP24, τ 4 < tL23 (τ 3) , and τ 4 ≥ 0.800591

)
=

tP24∫
τ3=1.24843

Pr
(
0.800591 ≤ τ 4 < tL23 (τ 3)

)
λ exp (−λτ 3) dτ 3

=

tP24∫
τ3=1.24843

(
exp (−0.800591λ)− exp

(−λtL23 (τ 3)
))

1{0.800591≤tL34(τ3)}λ exp (−λτ 3) dτ 3

= 0.00081337, (6.46)

the attrition game will happen. Here the leader adopts technology 3 and the follower

invests in technology 4. So, on the longer term the follower produces with the more

efficient technology which here leads to a higher expected payoff.

The analysis above implies that only the first two lines of Tables 6.1 and 6.2 matter.

This for the reason that one of the firms adopts an existing technology, if a new technology

arrives too late.

In Table 6.4 all possible outcomes and the probabilities are summarized. We conclude

that the ex-ante probability of a preemption equilibrium with rent equalization (see Ap-

pendix 6.A) equals 0.91238. The most likely outcome (probability 0.54570) is that one

firm adopts technology 2 and the other firm technology 4. With probability 0.087615 there

is a second mover advantage in the equilibrium, i.e. the firm that invests as first earns

less than the firm that invests as second. The market share gain by the second mover

offsets the temporary market share gain of the first mover. With probability 0.90042 the

leader adopts another technology than the follower. The follower is expected to adopt

technology 4 in all equilibria. Joint adoption does not occur as an equilibrium outcome.

Probability Type Equilibrium

Leader Follower

Technology Time Technology Time

0.54570 P 2 T2 + tP24 4 T4 + wF
4 (2)

0.26711 P 3 T3 + tP34 4 T4 + wF
4 (3)

0.086802 A 2 T3 + tL23 (τ 3) 4 T4 + wF
4 (2)

0.099576 P 4 T4 + tP4 4 T4 + wF
4 (4)

0.00081337 A 3 T4 + tL34 (τ 4) 4 T4 + wF
4 (3)

Table 6.4: Equilibria and ex-ante probabilities at time T1 = 0. Type ”P” is preemption game and type
”A” is attrition game.

We did not add an extra new technology to the model, because the probability that
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both firms adopt technology 4 is less than 0.10. Hence, with a probability of more than

0.90 at least one firm invests in another technology than the last one. For this reason we

choose not to analyze the game with one technology more.

6.5 Conclusions

We analyzed a framework in which consecutive generations of new technologies arrive over

time, and a firm has to make its optimal technology investment decision. Competition on

the output market is taken into account. As time passes more efficient technologies arrive

according to a stochastic arrival process. The investment cost of a particular technology

drops over time.

Introducing the waiting curve as a new concept, the investment decision problem was

converted into a timing game. The timing game changes every time a new technology

enters the market. We designed an algorithm that can be used to solve this game.

The algorithm is applied to an information technology investment problem with four

new technologies. The most likely outcome exhibits diffusion, one firm adopts technology

2 early and the other technology 4 later on, while the expected payoffs of the first and

second investor are the same. With a probability of more than 90 percent the expected

payoffs of the firms are equal. In the other cases the firm that invests as second performs

better than the firm that invests as first. Thus the temporary gain of market share by

the leader does not make up for the market share gain of the follower.

One possible extension of this model is to relax the assumption that firms are allowed

to make only one technology switch. We believe that this model can be solved in the

same fashion: use the waiting curve concept to convert the game to a timing game with

multiple actions and solve that game following the work by Simon (1987b).

Another interesting extension is to make the number of active firms on the output

market endogenous. If the active firms make positive profits it may be interesting for

a new firm to enter the market. How does the threat of entering change the technology

adoption behavior of the existing firms? Will they try to prevent firms to enter the market

by adopting new technologies sooner?

Appendix

6.A Construction of the Waiting Curve

In this part the waiting curve for the application in Section 6.3 is constructed. To do so,

starting out from each realization the subgames have to be solved. Appendix 4.A provides
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some relevant mathematical prerequisites for the analysis in this appendix.

6.A.1 Games Starting in Fifth Period

The outcome of the subgame that starts at a time after the arrival of the fourth technology

depends on the realization of T4 and thus on the realization of τ 4. It turns out that there

are five different intervals for τ 4 to consider. This implies that there are four critical values

for τ 4, denoted by τ ∗4 (i) , i ∈ {1, 2, 3, 4} . On each of these intervals the configuration of

the figure in which L, F , and M are depicted is the same.

1. τ 4 ∈ [0, τ ∗4 (1)) = [0, 0.800591) .

In Figure 6.2 the three graphs of L (t) , F (t) , and M (t) are plotted for τ 4 = 0.5.
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Figure 6.2: Leader, follower and joint moving curves for the subgame that starts at time T4 if τ4 = 0.5.

Here technology 4 is invented just after the invention of technology 3. Therefore,

technology 4 dominates technology 3 very quickly. At time tL34 (τ 4) the leader is indifferent

between adopting technology 3 and technology 4:

V
(
T4 + tL34 (τ 4) , 3, T4 + wF

4 (3) , 4
)
= V
(
T4 + tL34 (τ 4) , 4, T4 + wF

4 (4) , 4
)
,

where wF
4 (3) = 3.26767 and wF

4 (4) = 3.49080. Note that the follower is not indifferent,

because the follower curve jumps down at time tL34 (τ 4) . There are two equilibria with

symmetric strategies. Define the preemption time tP4 as

tP4 = min (t|L (t) = F (t)) = 0.734579.
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For t ∈ (tP4 , wF
4 (4)
)
it holds that L (t) > F (t) > M (t). Therefore, the game that starts

at time tP4 is a preemption game.

At t > tP4 it is in the interest of each firm to adopt technology 4 right away (since

L (t) > F (t)). But if a firm knows that the other will adopt at this particular time, it

wants to preempt at t − ε. Reasoning backwards, at any time beyond tP4 , firms want to

preempt to avoid being preempted later on. As shown in Appendix 4.A this leads to

the following equilibrium: with probability one-half a firm becomes leader and adopts

technology 4 at time T4 + tP4 . The other firm is follower and adopts technology 4 at time

T4 +wF
4 (4). With probability one-half the roles are reversed. We conclude that the game

ends for sure at time T4 + tP4 . The probability of a mistake, i.e. both firms adopting

technology 4 at time T4 + tP4 leaving them with a low payoff M
(
tP4
)
< F
(
tP4
)
, is equal

to zero (see Appendix 4.A). Both firms’ values are equal, i.e. there is rent-equalization.

The firm’s value (discounted to time T4) equals
1
2
F
(
tP4
)
+ 1

2
L
(
tP4
)
= 30.1722.

At t < tP4 , it holds that F (t) > L (t) and the leader curve is increasing. Therefore,

both firms wait until tP4 where the above described preemption game starts.

The boundary τ ∗4 (1) is derived by solving the equation tL34 (τ
∗
4 (1)) = tP4 . Thus if

τ 4 = τ ∗4 (1) the leader is indifferent between the two strategies exactly at the preemption

time tP4 .

2. τ 4 ∈ [τ ∗4 (1) , τ
∗
4 (2)) = [0.800591, 1.17938) .

The leader, follower and joint-moving curves are plotted in Figure 6.3 for τ 4 = 1.
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Figure 6.3: Leader, follower and joint moving curves for the subgame that starts at time T4 if τ4 = 1.
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In this τ 4-region there is no equilibrium with symmetric strategies. Here, there are

four equilibria for the subgame. At time tL34 (τ 4) the leader is indifferent between adopting

technology 3 and adopting technology 4:

V
(
T4 + tL34 (τ 4) , 3, T4 + wF

4 (3) , 4
)
= V
(
T4 + tL34 (τ 4) , 4, T4 + wF

4 (4) , 4
)
.

The subgame that starts at time t > tL34 (τ 4) is a preemption game and in equilibrium

the expected value for both firms is V
(
T4 + wF

4 (4) , 4, T4 + t, 4
)
, i.e. the follower value

if the leader adopts technology 4 at time T4 + t and the follower adopts technology 4 at

time T4 + wF
4 (4) . This subgame ends at time T4 + t with probability one.

Adopting before time T4 + tL34 (τ 4) is not optimal for a firm, because the follower value

is larger than the leader value and the leader value is increasing.

The story above implies that the game will end at time T4 + tL34 (τ 4) with probability

one. The leader has two possible strategies: adopt technology 3 and adopt technology 4.

The follower’s optimal reply is always to adopt technology 4. Thus there are two types

of equilibria. In the first type the leader adopts technology 3 and the follower technology

4 and in the second type the leader and the follower both adopt technology 4. Right at

T4 + tL34 (τ 4) the leader’s value is equal in both equilibria, but the follower’s value is larger

in the equilibrium where the leader adopts technology 3. In other words, the equilibrium

in which the leader adopts technology 3 Pareto dominates the other equilibrium and that

is why we use this equilibrium in further calculations. We assume that nature assigns

to a firm the role of leader and that both firms have equal probability of being assigned

leader.

The expected value of each firm equals

1

2

(
V
(
T4 + tL34 (τ 4) , 3, T4 + wF

4 (3) , 4
)
+ V
(
T4 + wF

4 (3) , 4, T4 + tL34 (τ 4) , 3
))

.

3. τ 4 ∈ [τ ∗4 (2) , τ
∗
4 (3)] = [1.17938, 1.87931] .

On this interval the leader curve is decreasing on the interval
(
SL

34 (τ 4) , t
L
34 (τ 4)

)
, where

SL
34 (τ 4) = arg max

t∈[0,tL34(τ4)]
V
(
T4 + t, 3, T4 + wF

4 (3) , 4
)
.

The boundary τ ∗4 (2) is the solution of the equation SL
34 (τ

∗
4 (2)) = tL34 (τ

∗
4 (2)) . In Figure

6.4 the three curves are plotted for τ 4 = 1.5.

Since the follower curve lies above the leader curve, we have an attrition game on this

interval, because for all t ∈ [0, tL34 (τ 4)
]
:

V
(
T4 + t, 3, T4 + wF

4 (3) , 4
)
> V
(
T4 + wF

4 (4) , 4, T4 + tL34 (τ 4) , 4
)
,
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Figure 6.4: Leader, follower and joint moving curves for the subgame that starts at time T4 if τ4 = 1.5.

there does not exist an equilibrium with symmetric strategies for the game (cf. Appendix

4.A.3). There are two equilibria for this game. In each equilibrium, the leader adopts

technology 3 at time T4+SL
34 (τ 4) and the follower adopts technology 4 at time T4+wF

4 (3) .

As before we assume that nature assigns a firm to be leader or follower. Both firms have

equal probability of being assigned leader. Thus the expected value of a firm equals

1

2

(
V
(
T4 + SL

34 (τ 4) , 3, T4 + wF
4 (3) , 4

)
+ V
(
T4 + wF

4 (3) , 4, T4 + SL
34 (τ 4) , 3

))
.

The subgames that start at time t > tL34 (τ 4) have not changed.

4. τ 4 ∈ (τ ∗4 (3) , τ
∗
4 (4)) = (1.87931, 1.89322) .

In these subgames the value of the leader exceeds the value of the follower during a part

of the interval
(
0, tL34 (τ 4)

)
, see Figure 6.5.

These subgames are preemption games. There are two equilibria with symmetric

strategies. With probability one-half a firm becomes leader and adopts technology 3 at

time T4 + tP34 (τ 4) , where t
P
34 (τ 4) is defined by

tP34 (τ 4) = min
(
t
∣∣V (T4 + t, 3, T4 + wF

4 (3) , 4
)
= V
(
T4 + wF

4 (3) , 4, T4 + t, 3
))

.

The other firm is follower and adopts technology 4 at time T4 + wF
4 (3) , and with prob-

ability one-half the roles are reversed. According to Appendix 4.A, due to rent equaliza-

tion, there is zero probability of mistake, i.e. both firms adopting technology 3 at time
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Figure 6.5: Leader, follower and joint moving curves for the subgame that starts at time T4 if τ4 = 1.88.

T4 + tP34 (τ 4) . Both firm’s values are equal so that there is rent-equalization. The firm’s

value (discounted to time T4) equals

V
(
T4 + tP34 (τ 4) , 3, T4 + wF

4 (3) , 4
)
.

The boundary τ ∗4 (3) is defined as the smallest τ 4 for which there exists an tP34 (τ 4) .

5. τ 4 ∈ [τ ∗4 (4) ,∞) = [1.89322,∞) .

The boundary τ ∗4 (4) is defined as the smallest τ 4 for which the preemption time tP34 (τ 4)

equals 0. Thus, in this region the games end at time T4 with probability one. The leader’s

value at time T4 exceeds the follower’s value at time T4 and that is why there is a positive

probability of a mistake, see Figure 6.6.

Define (see Appendix 4.A)

α (t |τ 4 ) =
V
(
T4 + t, 3, T4 + wF

4 (3) , 4
)− V

(
T4 + wF

4 (3) , 4, T4 + t, 3
)

V (T4 + t, 3, T4 + wF
4 (3) , 4)− V (T4 + t, 3, T4 + t, 3)

.

The probability of a firm to become leader (adopt technology 3 at time T4) or to become

follower (adopt technology 4 at time T4 + wF
4 (3)) equals

1− α (0 |τ 4 )

2− α (0 |τ 4 )
,

and the probability of a mistake (both firms adopting technology 3 at time T4) equals

α (0 |τ 4 )

2− α (0 |τ 4 )
.
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Figure 6.6: Leader, follower and joint moving curves for the subgame that starts at time T4 if τ4 = 2.

Using these probabilities, it is not hard to derive that the expected value of the firm equals

V
(
T4 + wF

4 (3) , 4, T4, 3
)
.

Summary

The expected payoff Ω4 (τ 4) of the game equals

V
(
T4 + wF

4 (4) , 4, T4 + tP4 , 4
)
, (6.47)

if τ 4 ∈ [0, τ ∗4 (1)) ,

1

2

(
V
(
T4 + tL34 (τ 4) , 3, T4 + wF

4 (3) , 4
)
+ V
(
T4 + wF

4 (3) , 4, T4 + tL34 (τ 4) , 3
))

, (6.48)

if τ 4 ∈ [τ ∗4 (1) , τ
∗
4 (2)) ,

1

2

(
V
(
T4 + SL

34 (τ 4) , 3, T4 + wF
4 (3) , 4

)
+ V
(
T4 + wF

4 (3) , 4, T4 + SL
34 (τ 4) , 3

))
, (6.49)

if τ 4 ∈ [τ ∗4 (2) , τ
∗
4 (3)] ,

V
(
T4 + tP34 (τ 4) , 3, T4 + wF

4 (3) , 4
)
, (6.50)

if τ 4 ∈ (τ ∗4 (3) , τ
∗
4 (4)) , and

V
(
T4 + wF

4 (3) , 4, T4, 3
)
, (6.51)

if τ 4 ∈ [τ ∗4 (4) ,∞) .



140 6.A. Construction of the Waiting Curve

6.A.2 Game Starting in Fourth Period

Using the expressions (6.47)-(6.51) for Ω4 (τ 4) we derive the waiting curve for the subgames

starting at some time t ∈ [T3, T4):

W (t) =
π (θ0, θ0)

r
(1− exp (−rt)) + exp (−rt)

×
∞∫

u3=0

 u3∫
v3=0

π (θ0, θ0) exp (−rv3) dv3 + exp (−ru3) Ω4 (u3)

λ exp (−λu3) du3.

The equilibria in this subgame depend on τ 3. There are four different τ 3 intervals to

consider. Thus there are three critical values for τ 3: τ
∗
3 (i) , i ∈ {1, 2, 3} . For the moment

we derive the equilibria in the case that technology 4 has not arrived yet.

1. τ 3 ∈ [0, τ ∗3 (1)) = [0, 1.24843) .

In Figure 6.7 the leader, follower, joint moving and waiting curves are plotted for τ 3 = 1.

tF34 (= 3.24608) is defined as the point in time at which the follower is indifferent between

adopting technology 4 at time T4 +wF
4 (3) and adopting technology 3 at time T3 +wF

3 (3)

given that the leader adopted technology 3 and that technology 4 has not arrived yet.
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Figure 6.7: Leader, follower, joint moving and waiting curve for the subgame that starts at time T3 if
τ3 = 1.

It turns out that waiting is not an option, because the leader curve exceeds the waiting

curve for some points in time and the corresponding timing game without waiting curve
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is a preemption game. As usual there are two equilibria with symmetric strategies. With

probability one-half a firm becomes leader and adopts technology 3 at time T3+tP34, where

tP34 = 0.727495. The other firm is follower and is expected to adopt technology 4 at time

T4+wF
4 (3) , and with probability one-half the roles are reversed. There is zero probability

of mistake, i.e. both firms adopting technology 3 at time T3 + tP34. Both firm’s values are

equal so that there is rent-equalization. The firm’s value (discounted to time T3) equals

32.6639.

If τ 3 = τ ∗3 (1) = 1.24843 it holds that tL23 (τ 3) = tP34.

2. τ 3 ∈ [τ ∗3 (1) , τ
∗
3 (2)) = [1.24843, 2.94586) .

In this region there are two types of equilibria, but none of them is supported by symmetric

strategies. In Figure 6.8 the four curves are plotted for τ 3 = 2.
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Figure 6.8: Leader, follower, joint moving and waiting curve for the subgame that starts at time T3 if
τ3 = 2.

We use the following type in further calculations. The leader adopts technology 2 at

time T3 + tL23 (τ 3) and the follower is expected to wait for technology 4 and adopt it at

time T4 + wF
4 (2) , where wF

4 (2) = 2.97998. Nature assigns the roles to the firms. The

expected value of the firms is equal to

1

2

(
V
(
T3 + tL23 (τ 3) , 2, T4 + wF

4 (2) , 4
)
+ V
(
T4 + wF

4 (2) , 4, T3 + tL23 (τ 3) , 2
))

.

The second boundary, τ ∗3 (2) = 2.94586, is derived by solving the following equation

tL23 (τ 3) = SL
24 (τ 3) ,
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where

SL
24 (τ 3) = arg max

t∈[0,tL23(τ3)]
V
(
T3 + t, 2, T4 + wF

4 (2) , 4
)
.

3. τ 3 ∈ [τ ∗3 (2) , τ
∗
3 (3)) = [2.94586, 3.95758) .

Again no equilibrium with symmetric strategies in this region exists, see Figure 6.9 for a

plot of the curves in this region.
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Figure 6.9: Leader, follower, joint moving and waiting curve for the subgame that starts at time T3 if
τ3 = 3.5.

In equilibrium the leader adopts technology 2 at time T3 +SL
24 (τ 3) and the follower is

expected to adopt technology 4 at time T4 + wF
4 (2) . As before the roles are assigned by

nature. The firm’s expected value equals

1

2

(
V
(
T3 + SL

24 (τ 3) , 2, T4 + wF
4 (2) , 4

)
+ V
(
T4 + wF

4 (2) , 4, T3 + SL
24 (τ 3) , 2

))
.

The critical value τ ∗3 (3) (= 3.95758) is defined by

τ ∗3 (3) = min
(
τ 3|SL

24 (τ 3) = 0
)
.

4. τ 3 ∈ [τ ∗3 (3) ,∞) = [3.95758,∞) .

In Figure 6.10 the leader, follower, joint moving and waiting curves are plotted for τ 3 = 4.
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Figure 6.10: Leader, follower, joint moving and waiting curve for the subgame that starts at time T3 if
τ3 = 4.

The leader adopts technology 2 at time T3 and the follower is expected to adopt

technology 4 at time T4 +wF
4 (2) in equilibrium. Roles are assigned by nature. Expected

firm values are given by

1

2

(
V
(
T3, 2, T4 + wF

4 (2) , 4
)
+ V
(
T4 + wF

4 (2) , 4, T3, 2
))

.

Summary

The expected payoff of the game Ω3 (τ 3) equals

tP34∫
τ4=0

 τ4∫
v=0

π (θ0, θ0) exp (−rv) dv + exp (−rτ 4) Ω4 (τ 4)λ exp (−λτ 4)

 dτ 4

+

∞∫
τ4=tP34

V
(
T4 + wF

4 (3) , 4, T3 + tP34, 3
)
λ exp (−λτ 4) dτ 4, (6.52)
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if τ 3 ∈ [0, τ ∗3 (1)). If τ 3 ∈ [τ ∗3 (1) , τ
∗
3 (2)) , Ω3 (τ 3) equals

tL23(τ3)∫
τ4=0

τ4∫
v=0

[π (θ0, θ0) exp (−rv) dv + exp (−rτ 4) Ω4 (τ 4)λ exp (−λτ 4)] dτ 4

+
1

2

∞∫
τ4=tL23(τ3)

V
(
T3 + tL23 (τ 3) , 2, T4 + wF

4 (2) , 4
)
λ exp (−λτ 4) dτ 4

+
1

2

∞∫
τ4=tL23(τ3)

V
(
T4 + wF

4 (2) , 4, T3 + tL23 (τ 3) , 2
)
λ exp (−λτ 4) dτ 4. (6.53)

If τ 3 ∈ [τ ∗3 (2) , τ
∗
3 (3)) , Ω3 (τ 3) is given by

SL
24(τ3)∫

τ4=0

 τ4∫
v=0

π (θ0, θ0) exp (−rv) dv + exp (−rτ 4) Ω4 (τ 4)λ exp (−λτ 4)

 dτ 4

+
1

2

∞∫
τ4=SL

24(τ3)

V
(
T3 + SL

24 (τ 3) , 2, T4 + wF
4 (2) , 4

)
λ exp (−λτ 4) dτ 4

+
1

2

∞∫
τ4=SL

24(τ3)

V
(
T4 + wF

4 (2) , 4, T3 + SL
24 (τ 3) , 2

)
λ exp (−λτ 4) dτ 4, (6.54)

and

Ω3 (τ 3) =
1

2

(
V
(
T3, 2, T4 + wF

4 (2) , 4
)
+ V
(
T4 + wF

4 (2) , 4, T3, 2
))

, (6.55)

if τ 3 ∈ [τ ∗3 (3) ,∞) .

6.A.3 Games Starting in Third Period

Using the expressions (6.52)-(6.55) for Ω3 (τ 3) we derive the waiting curve for the subgames

starting at some time t ∈ [T2, T3):

W (t) =
π (θ0, θ0)

r
(1− exp (−rt)) + exp (−rt)

×
∞∫

u2=0

 u2∫
v2=0

π (θ0, θ0) exp (−rv2) dv2 + exp (−ru2) Ω3 (u2)

λ exp (−λu2) du2.

It turns out that the equilibria in this subgames do not depend on τ 2. This can be

explained by the fact that tL12 (τ 2) < tP24 for all τ 2 ∈ [0,∞) . In Figure 6.11 the four
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curves are plotted for τ 2 = 2. tL12 (τ 2) is the point in time from T2 on at which the

leader is indifferent between adopting technology 1 and adopting technology 2 given that

technology 3 has not arrived yet and the follower adopts technology 4 at time T4 +wF
4 (1)

and T4 + wF
4 (2) , respectively.

0 t12
L ( 2) 1 t24

P 2 3 4
t

10

20

30

40

50

60

L
(t

),
F

(t
),

M
(t

),
W

(t
)

L( t)

F( t)

M( t)

W( t)

Figure 6.11: Leader, follower, joint moving and waiting curve for the subgame that starts at time T2 if
τ2 = 2.

There are two equilibria, where each occurs with a probability one-half. One firm is

the leader and adopts technology 2 at time T2 + tP24, where tP24 = 1.81706, and the other

one is the follower and is expected to adopt technology 4 at time T4 +wF
4 (2) . The firm’s

expected value equals 38.0414.

Summary

The expected payoff of the game Ω2 (τ 2) equals for τ 2 ∈ [0,∞) ,

tP24∫
u2=0

 u2∫
v2=0

π (θ0, θ0) exp (−rv2) dv2 + exp (−ru2) Ω3 (u2)λ exp (−λu2)

 du2

+

∞∫
u2=tP24

V
(
T4 + wF

4 (2) , 4, T2 + tP24, 2
)
λ exp (−λu2) du2.
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Chapter 7

One New Technology

and Symmetric Firms

7.1 Introduction

This chapter considers a framework with two identical firms which both have the pos-

sibility to make an investment that increases their payoff. By how much this payoff is

raised is not known beforehand, since the future market conditions for the firm’s products

are uncertain. Both firms operate on the same output market which implies that the

investment decision of one firm affects the payoff of the other firm. By analyzing this

model uncertainty is combined with strategic aspects.

We identify three scenarios. In the first scenario a preemption equilibrium occurs,

where the moments of investment of both firms are dispersed. The first scenario partic-

ularly holds when first mover advantages are large. In the second scenario the outcome

is that the firms simultaneously invest at the moment that demand is relatively large. In

the third scenario it turns out that in economic environments with low uncertainty the

preemption equilibrium is applied, while with large uncertainty both firms invest together

at the moment that demand is large. This is understandable since the option value of

waiting rises with uncertainty. Then opportunity costs of investment are large so that the

output market conditions must compensate for this when the firm invests.

Furthermore we find that, compared to the monopoly situation, the demand trigger

value is lower for the first investor in the preemption equilibrium. Hence, in order to

be able to preempt its rival, the firm is satisfied with a lower revenue at the moment it

invests. Therefore, the discounted cash flow stream of the investment, which equals the

strategic option value of waiting, is lower than the option value of waiting that prevails in a

monopoly situation. On the other hand, the demand trigger value in the joint investment

case is higher than in the monopoly case. The reason is that the market has to be shared

149
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by two firms. It turns out that in the joint investment case the strategic option value of

waiting exactly equals the option value of waiting for the monopoly case.

Finally we compare our analysis with the few contributions that include the real option

framework in multiple firm models. Doing this we are able to make a methodological

point. In the preemption equilibrium, situations occur where it is optimal for one firm

to invest, but at the same time investment is not beneficial if both firms decide to do

so. Nevertheless, since the firms are identical there is a possibility that still both firms

invest at the same time, which leads to a low payoff for both of them. Following the

approach described in Appendix 4.A we obtain that such a coordination failure can occur

with positive probability at moments of time where the leader’s payoff is strictly larger

than the follower’s payoff. Most contributions in this area, such as Grenadier (1996),

Dutta et al. (1995), and Weeds (1999), make unsatisfactory assumptions with the aim to

be able to ignore the possibility of simultaneous investment at points of time that this is

not optimal. Grenadier assumes that ”if each (firm) tries to build first, one will randomly

(i.e., through the toss of a coin) win the race”, see Grenadier (1996, pp. 1656-1657), while

in Dutta et al. (1995, p. 568), it is assumed that ”if both (firms) i and j attempt to enter

at any period t, then only one of them succeeds in doing so”.

The model is presented in Section 7.2. In Section 7.3 we solve the investment problem

if there is only one firm active. This will give the benchmark result. The duopoly model

is solved in Section 7.4. In Section 7.5 comparisons are made with related contributions.

Section 7.6 concludes.

7.2 The Model

Two identical firms are active on a market and have the possibility to make an irreversible

investment which results in a higher profit flow. A possible interpretation is that both

firms have the possibility to adopt a new technology which after adoption increases the

firm’s profit. We assume that the firms are risk neutral, value maximizing and discount

with constant factor r (> 0) . The sunk cost to adopt the new technology is constant and

equals I (> 0). Future profits are of a yet unknown size. When we denote one firm by i,

the other firm is denoted by j, with i, j ∈ {1, 2} and i �= j.

At time t (≥ 0) the profit flow of firm i equals

Y (t)DNiNj
, (7.1)

where, for k ∈ {i, j} :

Nk =

{
0 if firm k has not invested,

1 if firm k has invested.
(7.2)
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In order to incorporate uncertainty, Y (t) follows a geometric Brownian motion process:

dY (t) = µY (t) dt+ σY (t) dω (t) , (7.3)

Y (0) = y, (7.4)

where y > 0, 0 < µ < r, σ > 0, and the dω (t)’s are independently and identically

distributed according to a normal distribution with mean zero and variance dt. Keeping

in mind that (i) the irreversible investment increases the profit flow and (ii) the firm

obtains higher profits if the competitor is weak (thus not having invested (yet)), the

following restrictions on DNiNj
are implied:

D10 > D11 > D00 > D01. (7.5)

Further we assume that there is a first mover advantage to investment:

D10 −D00 > D11 −D01. (7.6)

Note that, contrary to Nielsen (1999), we only consider the case in which there are nega-

tive externalities to investment. That is, it is better for the firm that the other firm has

not invested (D10 > D11). When D11 > D10 there are positive externalities to investment,

which can be caused by, e.g., network externalities or the fact that firms produce comple-

mentary products. The aim of this chapter is to study effects of strategic interactions on

the option value of waiting, and thus on the speed of investment.

7.3 Monopoly

In this section we assume that there is only one firm active on the output market. We

use the solution of this model as a benchmark for the results of the duopoly model.

From here on we omit the time dependence of Y, whenever confusion is not possible.

The problem facing the firm is an optimal stopping problem (see also Appendix 2.A).

Hence, intuition suggests that there exists a threshold YM such that investing is optimal

if Y ≥ YM and waiting is optimal when Y < YM . Denote the value of the firm at Y before

the investment by V (Y ) . In Appendix 7.A.1 we derive that

V (Y ) =

{
A1Y

β1 + Y D00

r−µ
if Y < YM ,

Y D10

r−µ
− I if Y ≥ YM ,

(7.7)

where β1is the positive root of the following quadratic equation

1

2
σ2β2 +

(
µ− 1

2
σ2

)
β − r = 0. (7.8)
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Expressions for the investment threshold YM and the constant A1 are found by exploiting

the so called value matching and smooth pasting conditions (see Appendix 2.A):

A1Y
β1
M +

YMD00

r − µ
=

YMD10

r − µ
− I, (7.9)

β1A1Y
β1−1
M +

D00

r − µ
=

D10

r − µ
. (7.10)

Solving the last two equations gives

YM =
β1

β1 − 1

(r − µ) I

D10 −D00

, (7.11)

A1 =
Y

1−β1
M

β1

D10 −D00

r − µ
. (7.12)

The optimal investment strategy of the firm is to invest at time TM , where

TM = inf (t|Y (t) ≥ YM) . (7.13)

The following proposition states that the threshold YM is unique. The proof is given

in Appendix 7.B.

Proposition 7.1 The threshold YM defined by equation (7.11) is unique.

When Y is below the threshold value YM the value of the firm consists of two parts

(see expression (7.7)). The first part resembles the value of the option to invest and the

second part is the expected value of the firm if the firm never invests. The option value

rises with uncertainty ( β1 is decreasing in σ and note (7.7) and (7.12 )), thus uncertainty

creates value for the firm. The implication is that the investment threshold also rises with

uncertainty, so that the firm’s willingness to invest decreases with uncertainty. Intuitively

this can be understood by noting that under large uncertainty it is more valuable to

wait for new information about the profitability of an investment before undertaking

it. As stressed in Dixit and Pindyck (1996) the difference between the traditional net

present value method and the real options approach to investment problems is completely

captured in the factor β1

β1−1
(> 1) , that occurs in the threshold value (see (7.11)). The net

present value would be equal to zero if the firm would invest when Y = (r−µ)I
D10−D00

. Investing

when Y = YM thus gives a positive net present value:

YMD10

r − µ
− I − YMD00

r − µ
=

I

β1 − 1
> 0. (7.14)

From the theory of financial options we know that it is only optimal to exercise an option

if it is sufficiently deep in the money, whereas the net present value method prescribes to

exercise the investment option when it is at the money.
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7.4 Duopoly

In this section we extend the model of Section 7.3 by adding another identical firm.

We solve the model in which both firms are initially active on the output market. This

distinguishes our model from Smets (1991) (see also Dixit and Pindyck (1996, Chapter 9)),

where the firms do not produce initially. Then a firm enters a new market at the moment

that it invests. Note that this new market model is retrieved by setting

D00 = D01 = 0. (7.15)

We compare our results to those of the new market model in Section 7.5.

We call the firm that invests first the leader, and the other firm is the follower. The

model is solved backwards. First we derive the optimal investment decision for the fol-

lower, and using that we derive the optimal investment strategy for the leader. In Subsec-

tion 7.4.3 the optimal joint investment outcome is derived. The analysis of the first three

subsections is used in Subsection 7.4.4, where we characterize the possible equilibria. In

Subsection 7.4.5 we describe the properties of the equilibria and compare them with the

outcome of the monopoly model.

7.4.1 Follower

For the moment let us assume that the leader has invested. In the same way as V (Y ) is

derived in (7.7), the value of the follower is derived and is given by

F (Y ) =

{
B1Y

β1 + Y D01

r−µ
if Y < YF ,

Y D11

r−µ
− I if Y ≥ YF .

(7.16)

The threshold YF is defined in the same fashion as YM : it is the point at which the

follower is indifferent between investing and not investing. In the same way as the proof

of Proposition 7.1 one can prove that the threshold YF is unique.

When Y is smaller than YF the value of the follower equals the value of the option to

invest, B1Y
β1 , plus the value of never investing, Y D01

r−µ
. Solving the value matching and

smooth pasting conditions gives

B1 =
Y

1−β1
F

β1

D11 −D01

r − µ
, (7.17)

YF =
β1

β1 − 1

(r − µ) I

D11 −D01

. (7.18)

Due to equation (7.5) the last two expressions are strictly positive. It is optimal for the

follower to invest at time TF , where

TF = inf (t|Y (t) ≥ YF ) . (7.19)
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7.4.2 Leader

The expected value of the leader at time t when he invests at time t (< TF ) equals

L (Y (t)) = E

 TF∫
τ=t

Y (τ)D10 exp (−r (τ − t)) dτ − I

+

∞∫
τ=TF

Y (τ)D11 exp (−r (τ − t)) dτ

 . (7.20)

Working out the expectation (see Appendix 7.A.2 for details) gives

L (Y ) =
Y D10

r − µ
− I +

(
Y

YF

)β1 YF (D11 −D10)

r − µ
. (7.21)

If the leader invests when Y ≥ YF , the follower will invest too, so that the leader’s

expected value equals the value of joint investment, denoted by M (Y ) :

M (Y ) =
Y D11

r − µ
− I. (7.22)

7.4.3 Joint Investment

We assume that the firms invest simultaneously at time Tθ, where

Tθ = inf (t|Y (t) ≥ θ) , (7.23)

for some θ > 0. The expected value of each firm at time t (< Tθ) equals

J (Y (t) , θ) = E

 Tθ∫
τ=t

Y (τ)D00 exp (−r (τ − t)) dτ − I exp (−r (Tθ − t))

+

∞∫
τ=Tθ

Y (τ)D11 exp (−r (τ − t)) dτ

 . (7.24)

Thus

J (Y, θ) =

{
Y D00

r−µ
+
(
Y
θ

)β1

(
θ(D11−D00)

r−µ
− I
)

if Y < θ,

Y D11

r−µ
− I if Y ≥ θ.

(7.25)

Note that M (Y ) = J (Y, Y ) . The optimal joint investment time TJ equals

TJ = inf (t|Y (t) ≥ YJ) , (7.26)

where YJ is given by (analogous to (7.11)):

YJ =
β1

β1 − 1

(r − µ) I

D11 −D00
. (7.27)

Analogous to the YM it can be proved that YJ is unique.
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7.4.4 Equilibria

It turns out to be convenient to distinguish between the following two cases. In the first

case there exists a Y such that there are incentives to become the leader. With other

words, for such a Y the leader’s payoff, L (Y ), which can be obtained after investing

right away, exceeds the joint investment payoff which the firm obtains when it waits with

investment until Y reaches YJ , at which both firms invest simultaneously. This implies

that

∃Y ∈ (0, YF ) such that L (Y ) > J (Y, YJ) . (7.28)

In the second case there does not exist such a Y , so that

L (Y ) ≤ J (Y, YJ) for all Y ∈ (0, YF ) . (7.29)

Since the firms are identical, no reason can be found why they should behave differ-

ently. Therefore, we concentrate on equilibria that are supported by symmetric strategies.

We use the perfect equilibrium concept for timing games that is described in Appendix

4.A. There it is argued that in this kind of games a strategy can not be represented by

a single distribution function. It is necessary to be able to distinguish between types of

atoms. Therefore the closed loop strategy of firm i consists of a collection of simple strate-

gies: (Gt
i (·) , αt

i (·))t≥0 . The time index t denotes the starting time of the game. Gt
i (s) is

the probability that firm i has invested by some time s given that the other firm has not

invested. The function αt
i (s) measures the intensity of atoms on the interval [s, s+ ds] .

By definition αt
i (s) > 0 implies that a firm is sure to invest by time s, i.e. Gt

i (s) = 1.

Next we give an interpretation of the function αt
i (s). Forget for a moment the de-

pendence on t. Let τ i be the smallest point in time at which αi (s) is positive: τ i =

inf {s|αi (s) > 0} and define τ to be equal to τ = min (τ 1, τ 2) . From the definition we

know for sure that at least one firm has invested by time τ .

The function value α1 (τ) (α2 (τ)) should be interpreted as the probability that firm 1

(2) chooses row (column) 1 in the matrix game of which the payoffs are depicted in Figure

7.1. Playing the game costs no time and if player 1 chooses row 2 and player 2 column 2

the game is repeated. If necessary the game will be repeated infinitely often.

In our model the firms will use the same strategy, so that αt (s) = αt
i (s) = αt

j (s) .

Then the probability that firm i is the only firm that invests at time τ , Pr (one| τ) , equals

Pr (one| τ) = αt (τ)
(
1− αt (τ)

)
+
(
1− αt (τ)

) (
1− αt (τ)

)
Pr (one| τ) ,

which gives

Pr (one| τ) = 1− αt (τ)

2− αt (τ)
. (7.30)
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(F(Y(τ )),L(Y(τ )))

(M(Y(τ )),M(Y(τ )))

repeat game

(L(Y(τ )),F(Y(τ )))α1(τ )

1−α1(τ )

α2(τ ) 1−α2(τ )

firm 1

firm 2

Figure 7.1: Payoffs and strategies for firm 1 and firm 2 of the matrix game played at time τ .

For the probability that both firms invest at τ , Pr (two| τ) , we get

Pr (two| τ) = αt (τ)αt (τ) +
(
1− αt (τ)

) (
1− αt (τ)

)
Pr (two| τ) ,

so that

Pr (two| τ) = αt (τ)

2− αt (τ)
. (7.31)

Thus firm i invests while firm j does not invest with probability 1−αt(t)
2−αt(t)

, with the same

probability firm j invests while firm i does not invest, and with probability αt(t)
2−αt(t)

both

firms invest at the same time. Consequently, if αt (τ) = 0 we have

Pr (one| τ) =
1

2
, (7.32)

Pr (two| τ) = 0. (7.33)

First Case: Preemption

For the moment assume that one firm, say firm i, has been given the leader role be-

forehand, thus firm j can only decide to invest after firm i has done so. The optimal

investment time for the leader in the first case, thus where expression (7.28) holds, is

denoted by

TL = inf (t|Y (t) ≥ YL) , (7.34)
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where

YL =
β1

β1 − 1

(r − µ) I

D10 −D00

. (7.35)

The threshold YL is derived by solving the value matching and smooth pasting conditions

that result from the leader’s optimal stopping problem (see Appendix 7.A.2). The unique-

ness of the threshold can be proved using the same steps as in the proof of Proposition

7.1. Note that YL is equal to YM . The reason is that for Y ∈ (0, YF ) the leader’s decision

has no effect on the optimal reply of the follower. Therefore the leader acts as if there is

no follower, and thus behaves like a monopolist. As D10 increases it is more attractive to

be the first investor so that YL, and thus the expected value of TL, decreases. In Appendix

7.B we prove the following proposition.

Proposition 7.2 It holds that

L (YL) > F (YL) . (7.36)

Now let us drop the assumption that one firm is given the leader role beforehand.

Then the implication of Proposition 7.2 is that each firm wants to be the only one to

invest at time TL. A firm will try to preempt its competitor by investing at time TL − ε,

since it knows that the other firm would like to be the first to invest at time TL. But

then the other firm will try to invest at time TL − 2ε. This process of preemption stops

at time TP , where

TP = inf (t|Y (t) ≥ YP ) , (7.37)

in which YP is the solution of the following equation

L (YP ) = F (YP ) .

Before time TP there are no incentives to become leader, since for t < TP the follower

payoff exceeds the leader payoff. This is because t < TP implies that Y < YP , which

in turn implies that F (Y ) > L (Y ) due to the fact that YP is unique as stated in the

following proposition. The proof can be found in Appendix 7.A.

Proposition 7.3 There exists a unique value for Y, YP , such that

L (YP ) = F (YP ) and 0 < YP < YF . (7.38)

For this first case the payoff curves are depicted in Figure 7.2. The investment op-

portunity is worthless for Y equal to 0. Therefore at Y = 0 the leader (L) and joint

investment (M) value equal minus the investment cost and the follower (F ) and optimal
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joint investment value (J) equal zero. M is a linear increasing function of Y (see equation

(7.22)). The follower has the choice between investing at the same time as the leader or

to wait. Since the optimal follower action on the interval (0, YF ) is to wait, the follower

curve is situated above the joint investment curve on that interval. From Subsection 7.4.2

we know that the leader, follower and joint investment curves coincide with each other

for Y larger than or equal to YF . Due to the existence and uniqueness of YP (see Proposi-

tion 7.3), the leader curve crosses the follower curve once on the interval (0, YF ) (at YP ).

Since (7.28) holds here, the leader curve also crosses the optimal joint investment curve

somewhere on the interval (0, YF ) . For Y larger or equal than YJ the joint investment

curve coincides with the other three curves.

0 YP YL YF YJ
Y

−I

0

L
(Y

),
F

(Y
),

M
(Y

),
J

(Y
,
Y
J
)

L( Y)

F( Y)

M( Y)

J( Y,YJ)

Figure 7.2: First Case: Preemption

The equilibrium strategy of firm i ∈ {1, 2} equals (cf. Appendix 4.A.2)

Gt
i (s) = G (s) =

{
0 if s < TP ,

1 if s ≥ TP ,
(7.39)

αt
i (s) = α (s) =


0 if s < TP ,
L(Y (s))−F (Y (s))
L(Y (s))−M(Y (s))

if TP ≤ s < TF ,

1 if s ≥ TF .

(7.40)

The equilibrium outcome depends on the value y (= Y (0)) . Three regions have to be

distinguished.

The first region is defined by y ≤ YP . There are two possible equilibrium outcomes.

In the first outcome firm 1 is the leader and invests at time TP and firm 2 is the follower
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and invests at time TF . The second outcome is the symmetric counterpart: firm 2 is the

leader and invests at time TP and firm 1 is the follower and invests at time TF . Since at

time TP it holds that Y = YP , it can be obtained from (7.38) and (7.40) that α (TP ) = 0.

Due to (7.32) it can be concluded that each outcome occurs with probability one-half.

Furthermore, from (7.33) we get that the probability that both firms invest simultaneously

is zero. Due to (7.38), it follows that the expected value of each firm equals F (YP ) .

In the second region it holds that YP < y < YF . There are three possible outcomes.

Since L exceeds F in case Y ∈ (YP , YF ) , it can be obtained from (7.40) that α (0) >

0. Due to (7.30) we know that with probability 1−α(0)
2−α(0)

anyone of the firms invests at

time 0 and the other firm invests at time TF . Expression (7.31) implies that the firms

invest simultaneously at time 0 with probability α(0)
2−α(0)

, leaving them with a low value of

M (y) (< F (y)) . The expected payoff of each firm thus equals

1− α (0)

2− α (0)
(L (y) + F (y)) +

α (0)

2− α (0)
M (y) = F (y) ,

where the equality sign follows from (7.40). Since there are first mover advantages in

this region, each firm is willing to invest with positive probability. However, this implies

that the probability of simultaneous investment, leading to a low payoff M (y) , is also

positive. Since the firms are both assumed to be risk neutral, they will fix the probability

of investment such that their expected value equals F (y), which is also their payoff if

they let the other firm invest first.

When y is in the third region [YF ,∞) , the outcome exhibits joint investment at time

0. The expected value of each firm is equal to M (y) = L (y) = F (y).

Second Case: Joint Investment

In the case of joint investment expression (7.29) holds, which leads to Figure 7.3. There

turn out to be an infinite number of symmetric equilibrium strategies, which can be

divided into two classes. The first class consists of the strategy described above (see

equations (7.39)-(7.40)). The second class consists of strategies where firms invest simul-

taneously. They have the following form (i ∈ {1, 2}):

Gt
i (s) = G (s) =

{
0 if s < T ∗,

1 if s ≥ T ∗,
(7.41)

αt
i (s) = α (s) =

{
0 if s < T ∗,

1 if s ≥ T ∗,
(7.42)

for any T ∗ ∈ [TS, TJ ] where

TS = inf (t|Y (t) ≥ YS) ,

YS = min (θ| J (Y, θ) ≥ L (Y ) for all Y ≥ 0) .
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In Figure 7.4 the construction of YS is shown graphically. In that figure the functions

J (Y, YJ) − L (Y ) and J (Y, YS) − L (Y ) are plotted. To find YS one starts out with

the function J (Y, θ) − L (Y ) with θ = YJ . Then θ is lowered. The lowest θ for which

the function is still non-negative is YS. Note that the function J (Y, YS) − L (Y ) has

exactly one point of tangency on the interval (0, YF ). Thus the curves J (Y, YS) and L (Y )

meet tangent at that point, which is YL. This result can be shown mathematically by

solving the following two equations simultaneously for Y (∈ (0, YF )) : J (Y, θ) = L (Y )

and ∂J(Y,θ)
∂Y

= ∂L(Y )
∂Y

.

0 YP YL YF YS YJ
Y

−I

0

L
(Y

),
F

(Y
),

M
(Y

),
J

(Y
,
Y
J
),

J
(Y
,
Y
S
)

L( Y)

F( Y)

M( Y)

J( Y,YJ)

J( Y,YS)

Figure 7.3: Second Case: Collusion

From (7.26) it can be concluded that the equilibrium that is supported by the strategies

(7.41)-(7.42) with T ∗ = TJ is the Pareto dominant equilibrium and therefore the most

reasonable outcome in this case. In what follows we assume that the Pareto dominant

equilibrium is indeed the outcome in the second case. This would have been the only

equilibrium if we apply the setup described in Simon (1987a). For this equilibrium it

holds that there is simultaneous investment at time TJ . The expected value of each firm

equals J (y, Y (TJ)).

7.4.5 Properties

The following proposition states when which case applies. See Appendix 7.B for a proof.
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YP YL YF YS YJ
Y

0

J
(Y

,
Y
J
)−
L

(Y
),

J
(Y

,
Y
S
)−
L

(Y
)

J( Y,YJ) −L( Y)

J( Y,YS) −L( Y)

Figure 7.4: Construction of J (Y, YS) curve.

Proposition 7.4 Define

f (β1) = β1

(
D10 −D11

D11 −D01

)
+

(
D11 −D00

D11 −D01

)β1

, (7.43)

g (β1) =

(
D10 −D00

D11 −D01

)β1

. (7.44)

Whenever the following inequality holds the equilibrium is of the preemption type and

otherwise of the joint investment type:

f (β1) < g (β1) . (7.45)

Proposition 7.4 implies that the equilibrium is always of the preemption type, no

matter the value of β1 and thus the degree of uncertainty, if D10 is large enough, i.e. if

the incentives to become leader are large enough. If D10 is relatively small, the incentives

to become leader almost vanish and the joint investment equilibrium turns up.

Note that condition (7.45) is independent of the value of the investment cost I (as

long as it is strictly positive). This for the reason that changing the investment cost only

changes the absolute values of the investment triggers, and therefore the value functions,

but not the relative values.

The following proposition, that is proved in Appendix 7.B, states the effect of β1 on

the type of the equilibrium.

Proposition 7.5 There are three different scenarios:
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(i) If f ′ (1) > g′ (1) and f
(

r
µ

)
≥ g
(

r
µ

)
the equilibrium is always of the joint investment

type.

(ii) If f ′ (1) > g′ (1) and f
(

r
µ

)
< g
(

r
µ

)
the equilibrium is of the joint investment type

for relatively low values of β1 and of the preemption type for relatively high values

of β1.

(iii) If g′ (1) ≥ f ′ (1) the equilibrium is always of the preemption type.

Propositions 7.4 and 7.5 are visualized in Figure 7.5. In that figure we have plotted

the function g (β1) , the boundary between the preemption case and joint investment

case (Proposition 7.4), and for each possible scenario the corresponding f (β1) function

(Proposition 7.5).

1 r−µ
β1

f
(β

1
),

g
(β

1
)

g( β1)
f( β1) in scenario ( i)
f( β1) in scenario ( ii)
f( β1) in scenario ( iii)

PREEMPTION

JOINT INVESTMENT

1 r
µ

β1

f
(β

1
),

g
(β

1
)

Figure 7.5: Possible scenarios.

In scenario (i) the first mover advantage is that large that the preemption equilibrium

will always turn up. The opposite is going on in scenario (ii), where the first mover

advantage is that low that the equilibrium where both firms invest jointly at a later point

in time is the Pareto-dominant equilibrium.

Hence, only in scenario (iii) the type of equilibrium depends on β1. The economic

implications are stated in the following corollary to Proposition 7.5. The proof can be

found in Appendix 7.B.

Corollary 7.1 In scenario (iii) the equilibrium is of the joint investment (preemption)

type for high (low) values of σ and µ and low (high) values of r.
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Here, it is natural that the preemption equilibrium arises if there is not much uncer-

tainty (low σ), the µ is low, or the interest rate is high, since then the value of waiting

is low. The contrary holds in very uncertain (high σ) economic environments, or envi-

ronments where the µ is high, or the interest rate is low. Then the value of waiting is

large, which implies that investing faces high opportunity costs. This makes a preemption

strategy unattractive.

Proposition 7.6 compares the investment thresholds of the duopoly model with the

investment threshold of the monopoly model. The proof is given in Appendix 7.B.

Proposition 7.6 For every parameter configuration it holds that

YP ≤ YM < YJ . (7.46)

Proposition 7.6 implies that the speed of investment increases (decreases) if strategic

interactions result in a preemption (joint investment) equilibrium. The following propo-

sition states that the investment thresholds are decreasing functions of β1 (for a proof see

Appendix 7.B).

Proposition 7.7 The investment thresholds YP , YL, YM , YF , and YJ are decreasing in

β1.

We can conclude that uncertainty delays investment. In scenarios (i) and (ii) invest-

ment is delayed because the investment thresholds rise with uncertainty. Increasing the

uncertainty in scenario (iii) not only rises the investment thresholds, but may also lead

to a change of a preemption equilibrium (with relative low investment thresholds) into a

joint investment equilibrium (with relative high investment thresholds).

In the real options literature it is argued that an investment should be undertaken

when the net present value exceeds the option value of waiting. For models with strategic

interactions this investment rule should be changed: investing is optimal when the net

present value exceeds the strategic option value of waiting. The strategic option value of

waiting incorporates the money value of the strategic interactions in the option value of

waiting. The following proposition compares the strategic option value of waiting in the

duopoly case with the option value of waiting in the monopoly case. The proof is given

in Appendix 7.B.

Proposition 7.8 Compared to the option value of waiting in the monopoly case (at YM ,

see (7.14)),

I

β1 − 1
,

the strategic option value of waiting is
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1. smaller in the preemption case (at YP );

2. the same in the joint investment case (at YJ).

When strategic interactions lead to a preemption equilibrium, it is even possible that

the firms make an investment with a negative net present value. Then the strategic option

value of waiting is negative. For example, take the following parameter values D10 = 10,

D11 = 4, D00 = 2, D01 = 1, r = 0.10, µ = 0.05, and I = 10. For these parameters

equation (7.45) is always satisfied so that the equilibrium is always of the preemption

type. The net present value of investment at YP equals L (YP ) − YPD00

r−µ
. In the left part

of Figure 7.6 this net present value is plotted as function of σ. For sake of comparison,

in the right part the corresponding net present value of investment for the monopolist is

presented.
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Figure 7.6: Net present value of investment of duopolist at YP and monopolist at YM as function of σ.

As in the monopoly case, the option value of waiting still increases with uncertainty

in the duopoly model. From Figure 7.6 we conclude that for low (but realistic) values of

σ (σ < 0.308) strategic interactions lead to a negative strategic option value of waiting.

Thus the strategic interactions force the firms to make an investment with a negative net

present value. Becoming inactive is even worse for the firms, since then the net present

value would equal −YPD00

r−µ
.

7.5 Existing Literature

In this section we confront our results with the existing literature. Our model is an

extension of the Smets (1991) model described in Dixit and Pindyck (1996, Chapter 9).

Contrary to that model we also allow that before the moment of investment the firms

are already active on the output market on which they compete. Nielsen (1999) showed

that in the Smets (1991) model competition on the output market decreases the option

value of waiting and therefore duopolistic firms will invest earlier than monopolistic firms.
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Remember that for D00 = D01 = 0 our model is the Smets (1991) model. Since for

x = D10

D11
> 1 we have that β1x− (β1 − 1) < xβ1, equation (7.46) is always satisfied, which

implies that the equilibrium is always of the preemption type in the Smets (1991) model.

Thus Nielsen (1999)’s result is a consequence of the initial conditions on the output market

in the sense that if both firms are initially active on the output market, Nielsen (1999)’s

result does not hold anymore in general. From Proposition 7.6 we conclude that there are

two possibilities. In the case where a joint investment equilibrium is the most reasonable

outcome, strategic interactions result in delayment of investment by the firms. In the case

where the only equilibrium is of the preemption type, competition accelerates investment

if we compare the moment of investment of the leader in the duopoly to the monopolist.

In the new market model the optimal investment threshold for the follower and the

optimal joint investment threshold coincide (cf. (7.18) and (7.27)). Therefore, due to

(7.16) and (7.25) it follows that the follower and the joint investment curve coincide,

which implies that there can not be a second case in the new market model. The economic

reason for these two thresholds to coincide is the fact that the investment timing of the

leader does not affect the follower’s profit flow in a new market model, whereas in our

model the follower’s profit flow decreases from Y D00 to Y D01 at the moment the leader

invests. Thus, in our model the follower will invest earlier to recapture market share from

the leader. That is why we have YF < YJ .

At present, only a few contributions deal with the effect of strategic interactions on

the option value of waiting associated with investments under uncertainty. However, in

these papers the coordination problem is avoided, and thus not treated in the way we did

in Section 7.4. For instance, Weeds (1999) implicitly makes the unsatisfactory assumption

that only one firm will succeed in investing in case there is an incentive to be the first

firm to invest and it is only optimal for one firm to invest. There are two reasons for that

assumption to be unsatisfactory: (1) the firms are imposed to be equal and (2) the firms

can invest simultaneously if it is optimal for both. Note that this assumption, although

explicitly, is also made in Nielsen (1999), Grenadier (1996), and Dutta et al. (1995).

The reason for our outcomes to be more realistic is as follows. When there is an

incentive to be the first to invest (L > F > M) both firms are willing to take a risk and

since they are both assumed to be risk neutral they will risk so much that their expected

value equals F, which equals their payoff if they allow the other firm to invest first.

Employing the results of Section 7.4 learns that in this case both firms set α = L−F
L−M

, and

that there is a positive probability α
2−α

that both firms invest exactly at the same time,

leaving them with the low payoff M.

Dixit and Pindyck (1996, p. 313) claim that in the Smets (1991) model, the probability

that both firms invest simultaneously, while it is only optimal for one firm to invest, is
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always zero. From the above argumentation it should be clear by now that this claim is

not correct. To correct another point, consider page 314 of Dixit and Pindyck (1996).

First, note that their threshold Y2 is equal to our threshold YF and their threshold Y3

equals our threshold YJ . Now, we know that in the new market model we have that

YJ = YF , so that Y3 is equal to Y2 in their model and not, as they claim, greater than Y2.

7.6 Conclusions

This chapter brings together two streams of literature: investment under competition

(Reinganum (1981), Fudenberg and Tirole (1985), and Chapter 4) and investment un-

der uncertainty (Dixit and Pindyck (1996)). In this concluding section we focus on the

question how introduction of uncertainty changes the results derived for the determin-

istic duopoly framework of Fudenberg and Tirole (1985). In Fudenberg and Tirole it

was obtained that under large first mover advantages a preemption equilibrium with

dispersed adoption timings results, while otherwise a joint adoption equilibrium is the

Pareto-dominant outcome.

After introduction of uncertainty the firm’s investment timing problem has to deal with

the option value of waiting: when a firm makes an irreversible investment expenditure,

it exercises its option to invest. It gives up the possibility of waiting for new information

to arrive that might affect the desirability or timing of the expenditure. It is clear that

a huge option value of waiting, which arises in highly uncertain economic environments,

results in a considerable delayment of investment. On the other hand, in the preemption

equilibrium of Fudenberg and Tirole (1985) it is imperative for a firm to invest quickly

and thereby preempt investment by potential competitors.

Our chapter brings these contrary forces together and it turns out that our results

relate to those of Fudenberg and Tirole (1985) in the following way. Whenever Fudenberg

and Tirole conclude that joint adoption is the Pareto-dominant outcome, this also holds

for our model. Also, if first mover advantages are sufficiently large, for both models the

preemption equilibrium results, but in the stochastic case for both firms the investment

timing is delayed by the option value of waiting. Finally, if first mover advantages are

a bit lower, but still high enough for the preemption equilibrium to prevail in the de-

terministic framework of Fudenberg and Tirole (1985), introduction of sufficiently large

uncertainty results in a joint adoption equilibrium that Pareto-dominates all other equilib-

ria. This brings us to the conclusion that introduction of uncertainty reduces the number

of scenarios under which the preemption equilibrium is the optimal outcome.
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Appendices

7.A Derivation of Value Functions

7.A.1 Monopoly

Let Y (t) behave according to equations (7.3) and (7.4). Then Itô’s lemma (see Appendix

2.A) implies that

d log Y (t) =
(
µ− 1

2
σ2
)
dt+ σdω (t) .

Therefore

log Y (t) = log y +

t∫
s=0

(
µ− 1

2
σ2
)
ds+

t∫
s=0

σdω (s) .

Thus for t ≥ 0 it holds that

Y (t) = y exp
((
µ− 1

2
σ2
)
t+ σω (t)

)
, (7.47)

where ω (t) is distributed according to a normal distribution with mean zero and variance

t.

In the stopping region the value of the firm equals

V (Y (t)) = E

 ∞∫
τ=t

Y (τ)D10 exp (−r (τ − t)) dτ

− I

= E

 ∞∫
τ=0

Y (t) exp
((
µ− 1

2
σ2
)
τ + σω (τ)

)
D10 exp (−rτ) dτ

− I

= Y (t)D10

∞∫
τ=0

∞∫
w=−∞

1√
τ
√

2π
exp

(
−w2

2τ
− (r − µ+ 1

2
σ2
)
τ + σw

)
dwdτ − I

= Y (t)D10

∞∫
τ=0

exp
(− (r − µ+ 1

2
σ2
)
τ
)

×
∞∫

w=−∞

1√
τ
√

2π
exp
(
− (w−στ)2

2τ
+ 1

2
σ2τ
)
dwdτ − I

= Y (t)D10

∞∫
τ=0

exp
(− (r − µ+ 1

2
σ2
)
τ
)
exp
(

1
2
σ2τ
)
dτ − I

=
Y (t)D10

r − µ
− I.
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The value function must satisfy the following Bellman equation in the continuation region

rV (Y ) = Y D00 + lim
dt↓0

1

dt
E [dV (Y )] . (7.48)

Applying Itô’s Lemma (see Appendix 2.A) to the expectation in the right-hand side of

equation (7.48) gives

E [dV (Y )] =

(
µY

∂V (Y )

∂Y
+ 1

2
σ2Y 2∂

2V (Y )

∂Y 2

)
dt+ o (dt) . (7.49)

Substitution of equation (7.49) into equation (7.48) and rewriting leads to the following

differential equation

−rV (Y ) + µY
∂V (Y )

∂Y
+ 1

2
σ2Y 2∂

2V (Y )

∂Y 2
+ Y D00 = 0. (7.50)

The general solution of (7.50) is given by

V (Y ) = A1Y
β1 + A2Y

β2 +
Y D00

r − µ
, (7.51)

where β1 (β2) is the positive (negative) root of the following quadratic equation

1

2
σ2β2 +

(
µ− 1

2
σ2

)
β − r = 0. (7.52)

When Y = 0 the value of the firm is equal to zero so that the boundary condition V (0) = 0

leads to A2 = 0.

7.A.2 Leader

Given that Y < YF the value of the leader must satisfy the following Bellman equation

r (L (Y ) + I) = Y D10 + lim
dt↓0

1

dt
E [dL (Y )] . (7.53)

Itô’s Lemma gives

r (L (Y ) + I) = Y D10 + µY
∂L (Y )

∂Y
+ 1

2
σ2Y 2∂

2L (Y )

∂Y 2
. (7.54)

The general solution of (7.54) is equal to

L (Y ) = E1Y
β1 + E2Y

β2 +
Y D10

r − µ
− I. (7.55)

The following two boundary conditions should be satisfied

L (0) = 0, (7.56)

L (YF ) =
YFD11

r − µ
− I. (7.57)



Chapter 7. One New Technology and Symmetric Firms 169

Equations (7.56) and (7.57) lead to

E1 = Y
1−β1
F

D11 −D10

r − µ
, (7.58)

E2 = 0. (7.59)

Before the leader has invested its value equals (same derivation as in Appendix 7.A.1)

K1Y
β1 +

Y D00

r − µ
. (7.60)

Next let us derive an expression for YL. The following value matching and smooth pasting

conditions must be satisfied

K1Y
β1
L +

YLD00

r − µ
= E1Y

β1
L +

YLD10

r − µ
− I, (7.61)

β1K1Y
β1−1
L +

D00

r − µ
= β1E1Y

β1−1
L +

D10

r − µ
. (7.62)

Solving these last two equations yields

YL =
β1

β1 − 1

(r − µ) I

D10 −D00

, (7.63)

K1 = E1 +
Y

1−β1
L

β1

D10 −D00

r − µ
. (7.64)

7.B Lemmas and Proofs

Proof of Proposition 7.1 Theorem 2.4 gives sufficient conditions for the uniqueness of

the threshold. Here, the functions π and Ω are given by

π (Y ) = Y D00,

Ω (Y ) =
Y D10

r − µ
− I.

The function

π (Y )− rΩ (Y ) + lim
dt↓0

1

dt
E [dΩ (Y )|Y ]

= π (Y )− rΩ (Y ) + µY
∂Ω (Y )

∂Y
+

1

2
σ2Y 2∂

2Ω (Y )

∂Y 2

= Y D00 − r

(
Y D10

r − µ
− I

)
+ µY

D10

r − µ

= Y (D00 −D10) + rI,

is indeed decreasing in Y since D00 < D10.
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The positive persistence of uncertainty property is also satisfied. It holds that

Φ (y| x) = Pr (Y (t+ dt) ≤ y|Y (t) = x)

= Pr (Y (t) + dY (t) ≤ y|Y (t) = x)

= Pr (dY (t) ≤ y − x|Y (t) = x)

= Pr (µxdt+ σxdω (t) ≤ y − x)

= Pr

(
dω (t) ≤ y − x− µxdt

σx

)

=

y−x−µxdt
σx∫

z=−∞

1√
2π

exp
(−1

2
z2
)
dz.

Thus for x1 < x2 we have that Φ (y| x1) > Φ (y| x2) , because

∂ y−x−µxdt
σx

∂x
= − y

σx2
< 0.

�

Proof of Proposition 7.2 Define the function φ as follows

φ (Y ) = L (Y )− F (Y ) . (7.65)

Then we have to prove that

φ (YL) > 0. (7.66)

For Y ∈ [0, YF ] the value of the follower, in case the leader has already invested, can be

expressed by

F (Y ) =
Y D01

r − µ
+

(
Y

YF

)β1
(
YF (D11 −D01)

r − µ
− I

)
.

For Y ∈ [0, YF ] the function φ (Y ) equals

φ (Y ) = L (Y )− F (Y )

= Y D10

r−µ
− I +

(
Y
YF

)β1 YF (D11 −D10)

r − µ

−Y D01

r − µ
−
(

Y
YF

)β1
(

YF (D11−D01)
r−µ

− I
)

= Y (D10−D01)
r−µ

− I −
(

Y
YF

)β1
(

YF (D10−D01)
r−µ

− I
)
. (7.67)

Substitution of equation (7.35) into (7.67) gives

φ (YL) = I

[
β1

β1−1
D10−D01

D10−D00
− 1−

(
D11−D01

D10−D00

)β1
(

β1

β1−1
D10−D01

D11−D01
− 1
)]

. (7.68)
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Define

a =
D10 −D01

D10 −D00

> 1, (7.69)

b =
D11 −D01

D10 −D00
< 1. (7.70)

The inequalities hold due to equations (7.5) and (7.6). After substitution of (7.69) and

(7.70) into (7.68) it is obtained that

h (a, b) =
(β1 − 1)φ (YL)

I
= β1a− (β1 − 1)− β1ab

β1−1 + (β1 − 1) bβ1 . (7.71)

The proposition is proved if we show that h (a, b) > 0 for all a ∈ (1,∞) and b ∈ (0, 1) .

This holds since

∂h (a, b)

∂a
= β1 − β1b

β1−1 > 0, (7.72)

∂h (a, b)

∂b
= − (β1 − 1)β1ab

β1−2 + β1 (β1 − 1) bβ1 < 0, (7.73)

h (1, 1) = 0. (7.74)

�

Lemma 7.1 Define the function φ as follows

φ (Y ) = L (Y )− F (Y ) . (7.75)

Then it holds that

φ (0) < 0, (7.76)

φ (YF ) = 0, (7.77)

∂φ (Y )

∂Y

∣∣∣∣
Y =YF

< 0, (7.78)

∂2φ (Y )

∂Y 2
≤ 0 for all Y ≥ 0. (7.79)

Proof of Lemma 7.1 For Y ∈ [0, YF ] the function φ (Y ) equals (see (7.67)):

φ (Y ) =
Y (D10 −D01)

r − µ
− I −

(
Y

YF

)β1
(
YF (D10 −D01)

r − µ
− I

)
. (7.80)

Expressions (7.76) and (7.77) follow directly after setting Y = 0 and Y = YF , respectively,

in equation (7.80).

The first derivative of φ (Y ) equals

∂φ (Y )

∂Y
=

D10 −D01

r − µ
− β1

Y β1−1

Y
β1
F

(
YF (D10 −D01)

r − µ
− I

)
. (7.81)
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Setting Y = YF in equation (7.81) gives

∂φ (Y )

∂Y

∣∣∣∣
Y =YF

=
D10 −D01

r − µ
− β1

1

YF

(
YF (D10 −D01)

r − µ
− I

)
. (7.82)

Substitution of equation (7.18) and rearranging gives

∂φ (Y )

∂Y

∣∣∣∣
Y =YF

= − (β1 − 1)

(
D10 −D11

r − µ

)
< 0, (7.83)

which confirms (7.78). The second derivative of φ (Y ) is given by

∂2φ (Y )

∂Y 2
= −β1 (β1 − 1)

Y β2−1

Y
β1
F

(
YF (D10 −D01)

r − µ
− I

)
= −β1 (β1 − 1)

Y β2−1

Y
β1
F

((
β1

β1 − 1

)(
D10 −D01

D11 −D01

)
− 1

)
I. (7.84)

Expression (7.79) follows from equation (7.84) since β1 > 1 and D10 > D11. �

Proof of Proposition 7.3 Proposition 7.3 is a direct result of Lemma 7.1. �

Lemma 7.2 For 0 < Y ≤ YF it holds that

J (Y, YJ) > F (Y ) . (7.85)

Proof of Lemma 7.2 It is obvious that J (Y, YF ) > F (Y ) for Y ∈ (0, YF ) , since D00 >

D01. And by definition it holds that J (Y, YJ) ≥ J (Y, YF ) . �

Lemma 7.3 Define the function γ (Y ) as follows

γ (Y ) = J (Y, YJ)− L (Y ) . (7.86)

Then the following properties hold:

γ (YP ) > 0, (7.87)

γ (YF ) > 0, (7.88)

∂2γ (Y )

∂Y 2
> 0. (7.89)

Proof of Lemma 7.3 Substitution of equations (7.21) and (7.25) into equation (7.86)

gives

γ (Y ) =
Y (D00 −D10)

r − µ
+ I + (H1 − E1) Y

β1 ,
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where E1 (< 0) is given by equation (7.58) and

H1 =
Y

1−β1
J

β1

(
D11 −D00

r − µ

)
> 0. (7.90)

Properties (7.87) and (7.88) follow from Lemma 7.2 together with

L (YP ) = F (YP ) , (7.91)

L (YF ) = F (YF ) . (7.92)

The second derivative of γ (Y ) is equal to

∂2γ (Y )

∂Y 2
= (β1 − 1)β1 (H1 − E1)Y

β1−2. (7.93)

Remembering that E1 < 0 and H1 > 0 gives equation (7.89). �

Lemma 7.4 It holds that

min
Y≥0

γ (Y ) < 0, (7.94)

if and only if

f (β1) < g (β1) . (7.95)

Proof of Lemma 7.4 The first derivative of γ (Y ) is given by

∂γ (Y )

∂Y
=

D00 −D10

r − µ
+ β1 (H1 (YJ)− E1)Y

β1−1. (7.96)

The solution of

∂γ (Y )

∂Y
= 0 (7.97)

equals

Y ∗ =
(

D10−D00

β1(H1−E1)(r−µ)

) 1
β1−1

> 0. (7.98)

The minimum (expression (7.88) implies that γ (Y ∗) is a unique minimum) of γ equals

γ (Y ∗) = I + (D10 −D00)
β1

β1−1 (H1 − E1)
1

1−β1 (r − µ)
β1

1−β1

(
β

β1
1−β1
1 − β

1
1−β1
1

)
. (7.99)

The minimum is negative if and only if (substitute (7.58) and (7.90) in (7.99) and rewrite)[(
D11−D00

D10−D00

)β1

+ β1

(
D10−D11

D11−D01

)(
D11−D01

D10−D00

)β1

] 1
1−β1

> 1.

Rearranging gives

β1

(
D10−D11

D11−D01

)
+
(

D11−D00

D11−D01

)β1

<
(

D10−D00

D11−D01

)β1

. (7.100)

Substitution of (7.43) and (7.44) in (7.100) gives (7.95). �
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Lemma 7.5 It holds that

0 < argmin
Y≥0

γ (Y ) ≤ YF , (7.101)

where the equality sign only holds for β1 = 1.

Proof of Lemma 7.5 From (7.98) we have that Y ∗ > 0. Substitution of equations (7.58)

and (7.90) in (7.98) gives

Y ∗ = YF

[
D10−D00

(D11−D01)
1−β1(D11−D00)

β1+β1(D10−D11)

] 1
β1−1

.

Thus

Y ∗ ≤ YF

if and only if [
D10−D00

(D11−D01)
1−β1 (D11−D00)

β1+β1(D10−D11)

] 1
β1−1 ≤ 1.

Rewriting gives

D10−D00

D11−D01
≤ β1

(
D10−D11

D11−D01

)
+
(

D11−D00

D11−D01

)β1

. (7.102)

Combining (7.43) with (7.102) gives

f (1) ≤ f (β1) . (7.103)

Define

x = D10−D00

D11−D01
> 1,

y = D11−D00

D11−D01
< 1.

Using these two definitions we have for β1 ≥ 1 :

f (β1) = β1 (x− y) + yβ1 ,

f ′ (β1) = x− y + yβ1 log (y) ,

f ′′ (β1) = yβ1 (log (y))2 > 0.

It turns out that f is strictly increasing, because for 0 < y < 1 we have

x > 1 > y − y log (y) ≥ y − yβ1 log (y) .

Thus equation (7.103) holds, the equality sign only holds for β1 = 1, and thereby the

lemma. �
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Proof of Proposition 7.4 Let γ be defined by equation (7.86). Whenever there exists a

Y ∈ (YP , YF ) such that γ (Y ) < 0, the first case applies. If γ (Y ) ≥ 0 for all Y ∈ (YP , YF )

we are in the second case. Lemma 7.2 implies that there exists a Y ∈ (YP , YF ) such that

γ (Y ) < 0 if and only if the minimum of the function γ is negative and reached somewhere

between YP and YF . Lemma 7.4 derives a condition for the minimum of γ to be negative

and Lemma 7.5 proves that the minimum is reached in the interval (0, YF ) . Combining

Lemmas 7.4 and 7.5 gives Proposition 7.4. �

Lemma 7.6 If

f ′ (β1) ≤ g′ (β1) , (7.104)

then for all β̂1 ∈ (β1,∞) it holds that

f ′
(
β̂1

)
< g′
(
β̂1

)
. (7.105)

Proof of Lemma 7.6 Define

x = D10−D00

D11−D01
, (7.106)

y = D11−D00

D11−D01
. (7.107)

Then it holds that 0 < y < 1 < x and

f ′ (β1) = x− y + yβ1 log (y) > 0, (7.108)

g′ (β1) = xβ1 log (x) > 0. (7.109)

The proof of f ′ (β1) being positive is given in the proof of Lemma 7.5. The second and

third derivative of f and g are given by

f ′′ (β1) = yβ1 (log (y))2 > 0, (7.110)

f ′′′ (β1) = yβ1 (log (y))3 < 0, (7.111)

g′′ (β1) = xβ1 (log (x))2 > 0, (7.112)

g′′′ (β1) = xβ1 (log (x))3 > 0. (7.113)

First consider the case where f ′ (1) > g′ (1) . Due to equations (7.110)-(7.113) we know

that f ′′ is positive and decreasing and g′′ is positive and increasing so that there exists a

unique β∗
1 for which f ′ (β∗

1) = g′ (β∗
1) and f ′ (β1) < g′ (β1) for all β1 > β∗

1.

When f ′ (1) ≤ g′ (1) we have to prove that for all β1 > 1 it holds that g′ (β1) > f ′ (β1) .

This is certainly true when f ′′ (β1) < g′′ (β1) for all β1 ≥ 1. Due to equations (7.111) and

(7.113) it is sufficient to prove that f ′′ (1) < g′′ (1) . Thus we have to prove that for

0 < y < 1 < x,

x− y + y log (y) ≤ x log (x) , (7.114)
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implies

y (log (y))2 < x (log (x))2 . (7.115)

Using the transformation u = log (x) and v = log (y) gives that for u > 0 and v < 0,

exp (u) (u− 1)− exp (v) (v − 1) ≥ 0, (7.116)

has to imply that

exp (u)u2 − exp (v) v2 > 0. (7.117)

Consider the (u, v)-plane. Now equation (7.116) holds for a combination of values of u

and v on and above the curve exp (u) (1− u) = exp (v) (1− v) and equation (7.117) holds

for u and v values above the curve exp (v) v2 = exp (u)u2. The lemma holds because the

curve exp (u) (1− u) = exp (v) (1− v) is situated above the curve exp (v) v2 = exp (u)u2.

This is the case because the curves intersect at (0, 0) , and the differential du
dv

of the first

curve is smaller than the corresponding differential of the second curve:

v exp (v)

u exp (u)
<

(v2 + 2v) exp (v)

(u2 + 2u) exp (u)
.

For a visualization see Figure 7.7. �

0-1-2-3-4
v

0

0.2

0.4

0.6

0.8

1

1.2

u

exp( u) ( u−1) <exp( v) ( v−1) and exp( u) u2<exp( v) v2

exp( u) ( u−1) <exp( v) ( v−1) and exp( u) u2>exp( v) v2

exp( u) ( u−1) >exp( v) ( v−1) and exp( u) u2>exp( v) v2
exp( u) ( u−1) =exp( v) ( v−1)

exp( u) u2=exp( v) v2

Figure 7.7: The curves exp (u)u2 = exp (v) v2 and exp (u) (u − 1) = exp (v) (v − 1) for u > 0 and v < 0.



Chapter 7. One New Technology and Symmetric Firms 177

Proof of Proposition 7.5 Note that for µ > 0 the relevant β1 interval is
(
1, r

µ

)
, since

lim
σ→∞

β1 (σ) = 1, (7.118)

lim
σ→0

β1 (σ) =
r

µ
. (7.119)

It holds that

f (1) = g (1) = x. (7.120)

From (7.108)-(7.110) and (7.112) we know that f and g are convex and increasing in β1.

Further, Lemma 7.6 implies that only the following cases can occur (see also Figure 7.5):

1. If g′ (1) ≥ f ′ (1) equation (7.45) is satisfied for all β1 ∈
(
1, r

µ

)
, so that the equilib-

rium is always of the preemption type.

2. If f ′ (1) > g′ (1) and f
(

r
µ

)
≥ g
(

r
µ

)
equation (7.45) is never satisfied for a β1 ∈(

1, r
µ

)
, thus the equilibrium is always of the joint investment type.

3. If f ′ (1) > g′ (1) and f
(

r
µ

)
< g
(

r
µ

)
equation (7.45) is satisfied for high values of β1

and not satisfied for low values of β1. �

Proof of Corollary 7.1 Recall the quadratic equation (7.8):

Q (β1) =
1

2
σ2β1 (β1 − 1) + µβ − r = 0.

It holds that

∂Q

∂β1

∂β1

∂σ
+

∂Q

∂σ
= 0.

Since ∂Q
∂β1

> 0 and ∂Q
∂σ

> 0 we have that ∂β1

∂σ
< 0. In the same way we can show that

∂β1

∂µ
< 0 and ∂β1

∂r
> 0 (see also Dixit and Pindyck (1996, p. 144)). �

Proof of Proposition 7.6 Since D10> D11 we know that YM < YJ . Substitution of

equation (7.11) in equation (7.75) yields

φ (YM ) = I
[(

β1

β1−1

)
D10−D01

D10−D00
− 1
]
− I
(

D11−D01

D10−D00

)β1
[(

β1

β1−1

)
D10−D01

D11−D01
− 1
]
. (7.121)

Substitution of the following definitions

ξ = D10−D01

D10−D00
> 1, (7.122)

χ = D11−D01

D10−D00
< 1, (7.123)
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gives

φ (YM) = I
[(

β1

β1−1

)
ξ
(
1− χβ1−1

)− 1 + χβ1

]
. (7.124)

Differentiating with respect to χ gives

∂φ (YM)

∂χ
= I

[−β1ξχ
β1−2 + β1χ

β1−1
]

= −Iβ1χ
β1−2 (ξ − χ) < 0. (7.125)

This implies that φ (YM) is decreasing in χ. Since

lim
χ↓1

φ (YM) = 0,

we have φ (YM) ≥ 0. Therefore YP ≤ YM . �

Proof of Proposition 7.7 The thresholds YL, YM , YF , and YJ are decreasing in β1 since

∂ β1

β1−1

∂β1

= − 1

(β1 − 1)2
< 0. (7.126)

Hence, the only thing that is left to prove is that YP decreases with β1. To do so define

for Y ∈ [0, YF ] and β1 ∈ [0,∞) (cf. (7.65)):

φ (Y, β1) = L (Y )− F (Y )

= Y (D10−D01)
r−µ

− I +
(

Y
YF

)β1
(

YF (D01−D10)
r−µ

+ I
)
. (7.127)

From the definition of YP (β1) we know that

φ (YP (β1) , β1) = 0. (7.128)

Differentiating (7.128) with respect to β1 gives

∂φ (Y, β1)

∂β1

∣∣∣∣
Y =YP (β1)

+
∂φ (Y, β1)

∂Y

∣∣∣∣
Y =YP (β1)

∂YP (β1)

∂β1

= 0. (7.129)

Hence, to say something about the sign of ∂YP (β1)
∂β1

, we need to determine the signs of

∂φ(Y,β1)
∂β1

∣∣∣
Y =YP (β1)

and ∂φ(Y,β1)
∂Y

∣∣∣
Y =YP (β1)

. From Lemma 7.1 we already know that

∂φ (Y, β1)

∂Y

∣∣∣∣
Y =YP (β1)

> 0. (7.130)
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Now let us concentrate at ∂φ(Y,β1)
∂β1

∣∣∣
Y =YP (β1)

. To do so, first substitute equation (7.18) in

(7.127), which gives

φ (Y, β1) = Y (D10−D01)
r−µ

− I (7.131)

+
I
(
Y

β1−1

β1

D11−D01
(r−µ)I

)β1

(β1−1)(D11−D01)
((β1 − 1)D11 − β1D10 +D01) .

From (7.131) it is obtained that

∂φ (Y, β1)

∂β1

=
I
(
Y

β1−1
β1

D11−D01
(r−µ)I

)β1

(β1−1)(D11−D01)
(D11 −D10 (7.132)

+ log
(
Y β1−1

β1

D11−D01

(r−µ)I

)
((β1 − 1)D11 − β1D10 +D01)

)
.

Define

Y (β1) =
β1

β1 − 1

(r − µ) I

D10 −D01
. (7.133)

Substitution of (7.133) into (7.131) gives

φ
(
Y (β1) , β1

)
=

I

β1 − 1

[
1 +
(

D11−D01

D10−D01

)β1
(
β1 − 1− β1

(
D10−D01

D11−D01

))]
=

I

β1 − 1

[
1 + xβ1

(
β1 − 1− β1

x

)]
> 0, (7.134)

where x = D11−D01

D10−D01
and x ∈ (0, 1) . Lemma 7.1 and equation (7.134) imply that

YP (β1) < Y (β1) . (7.135)

From (7.132) we conclude that ∂φ(Y,β1)
∂β1

> 0 for sufficiently low values of Y.

It holds that

∂φ (Y, β1)

∂β1

∣∣∣∣
Y =Y (β1)

> 0, (7.136)

if and only if

ϕ (β1) = D11 −D10

+ log
(

D11−D01

D10−D01

)
((β1 − 1)D11 − β1D10 +D01) > 0. (7.137)

To prove this we first note that the function ϕ (β1) is increasing in β1 :

∂ϕ (β1)

∂β1

= log
(

D11−D01

D10−D01

)
(D11 −D10) > 0.



180 7.B. Lemmas and Proofs

Furthermore ϕ (1) > 0, since

log
(

D11−D01

D10−D01

)
<

D11 −D01

D10 −D01

− 1,

so that (7.137) is valid. Thus equation (7.136) holds. Now, from (7.135) and (7.136) we

have

∂φ (Y, β1)

∂β1

∣∣∣∣
Y =YP (β1)

> 0. (7.138)

Finally, from (7.129), (7.130), and (7.138) it can be concluded that

∂YP (β1)

∂β1

< 0.

�

Proof of Proposition 7.8 The option value of waiting in the monopoly case is given

by equation (7.14). At the moment of investment in the preemption case, the strategic

option value of waiting equals

L (YP )− YPD00

r − µ
<

YPD10

r − µ
− I − YPD00

r − µ

<
YM (D10 −D00)

r − µ
− I

=
I

β1 − 1
.

In the joint investment case we have

J (YJ , YJ)− YJD00

r − µ
=

YJD11

r − µ
− I − YJD00

r − µ

=
I

β1 − 1
.

�



Chapter 8

One New Technology

and Asymmetric Firms

8.1 Introduction

In Nielsen (1999) and in Chapter 7 it is shown that, in a strategic investment new market

model, competition by an identical firm precipitates investment. The purpose of this

chapter is to examine the same issue, namely the effect of introducing another firm on the

original firm’s investment decision, in an asymmetric setting. We introduce asymmetry

by letting the firms have different investment costs, but the methods and results should

be extendable to other types of asymmetry as well.

We find that competition precipitates investment in an asymmetric setting as well,

but in a weaker sense. More precisely, if the investment cost of the new firm is sufficiently

low, competition strictly precipitates investment, but if the investment cost is high, the

introduction of the new firm does not have an effect on the investment strategy of the

old firm. This result holds both when there are negative or positive externalities to

investment. Though, the type of externality influences the critical investment cost level.

In Torvund (1999, Chapters I.4 and II.3) almost the same model is considered. He only

analyzes the negative externalities case and makes explicit assumptions on the demand

and supply functions of the market. Torvund does not explicitly state the strategies that

result in the equilibria. His conclusions coincide with ours for the negative externalities

case.

The remainder of the chapter is organized as follows. In Section 8.2 we present the

model. The value functions and investment thresholds are derived in Section 8.3. The

negative externalities case is analyzed in Section 8.4. Section 8.5 deals with the positive

externalities case and Section 8.6 concludes.
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182 8.2. The Model

8.2 The Model

We consider two risk-neutral firms that can make an irreversible investment in order to

become active on a new market. The firms maximize their value over an infinite planning

horizon and discount at rate r (> 0) . We denote the firms by i and j, with i, j ∈ {1, 2}
and i �= j. The profit flow of firm i at time t (≥ 0) equals

Y (t)DNiNj
, (8.1)

where, for k ∈ {i, j} :

Nk =

{
0 if firm k has not invested,

1 if firm k has invested.
(8.2)

Y (t) behaves according to the following geometric Brownian motion process:

dY (t) = µY (t) dt+ σY (t) dω (t) , (8.3)

Y (0) = y, (8.4)

where y > 0, 0 < µ < r, σ > 0, and the dω (t)’s are independently and identically

distributed according to a normal distribution with mean zero and variance dt. Since we

consider a new market, we set D00 = D01 = 0. The investment cost for firm i equals Ii,

with i ∈ {1, 2} . We assume without loss of generality that I2 > I1 > 0.

8.3 Value Functions and Investment Thresholds

We solve the model described in Section 8.2 using the game theoretic concept of timing

games. The approach applied has been introduced in Appendix 4.A. In a timing game

the players must decide when to make a single move. The player that moves first is called

leader, and the other is the follower. Players can also decide to move simultaneously.

First we introduce some more notation. We denote by Lj (Y (t)) the payoff at time t

to player j if none of the players has moved before time t and player j moves alone at

time t. The payoff of the follower then is denoted by Fi (Y (t)) . When both players move

simultaneously at time t their payoffs equal M1 (Y (t)) for firm 1 and M2 (Y (t)) for firm

2. In the remainder of this chapter we omit the time dependence of Y when there is no

confusion possible.

Dynamic games are usually solved backwards and this one is no exception. We start

with deriving the leader, follower and joint investment curves for the model. Subsection

8.3.1 is devoted to the value of being follower, Subsection 8.3.2 to the value of being

leader, and the value of joint investment is treated in Subsection 8.3.3.
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8.3.1 Follower

Without loss of generality assume that firm j has and firm i has not invested. The problem

facing the follower is an optimal stopping problem (see Appendix 2.A), which conjectures

the existence of a threshold YFi
such that investing is optimal for firm i whenever Y ≥ YFi

and waiting is optimal otherwise. Solving this optimal stopping problem, which is a

simplification of the one presented and solved in Appendix 7.A, gives rise to the following

value function for firm i

Fi (Y ) =

{
Ai1Y

β1 if Y < YFi
,

Y D11

r−µ
− Ii if Y ≥ YFi

,
(8.5)

where β1 is the positive root of the following quadratic equation

1

2
σ2β2 +

(
µ− 1

2
σ2

)
β − r = 0. (8.6)

Solving the value matching and smooth pasting conditions (see Appendix 2.A) simulta-

neously gives the following expressions for the threshold and the constant

YFi
=

β1

β1 − 1

(r − µ) Ii
D11

, (8.7)

Ai1 =
Y

1−β1
Fi

β1

D11

r − µ
. (8.8)

Using the same steps as in the proof of Proposition 7.1 one can prove that YFi
is unique.

The optimal investment time TFi
of firm i as follower is equal to

TFi
= inf (t|Y (t) ≥ YFi

) . (8.9)

8.3.2 Leader

Firm j, being the leader, knows the optimal response of firm i on its investment at time

t. The value of firm j at Y (t) = Y if it invests at time t equals

Lj (Y ) = E


max(TFi

,t)∫
τ=t

Y (τ)D10 exp (−r (τ − t)) dτ − Ij

+

∞∫
τ=max(TFi

,t)

Y (τ)D11 exp (−r (τ − t)) dτ

∣∣∣∣∣∣∣∣Y (t) = Y

 . (8.10)

Rewriting gives (see Appendix 7.A.2 for details)

Lj (Y ) =

 Y D10

r−µ
− Ij +

(
Y
YFi

)β1 YFi
(D11−D10)

r−µ
if Y < YFi

,

Y D11

r−µ
− Ij if Y ≥ YFi

.
(8.11)
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8.3.3 Joint Investment

The value of firm i ∈ {1, 2} if both firms invest simultaneously is given by

Mi (Y ) =
Y D11

r − µ
− Ii. (8.12)

The optimal joint investment time for firm i equals TFi
, which thus equals the follower’s

threshold. The new market assumption is the reason for this. Assume for a moment that

both firms are already active on the output market before the first investment is made.

Then the investment of the first firm decreases the profit flow of the second firm. This

decrease in its profit flow gives the second firm an incentive to make its investment earlier.

The reason is that the gain of the investment is larger. For a more formal treatment and

proof of this phenomenon see Chapter 7.

8.4 Negative Externalities

In the negative externalities case the firms compete in the traditional sense. While we

do not model the product market explicitly, the assumption that profit flow falls upon

investment by a second firm is compatible with both a fall in market share and a fall in

price due to increase in supply. In the model the negative externalities case is characterized

by the following equation

D10 > D11. (8.13)

As in the previous chapter the equilibria of the investment game depend on the relative

positions of the leader, follower and joint investment curves of each firm. The following

proposition gives the three different cases for the curves of firm 2 that can occur. The

proof is given in Appendix 8.A.

Proposition 8.1 Let

I∗2 =
I1

D11

(
D

β1
10 −D

β1
11

β1 (D10 −D11)

) 1
β1−1

. (8.14)

Then it holds that I∗2 > I1 and moreover,

1. if I2 ∈ (I∗2 ,∞) it holds that L2 (Y ) < F2 (Y ) for all Y ∈ (0, YF2) (case 1, see Figure

8.1);

2. if I2 = I∗2 it holds that L2 (YP2) = F2 (YP2) for some unique YP2 ∈ (0, YF2) (case 2,

see Figure 8.2);
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3. if I2 ∈ (I1, I
∗
2 ) it holds that L2 (Y ) > F2 (Y ) for all Y ∈ (YP21 , YP22) and L2 (Y ) <

F2 (Y ) for all Y ∈ (0, YP21) ∪ (YP22 , YF2) with 0 < YP21 < YP22 < YF1 (case 3, see

Figure 8.3).

0 YF2YF1
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−I2

0L
2
(Y

),
F
2
(Y
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M
2
(Y

)

L2( Y)

F2( Y)

M2( Y)

Figure 8.1: Leader, follower and joint investment curves of firm 2 in case 1.

In cases 1 and 2 the investment cost of firm 2 is relatively to the investment cost of firm

1 that high that firm 2’s leader curve never exceeds its follower curve. For Y values larger

than or equal to YF1 the leader value of the second firm equals its joint investment curve.

From YF2 on the three payoff functions coincide. Consequently, firm 2 never becomes

leader in any of these two cases and always invests at time TF2 .

In case 3 the investment costs of both firms are almost similar. It turns out that there

exists a Y for which the firm 2’s leader curve exceeds its follower curve. For Y = 0 as well

as for Y = YF2 the follower value of firm 2 exceeds the leader value. These observations

imply the existence of the preemption interval (YP21 , YP22) , which on its turn results in

the following corollary.

Corollary 8.1 Firm 2 has only incentives to preempt in case 3.

It turns out that firm 1 has always an incentive to preempt. This is formally stated

in Proposition 8.2, which is proved in Appendix 8.A.

Proposition 8.2 It holds that L1 (Y ) > F1 (Y ) for Y ∈ (YP1 , YF2) with YP1 ∈ (0, YF1)

(see Figure 8.4).
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Figure 8.2: Leader, follower and joint investment curves of firm 2 in case 2.
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Figure 8.3: Leader, follower and joint investment curves of firm 2 in case 3.
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Figure 8.4: Leader, follower and joint investment curves of firm 1.

As stated above, in cases 1 and 2 of Proposition 8.1 firm 2 will never try to preempt

firm 1 with its investment. Therefore firm 1 can optimize its investment time without

needing to take into account the investment strategy of firm 2. Therefore this equilibrium

is similar to the open loop equilibrium of the game (see Chapter 4). Solving the optimal

stopping problem that firm 1 faces (see Appendix 7.A.2) leads to the following investment

threshold

YL1 =
β1

β1 − 1

(r − µ) I1

D10
. (8.15)

This threshold leads to the following optimal investment time for firm 1

TL1 = inf (t|Y (t) ≥ YL1) . (8.16)

Note that equations (8.7), (8.13), and (8.15) imply that YL1 < YF1 < YF2 , so that (indeed)

it holds that TL1 ≤ TF2 .

Firm 2 will try to preempt firm 1 in case 3, whenever firm 1 has not invested before

time

TP21 = inf (t|Y (t) ∈ [YP21 , YP22 ]) , (8.17)

since for firm 2 the leader curve exceeds its follower curve on the interval (YP21 , YP22) .

Proposition 8.3 There exists a unique I∗∗2 ∈ (I1, I
∗
2 ) such that
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1. YL1 > YP21 if and only if I2 ∈ (I1, I
∗∗
2 ) (case 3.1);

2. YL1 ≤ YP21 if and only if I2 ∈ [I∗∗2 , I∗2 ) (case 3.2).

Proposition 8.3 (the proof is given in Appendix 8.A) implies that the equilibrium of

case 3.2 is equal to the equilibrium of the cases 1 and 2. The equilibrium of case 3.1

depends on the initial value of the geometric Brownian motion process.

If the initial value y is below or equal to YP21 firm 1 will invest at time TP21 and firm 2

at time TF2 . Firm 1 is willing to invest first at any level larger than or equal to YP1 , since

its leader payoff exceeds its follower payoff for these Y ’s. Since firm 1 knows that firm 2

does not invest before time TP21 firm 1 will not invest before that time TP21 either. For

firm 1 it is optimal to invest with probability one at time TP21 and consequently firm 2

does not invest at that time but at time TF2 .

For an initial value y ∈ (YP21 , YP22) both firms want to become leader and therefore

both firms invest with positive probability at time t = 0. The result is that the probability

that both firms invest simultaneously is strictly positive. The exact probability that a

firm becomes leader or follower and the probability that there is joint investment are given

below.

Firm 2’s follower payoff exceeds its leader payoff for y ∈ [YP22 , YF2) and therefore firm

2 invests at time TF2 and since YL1 ≤ YP22 (see equations (8.15) and (8.36)) firm 1 invests

at time t = 0.

It is optimal for both firms to invest at time t = 0 if the initial value y is larger than

or equal to YF2 .

All the equilibria are summarized in the following theorem. The equilibrium strategies

that lead to the equilibria are given in Appendix 8.B.1.

Theorem 8.1 For y ≥ 0, let

α1 (y) =
L2 (y)− F2 (y)

L2 (y)−M2 (y)
, (8.18)

α2 (y) =
L1 (y)− F1 (y)

L1 (y)−M1 (y)
. (8.19)

The equilibrium outcome in the negative externalities case is as follows:

1. if I2 ∈ [I∗∗2 ,∞) (with probability one) firm 1 invests at time TL1 and firm 2 invests

at time TF2 ;

2. if I2 ∈ (I1, I
∗∗
2 ) the equilibrium outcome depends on the initial value of the geometric

Brownian motion process:
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(a) if y ≤ YP21 (with probability one) firm 1 invests at time TP21 and firm 2 invests

at time TF2 ;

(b) if YP21 < y < YP22 there are three possible outcomes:

i. with probability α1(y)(1−α2(y))
α1(y)+α2(y)−α1(y)α2(y)

, firm 1 invests at time 0 and firm 2

invests at time TF2 ;

ii. with probability α2(y)(1−α1(y))
α1(y)+α2(y)−α1(y)α2(y)

, firm 1 invests at time TF1 and firm 2

invests at time 0;

iii. with probability α1(y)α2(y)
α1(y)+α2(y)−α1(y)α2(y)

, both firm 1 and firm 2 invest at time

0;

(c) if YP22 ≤ y < YF2 (with probability one) firm 1 invests at time 0 and firm 2

invests at time TF2 ;

(d) if y ≥ YF2 (with probability one) both firm 1 and firm 2 invest at time 0.

8.5 Positive Externalities

In some situations an investment is more profitable when more firms have invested. This

situation could arise if the firms produce complementary products or if there are network

externalities. The positive externalities case is characterized by

D11 ≥ D10. (8.20)

Compared to the negative externalities case, the thresholds YLi
and YFi

switch places

(i ∈ {1, 2}). The reason is that joint investment is more attractive than single investment

in this section. To derive the equilibria we need to know whether the leader threshold of

firm i is smaller than the follower threshold of firm j. The following proposition states the

possible cases. The proofs are given in Appendix 8.A.

Proposition 8.4 Let

I∗1 = I2
D10

D11

. (8.21)

Then it holds that I∗1 ≤ I2 and moreover,

1. if I1 ∈ (0, I∗1 ) it holds that YL1 < YF2 (case 4, see Figure 8.5), where YL1 and YF2

are given by equations (8.15) and (8.7), respectively;

2. if I1 ∈ [I∗1 , I2) it holds that YL1 ≥ YF2 (case 5, see Figure 8.6).
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Figure 8.5: Leader, follower and joint investment curves of firm 1 in case 4.
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Figure 8.6: Leader, follower and joint investment curves of firm 1 in case 5.
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Due to equation (8.20) firm i’s leader curve is situated below its follower curve for all

Y ∈ [0, YFj

)
. In case 4 the investment cost of firm 1 is low enough to trigger investment

by firm 1 before time TF2 . This contrary to case 5 where firm 1’s leader trigger is larger

than firm 2’s follower trigger.

The following proposition states that the follower threshold of firm 1 is always smaller

than firm 2’s leader threshold.

Proposition 8.5 It holds that YL2 > YF1 (see Figure 8.7), where YF1 is defined by equa-

tion (8.7) and YL2 equals

YL2 =
β1

β1 − 1

(r − µ) I2

D10
. (8.22)
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Figure 8.7: Leader, follower and joint investment curves of firm 2.

From the propositions it follows that in case 4 firm 1 invests at time TL1 , although

firm 1 prefers to become follower there: L1 (YL1) < F1 (YF1) . The reason is that firm 1

knows for sure that firm 2 is not going to invest before time TF2 . Therefore firm 1 can

choose between delaying its investment and investing at TL1 . Due to the definition of YL1

it turns out that investing at time TL1 is the optimal action for firm 1. Notice that the

game is an attrition game for which there does not exist a symmetric equilibrium (see

Appendix 4.A.3). Firm 2 invests at time TF2 .

In case 5 the firms invest simultaneously at time TF2 , one firm initiates the investment

and the other will make it joint investment. The following theorem formally states the

equilibria outcomes (in Appendix 8.B.2 the equilibrium strategies are presented).
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Theorem 8.2 The equilibrium outcome in the positive externalities case is as follows:

1. if I1 ∈ (0, I∗1 ) (with probability one) firm 1 invests at time TL1 and firm 2 invests at

time TF2 ;

2. if I1 ∈ [I∗1 , I2) (with probability one) both firm 1 and firm 2 invest at time TF2 .

Note that it is not clear which of the firms has the highest payoff in case 4. There are

two opposite effects. On the one hand firm 1 invests first and therefore gets a payoff equal

to its leader value, which is lower than its follower payoff, and firm 2 gets its follower

payoff, which is higher than its leader payoff. On the other hand the investment costs of

firm 1 are lower than those of firm 2 which implies that all the payoff curves of firm 1 are

situated above those of firm 2. It is not clear which effect dominates.

8.6 Conclusions

We are now in a position to state our main result. Let us say, that competition precipitates

investment if the first investment in a two firm model is never made later than in the

corresponding one firm model. Then we have the following theorem.

Theorem 8.3 For any D10, D11 and any I1, I2 competition precipitates investment.

At this point, it may be useful to briefly review the arguments leading to the conclu-

sion that competition weakly precipitates investment even when firms are allowed to be

asymmetric.

We found that, when firm 2’s investment costs are very high, its presence has no

strategic effect on the investment behavior of firm 1. Firm 1 simply proceeds and invests

at its most preferred investment threshold. Crucially, this most preferred investment

threshold turns out to be the same as in the model in which firm 1 is the only firm in

both the case of negative and positive externalities.

We proceeded to analyze the cases in which firm 2 has low enough investment costs

for its presence to have a strategic effect. In both the case of negative and positive

externalities, this effect turns out to precipitate investment, but for very different reasons.

When there are negative externalities, the threat of preemption pushes firm 1 to invest

earlier than it would otherwise have done. When there are positive externalities, both

firms invest early in anticipation that the other firm will invest early as well.
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Appendices

8.A Lemma and Proofs

Lemma 8.1 For u > v > 0 and a > 1 it holds that

ua − va − auva−1 + ava > 0. (8.23)

Proof of Lemma 8.1 Equation (8.23) holds if and only if (divide by va)(u
v

)a
− 1− a

(u
v

)
+ a > 0.

Define w = u
v
and for w ≥ 1 the function g (w) = wa− 1− aw+ a. It is easy to check that

for w > 1

∂g (w)

∂w
= awa−1 − a > 0,

and g (1) = 0. Thus equation (8.23) and thereby the lemma holds. �

Proof of Proposition 8.1 Define the function φ2 : [0, YF1 ] → IR as follows

φ2 (Y ) = L2 (Y )− F2 (Y ) . (8.24)

Substitution of equations (8.5) and (8.11) into the last equation gives

φ2 (Y ) =
Y D10

r − µ
− I2 +

(
Y

YF1

)β1 YF1 (D11 −D10)

r − µ
−
(

Y

YF2

)β1 YF2D11

β1 (r − µ)
. (8.25)

Then it follows that

φ2 (0) = −I2 < 0, (8.26)

φ2 (YF1) =
YF1D11

r − µ
− I2 −

(
YF1

YF2

)β1 YF2D11

β1 (r − µ)
< 0, (8.27)

where the last inequality sign is a direct result of the definition of YF2 . The first and

second derivative of φ2 are given by

∂φ2 (Y )

∂Y
=

D10

r − µ
+ β1Y

β1−1

(
Y

1−β1
F1

(D11 −D10)

r − µ
− Y

1−β1
F2

D11

β1 (r − µ)

)
, (8.28)

∂2φ2 (Y )

∂Y 2
= β1 (β1 − 1)Y β1−2

(
Y

1−β1
F1

(D11 −D10)

r − µ
− Y

1−β1
F2

D11

β1 (r − µ)

)
< 0. (8.29)

Thus φ2 is strictly concave. Solving for the maximum yields

YP2 =
β1

β1 − 1

(r − µ) I2

D10

. (8.30)
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From equations (8.7), (8.13), and (8.30) it follows that YP2 ∈ (0, YF1) . Substituting the

expressions for YP2 , YF1 , and YF2 in φ2 (YP2) and set this value equal to zero gives

β1I2

β1 − 1
− I2 +

(
D11I2

D10I1

)β1 β1I1 (D11 −D10)

(β1 − 1)D11
−
(
D11

D10

)β1 I2

β1 − 1
= 0. (8.31)

Solving for I2 yields the expression for I∗2 :

I∗2 =
I1

D11

(
D

β1
10 −D

β1
11

β1 (D10 −D11)

) 1
β1−1

. (8.32)

Therefore the three cases of Proposition 8.1 apply. The last step is to prove that I∗2 > I1.

From equation (8.32) it follows that I∗2 > I1 if and only if(
D

β1
10 −D

β1
11

β1 (D10 −D11)

) 1
β1−1

> D11. (8.33)

Rewriting equation (8.33) leads to

D
β1
10 −D

β1
11 − β1D10D

β1−1
11 + β1D

β1
11 > 0. (8.34)

Due to Lemma 8.1 with u = D10, v = D11, and a = β1, equation (8.34) always holds. �

Proof of Proposition 8.2 Define the function φ1 : [0, YF2 ] → IR as follows

φ1 (Y ) = L1 (Y )− F1 (Y ) . (8.35)

Substitution of equations (8.5) and (8.11) into equation (8.35) gives

φ1 (Y ) =


Y D10

r−µ
− I1 +

(
Y
YF2

)β1 YF2
(D11−D10)

r−µ
−
(

Y
YF1

)β1 YF1
D11

β1(r−µ)
if Y ∈ [0, YF1) ,

Y (D10−D11)
r−µ

+
(

Y
YF2

)β1 YF2
(D11−D10)

r−µ
if Y ∈ [YF1 , YF2 ] .

(8.36)

The first and second derivative of φ1 are equal to

∂φ1 (Y )

∂Y
=


D10

r−µ
+ β1Y

β1−1

(
Y

1−β1
F2

(D11−D10)

r−µ
− Y

1−β1
F1

D11

β1(r−µ)

)
if Y ∈ [0, YF1) ,

D10−D11

r−µ
+ β1Y

β1−1 Y
1−β1
F2

(D11−D10)

r−µ
if Y ∈ [YF1 , YF2 ] ,

(8.37)

∂2φ1 (Y )

∂Y 2
=


β1 (β1 − 1)Y β1−2

(
Y

1−β1
F2

(D11−D10)

r−µ
− Y

1−β1
F1

D11

β1(r−µ)

)
if Y ∈ (0, YF1) ,

β1 (β1 − 1)Y β1−2 Y
1−β1
F2

(D11−D10)

r−µ
if Y ∈ (YF1 , YF2 ] .

(8.38)
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The last equation implies that φ1 is strictly concave on the interval [0, YF2] . Due to the

derivation of YF1 we know that

lim
Y ↑YF1

φ1 (Y ) = lim
Y ↓YF1

φ1 (Y ) , (8.39)

lim
Y ↑YF1

∂φ1 (Y )

∂Y
= lim

Y ↓YF1

∂φ1 (Y )

∂Y
. (8.40)

Further, it holds that

φ1 (0) = −I1 < 0, (8.41)

φ1 (YF2) = 0, (8.42)

∂φ1 (Y )

∂Y

∣∣∣∣
Y =YF2

= (β1 − 1)
D11 −D10

r − µ
< 0. (8.43)

Equations (8.41), (8.42), and (8.43) imply the existence of YP1 . The uniqueness follows

from the strict concavity of φ1. �

Proof of Proposition 8.3 It holds that YL1 ≤ YP21 if and only if F2 (YL1) ≥ L2 (YL1) .

Let φ2 be given by equation (8.24). Then we have that

φ2 (YL1) =
β1I1

β1 − 1
− I2 +

(
D11

D10

)β1 β1I1 (D11 −D10)

(β1 − 1)D11

−
(
I1D11

I2D10

)β1 I2

β1 − 1
. (8.44)

Multiplying by β1−1
I2

D
β1
10 gives

I1

I2

β1D
β1
10 − (β1 − 1)D

β1
10 +D

β1−1
11

I1

I2

β1 (D10 −D11)−
(
I1

I2

)β1

D
β1
11 . (8.45)

Define z = I1
I2

and the function f : [0, 1] → IR as

f (z) = zβ1D
β1
10 − (β1 − 1)D

β1
10 + zβ1 (D10 −D11)D

β1−1
11 − zβ1D

β1
11 . (8.46)

Then we have for z ∈ [0, 1] :

∂f (z)

∂z
= β1D

β1
10 + β1 (D10 −D11)D

β1−1
11 − β1z

β1−1D
β1
11 , (8.47)

∂2f (z)

∂z2
= −β1 (β1 − 1) zβ1−2D

β1
11 < 0. (8.48)

Since

∂f (z)

∂z

∣∣∣∣
z=1

= β1D
β1
10 + β1 (D10 −D11)D

β1−1
11 − β1D

β1
11

= β1D10

(
D

β1−1
10 −D

β1−1
11

)
> 0, (8.49)



196 8.B. Equilibrium Strategies

we know that f is strictly concave and increasing on the interval [0, 1] . Further, it holds

that

f (0) = − (β1 − 1)D
β1
10 < 0, (8.50)

f (1) = D
β1
10 − β1 (D10 −D11)D

β1−1
11 −D

β1
11 > 0. (8.51)

The last inequality follows from Lemma 8.1 with u = D10, v = D11, and a = β1. The

derived properties of f guarantee the existence and uniqueness of a z∗ such that f (z∗) = 0.

The threshold I∗∗2 equals I1
z∗ . �

Proof of Proposition 8.4 From equations (8.7) and (8.15) we derive that YF2 = YL1 if

and only if I1 = I∗1 , where

I∗1 = I2
D10

D11

. (8.52)

Thus the two cases of Proposition 8.4 apply. From equation (8.20) it follows that I∗1 ≤ I2.�

Proof of Proposition 8.5 The threshold YL2 can be derived in the same way as YL1 .

Therefore

YL2 =
β1

β1 − 1

(r − µ) I2

D10

. (8.53)

Equations (8.7), (8.20), and (8.53) imply that YL2 > YF1 . �

8.B Equilibrium Strategies

The equilibrium strategies for an asymmetric timing game are derived in the same way as

in a symmetric timing game. For details we refer to Appendix 4.A and Simon (1987a,b).

8.B.1 Negative Externalities

For the case of negative externalities the equilibrium strategies are stated below. To derive

these strategies the steps presented in Appendix 4.A can be used.

1. If I2 ∈ [I∗∗2 ,∞) the equilibrium strategies of firms 1 and 2 in the negative external-



Chapter 8. One New Technology and Asymmetric Firms 197

ities case for t ≥ 0 are given by

G1 (t) =

{
0 if t < TL1 ,

1 if t ≥ TL1 ,

α1 (t) =

{
0 if t < TL1 ,

1 if t ≥ TL1 ,

G2 (t) =

{
0 if t < TF2 ,

1 if t ≥ TF2 ,

α2 (t) =

{
0 if t < TF2 ,

1 if t ≥ TF2 .

2. If I2 ∈ (I1, I
∗∗
2 ) four different cases should be analyzed.

(a) If y ∈ (0, YP21 ] the equilibrium strategies for t ≥ 0 are given by

G1 (t) =

{
0 if t < TP21 ,

1 if t ≥ TP21 ,

α1 (t) =

{
0 if t < TP21 ,

1 if t ≥ TP21 ,

G2 (t) =

{
0 if t < TF2 ,

1 if t ≥ TF2 ,

α2 (t) =

{
0 if t < TF2 ,

1 if t ≥ TF2 .

(b) If y ∈ (YP21 , YP22) the equilibrium strategies are for t ≥ 0 given by

G1 (t) = 1,

α1 (t) =
L2 (t)− F2 (t)

L2 (t)−M2 (t)
,

G2 (t) = 1,

α2 (t) =
L1 (t)− F1 (t)

L1 (t)−M1 (t)
.

(c) If y ∈ [YP22 , YF2) the equilibrium strategies for t ≥ 0 are given by

G1 (t) = 1,

α1 (t) = 1,

G2 (t) =

{
0 if t < TF2 ,

1 if t ≥ TF2 ,

α2 (t) =

{
0 if t < TF2 ,

1 if t ≥ TF2 .
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(d) If y ∈ [YF2 ,∞) the equilibrium strategies for t ≥ 0 are equal to

G1 (t) = 1,

α1 (t) = 1,

G2 (t) = 1,

α2 (t) = 1.

8.B.2 Positive Externalities

For the case of positive externalities the equilibrium strategies are stated below. To derive

these strategies the steps presented in Appendix 4.A can be used.

1. If I1 ∈ (0, I∗1 ) the equilibrium strategies for t ≥ 0 are equal to

G1 (t) =

{
0 if t < TL1 ,

1 if t ≥ TL1 ,

α1 (t) =

{
0 if t < TL1 ,

1 if t ≥ TL1 ,

G2 (t) =

{
0 if t < TF2 ,

1 if t ≥ TF2 ,

α2 (t) =

{
0 if t < TF2 ,

1 if t ≥ TF2 .

2. If I1 ∈ [I∗1 , I2) the equilibrium strategies for t ≥ 0 are equal to

Gi (t) =

{
0 if t < TF2 ,

1 if t ≥ TF2 ,

αi (t) =

{
0 if t < TF2 ,

1 if t ≥ TF2 ,

with i ∈ {1, 2} .



Chapter 9

Two New Technologies

9.1 Introduction

A firm that buys a new technology today faces the risk that a much better technology

becomes available tomorrow. The fact that this can happen provides an incentive to delay

the investment. To include this kind of mechanism, the chapter extends the models of

Chapters 7 and 8 by incorporating an additional technology that becomes available at an

unknown point of time in the future. This means that our model contains two different

technologies that can be adopted, which are the currently available technology and a more

efficient technology that becomes available at a future point of time. At the moment a

firm invests, it enters the market, so, like in Chapter 8 we are considering a new market

model. The reason is that we want to keep the model as simple as possible such that we

are still able to point out the effects of adding an extra new technology. In this framework

the possible invention of a more efficient technology raises the option value of waiting to

invest in the current technology, but on the other hand the presence of a competitor may

induce the firm to invest quickly, and thus forget about future technological progress.

The organization of the chapter is as follows. The model is presented in Section

9.2. After some preliminary analysis in Sections 9.3 and 9.4, the outcome of the game for

different probabilities concerning the future appearance of the new technology is presented

in Section 9.5. Section 9.6 collects the economic implications and Section 9.7 concludes.

9.2 The Model

We consider two identical, risk neutral and value maximizing firms that can make an

investment expenditure I (> 0) to become active on a market. We denote the firms by i

and j, with i, j ∈ {1, 2} and i �= j. The firms discount future profits at rate r (> 0) . At the

beginning of the game, entering the market means producing with the existing technology

199
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1. However, the decision to invest in technology 1 will be influenced by technological

progress. Adopting technology 1 would have been a bad decision if a little later a much

better technology becomes available. In our model technological progress is included as

follows. At the stochastic time T (> 0) a new and better technology 2 becomes available

for the firms. Time T is distributed according to an exponential distribution with mean
1
λ
(> 0), so that the arrival of technology 2 follows a Poisson process with parameter λ.

To be able to get analytical economic results we assume that firms can invest only

once and that the investment costs of both technologies are equal. Concerning the profit

flow it is assumed that it is stochastically evolving over time according to a geometric

Brownian motion process. The profit flow of firm i at time t (≥ 0) equals

πi (t) = Y (t)DNiNj
, (9.1)

where Nk denotes the technology that firm k (∈ {i, j}) is using. Hence, Nk ∈ {0, 1, 2},
where 0 means that the firm is not active. Y (t) follows a geometric Brownian motion

process

dY (t) = µY (t) dt+ σY (t) dω (t) , (9.2)

Y (0) = y, (9.3)

where µ (∈ (0, r)) is the drift parameter, σ (> 0) is the volatility parameter, y (> 0) is the

starting value, and dω (t) is an increment of a Wiener process. Thus dω (t) is distributed

according to a normal distribution with mean zero and variance dt. In the remainder of

the chapter we omit the time dependence of Y (t) whenever there is no confusion possible.

We make the following assumptions on the D’s. First, a firm makes the highest

amount of profits with a given technology if the other firm is not active (monopoly).

It also holds that, given its own technology, profits are lowest when the other firm is

a strong competitor, thus producing with the efficient technology 2. Second, given the

technology of the competitor, the firm’s profits are higher when it produces with the

modern technology 2. In this way the following inequalities are obtained:

D20 > D21 > D22

∨ ∨ ∨
D10 > D11 > D12

(9.4)

Finally, since it is a new market model, firms do not earn anything as long as they have

not adopted a technology. This implies that, for Nk ∈ {0, 1, 2} :

D0Nk
= 0. (9.5)
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9.3 Second Technology Being Available

Three cases are possible when the second technology is already available. First, we con-

sider the case where no firm has invested before time T , followed by the case where only

the leader has invested before T . Finally, we give the payoff for the case that both firms

have already invested before T .

9.3.1 No Investment before Time T

Since t ≥ T, technology 2 is already available for adoption. This technology is more

efficient than technology 1, and therefore the firms will never invest in technology 1.

Hence, a game arises in which both firms consider entering a market by investing in one

available technology, where the profit flow evolves stochastically over time. In fact, such

a game is considered in Dixit and Pindyck (1996, Chapter 9), see also Chapter 7. In

Chapter 7 it is shown that the expected value for each firm equals the follower value:

Φ22 (Y ) =

{
A22Y

β1 if Y < Y F
22 ,

Y D22

r−µ
− I if Y ≥ Y F

22 ,
(9.6)

where

Y F
22 =

β1

β1 − 1

(r − µ) I

D22

, (9.7)

A22 =
(
Y F

22

)−β1

(
Y F

22D22

r − µ
− I

)
, (9.8)

β1 =
1

2
− µ

σ2
+

√(
µ

σ2
− 1

2

)2

+
2r

σ2
. (9.9)

9.3.2 One Investment before Time T

Here the leader has already invested in technology 1. Now the problem of the follower is

in fact equal to that of a monopolist that considers entering a market where the profit

flow equals Y D21. From the analysis of this standard investment problem (see, e.g., Dixit

and Pindyck (1996)) it is obtained that the value of the follower equals

Φ12 (Y ) =

{
A12Y

β1 if Y < Y F
12 ,

Y D21

r−µ
− I if Y ≥ Y F

12 ,
(9.10)

where

Y F
12 =

β1

β1 − 1

(r − µ) I

D21

, (9.11)

A12 =
(
Y F

12

)−β1

(
Y F

12D21

r − µ
− I

)
. (9.12)
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The value of the leader follows automatically:

Λ12 (Y ) =

{
Y D10

r−µ
+B12Y

β1 if Y < Y F
12 ,

Y D12

r−µ
if Y ≥ Y F

12 .
(9.13)

When Y < Y F
12 the profit flow is too low for the follower to invest. Therefore the leader

enjoys monopoly profits. If the leader receives these forever, the leader’s total profits

would equal Y D10

r−µ
. But it has to be taken into account that in the future Y could reach

Y F
12 at a certain point of time. Then the follower will enter the market so that the

leader’s monopoly profits will be reduced. The term B12Y
β1 is the correction factor that

incorporates this reduction into the firm’s payoff for Y < Y F
12 . Therefore, the constant

B12 is negative and, due to the fact that the leader’s value function is continuous at Y F
12 ,

it can be derived that

B12 =
(
Y F

12

)1−β1 D12 −D10

r − µ
. (9.14)

9.3.3 Two Investments before Time T

The implication is that both firms have already invested in technology 1. Therefore, the

value of each firm equals

Y D11

r − µ
. (9.15)

9.4 Second Technology Not Being Available

First, the follower’s problem is analyzed, followed by the problem of the leader. Then we

consider the joint mover payoff, and finally we determine the expected payoff in case both

firms wait for technology 2.

9.4.1 Follower

First, we determine the follower’s value if the follower waits for technology 2, while the

leader has already invested in technology 1. Then we consider the case where the follower

can also invest in technology 1, and determine the scenario under which investing in

technology 1 can be optimal for the follower.

Follower Waiting for Technology 2

The value of the follower is denoted by F12 (Y ) , and must satisfy the following Bellman

equation

rF12 (Y ) = lim
dt↓0

1

dt
E [dF12 (Y )] . (9.16)
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Itô’s lemma (see Appendix 2.A) tells us that (for the definition of Φ12 (Y ) see (9.10)):

E [dF12 (Y )] = (1− λdt)

(
∂F12 (Y )

∂Y
µY dt+

∂2F12 (Y )

∂Y 2

1

2
σ2Y 2dt

)
+λdt (Φ12 (Y )− F12 (Y )) + o (dt) . (9.17)

Substitution of (9.17) in (9.16) gives

∂F12 (Y )

∂Y
µY +

∂2F12 (Y )

∂Y 2

1

2
σ2Y 2 − (r + λ)F12 (Y ) + λΦ12 (Y ) = 0. (9.18)

Using the two possible expressions for Φ12 (Y ) (see (9.10)), the solution of (9.18) equals

F12 (Y ) =

{
γ1Y

β∗
1 + A12Y

β1 if Y < Y F
12 ,

γ2Y
β∗

2 + λ
r+λ−µ

Y D21

r−µ
− λI

r+λ
if Y ≥ Y F

12 ,
(9.19)

where β∗
1 (β∗

2) is the positive (negative) solution of

1

2
σ2β∗ (β∗ − 1) + µβ∗ − (r + λ) = 0. (9.20)

Expressions for γ1 and γ2 are found by solving the continuity and the differentiability

conditions for F12 at Y = Y F
12 . This is done in Appendix 9.A.1. It turns out that γ1 < 0

and γ2 > 0. In equation (9.19) we see that for Y < Y F
12 the expected value of the follower

consists of two parts. The second part equals the value of the option to adopt technology

2 (cf. equation (9.10)). The first part is a (negative) correction term, due to the fact that

technology 2 is not available yet. Whenever Y is above the threshold Y F
12 the follower is

going to adopt technology 2 at the moment that it becomes available. This last observation

explains the last two terms of equation (9.19). The second term equals the expected

present value of the profit flows generated from time T onwards:

E

[
exp (−rT )

Y (T )D21

r − µ

∣∣∣∣Y (0) = Y

]
=

D21

r − µ
E [exp (−rT ) Y (T )|Y (0) = Y ]

=
D21

r − µ

∞∫
t=0

λ exp (−λt) exp (−rt)E [Y (t)|Y (0) = Y ] dt

=
D21

r − µ

∞∫
t=0

λ exp (−λt) exp (−rt)Y exp (µt) dt

=
λ

r + λ− µ

Y D21

r − µ
. (9.21)
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The third term is the expected present value of the investment cost that firm has to pay

at time T in order to adopt technology 2:

E [I exp (−rT )]

= I

∞∫
t=0

λ exp (−λt) exp (−rt) dt

=
λ

r + λ
I. (9.22)

Please note the difference between equations (9.21) and (9.22), i.e. the factors λ
r+λ−µ

and
λ

r+λ
. In equation (9.21) the µ is subtracted from the denominator, in order to take into

account the expected increase of Y .

If currently it holds that Y (t) ≥ Y F
12 , it can still be the case that Y lies below the

threshold Y F
12 at the time that the second technology arrives. Therefore, the correction

term γ2Y
β∗

2 , is added to the follower’s value. This correction term is positive, since it

reflects the fact that the firm is not committed to make an investment. Undertaking the

investment would be suboptimal when Y is below Y F
12 at the moment the new technology

is invented. Thus γ2Y
β∗

2 values flexibility. Notice that this correction factor vanishes when

Y goes to infinity. This for the reason that the probability that Y (T ) is below Y F
12 goes

to zero when Y goes to infinity.

Follower Considering Technology 1 to be Interesting

When Y increases, the opportunity costs of waiting rise. This could imply that, given that

the probability that a more efficient technology is invented soon is sufficiently low, the

follower is going to adopt technology 1 for large values of Y . Therefore, intuition suggests

that, in case of λ sufficiently low, there exists a threshold Y F
11 such that the follower will

wait with investing if Y < Y F
11 and for Y ≥ Y F

11 the follower will adopt technology 1. Then

the value of the follower is denoted by F11 (Y ) and equal to

F11 (Y ) =


δ1Y

β∗
1 + A12Y

β1 if Y ∈ [0, Y F
12

)
,

δ2Y
β∗

1 + δ3Y
β∗

2 + λ
r+λ−µ

Y D21

r−µ
− λI

r+λ
if Y ∈ [Y F

12 , Y
F
11

)
,

Y D11

r−µ
− I if Y ∈ [Y F

11 ,∞
)
.

(9.23)

Equation (9.23) is derived by solving the follower’s optimal stopping problem (see Ap-

pendix 9.A.1). Solving the continuity and differentiability conditions for F11 at Y = Y F
12

and the value matching and smoothpasting conditions for F11 at Y = Y F
11 gives expressions

for the constants δ1, δ2 and δ3 (which can be found in Appendix 9.A.1).

The term δ1Y
β∗

1 consists of two parts. The first part, (δ1 − δ2)Y
β∗

1 , is a correction

term in the same fashion as γ1Y
β∗

1 and the second part, δ2Y
β∗

1 , is the value of the option
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to adopt technology 1. It turns out that the correction factor always dominates the option

value and therefore δ1 < 0. The interpretation of A12Y
β1 is equal to the interpretation of

the same factor in equation (9.19). The term δ2Y
β∗

1 equals the option value of adopting

technology 1, which implies that δ2 > 0. The correction factor δ3Y
β∗

2 is exactly equal to

γ2Y
β∗

2 , thus δ3 > 0. Lemma 9.2 in Appendix 9.B states the signs of the constants.

The following equation implicitly determines Y F
11 (cf. Appendix 9.A.1):

(β∗
1 − β∗

2) δ3

(
Y F

11

)β∗
2 +

(β∗
1 − 1)λY F

11D21

(r + λ− µ) (r − µ)
− (β∗

1 − 1)Y F
11D11

r − µ
+

rβ∗
1I

r + λ
= 0. (9.24)

Proposition 9.1 The threshold Y F
11 has the following properties:

1. Y F
11 only exists if λ < λ∗

1, where

λ∗
1 =

(r − µ)D11

D21 −D11

. (9.25)

2. Y F
11 approaches the follower’s threshold for adopting technology 1 in a model without

technology 2 (see Chapter 7) if λ approaches zero, i.e.

lim
λ↓0

Y F
11 (λ) =

β1

β1 − 1

(r − µ) I

D11
. (9.26)

3. Y F
11 approaches infinity if λ approaches λ∗

1.

A proof of Proposition 9.1 can be found in Appendix 9.B. It is intuitively clear

that the threshold Y F
11 is rising with λ, but due to the complexity of expression (9.24)

it was impossible to find an analytical proof for this statement. A larger λ implies that

technology 2 is expected to arrive sooner and therefore it is in the follower’s interest to

postpone the adoption of technology 1. Hence, the threshold for adopting technology 1

will be set higher.

The follower postpones the adoption of technology 1 forever when Y F
11 approaches

infinity. It is easy to verify that lim
Y F
11→∞

δ1 = γ1, lim
Y F
11→∞

δ2 = 0 and δ3 = γ2. This implies

that equation (9.23) turns into equation (9.19) when Y F
11 goes to infinity.

9.4.2 Leader

Here we consider the case where the leader invests in technology 1 (for the case where

the leader invests in technology 2, see Subsection 9.3.1). Two scenarios are analyzed. In

the first scenario the follower only considers investing in technology 2, while in the second

scenario investing in technology 1 is an alternative for the follower.
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Follower Waiting for Technology 2

When the follower waits for technology 2, the value of the leader equals

L12 (Y ) = E

−I +

T∫
t=0

Y (t)D10 exp (−rt) dt+ exp (−rT ) Λ12 (Y (T ))

∣∣∣∣∣∣Y (0) = Y

 .
(9.27)

This leads to the following expression for the leader curve (see (9.13), (9.14), and Appendix

9.A.2)

L12 (Y ) =

{
ε1Y

β∗
1 +B12Y

β1 + Y D10

r−µ
− I if Y < Y F

12 ,

ε2Y
β∗

2 + Y D10

r+λ−µ
+ λ

r+λ−µ
Y D12

r−µ
− I if Y ≥ Y F

12 .
(9.28)

Expressions for ε1 and ε2 are derived by solving the continuity and differentiability con-

ditions for L12 at Y = Y F
12 , this is done in Appendix 9.A.2. Lemma 9.4 in Appendix 9.B

states that ε1 and ε2 are both positive. The terms ε1Y
β∗

1 and ε2Y
β∗

2 correct for the fact

that technology 2 has to arrive before the follower can adopt that technology and the

leader’s value becomes Λ12. The longer it takes before technology 2 arrives, the longer

the leader makes monopoly profits, i.e. the better for the leader. As in (9.13), B12Y
β1

stands for the option that Y exceeds Y F
12 , so that the follower will adopt technology 2,

which ends the leader’s monopoly profits. Consequently, as can be seen in (9.14), B12 is

negative. The value ε2Y
β∗

2 equals the option that Y falls below Y F
12 . This is good for the

leader because if Y < Y F
12 the follower will not invest so that the leader keeps on having

monopoly profits. This explains why ε2 is positive.

Follower Considering Technology 1 to be Interesting

In this case the value of the leader is given by

L11 (Y ) =


φ1Y

β∗
1 +B12Y

β1 + Y D10

r−µ
− I if Y ∈ [0, Y F

12

)
,

φ2Y
β∗

1 + φ3Y
β∗

2 + Y D10

r+λ−µ
+ λ

r+λ−µ
Y D12

r−µ
− I if Y ∈ [Y F

12 , Y
F
11

)
,

Y D11

r−µ
− I if Y ∈ [Y F

11 ,∞
)
.

(9.29)

The derivation of equation (9.29) and expressions for φ1, φ2 and φ3 can be found in

Appendix 9.A.2. The signs of φ1 and φ3 are equal to the signs of ε1 and ε2 in (9.28),

respectively (see Lemma 9.5 in Appendix 9.B).

The constant φ2 values the possibility that Y rises above Y F
11 before technology 2

arrives. On the one hand that event is good for the leader, since the follower adopts

technology 1 and not technology 2. On the other hand it is bad for the leader, because

it no longer has a monopoly position. The following proposition states under which
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conditions φ2 is negative or positive, i.e. which argument dominates the other. The proof

is given in appendix 9.B.

Proposition 9.2 A sufficient condition for the constant φ2 to be non-positive is

D21

D11

≥ D12 −D10

D11 −D10

. (9.30)

If equation (9.30) does not hold, the sign of φ2 can go both ways.

Equation (9.30) states that the relative profit gain the follower can make by adopting

technology 2 is larger than the relative profit loss that the leader faces when the follower

adopts technology 2. Inequality (9.30) is most likely to hold when the leader is almost

indifferent concerning the technology the follower switches to. In that case it is not

good for the leader if the follower switches to 1 immediately rather than waiting for 2.

Consequently φ2 is negative which is confirmed by Proposition 9.2.

9.4.3 Joint Investment

The expected value of each firm if both firms adopt technology 1 together is given by

M11 (Y ) =
Y D11

r − µ
− I. (9.31)

9.4.4 Waiting Curve

The waiting curve (see also Chapter 6) gives the expected value if both firms wait with

investing until technology 2 arrives. The waiting curve equals

W (Y ) = E [exp (−rT ) Φ22 (Y (T ))|Y (0) = Y ]

=

{
η1Y

β∗
1 + A22Y

β1 if Y < Y F
22 ,

η2Y
β∗

2 + λY D22

(r+λ−µ)(r−µ)
− λI

r+λ
if Y ≥ Y F

22 .
(9.32)

For a derivation we refer to Appendix 9.A.3, there we also present expressions for η1 and

η2. The constant η1 is negative and the constant η2 is positive. These constants have the

same economic interpretations as γ1 and γ2, respectively.

Proposition 9.3 It always holds that F12 (Y ) > W (Y ) .

This proposition is proved in Appendix 9.B and is a direct result of the new market

assumption. The follower starts making profits after its investment and from the follower’s

point of view it is best that the leader adopts technology 1.
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9.5 Equilibria

In this section firm roles are endogenous which means that it is not determined before-

hand which firm will be the first investor. We describe the possible equilibria of the

technology adoption game before the arrival of technology 2. It turns out that the type

of the equilibria is completely determined by λ. In the following theorem we describe this

relationship.

Theorem 9.1 There are three regions for λ.

1. If λ ∈ [0, λ∗
2) the equilibrium is of the preemption type.

2. If λ ∈ [λ∗
2, λ

∗
3) the equilibrium is of the attrition type.

3. If λ ∈ [λ∗
3,∞) both firms wait with investing until technology 2 arrives.

The critical λ levels are equal to

λ∗
2 =

(r − µ)D10

D21 −D12

, (9.33)

λ∗
3 =

(r − µ)D10

D22 −D12

. (9.34)

The first λ region is split up into two λ regions: [0, λ∗
1) and [λ∗

1, λ
∗
2), where λ

∗
1 is given

by (9.25). Note that equation (9.30) ensures that λ∗
1 ≤ λ∗

2. In case equation (9.30) does

not hold, the second region for λ does not exist. In each of the following four subsections

one of the regions for λ is analyzed and the equilibria are characterized. In the remainder

of this section Theorem 9.1 is implicitly proved. The propositions in this section are

proved in Appendix 9.B. We do not prove the theorems. Interested readers are referred

to Appendix 4.A and Chapter 6 where the equilibrium concepts are presented.

9.5.1 Case 1

In the first case we have λ ∈ [0, λ∗
1). From the analysis of the previous section we know

that in this region the follower is going to adopt technology 1 for Y large enough. This

implies that in the equilibrium analysis the leader curve is given by equation (9.29), the

follower curve by (9.23), the joint investment curve by (9.31), and the waiting curve by

(9.32). The following proposition states that there exists a preemption threshold in this

region.

Proposition 9.4 Let λ ∈ [0, λ∗
1). Then there exists a unique Y P

11 ∈ (0, Y F
11

)
such that

L11

(
Y P

11

)
= F11

(
Y P

11

)
. (9.35)
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Define TP
11 and TF

11 as follows: T
P
11 = inf

(
t|Y (t) ≥ Y P

11

)
and TF

11 = inf
(
t|Y (t) ≥ Y F

11

)
.

Propositions 9.3 and 9.4 imply that the leader curve exceeds the waiting curve for some Y .

From Chapter 6 it follows that the equilibria of this game with waiting curve are equal to

equilibria of the game without waiting curve. This means that in analyzing the game the

future arrival of technology 2 can be ignored for the moment (of course, if, despite the low

probability, technology 2 arrives before one of the firms has invested in technology 1, the

outcome must be reconsidered). Hence, a game must be considered where two firms have

to determine their optimal timing concerning the investment in a given technology. This

is in fact the game described in Dixit and Pindyck (1996, Chapter 9), see also Chapter 7.

Here we repeat the most important aspects.

Theorem 9.2 Consider the game with y ≤ Y P
11 . It holds that in equilibrium the leader

adopts technology 1 at time TP
11 and the follower adopts technology 1 at time TF

11.

Of course, Theorem 9.2 is conditional on the fact that technology 2 does not arrive

before time TF
11. Further we should remark that if Y P

11 < y < Y F
11 there exists a positive

probability that the firms invest simultaneously at time 0 (cf. Appendix 4.A.2 and Chapter

7). In equilibrium the expected value of each firm equals the follower value. Figure 9.1

graphically shows the curves in this case.

The investment opportunity is worthless for Y equal to zero. Therefore, at Y = 0

the leader (L) and joint investment (M) value equal minus the investment cost and the

follower (F ) value equals zero. The further shape of the curves L, F , M , and W can be

derived from (9.23), (9.29), (9.31), (9.32), and (9.35).

With Figure 9.1 the preemption mechanism can be clearly explained. Consider the

game with Y (0) ≤ Y P
11 . Assume that both firms pass Y P

11 without investing and the current

value of Y , say Y (t), exceeds Y P
11 . Then for one of the firms it is optimal to invest at

time t, since the L-curve lies above the F -curve, implying that investing first gives a

higher payoff than investing second. The other firm knows this and will try to preempt

its competitor by investing at time t− ε, since it knows that the other firm would like to

be the first to invest at time t. But then the other firm will try to preempt at time t− 2ε.

It is clear that this process of preemption stops at Y P
11 , since for Y < Y P

11 it holds that

F (Y ) > L(Y ) so that there are no incentives to invest first.

The following proposition gives an expression for the probability that technology 2

arrives after a certain threshold is hit. The proof of the proposition is given in Appendix

9.B.

Proposition 9.5 Let TS = inf (t|Y (t) ≥ S) . At time t = 0 the probability that the

geometric Brownian motion hits the threshold S before the second technology arrives, i.e.
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0 Y11
P Y11

F

Y

−I

0L
1
1
(Y

),
F
1
1
(Y

),
M
1
1
(Y

),
W

(Y
)

L11( Y)

F11( Y)

M11( Y)

W( Y)

Figure 9.1: Case 1: λ ∈ [0, λ∗
1) .

Pr (TS < T ) , is given by

Pr (TS < T ) =

{ (
y
S

)β̂1 if y < S,

1 if y ≥ S,
(9.36)

where

β̂1 =
1

2
− µ

σ2
+

√(
µ

σ2
− 1

2

)2

+
2λ

σ2
. (9.37)

From Proposition 9.5 we derive that the probability that technology 1 is adopted by

the leader (follower) decreases with λ. An increase of λ leads to both a higher threshold

and a higher β̂1.

9.5.2 Case 2

In the second case it holds that λ ∈ [λ∗
1, λ

∗
2) . Here the probability that technology 2 arrives

soon is that high that the follower is going to wait for technology 2. As in the previous

case there exists a preemption threshold.

Proposition 9.6 Let λ ∈ [λ∗
1, λ

∗
2) . Then there exists a unique Y P

12 ∈ (0,∞) such that

L12

(
Y P

12

)
= F12

(
Y P

12

)
. (9.38)
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We define TP
12 in the same fashion as TP

11: T
P
12 = inf

(
t|Y (t) ≥ Y P

12

)
. Furthermore we

define TF
12 = inf

(
t ≥ T |Y (t) ≥ Y F

12

)
.

Theorem 9.3 In equilibrium the leader adopts technology 1 at time TP
12 and the follower

adopts technology 2 at time TF
12.

As above the leader’s adoption of technology 1 is conditional on technology 2 not

arriving before time TP
12. If initially Y is above Y P

12 then with positive probability both

firms adopt technology 1 at time 0. The expected value of each firm equals the follower

value. The curves for this case are plotted in Figure 9.2.
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Figure 9.2: Case 2: λ ∈ [λ∗
1, λ

∗
2) .

From the fact that Y P
12 is rising in λ and Proposition 9.5 it can be concluded that the

probability that the leader adopts technology 1 decreases with λ.

9.5.3 Case 3

The third case is characterized by the fact that λ ∈ [λ∗
2, λ

∗
3) . Here the probability that

technology 2 arrives is even higher than in case 2, where it was already high enough for

the follower to wait for technology 2. This implies that also in this case the follower is

going to wait for technology 2. In this region there does not exist a preemption threshold,

i.e. the follower curve is situated above the leader curve for each Y . This implies that

the game without waiting curve is an attrition game.
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Proposition 9.7 Let λ ∈ [λ∗
2, λ

∗
3) . Then there exists a unique Y L

12 ∈ (0,∞) such that

L12

(
Y L

12

)
= W

(
Y L

12

)
. (9.39)

The following theorem describes the equilibrium conditional on technology 2 not ar-

riving before time TL
12 = inf

(
t|Y (t) ≥ Y L

12

)
.

Theorem 9.4 In equilibrium the leader adopts technology 1 at time TL
12 and the follower

adopts technology 2 at time TF
12.

The curves for the different payoffs in this game are depicted in Figure 9.3. The leader

curve shows the expected payoff as function of Y for a firm that invests in technology 1

immediately. This firm knows that its competitor will invest in technology 2 as soon as it

becomes available and Y > Y F
12 . The leader has the advantage of monopoly profits until

the time that the follower invests in technology 2, but the disadvantage of producing with

a less efficient technology after this date. On the other hand the waiting curve shows

the expected payoff if both firms wait for technology 2 to arrive. As long as the waiting

curve lies above the leader curve, investing now in technology 1 is not a sensible option.

Therefore, the attrition game starts at time TL
12.
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Figure 9.3: Case 3: λ ∈ [λ∗
2, λ

∗
3) .

In the attrition game the follower curve is situated above the leader curve and the

leader curve above the joint investment curve for all positive Y. This implies that there

does not exist a symmetric equilibrium for this attrition game (cf. Appendix 4.A.3).
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There are two asymmetric equilibria, which are summarized in Theorem 9.4 (each firm

can either be leader or follower). For simplicity reasons we assume that each equilibrium

occurs with probability one half.

Proposition 9.5 together with the fact that Y L
12 is increasing with λ imply that the

probability that the leader adopts technology 1 is decreasing with λ.

9.5.4 Case 4

In the fourth case (λ ∈ [λ∗
3,∞) ) the probability that technology 2 will be invented soon is

that high that both firms wait with investing until technology 2 arrives. This is reflected

by the fact that the waiting curve exceeds the leader curve for all Y in this region. Figure

9.4 shows the curves in this case.
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Figure 9.4: Case 4: λ ∈ [λ∗
3,∞) .

At the moment that technology 2 arrives, a game starts where both firms consider

entering a market by investing in one available technology (the presence of technology 1

can be ignored since it is less efficient), while the profit flow follows a geometric Brownian

motion process. Hence, like in case 1, the framework of Dixit and Pindyck (1996, Chap-

ter 9) again applies. The difference is that in case 1 the Dixit and Pindyck game has to

deal with investment in technology 1, while here the investment in technology 2 must be

considered.
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9.6 Economic Analysis

The Poisson parameter λ is the key parameter for the results. Waiting for the new

technology is better when the probability that this new technology becomes available

soon, is high enough. If this probability is low enough both firms only consider when

to invest in the current technology, while ignoring the new one. In this case the usual

preemption game arises (see Fudenberg and Tirole (1985) and Dixit and Pindyck (1996,

Chapter 9) for its stochastic counterpart).

If the probability that technology 2 becomes available soon is not too small, i.e. the

Poisson parameter exceeds λ∗
1 (cf. (9.25)), then the game is still a preemption game, so

that each firm tries to be the first investor. However, the firm that will invest second is

better off by waiting for the new technology rather than investing in the current one.

If λ is again a bit larger such that it exceeds λ∗
2 (see (9.33)), the preemption game turns

into an attrition game. Like in the previous case, the first investor chooses the current

technology and the second investor will wait for the new technology, but the difference is

that the payoff of the second investor is higher here. Hence, neither firm would like to be

the first investor, but if they both keep on waiting, their payoff will be even less than the

payoff of the one that decides immediately to invest first. According to Appendix 4.A.3

a unique asymmetric equilibrium exists where the adoption timings are dispersed.

If λ exceeds λ∗
3, given by (9.34), then the probability that technology 2 arrives soon is

that large that both firms will wait for this new technology. The possibility to invest in

the current technology will be ignored.

It is clear that for λ = 0 the model exactly equals the one treated in Dixit and Pindyck

(1996, Chapter 9). Here there is no technological progress in the sense that the probability

that a new technology will be invented is zero. Hence both firms only need to consider

investing in the current technology, so that the problem boils down to the determination

of the optimal point in time that a firm must enter a market with stochastic profit flow,

while taking into account the behavior of an identical competitor. The resulting game

is a preemption game, like the one where λ is positive but below λ∗
1. It holds that Y P

11

increases with λ so that the possible occurrence of a new technology will delay investment

in the current technology, which is intuitively plausible.

Comparing the case for λ = 0 (model with one technology) with λ ∈ (λ∗
2, λ

∗
3) shows that

taking into account the possible occurrence of a new technology could turn a preemption

game into an attrition game.

To learn more about the effects of the future availability of a more efficient technology

on the optimal timing of investment, we also carry out comparative statics analysis on

the other parameter values. Let us first consider the effect of revenue volatility which

is measured by σ. The general prediction of the real options literature is that a higher
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level of uncertainty increases the threshold level and therefore will have a negative effect

on investment. In our model an increased threshold level implies that the investment in

technology 1 will be delayed. Therefore, the probability that technology 2 arrives before

the investment is undertaken, increases. Hence, the conclusion is that increased revenue

uncertainty induces a higher probability that the new technology will be adopted instead

of the current technology.

Next, consider the expected growth of the market reflected by the parameter µ. An

increase of µ reduces the values of λ∗
i , with i ∈ {1, 2, 3}. In general this means that the

probability increases that the firm will delay or totally refrain from investing in the current

technology. The reason is that in case of a fast growing market the firm will exploit this

growth as much as possible by using the more efficient new technology. The firm is more

willing to wait for this technology to be invented.

The effect of the discount rate is completely opposite to the effect of the expected

market growth rate. A higher discount rate implies that immediate profits are more

important to the firm. Therefore the firm prefers investing in the current technology

rather than waiting for the new one.

Finally, consider the effects of the several profit flows. First, notice that λ∗
1 increases

with D11 and decreases with D21. This can be explained by the fact that the second

investor is more willing to produce with the first technology if D11 is large, while it likes

to wait for the new technology to arrive if D21 is large.

Second, λ∗
2 increases with D10 and D12, while it decreases with D21. This implies

that λ∗
2 is larger if the payoff of the strategy ”adopt technology 1 immediately” is higher

relative to the payoff of the strategy ”wait for technology 2 to arrive and adopt it then”.

Note that if the latter strategy gives the highest payoff, the game is an attrition game,

which occurs for λ ∈ (λ∗
2, λ

∗
3).

Third, λ∗
3 increases with D10 and D12, while it decreases with D22. Hence, if a high

profit is reached when both firms produce with the new technology, compared to the

strategy ”invest in technology 1 immediately and have some monopoly profits before

technology 2 arrives”, both firms will wait for the second technology to arrive. This in

fact happens for λ > λ∗
3.

9.7 Conclusions

The optimal investment timing is governed to a large extent by the magnitude of the

probability that the new technology becomes available within a given period of time. We

found that, indeed, the possible occurrence of a new technology will delay investment

in the current technology. Compared to the case where technological progress is not
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included (for example Chapters 7 and 8), taking into account the possible occurrence of

a new technology could turn a preemption game into an attrition game, which is a game

where the second mover gets the highest payoff. This could happen when the first mover

invests in the current technology, while the second mover waits for the new technology to

arrive and invests then in it, and can be explained as follows. Compared to the strategy

of its competitor, the benefits of the first investor are the monopoly profits gained during

the period that starts at the moment of investment by the first investor and lasts until

the moment that the second mover invests. However, these monopoly profits can be more

than offset by the efficiency gain the second investor enjoys due to producing with a more

efficient technology, which takes place after both firms have invested.

From the theory of real options it is known that the option value of waiting with

investment increases with revenue uncertainty. For our model this implies that increased

uncertainty delays adoption of the current technology, so that the probability that the new

technology is invented before the investment in the current technology has taken place

increases. This leads to the conclusion that increased revenue uncertainty induces a higher

probability that the new technology will be adopted instead of the current technology.

Hence, uncertainty raises the technological level within firms. Another result that is worth

mentioning here is, that in a faster growing market a firm is more inclined to wait for a

more efficient technology to arrive.

Appendices

9.A Derivation of Value Functions

9.A.1 Follower

Follower Waiting for Technology 2

Solving the continuity and differentiability conditions for F12 (Y ) at Y = Y F
12 gives

γ1 =

(
Y F

12

)−β∗
1 I (r (r − µ) β∗

2 + (r − µβ1)λβ
∗
2 − (r − µ) (r + λ) β1)

(r + λ) (r + λ− µ) (β1 − 1) (β∗
1 − β∗

2)
, (9.40)

γ2 =

(
Y F

12

)−β∗
2 I (r (r − µ) β∗

1 + (r − µβ1)λβ
∗
1 − (r − µ) (r + λ) β1)

(r + λ) (r + λ− µ) (β1 − 1) (β∗
1 − β∗

2)
. (9.41)

A direct result of Lemma 9.1 (see Appendix 9.B) is that γ1 < 0 and γ2 > 0.
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Follower Considering Technology 1 to be Interesting

The follower solves the optimal stopping problem, in which stopping means adopting

technology 1. Therefore the expected value of the follower for Y ≥ Y F
11 equals

F11 (Y ) =
Y D11

r − µ
− I. (9.42)

In the continuation region waiting is the optimal strategy and the following Bellman

equation must be satisfied

rF11 (Y ) = lim
dt↓0

1

dt
E [dF11 (Y )] . (9.43)

Expanding the right-hand-side of (9.43) with Itô’s lemma and rewriting gives

∂F11 (Y )

∂Y
µY +

∂2F11 (Y )

∂Y 2

1

2
σ2Y 2 − (r + λ)F11 (Y ) + λΦ12 (Y ) = 0. (9.44)

Using (9.10) and the boundary condition F11 (0) = 0 gives

F11 (Y ) =

{
δ1Y

β∗
1 + A12Y

β1 if Y < Y F
12 ,

δ2Y
β∗

1 + δ3Y
β∗

2 + λY D21

(r+λ−µ)(r−µ)
− λI

r+λ
if Y ≥ Y F

12 .
(9.45)

Combining (9.42) and (9.43) gives equation (9.23).

Expressions for δ1, δ2, δ3 and Y F
11 are found by simultaneously solving the continuity

and differentiability conditions for F11 at Y
F
12 and the value matching and smooth pasting

conditions for F11 at Y F
11 . It turns out that it is not possible to get a closed form solution

for Y F
11 . The threshold Y F

11 is implicitly determined by equation (9.24). The constants are

equal to

δ1 = δ2 +
(
Y F

12

)β∗
2−β∗

1
β∗

2γ2

β∗
1

− (Y F
12

)1−β∗
1

D21

β∗
1 (r + λ− µ)

, (9.46)

δ2 =
(
Y F

11

)β∗
2−β∗

1
(1− β∗

2) γ2

β∗
1 − 1

+
(
Y F

11

)−β∗
1

rI

(β∗
1 − 1) (r + λ)

, (9.47)

δ3 = γ2. (9.48)

Lemma 9.2 in Appendix 9.B states that δ1 < 0, δ2 > 0, and δ3 > 0.

9.A.2 Leader

Follower Waiting for Technology 2

In order to derive an expression for equation (9.27), define

h (Y ) = E

 T∫
t=0

Y (t)D10 exp (−rt) dt+ exp (−rT ) Λ12 (Y (T ))

∣∣∣∣∣∣Y (0) = Y

 . (9.49)
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Then h (Y ) must satisfy the following Bellman equation

rh (Y ) = Y D10 + lim
dt↓0

1

dt
E [dh (Y )] . (9.50)

Applying Itô’s lemma gives

E [dh (Y )] = (1− λdt)

(
∂h (Y )

∂Y
µY dt+

∂2h (Y )

∂Y 2

1

2
σ2Y 2dt

)
+λdt (Λ12 (Y )− h (Y )) + o (dt) . (9.51)

Substitution of (9.51) in (9.50) gives

∂h (Y )

∂Y
µY +

∂2h (Y )

∂Y 2

1

2
σ2Y 2 − (r + λ)h (Y ) + λΛ12 (Y ) + Y D10 = 0. (9.52)

Substitution of (9.13) in (9.52) and solving that differential equation gives

h (Y ) =

{
ε1Y

β∗
1 + τ 1Y

β∗
2 +B12Y

β1 + Y D10

r−µ
if Y < Y F

12 ,

τ 2Y
β∗

1 + ε2Y
β∗

2 + Y D10

r+λ−µ
+ λ

r+λ−µ
Y D12

r−µ
if Y ≥ Y F

12 .
(9.53)

The boundary condition at Y = 0 and the condition that rules out speculative bubbles

(see Dixit and Pindyck (1996, p. 181)),

h (0) = 0, (9.54)

lim
Y→∞

h (Y )

Y
=

D10

r + λ− µ
+

λ

r + λ− µ

D12

r − µ
, (9.55)

imply that τ 1 = 0 and τ 2 = 0.

Solving the continuity and differentiability conditions for L12 at Y = Y F
12 gives

ε1 =

(
Y F

12

)1−β∗
1 ((r − µ) (β1 − β∗

2) + λ (β1 − 1)) (D10 −D12)

(r + λ− µ) (r − µ) (β∗
1 − β∗

2)
, (9.56)

ε2 =

(
Y F

12

)1−β∗
2 ((r − µ) (β1 − β∗

1) + λ (β1 − 1)) (D10 −D12)

(r + λ− µ) (r − µ) (β∗
1 − β∗

2)
. (9.57)

According to Lemma 9.4 ε1 and ε2 are both positive (see Appendix 9.B).

Follower Considering Technology 1 to be Interesting

If Y ≥ Y F
11 the value function of the leader is given by

L11 (Y ) =
Y D11

r − µ
− I. (9.58)
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Next we derive the value function of the leader for Y < Y F
11 . The value of the leader equals

L11 (Y ) = E

−I +

min(T,TF
11)∫

t=0

Y (t)D10 exp (−rt) dt+ 1{T≤TF
11} exp (−rT ) Λ12 (Y (T ))

∞∫
t=min(T,TF

11)

1{TF
11<T}Y (t)D11 exp (−rt) dt

∣∣∣∣∣∣∣∣ Y (0) = Y

 . (9.59)

Define

f (Y ) = E


min(T,TF

11)∫
t=0

Y (t)D10 exp (−rt) dt

∣∣∣∣∣∣∣∣Y (0) = Y

 . (9.60)

The function f must satisfy the following Bellman equation for Y < Y F
11 :

rf (Y ) = Y D10 + lim
dt↓0

1

dt
E [df (Y )] . (9.61)

Itô’s lemma gives

E [df (Y )] = λdt (0− f (Y )) + (1− λdt)

(
∂f (Y )

∂Y
µY dt+

∂2f (Y )

∂Y 2

1

2
σ2Y 2dt

)
+ o (dt) .

(9.62)

Thus

µY
∂f (Y )

∂Y
+

1

2
σ2Y 2∂

2f (Y )

∂Y 2
− (r + λ) f (Y ) + Y D10 = 0. (9.63)

The solution of this differential equation is given by

f (Y ) = υ1Y
β∗

1 + υ2Y
β∗

2 +
Y D10

r + λ− µ
. (9.64)

Using the boundary conditions f (0) = 0 and f
(
Y F

11

)
= 0 the values for the constants are

found:

υ1 = − (Y F
11

)1−β∗
1

D10

r + λ− µ
, (9.65)

υ2 = 0. (9.66)

Next define

g (Y ) = E

[
1{T≤TF

11} exp (−rT ) Λ12 (Y (T ))

+

∞∫
t=min(T,TF

11)

1{TF
11<T}Y (t)D11 exp (−rt) dt

∣∣∣∣Y (0) = Y

]
. (9.67)
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The function g must satisfy the following Bellman equation

rg (Y ) = lim
dt↓0

1

dt

(
λdt (Λ12 (Y )− g (Y ))

+ (1− λdt)

(
∂g (Y )

∂Y
µY dt+

∂2g (Y )

∂Y 2

1

2
σ2Y 2dt+ o (dt)

))
,

(9.68)

leading to

µY
∂g (Y )

∂Y
+

1

2
σ2Y 2∂

2g (Y )

∂Y 2
− (r + λ) g (Y ) + λΛ12 (Y ) = 0. (9.69)

The solution of (9.69) is given by

g (Y ) =

{
κ1Y

β∗
1 + κ2Y

β∗
2 +B12Y

β1 + λ
r+λ−µ

Y D10

r−µ
if Y < Y F

12 ,

κ3Y
β∗

1 + κ4Y
β∗

2 + λ
r+λ−µ

Y D12

r−µ
if Y ≥ Y F

12 .
(9.70)

Due to the boundary condition g (0) = 0 we know that κ2 = 0. The constants κ1, κ3, and

κ4 are found by simultaneously solving the continuity and differentiability condition at

Y = Y F
12 and the boundary condition g

(
Y F

11

)
=

Y F
11D11

r−µ
:

κ1 = κ3 + ε1, (9.71)

κ3 =
(
Y F

11

)−β∗
1

(
Y F

11D11

r − µ
− λY F

11D12

(r + λ− µ) (r − µ)

)
− (Y F

11

)β∗
2−β∗

1 ε2, (9.72)

κ4 = ε2. (9.73)

Combining equations (9.58), (9.59), (9.64), and (9.70) gives equation (9.29), in which

φ1 = υ1 + κ3 + ε1, (9.74)

φ2 = υ1 + κ3, (9.75)

φ3 = κ4 = ε2. (9.76)

Lemma 9.5 in Appendix 9.B states that φ1 > 0 and φ3 > 0.

9.A.3 Waiting Curve

The following Bellman equation must hold for the waiting curve

rW (Y ) = lim
dt↓0

1

dt
E [dW (Y )] . (9.77)

Itô’s lemma gives

E [dW (Y )] = (1− λdt)

(
∂W (Y )

∂Y
µY dt+

∂2W (Y )

∂Y 2

1

2
σ2Y 2dt

)
+λdt (Φ22 (Y )−W (Y )) + o (dt) . (9.78)
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Substitution of (9.78) in (9.77) gives

rW (Y ) =
∂W (Y )

∂Y
µY +

∂2W (Y )

∂Y 2

1

2
σ2Y 2 + λ (Φ22 (Y )−W (Y )) . (9.79)

Rewriting gives

1

2
σ2Y 2∂

2W (Y )

∂Y 2
+ µY

∂W (Y )

∂Y
− (r + λ)W (Y ) + λΦ22 (Y ) = 0. (9.80)

Using equation (9.6) and the boundary condition for Y = 0 and ruling out speculative

bubbles,

W (0) = 0, (9.81)

lim
Y→∞

W (Y )

Y
=

λD22

(r + λ− µ) (r − µ)
, (9.82)

gives

W (Y ) =

{
η1Y

β∗
1 + A22Y

β1 if Y < Y F
22 ,

η2Y
β∗

2 + λY D22

(r+λ−µ)(r−µ)
− λI

r+λ
if Y ≥ Y F

22 .
(9.83)

The constants η1 and η2 are found by solving the continuity and differentiability conditions

for W at Y = Y F
22 :

η1 =

(
Y F

22

)−β∗
1 I (r (r − µ) β∗

2 + (r − µβ1)λβ
∗
2 − (r − µ) (r + λ) β1)

(r + λ) (r + λ− µ) (β1 − 1) (β∗
1 − β∗

2)
, (9.84)

η2 =

(
Y F

22

)−β∗
2 I (r (r − µ) β∗

1 + (r − µβ1)λβ
∗
1 − (r − µ) (r + λ) β1)

(r + λ) (r + λ− µ) (β1 − 1) (β∗
1 − β∗

2)
. (9.85)

A direct result of Lemma 9.1 is that η1 < 0 and η2 > 0.

9.B Lemmas and Proofs

Lemma 9.1 The following two inequalities hold:

r (r − µ) β∗
2 + (r − µβ1)λβ

∗
2 − (r − µ) (r + λ) β1 < 0, (9.86)

r (r − µ) β∗
1 + (r − µβ1)λβ

∗
1 − (r − µ) (r + λ) β1 > 0. (9.87)

Proof of Lemma 9.1 The assumption µ ∈ (0, r) implies that (cf. Proof of Proposition

7.5):

1 ≤ β1 ≤
r

µ
(9.88)

Equation (9.86) holds due to equation (9.88) and the fact that β∗
2 < 0.
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We know that β∗
1 ≥ β1, where the equality sign only holds for σ → ∞ for which we

have β∗
1 = β1 = 1. Write β∗

1 = ξβ1 and substitute in (9.87):

r (r − µ) ξβ1 + (r − µβ1)λξβ1 − (r + λ) (r − µ) β1

= r (r + λ− µ) β1 (ξ − 1)− µλβ1 (ξβ1 − 1)

= Ξ (ξ) . (9.89)

Then Ξ (1) = 0 (ξ = 1 implies that β1 = β∗
1 and therefore β1 = 1) and

dΞ (ξ)

dξ
= β1 (r (r + λ)− µ (r + λβ1)) > 0, (9.90)

if and only if

r (r + λ)− µ (r + λβ1) > 0. (9.91)

Equation (9.91) holds since

β1 <
r

µ
+

r (r − µ)

µλ
. (9.92)

Therefore equation (9.87) holds. �

Lemma 9.2 The constants δ1, δ2, and δ3 have the following signs: δ1 < 0, δ2 > 0, and

δ3 > 0.

Proof of Lemma 9.2 The signs of δ2 and δ3 follow immediately from equations (9.47)

and (9.48). Define the following functions:

Z (Y ) = Y β∗
2−β∗

1
(1− β∗

2) γ2

β∗
1 − 1

+ Y −β∗
1

rI

(β∗
1 − 1) (r + λ)

, (9.93)

V (Y ) = Z (Y ) +
(
Y F

12

)β∗
2−β∗

1
β∗

2γ2

β∗
1

− (Y F
12

)1−β∗
1

D21

β∗
1 (r + λ− µ)

. (9.94)

The first derivative of Z is negative and it can be checked that V
(
Y F

12

)
= 0. Therefore,

because Y F
11 > Y F

12 it holds that δ1 = V
(
Y F

11

)
< V
(
Y F

12

)
= 0. �

Lemma 9.3 It holds that √
2rσ2 +

(
µ− 1

2
σ2

)2

≥ µ+
1

2
σ2. (9.95)

Proof of Lemma 9.3 Squaring both sides of (9.95) gives

2rσ2 +

(
µ− 1

2
σ2

)2

≥
(
µ+

1

2
σ2

)2

. (9.96)
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Rewriting of (9.96) yields

2 (r − µ)σ2 ≥ 0. (9.97)

Therefore the lemma holds since we assumed that r > µ. �

Lemma 9.4 The constants ε1 and ε2 are both positive.

Proof of Lemma 9.4 From equation (9.56) it directly follows that ε1 > 0. The lemma

holds whenever the following statement is true:

(r − µ) (β1 − β∗
1) + λ (β1 − 1) > 0. (9.98)

In order to prove that equation (9.98) holds, define the following function

Ω (λ) = (r − µ) (β1 − β∗
1 (λ)) + λ (β1 − 1) . (9.99)

For λ = 0 we have that β1 = β∗
1, so that Ω (0) = 0. The second derivative of Ω is equal to

∂2Ω (λ)

∂λ2 =
(r − µ)σ2(

2 (r + λ)σ2 +
(
µ− 1

2
σ2
)2) 3

2

> 0. (9.100)

Thus the lemma is proved if it holds that

∂Ω (λ)

∂λ

∣∣∣∣
λ=0

≥ 0. (9.101)

The first derivative of Ω at λ = 0 equals

∂Ω (λ)

∂λ

∣∣∣∣
λ=0

=
4µ2 + 4rσ2 + σ4 − (4µ+ 2σ2)

√
2rσ2 +

(
µ− 1

2
σ2
)2

4σ2

√
2rσ2 +

(
µ− 1

2
σ2
)2 . (9.102)

Define

η (r) = 4µ2 + 4rσ2 + σ4 − (4µ+ 2σ2
)√

2rσ2 +

(
µ− 1

2
σ2

)2

. (9.103)

Then η (µ) = 0 and with Lemma 9.4 we have

∂η (r)

∂r
=

4σ2

(√
2rσ2 +

(
µ− 1

2
σ2
)2 − (µ+ 1

2
σ2
))

√
2rσ2 +

(
µ− 1

2
σ2
)2 ≥ 0. (9.104)

This implies that for r ≥ µ equation (9.101) holds and thereby the lemma is proved. �
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Lemma 9.5 The constants φ1 and φ3 have the following signs: φ1 > 0 and φ3 > 0.

Proof of Lemma 9.5 We start with φ3. From Lemma 9.5 we know that ε2 > 0. There-

fore φ3 > 0.

Define

E1 (Y ) =
Y 1−β∗

1 ((r − µ) (β1 − β∗
2) + λ (β1 − 1)) (D10 −D12)

(r + λ− µ) (r − µ) (β∗
1 − β∗

2)
, (9.105)

E2 (Y ) =
Y 1−β∗

2 ((r − µ) (β1 − β∗
1) + λ (β1 − 1)) (D10 −D12)

(r + λ− µ) (r − µ) (β∗
1 − β∗

2)
. (9.106)

Then E1

(
Y F

12

)
= ε1 and E2

(
Y F

12

)
= ε2, further it holds that E1

(
Y F

11

)
< E1

(
Y F

12

)
and

E2

(
Y F

11

)
> E2

(
Y F

12

)
. Further define

K3 (Y ) =
(
Y F

11

)−β∗
1

(
Y F

11D11

r − µ
− λY F

11D12

(r + λ− µ) (r − µ)

)
− (Y F

11

)β∗
2−β∗

1 E2 (Y ) , (9.107)

then it follows after some tedious calculations that

φ1 = υ1 + κ3 + ε1

= υ1 +K3

(
Y F

12

)
+ E1

(
Y F

12

)
> υ1 +K3

(
Y F

11

)
+ E1

(
Y F

11

)
=

(
Y F

11

)1−β∗
1 (D11 −D12)

(r + λ− µ) (r − µ)
> 0. (9.108)

Thus φ1 is positive. �

Proof of Proposition 9.1 It is easy to verify that equation (9.24) does not have a root

if λ ≥ λ∗
1. Assertion 2 can be concluded by taking a closer look at equations (9.24), (9.20),

(9.47), and (9.41). The closer λ comes to λ∗
1 the smaller the negative term in (9.24)

becomes in absolute terms. This implies that Y F
11 becomes larger. �

Proof of Proposition 9.2 From Proposition 9.1 we know that Y F
11 does not exist for

λ ≥ λ∗
1 and therefore φ2 does not make sense for λ ≥ λ∗

1. First we prove that φ2 ≤ 0 if

equation (9.30) holds and λ < λ∗
1. According to (9.65), (9.72), and (9.75) it is sufficient

to prove that

D11

r − µ
− λD12

(r + λ− µ) (r − µ)
− D10

r + λ− µ
≤ 0. (9.109)

Equation (9.109) holds if

λ ≤ (r − µ) (D10 −D11)

D11 −D12
. (9.110)
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Using equation (9.30) it is not hard to show that

(r − µ) (D10 −D11)

D11 −D12

> λ∗
1. (9.111)

Therefore equation (9.109) holds and φ2 is non-positive.

Let us show that φ2 can be negative when (9.30) does not hold. Set λ = 0, then

β1 = β∗
1 and ε2 = 0 so that

φ2 =
(
Y F

11

)1−β1 D11 −D10

r − µ
< 0. (9.112)

Next we argue that φ2 can be positive when equation (9.30) does not hold. Define the

following function

F2 (Y ) = Y 1−β∗
1
(r − µ) (D11 −D10)− λ (D12 −D11)

(r + λ− µ) (r − µ)
− Y β∗

2−β∗
1ε2. (9.113)

Thus F2

(
Y F

11

)
= φ2.When equation (9.30) does not hold, the first term in equation (9.113)

is positive. When λ approaches λ∗
1 we know from Proposition 9.1 that Y F

11 approaches

infinity. Taking a closer look at equation (9.113) we see that the second term goes faster

to zero than the first term. Thus for λ close enough to λ∗
1 we have that φ2 is positive. �

Proof of Proposition 9.3 This proposition is easily verified by taking a closer look at

equations (9.23), (9.32), (9.40), (9.41), (9.84), and (9.85). �

Proof of Proposition 9.4 Define the function L as follows

L (Y ) = L11 (Y )− F11 (Y ) . (9.114)

The functions L11 and F11 are continuous. Further it holds that L (0) = −I and L (Y F
11

)
=

0. Therefore it is sufficient to prove that

∂L (Y )

∂Y

∣∣∣∣
Y =Y F

11

< 0. (9.115)

Substitution of equations (9.23) and (9.29) in (9.115) gives for Y ∈ [Y F
12 , Y

F
11

]
:

L (Y ) = (φ2 − δ2)Y
β∗

1 + (φ3 − δ3)Y
β∗

2

+
(r − µ)D10 − λ (D21 −D12)

(r + λ− µ) (r − µ)
Y − rI

r + λ
. (9.116)

Thus

∂L (Y )

∂Y
= β∗

1 (φ2 − δ2)Y
β∗

1−1 + β∗
2 (φ3 − δ3)Y

β∗
2−1

+
(r − µ)D10 − λ (D21 −D12)

(r + λ− µ) (r − µ)
. (9.117)
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From L (Y F
11

)
= 0 we obtain

Y F
11

β∗
1

∂L (Y )

∂Y

∣∣∣∣
Y =Y F

11

=
β∗

2 − β∗
1

β∗
1

(φ3 − δ3)
(
Y F

11

)β∗
2 +

rI

r + λ

+
1− β∗

1

β∗
1

(r − µ)D10 − λ (D21 −D12)

(r + λ− µ) (r − µ)
Y F

11 . (9.118)

Subtracting 1
β∗

1
times equation (9.24) from equation (9.118) gives

Y F
11

β∗
1

∂L (Y )

∂Y

∣∣∣∣
Y =Y F

11

=
β∗

2 − β∗
1

β∗
1

φ3

(
Y F

11

)β∗
2 (9.119)

+
1− β∗

1

β∗
1

λ (D12 −D11)− (r − µ) (D11 −D10)

(r + λ− µ) (r − µ)
Y F

11 .

From the proof of Proposition 9.2 we know that

λ ≤ (r − µ) (D10 −D11)

D11 −D12

. (9.120)

Equations (9.119) and (9.120) together with φ3 > 0 imply equation (9.115). �

Proof of Proposition 9.5 Define P (Y ) = Pr (TS < T |Y (0) = Y ). Then for Y < S

the function P must satisfy the following Bellman equation

0 = −λP (Y ) +
∂P (Y )

∂Y
µY +

∂2P (Y )

∂Y 2

1

2
σ2Y 2. (9.121)

Since P (0) = 0 and P (S) = 1 the solution of (9.121) equals (9.36). �

Proof of Proposition 9.6 Taking a closer look at equations (9.19) and (9.28) (for Y

large) we see that there exists a crossing point of L12 and F12 if

Y D10

r + λ− µ
+

λ

r + λ− µ

Y D12

r − µ
>

λ

r + λ− µ

Y D21

r − µ
. (9.122)

Rewriting (9.122) gives (9.33). �

Proof of Proposition 9.7 This proof follows the same lines as the proof of Proposition

9.6, but then with equations (9.28) and (9.32). �
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Technologie Investeringen

Een Speltheoretische Reële Optie Benadering

Samenvatting

Technologie Investeringen

Investeringen van bedrijven bepalen voor een groot gedeelte de economische groei. Vooral

investeringen in nieuwe en efficiëntere technologieën hebben een grote impact. Gedurende

de laatste twee decennia wordt een groeiend percentage van alle investeringen gedaan in

informatie en communicatie technologieën. In de Verenigde Staten van Amerika betroffen

de investeringen in genoemde technologieën reeds in 1989 grofweg 50 procent van alle

nieuwe kapitaalinvesteringen van het bedrijfsleven (zie Kriebel (1989)). Door de snelle

technologische vooruitgang is de technologie investeringsbeslissing van een individueel

bedrijf een gecompliceerde zaak geworden. Neem de markt voor personal computers

als voorbeeld van de snelle technologische vooruitgang. In het begin van de jaren 90

introduceerde IBM de Pentium personal computer voor een introductieprijs die gelijk was

aan die van de 80286 personal computer in de jaren 80. Dit betekent dat bij gelijkblijvende

kosten in minder dan tien jaar tijd zowel de snelheid als de geheugencapaciteit met een

factor 20 verbeterde (zie Yorukoglu (1998)).

In het begin van de twintigste eeuw vertoonde de technologische ontwikkeling niet zo’n

snelle vooruitgang als in de afgelopen jaren. Daarom was in die tijd de technologie inves-

teringsbeslissing van een bedrijf voornamelijk een timing probleem, waarin het optimale

tijdstip om de bestaande technologie te vervangen bepaald moest worden. Bijvoorbeeld,

één van de technologie investeringsbeslissingen van een spoorwegmaatschappij betrof de

vervanging van stoom rangeerders door diesel rangeerders. Tot op de dag van vandaag

werken de meeste spoorwegmaatschappijen nog steeds met diesel rangeerders.

Tegenwoordig moet een bedrijf rekening houden met het feit dat de huidige generatie

informatie en communicatie technologieën over een paar jaar weer verouderd zijn. Dus de

investeringsbeslissing is niet langer alleen een vraag van wanneer een nieuwe technologie
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geadopteerd moet worden, maar ook een kwestie van welke technologie geadopteerd moet

worden. Met als gevolg dat, teneinde de technologie adoptie beslissing op een zinvolle

manier te analyseren binnen een theoretisch raamwerk, het belangrijk is om modellen te

bestuderen waarin meerdere technologieën beschikbaar komen. De timing van de inves-

tering is (nog steeds) erg relevant. De reden hiervoor is dat door de snelle technologische

ontwikkelingen van informatie en communicatie technologieën de prijzen van die produc-

ten vrij vlug dalen. Als voorbeeld zijn in Figuur 1.1 op pagina 2 de prijsontwikkelingen

van twee Intel Pentium III processors in Nederland weergegeven.

Een ander significant kenmerk van het laatste decennium is dat bedrijven meer en

meer geconfronteerd worden met competitie op hun afzetmarkten. Een reden is het open-

stellen van de door de overheid in stand gehouden markten met maar één aanbieder.

Voorbeelden in Nederland zijn het openen van de markten voor telecommunicatie, spoor-

wegen en energievoorziening. Tot september 1995 was KPN Telecom de enige aanbieder

van mobiele telefonie in Nederland. Door de Europese wetgeving, die liberalisatie van

onder andere de telecommunicatiemarkt voorschrijft, organiseerde de Nederlandse rege-

ring een zogenaamde schoonheidswedstrijd met als prijs een licentie om mobiele telefonie

aan te bieden. Libertel won die prijs en nam haar netwerk in september 1995 in gebruik.

Telfort werd actief op de markt in september 1998 en aan het eind van dat jaar begon-

nen ook Ben en Dutchtone met het aanbieden van hun diensten. Momenteel zijn deze

vijf spelers nog steeds actief op deze markt. Het mag duidelijk zijn dat KPN Telecom

haar investeringsstrategie drastisch heeft moeten wijzigen door de intrede van deze vier

opponenten.

Een andere reden voor de toename van het aantal oligopolistische markten is het (nog

steeds doorgaande) proces van fusies en overnames, dat door wetgeving niet zal leiden

tot markten met maar één aanbieder. Een voorbeeld uit de auto-industrie betreft het sa-

mengaan van Daimler en Chrysler in 1998. Uit de telecommunicatiemarkt kennen we de

overname van AirTouch door Vodafone (gedeeltelijk eigenaar van Libertel) in 1999 en het

recente (vijandelijke) bod van Vodafone op de aandelen van Mannesmann. Als Vodafone

slaagt in het overnemen van Mannesmann, dan moet het Orange (eigendom van Mannes-

mann) afstoten, omdat anders het marktaandeel van Vodafone in het Verenigd Koninkrijk

te groot wordt. Het resultaat van Vodafone’s aankondiging was dat vier potentiële kopers,

France Telecom, KPN Telecom, NTT DoCoMo en MCI Worldcom, zich gemeld hebben

voor Orange. De aankondiging eerder dit jaar van de voorgenomen fusie van de Deutsche

Bank en de Dresdner Bank is een voorbeeld in de financiële markt. De rechtzaak tussen

Microsoft en de Verenigde Staten van Amerika over Microsoft’s (veronderstelde) monopo-

liepositie is een voorbeeld van het ingrijpen van de regering. Het resultaat van deze fusies,

overnames en het ingrijpen van regeringen is dat op de lange termijn markten met maar



Samenvatting 241

één aanbieder en markten met heel veel aanbieders zullen verdwijnen. Voor een individu-

eel bedrijf is het daarom tegenwoordig absoluut noodzakelijk om het investeringsgedrag

van zijn concurrenten te betrekken bij zijn eigen investeringsbeslissing.

De bestaande literatuur aangaande de technologie investeringsbeslissing van een in-

dividueel bedrijf kan opgesplitst worden in twee categorieën. De modellen uit de eer-

ste categorie, de zogenaamde beslissingstheoretische modellen, analyseren de technologie

investeringsbeslissing van één bedrijf in afzondering. In de speltheoretische modellen

daarentegen worden de technologie investeringsacties van de concurrenten van het be-

drijf expliciet meegenomen. Uit de hierboven beschreven economische observaties kan

geconcludeerd worden dat er een sterke behoefte is aan het gebruik van speltheorie in

het theoretisch modelleren van de technologie investeringsbeslissing van een individueel

bedrijf. In deel I van dit boek komen beslissingstheoretische modellen aan de orde en in

de delen II en III worden twee verschillende speltheoretische modellen bestudeerd.

Investeren Onder Onzekerheid

Een investering is gedefinieerd als het doen van een onmiddellijke uitgave in verwachting

van toekomstige opbrengsten. Een groot gedeelte van alle investeringsprojecten bezitten

de volgende drie karakteristieken: onomkeerbaarheid, onzekerheid en de mogelijkheid tot

uitstel.

Een investering is onomkeerbaar als de bijbehorende investeringskosten verzonken kos-

ten zijn. Dat betekent dat het onmogelijk is om de investeringskosten terug te krijgen

nadat de investering is gedaan. Dit is zeker het geval voor investeringen in informatie en

communicatie technologieën. Het is onmogelijk om een personal computer van één jaar

oud te verkopen tegen de aankoopprijs. De meeste industrie- of bedrijfsspecifieke investe-

ringen zijn in het algemeen onomkeerbaar. De marketing en advertentieuitgaven van KPN

Telecom zijn bedrijfsspecifiek en zijn niet terug te draaien, want KPN Telecom kan dit

investeringsproject niet verkopen aan een ander telecommunicatiebedrijf. Een voorbeeld

van een industriespecifieke investering is het bouwen van een nieuw mobiel netwerk door

Libertel. Deze investering zal (op z’n minst gedeeltelijk) onomkeerbaar zijn. Als het voor

Libertel niet langer winstgevend is om dit netwerk te exploiteren zal het ook voor een

andere mobiele aanbieder niet winstgevend zijn. Door het zogenaamde lemons problem

(zie Akerlof (1970)) zijn een heleboel investeringen, die niet bedrijfs- of industriespecifiek

zijn, ook onomkeerbaar.

Een investeringsproject is (bijna) altijd onderhevig aan onzekerheid. Voor de meeste

investeringsprojecten zijn de toekomstige opbrengsten stochastisch, door bijvoorbeeld on-

zekerheid in marktaandeel en marktprijzen. Het is ook mogelijk dat de investeringskosten

onzeker zijn. Een voorbeeld betreft de kosten van de Oosterschelde stormvloedkering die



242 Samenvatting

veel hoger waren dan geraamd.

Uit technisch oogpunt is het bijna altijd mogelijk om een investering uit te stellen,

hetgeen een bedrijf flexibiliteit geeft. Economisch gezien kan het uitstel kostbaar zijn,

bijvoorbeeld omdat het bedrijf marktaandeel verliest, wanneer het niet direct investeert.

Aan de andere kant kan het bedrijf meer informatie over het project vergaren, wanneer

het besluit tot uitstel.

De netto contante waarde methode is de meest gebruikte (en aangeleerde) methode

voor het evalueren van investeringsprojecten. Volgens deze methode moet een investe-

ringsproject uitgevoerd worden indien de verwachte (verdisconteerde) contante waarde

van de opbrengstenstroom van het project groter of gelijk is aan de verwachte contante

waarde van de investeringskosten. Echter, de onderliggende aannames van de netto con-

tante waarde methode stroken niet met de hierboven genoemde karakteristieken van in-

vesteringsprojecten. De reden is dat de netto contante waarde methode aanneemt dat een

investeringsproject of omkeerbaar is, of wanneer het onomkeerbaar is, het een nu of nooit

beslissing is. Het resultaat is dat het toepassen van de netto contante waarde methode

tot sub-optimale investeringsbeslissingen leidt. Vooral het negeren van de mogelijkheid

tot uitstel is een belangrijke fout, omdat de meeste investeringsprojecten onomkeerbaar

zijn. De reële optietheorie slaagt erin deze zogenaamde optie waarde van het wachten

expliciet te waarderen.

In de reële optietheorie wordt de analogie tussen een investeringsproject van een bedrijf

en een financiële call-optie geëxploiteerd. Een financiële call-optie geeft de houder het

recht, maar niet de plicht, om een eenheid van het onderliggende derivaat (bijvoorbeeld

aandeel of obligatie) te kopen voor een gespecificeerde prijs (voor of) op een gespecificeerd

tijdstip. Vergelijkbaar met een financiële call-optie geeft een investeringsmogelijkheid een

bedrijf het recht, maar niet de plicht, om een bepaald investeringsproject uit te voeren. De

financiële optietheorie schrijft voor een optie pas uit te oefenen wanneer deze voldoende

diep in het geld is. Daarom moet een investeringsproject pas worden uitgeoefend wanneer

de netto contante waarde groter is dan de optie waarde van het wachten.

Investeren Onder Competitie

In de meeste reële optietheorie modellen wordt een bedrijf in afzondering bestudeerd. De

hierboven beschreven economische observaties pleiten voor het ontwikkelen en analyseren

van investeringsmodellen waarin expliciet strategische interacties worden meegenomen.

In de modellen waarin dat gebeurt, wordt gebruik gemaakt van speltheorie. Omdat

bedrijven over het algemeen niet samenwerken met hun concurrenten is de niet-coperatieve

speltheorie het meest van belang.
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Overzicht

Dit boek is opgesplitst in drie delen. Het eerste deel bevat twee beslissingstheoretische

technologie modellen met een reële optie aanpak. In deel II worden drie speltheoreti-

sche technologie adoptie modellen beschouwd. Tenslotte komen in deel III drie algemene

speltheoretische reële optie modellen aan de orde.

Beslissingstheoretische Modellen

Hoofdstuk 2 begint met een literatuuroverzicht van de beslissingstheoretische technologie

adoptie modellen. In het model van hoofdstuk 2 wordt de technologie adoptie beslissing

van één bedrijf geanalyseerd. Het bedrijf kan een betere technologie aankopen door het

doen van een onomkeerbare investering. De investeringskosten van een bepaalde tech-

nologie zijn niet tijdsafhankelijk. Met een betere technologie kan het bedrijf efficiënter

produceren en daarom meer winst maken. Nieuwe technologieën arriveren volgens een

stochastisch proces en de efficiëntie verbetering van een nieuwe technologie is ook sto-

chastisch. Eerst wordt het model aan de orde gesteld waarin het bedrijf maar één keer

mag investeren en daarna wordt het model besproken waarbij meerdere keren gëınvesteerd

mag worden. Dat laatste model is alleen oplosbaar indien de efficiëntie verbeteringen van

de nieuwe technologieën van tevoren bekend zijn. Tenslotte wordt de optimale investe-

ringsstrategie vergeleken met de netto contante waarde methode. Het blijkt dat de optie

waarde van het wachten niet genegeerd kan worden bij het maken van de investeringsbe-

slissing, hetgeen ook wordt aangetoond in een numeriek voorbeeld. In de appendix van

hoofdstuk 2 wordt een introductie tot de wiskundige techniek optimal stopping gegeven.

In hoofdstuk 3 wordt het model uit hoofdstuk 2 uitgebreid door de investeringskosten

te laten dalen in de tijd. De efficiëntie verbeteringen van de nieuwe technologieën worden

bekend verondersteld. De optimale investeringsstrategie onder de restrictie dat het bedrijf

maar één keer mag investeren wordt afgeleid en vergeleken met de netto contante waarde

methode. Daarna wordt beargumenteerd waarom het niet mogelijk is om dit model op te

lossen voor het geval waarbij meerdere keren gëınvesteerd mag worden.

Speltheoretische Adoptie Modellen

In hoofdstuk 4 wordt eerst een literatuuroverzicht van de speltheoretische technologie

investeringsmodellen gegeven. Daarna wordt het meest belangrijke en deterministische

basismodel (zie Reinganum (1981) en Fudenberg en Tirole (1985)) uit dit onderzoeksveld

in detail besproken. Twee identieke bedrijven die actief zijn op een afzetmarkt kunnen

een onomkeerbare investering doen die hun eigen winst laat toenemen en de winst van

hun concurrent doet afnemen. De investeringskosten dalen in de tijd. Het investeringsspel
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wordt opgelost met behulp van zogenaamde timing spelen. Een introductie tot de timing

spelen wordt gegeven in de appendix van hoofdstuk 4. De speler die als eerste een zet

doet wordt de leider genoemd en de andere speler is de volger. Reinganum veronderstelt

in haar analyse dat één van de bedrijven de leiderrol van tevoren krijgt toegewezen. In

de analyse van Fudenberg en Tirole worden de rollen endogeen bepaald. Dit betekent dat

beide bedrijven leider kunnen worden door eerder dan de concurrent te investeren. Het

resultaat is dat in het evenwicht de waarde van de bedrijven gelijk zijn. Het resterende

gedeelte van hoofdstuk 4 behandelt de uitbreiding van het Reinganum-Fudenberg-Tirole

model die door Stenbacka en Tombak (1994) is gentroduceerd. Stenbacka en Tombak

veronderstellen dat de tijd tussen adoptie en succesvolle implementatie van de nieuwe

technologie stochastisch is.

Hoofdstuk 5 is een uitbreiding van het basismodel door het opnemen van twee nieuwe

technologieën en de mogelijkheid van opwaardering. In het begin van het spel is geen van

de twee identieke bedrijven actief op de afzetmarkt. Om direct actief te worden moet het

bedrijf een onomkeerbare investering doen in de vorm van het aankopen van de huidige

beste technologie. Het bedrijf kan ook besluiten om het actief worden uit te stellen en

de betere nieuwe technologie te kopen die beschikbaar komt op een van tevoren bekend

tijdstip. Verder is het ook mogelijk om de huidige beste technologie op te waarderen met

de betere nieuwe technologie. Er zijn leereffecten bij deze opwaardeerstrategie: de nieuwe

technologie is goedkoper indien het bedrijf met de huidige technologie heeft gewerkt. Twee

van de negen mogelijke scenario’s worden uitgewerkt.

In hoofdstuk 6 wordt het model uit hoofdstuk 4 uitgebreid door het toevoegen van

onzekerheid in het aankomstproces van nieuwe technologieën en door het beschouwen

van meerdere nieuwe technologieën. Verder wordt in dit hoofdstuk aangenomen dat de

bedrijven maar één keer kunnen investeren. Na de introductie van een nieuw concept

binnen de timing spelen, namelijk de wachtcurve, wordt een algoritme voor het oplossen

van dit soort technologie investeringspelen gepresenteerd. Het algoritme wordt verhelderd

door het toe te passen op een specifiek voorbeeld.

Speltheoretische Reële Optie Modellen

Hoofdstuk 7 beschouwt een algemenere versie van het model beschreven in Nielsen (1999),

omdat de bedrijven al actief zijn op de afzetmarkt. Het afschaffen van de nieuwe markt

veronderstelling verandert de resultaten aanzienlijk. In het algemeen is het niet meer

waar dat de introductie van een nieuw bedrijf investeringen versnelt. Het model is de

stochastische tegenhanger van het Reinganum-Fudenberg-Tirole model en de resultaten

van het introduceren van stochastiek in dat model worden besproken.

In hoofdstuk 8 wordt het nieuwe markt model uit Nielsen (1999) bestudeerd, maar
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dan met asymmetrische bedrijven. De asymmetrie is gemodelleerd door aan te nemen dat

de investeringskosten van de bedrijven verschillend zijn. Zowel de casus van negatieve als

van positieve externaliteiten wordt geanalyseerd. Bij negatieve externaliteiten kan een

bedrijf de hoogste winst behalen wanneer de concurrent niet actief is. In tegenstelling tot

het geval van positieve externaliteiten waar de winst van een bedrijf hoger is wanneer de

concurrent ook actief is. Positieve externaliteiten ontstaan als gevolg van netwerk effecten

of wanneer de bedrijven complementaire goederen produceren. Aangetoond wordt dat ook

in het asymmetrische geval investeringen versneld moeten worden uitgevoerd vanwege de

introductie van een tweede bedrijf.

Hoofdstuk 9 combineert de hoofdstukken 2, 5 en 7. Twee identieke bedrijven kun-

nen actief worden op een afzetmarkt door het maken van een onomkeerbare investering.

In het begin is er slechts één technologie beschikbaar, maar op een onbekend tijdstip

in de toekomst wordt er een betere technologie uitgevonden. Beide bedrijven kunnen

slechts éénmaal investeren en de investeringskosten zijn constant in de tijd. Aangetoond

wordt dat de evenwichtsuitkomst vooral afhangt van de verwachte aankomstsnelheid van

de nieuwe technologie en dat een grotere onzekerheid in de afzetmarkt technologische

vooruitgang stimuleert.
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