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Abstract Informationally robust equilibria (IRE) are introduced in Robson (Games
Econ Behav 7:233–245, 1994) as a refinement of Nash equilibria for strategic
games. Such equilibria are limits of a sequence of (subgame perfect) Nash equilib-
ria in perturbed games where with small probability information about the strategic
behavior is revealed to other players (information leakage). Focusing on bimatrix
games, we consider a type of informationally robust equilibria and derive a num-
ber of properties: they form a non-empty and closed subset of the Nash equilibria.
Moreover, IRE is a strict concept in the sense that the IRE are independent of
the exact sequence of probabilities with which information is leaked. The set of
IRE, like the set of Nash equilibria, is the finite union of polytopes. In potential
games, there is an IRE in pure strategies. In zero-sum games, the set of IRE has
a product structure and its elements can be computed efficiently by using linear
programming. We also discuss extensions to games with infinite strategy spaces
and more than two players.

Keywords Bimatrix game · Equilibrium selection · Leakage of information

JEL Classification Numbers C72

The authors would like to thank Marieke Quant for her helpful comments.

H. Reijnierse (B) · P. Borm · M. Voorneveld
Center and Department of Econometrics and Operations Research, Tilburg University,
P.O. Box 90153, 5000 LE Tilburg, The Netherlands
E-mail: J.H.Reijnierse@uvt.nl

M. Voorneveld
Department of Economics, Stockholm School of Economics,
Box 6501, 113 83 Stockholm, Sweden

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6416564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


540 H. Reijnierse et al.

1 Introduction

A branch of game-theoretic literature deals with refinements of the Nash equi-
librium concept. Starting with the perfect equilibria of Selten (1975), and along
the way developing notions like properness (Myerson 1978) and strict perfectness
(Okada 1984), it eventually culminated in the work of (Kohlberg and Mertens
1986). See Van Damme (1991) for an overview. The original idea underlying these
concepts is that players undergo a thought experiment in which all players make
mistakes with small, but positive probabilities. The current paper uses a simi-
lar, but somewhat different thought experiment of the type suggested by Robson
(1994), where with small, positive probability one of the players’ action choices
is revealed. Such “information leakage” is of relevance in numerous practical sit-
uations, witnessing the literature on industrial espionage, creating first- or second-
mover (dis)advantages (see, for instance, Bagwell 1995), enforcing cooperation
(Matsui 1989), but also – more casually – the importance of being able to hide the
strength of your hand in a poker game.

Throughout the paper, we consider mixed extensions of finite, two-person
games (bimatrix games). Games are perturbed by allocating small probabilities
to two disjoint events. With large probability, the original game is played, but there
is a small probability that the action choice of one of the players is revealed to the
other. Informally, there is a small probability that one of the players acts first. If,
say, player 1 acts first, player 2 observes the decision of player 1. If player 1 plays a
mixed strategy, player 2 is informed about the outcome of the chance mechanism.
Thereafter, he can base his decision on this information. Player 1 cannot distin-
guish between this case and the regular one, i.e., he does not know if he is revealing
his action or not. Similarly, player 2 may act first (not knowing this himself) and
player 1 can respond. The events player 1 acts first and player 2 acts first do not
necessarily have the same probability.

An alternative way to model leakage of information is given in Reny and Robson
(2004). Here, a player’s mixed strategy may be revealed and the corresponding
perturbed games are Bayesian. In particular, this allows for a reinterpretation of
a mixed strategy Nash equilibrium by means of Bayesian equilibria. Solan and
Yariv (2004) provide a two-player model in which player 1 can purchase (obtain
by espionage) a noisy signal of the chosen strategy of player 2.

Our approach, however, follows the lines set out by Robson (1994). Focussing
on bimatrix games, our underlying thought experiment allows for the possibility
of a player’s action to be revealed. Further, we put restrictions on the perturbations
in order to have perturbed games of the same dimension as the original one.

To highlight these differences and to get acquainted with the model, let us
discuss an example. Consider the bimatrix game[

(1, 1) (0, 0)
(1, 0) (0, 2)

]
.

The row player has no direct influence on his payoff by his own action. He can
however, have the following line of thought:

If there would be a slight chance that my opponent can act upon my action,
then I’d better play the top row; my opponent’s best reply to this action is
playing the left column. This leads to a benefit of 1.
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Fig. 1 A perturbation concerning leakage of information in extensive form

Let εi denote the probability that player i’s action is revealed to the other player
(i ∈ {1, 2}). The extensive form of this perturbation is depicted in Figure 1. The
analysis of Robson takes place in this extensive form game, requiring subgame
perfection. Notice that there is an exponential growth in the size of strategy spaces
in the perturbed game; if the players in the bimatrix game have m, respectively n,
pure strategies, they have mn+1 and nm+1 pure strategies in the perturbed game.
Our paper contains an analysis of perturbed games in normal form and avoids the
exponential growth by putting a common rationality restriction on the behavior
of the players. These restrictions only have a bite in the one-person (like) perfect
information subgames at the end of the game tree. In a subgame perfect equilib-
rium, the player involved chooses an action that maximizes his utility. To reduce the
strategy spaces of the perturbed games, we delete all other strategies beforehand.
Generically, all but one strategy in such subgames are omitted.

As a tie-breaking rule in non-generic cases, we assume that the player involved
chooses a utility maximizing action that maximizes the payoff to the other player
(“optimistic tie-breaking”).1

1 An alternative tie-breaking rule would be to choose a utility maximizing action that is worst
for the opponent (pessimistic tie-breaking). This would not affect the results of this paper. We
thank a referee for pointing out that the optimistic tie is superior for reasons of generalization.
For a discussion we refer to Section 7.
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Having defined the perturbed games in this way, a strategy profile is called infor-
mationally robust if it is the limit of a sequence of Nash equilibria of perturbed
games, with probabilities of information leakage converging to zero.

Our main results are as follows. Informationally robust equilibria are defined in
Section 2. Furthermore, it provides an alternative way to describe informationally
robustness (Lemma 1) and shows that the set of informationally robust equilibria
is a non-empty, closed subset of the game’s Nash equilibria (Theorem 1). Section 3
provides a second characterization of IRE by showing that the exact sequence
of probabilities with which information leakage occurs is irrelevant (Theorem 2).
Theorem 3 in Section 4 characterizes the structure of the set of IRE: like the set
of Nash equilibria of bimatrix games it is the finite union of polytopes. Next, we
consider two special classes of games. In Section 5 it is shown that in potential
games (cf. Monderer and Shapley 1996) there is always a pure-strategy equilibrium
that is informationally robust (Theorem 4). In Section 6 it is shown that – again in
correspondence with the set of Nash equilibria, which is the Cartesian product of a
zero-sum game’s maximin/minimax strategies – the set of IRE in two-person zero-
sum games has a product structure, whose elements can be computed efficiently
using linear programming (Theorem 5). Section 7 concludes with a discussion of
the possibilities of generalizing our analysis to games with infinite strategy spaces
and games with more than two players.

2 IRE

Let us fix the notations that are used throughout the paper. A bimatrix game is the
mixed extension of a finite two-person noncooperative game. It is characterized by
a pair (A, B) of real-valued matrices of equal, finite, size. The players are called
1 and 2. Player 1 chooses a row and player 2 chooses a column. We use m for the
number of rows and n for the number of columns. The index sets of the rows and
columns are denoted by M and N , respectively:

M = {1, . . . , m} and N = {1, . . . , n}.
Typical characters to index rows are i and k, typical characters to index columns
are j and �. The spaces of mixed strategies are called �m and �n , respectively.
Furthermore, � = �m × �n; the space of strategy profiles. The unit vectors of
�m and �n (i.e., the pure strategies) are denoted by ei (i ∈ M) and f j ( j ∈ N ).
A typical element of �m will be denoted by p, a typical element of �n by q . Players
have a pure best reply correspondence:

P B1(A, q) = argmax
i∈M

ei Aq and P B2(B, p) = argmax
j∈N

pB f j .

These correspondences are upper semi-continuous in both coordinates, e.g., if
(At , qt ) tends to (A, q), then P B1(At , qt ) ⊆ P B1(A, q) for sufficiently large t .
The carrier C(x) of a vector x is the set of its non-zero coordinates, i.e.,

C(x) = {i | xi �= 0}.
A Nash equilibrium (p, q) is a profile of mixed strategies such that C(p) ⊆
P B1(A, q) and C(q) ⊆ P B2(B, p). The set of all Nash equilibria of the game
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(A, B) is denoted by E(A, B). Two extra parameters are needed to give the per-
turbations of A and B. The probability that the action of player 1 is revealed to
player 2 is called ε1 > 0. The probability that the action of player 2 is revealed to
player 1 is called ε2 > 0. By assumption, ε1 + ε2 < 1. We define Ai j (ε1, ε2), the
payoff player 1 receives in a perturbed game when player 1 chooses strategy ei and
player 2 chooses f j , as follows. With large probability (1 − ε1 − ε2) he receives
the original payoff Ai j . With probability ε1, first player’s action ei is revealed to
player 2, who can respond optimally to it, i.e., choose an element of P B2(B, ei ). In
case of multiple best replies player 2 selects one of the strategies f� ∈ P B2(B, ei )
that maximizes his opponent’s utility Ai�. Conversely, with probability ε2, second
player’s action f j is revealed to player 1, who reacts optimally against it, resulting
in maxk∈M Akj . The perturbed game for player 2 is defined analogously. This
leads to the following definition.

Definition 1 Let (A, B)be an m×n-bimatrix game and let (ε1, ε2)be a pair of posi-
tive real numbers satisfying ε1+ε2 < 1. The perturbed game (A(ε1, ε2), B(ε1, ε2))
is the bimatrix game given by

Ai j (ε1, ε2) = (1 − ε1 − ε2)Ai j + ε1 max{Ai�, � ∈ P B2(B, ei )} + ε2 max
k∈M

Akj ,

Bi j (ε1, ε2) = (1 − ε1 − ε2)Bi j + ε1 max
�∈N

Bi� + ε2 max{Bkj , k ∈ P B1(A, f j )}.

Now we have made all preparations to define informationally robust equilibria.

Definition 2 Let (A, B) be an m × n-bimatrix game. A profile (p, q) is an infor-
mationally robust equilibrium or IRE if there exist sequences (εt

1)t∈N and (εt
2)t∈N

of positive real numbers converging to zero, and a sequence (pt , qt )t∈N in �
converging to (p, q) such that for all t ∈ N,

(pt , qt ) ∈ E(A(εt
1, ε

t
2), B(εt

1, ε
t
2)).

The set of informationally robust equilibria of (A, B) is denoted by IRE(A, B).

There is an alternative convenient characterization of IRE by means of best reply
equivalent perturbed games. Two bimatrix games (A, B) and (C, D) of equal size
are called best reply equivalent if their pure best reply functions coincide:

P B1(A, ·) = P B1(C, ·) and P B2(B, ·) = P B2(D, ·).
We will denote this type of equivalence by (A, B) ≡b (C, D).

Fix an m × n-bimatrix game (A, B). Let R in R
m×n be defined by

Ri j = max{Ai� | � ∈ P B2(B, ei )}.
So, rows of R are constant. Similarly, define S in R

m×n by

Si j = max{Bkj | ek ∈ P B1(A, f j )}.
The alternative perturbations of A and B will be

A(ε1) = A + ε1 R and B(ε2) = B + ε2S.
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Lemma 1 Let (A, B) be an m × n-bimatrix game. A profile (p, q) is IRE if and
only if there exist sequences (εt

1)t∈N and (εt
2)t∈N of positive real numbers converg-

ing to zero, and a sequence (pt , qt )t∈N in � converging to (p, q) such that for all
t ∈ N

(pt , qt ) ∈ E(A(εt
1), B(εt

2)).

Proof Best reply equivalent games have identical equilibrium sets. Since the defi-
nition of IRE concerns equilibrium sets of perturbed games, we might as well use
other perturbed games as long as they are best reply equivalent. It is easy to verify
that (A, B) and (t A, u B) are best reply equivalent for any positive real numbers t
and u, and so are (A, B) and (A + T, B + U ) if T is a matrix with constant col-
umns and U is a matrix with constant rows. Let (εt

1)t∈N and (εt
2)t∈N be sequences

of positive real numbers converging to zero and let t ∈ N. Define T and U in
R

M×N by

Ti j = max
k∈M

Akj and Ui j = max
�∈N

Bi�.

Then (
A(εt

1, ε
t
2), B(εt

1, ε
t
2)

) = (
(1 − εt

1 − εt
2)A

+εt
1 R + εt

2T, (1 − εt
1 − εt

2)B + εt
2S + εt

1U
)

≡ b

(
A + εt

1

1 − εt
1 − εt

2
R, B + εt

2

1 − εt
1 − εt

2
S

)

=
(

A

(
εt

1

1 − εt
1 − εt

2

)
, B

(
εt

2

1 − εt
1 − εt

2

))
.

Define for all t ∈ N and i ∈ {1, 2}: εt
i = εt

i /(1 − εt
1 − εt

2). Then one might as well
use the sequences (εt

1)t∈N and (εt
2)t∈N in combination with perturbed games of the

form (A + εt
1 R, B + εt

2S). ��
Example 1 Consider the bimatrix game

[
(1, 1) (0, 0)
(1, 0) (0, 2)

]

discussed in the Section 1. The game (A(ε1, ε2), B(ε1, ε2)) is given by

(1 − ε1 − ε2)

[
(1, 1) (0, 0)
(1, 0) (0, 2)

]
+ ε1

[
(1, 1) (1, 1)
(0, 2) (0, 2)

]
+ ε2

[
(1, 1) (0, 2)
(1, 1) (0, 2)

]
=

[
(1, 1) (ε1, ε1 + 2ε2)
(1 − ε1, 2ε1 + ε2) (0, 2)

]
,

and the alternative perturbation (A + ε1 R, B + ε2S) is
[
(1 + ε1, 1 + ε2) (ε1, 2ε2)
(1, ε2) (0 , 2 + 2ε2)

]
.
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In both cases, the top row of the perturbed A-matrix strictly dominates its bottom
row. Hence, in an IRE, player 1 will play top. Player 2 can only respond optimally
by choosing left, so the unique IRE is (top, left). Notice that, where the Nash-equi-
librium concept does not, the IRE concept treats the following best reply equivalent
game differently: [

(−1, 1) (0, 0)
(−1, 0) (0, 2)

]
.

Here, the profile (bottom, right) is the unique IRE. Although it heavily relies on
the precise situations that are modelled by the two games, we have the opinion that
in this example IRE outperforms any Nash-refinement that is invariant under best
reply equivalent manipulation.

Theorem 1 Let (A, B) be a bimatrix game. Then IRE(A, B) is a non-empty and
closed subset of E(A, B).

Proof Firstly, we show the non-emptyness. Let (εt
1)t∈N and (εt

2)t∈N be sequences
of positive numbers converging to 0. For all t ∈ N, let (pt , qt ) ∈ E(A(εt

1), B(εt
2)).

Due to compactness of the strategy spaces, there exists a subsequence of (pt , qt )t∈N

converging to, say, (p, q) ∈ �, which is an element of IRE(A, B) by Definition 2
and Lemma 1.

To prove that (p, q) ∈ IRE(A, B) is a Nash equilibrium, we show that C(p) ⊆
P B1(A, q) and C(q) ⊆ P B2(B, p). Obviously, it suffices to prove the first state-
ment. Take sequences (εt

1)t∈N and (εt
2)t∈N of positive numbers converging to 0

and profiles (pt , qt ) in E(A(εt
1), B(εt

2)) converging to (p, q). Let i ∈ C(p). Then
i ∈ C(pt ) for t sufficiently large. Hence, for all k ∈ M :

ei A(εt
1)q

t � ek A(εt
1)q

t .

Taking t to infinity, we find for all k ∈ M :

ei Aq � ek Aq.

Finally, we show that IRE(A, B) is closed. Take a converging sequence (pt , qt )t∈N

in IRE(A, B) with limit (p, q). For every t , there are sequences (εtk
1 , εtk

2 )k∈N con-
verging to (0, 0) and (ptk, qtk)k∈N converging to (pt , qt ) with

(ptk, qtk) ∈ E(A(εtk
1 ), B(εtk

2 )).

Consider the sequences (εt t
1 , εt t

2 )t∈N and (ptt , qtt )t∈N. They demonstrate that (p, q)
is in IRE(A, B). ��

3 Strict IRE

Like Robson (1994), we allowed the probabilities of information leakage to be
different for the respective players. But requiring them to be equal does not affect
the set of informationally robust equilibria. One can go even further: if there is some
sequence of perturbed games making some profile an IRE, then any sequence of
perturbed games converging to the original game supports this profile being an
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IRE. This section proves the above statement. Firstly, the notion of strict IRE is
defined, analogously to the way Okada (1984) has refined perfectness to strict
perfectness.

Definition 3 An equilibrium (p, q) of game (A, B) is called a strict IRE if for
all decreasing sequences (εt

1, ε
t
2)t∈N converging to (0, 0) there is a sequence

(pt , qt )t∈N converging to (p, q) with (pt , qt ) ∈ E(A(εt
1, ε

t
2), B(εt

1, ε
t
2)) for all

t ∈ N.

Theorem 2 For any bimatrix game (A, B) the sets of IRE and strict IRE coincide.

Proof Obviously, every strict IRE is an IRE. Conversely, let (p, q) ∈ IRE(A, B)
with – see Lemma 1 – associated sequences

(δt
1, δ

t
2) −→ (0, 0) and (pt , qt ) −→ (p, q)

and (pt , qt ) ∈ E(A(δt
1), B(δt

2)) for all t ∈ N. Using subsequences if necessary,
we can assume that C(p) ⊆ C(pt ) = C(pt ′) and C(q) ⊆ C(qt ) = C(qt ′) for all
t, t ′ ∈ N.

Take an arbitrary decreasing sequence (εt
1, ε

t
2)t∈N converging to (0, 0). To show

that this sequence of perturbations supports (p, q) as an IRE, we find a T ∈ N and
a sequence ( p̂t , q̂ t )t�T converging to (p, q) with ( p̂t , q̂ t ) ∈ E(A(εt

1), B(εt
2)) for

all t � T .
Fix T ∈ N with δ1

1 > εT
1 and δ1

2 > εT
2 . For every t ∈ N, t � T , choose k(t) ∈ N

such that

δ1
1 > εt

1 > δ
k(t)
1 and δ1

2 > εt
2 > δ

k(t)
2 .

Indeed, for i = 1, 2, the first inequality δ1
i > εt

i is automatically fulfilled, since
δ1

i > εT
i and the sequence (εt

1, ε
t
2)t∈N is decreasing. Hence, there are unique

λ(t), μ(t) ∈ (0, 1) with

εt
1 = λ(t)δ1

1 + (1 − λ(t))δk(t)
1 and εt

2 = μ(t)δ1
2 + (1 − μ(t))δk(t)

2 .

Define the profile ( p̂t , q̂ t ) by

p̂t = μ(t)p1 + (1 − μ(t))pk(t) and q̂ t = λ(t)q1 + (1 − λ(t))qk(t).

Since (εt
1, ε

t
2) −→ (0, 0) and (δt

1, δ
t
2) −→ (0, 0), it follows that ( p̂t , q̂ t ) −→

(p, q). It remains to show that ( p̂t , q̂ t ) ∈ E(A(εt
1), B(εt

2)) for all t � T . So let
t � T . Because of the similarity, we only show that C( p̂t ) ⊆ P B1(A(εt

1), q̂ t ).
Take i ∈ C( p̂t ). Because C( p̂t ) = C(p1) = C(pk(t)) and (p1, q1) is an element
of E(A(δ1

1), B(δ1
2)), we have for all k ∈ M :

ei (A + δ1
1 R)q1 � ek(A + δ1

1 R)q1.

Because the rows of R are constant, we can rewrite this to be

ei Aq1 + δ1
1ri � ek Aq1 + δ1

1rk, (1)
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in which r ∈ R
m is any column of R. Similarly, for all k ∈ M :

ei Aqk(t) + δ
k(t)
1 ri � ek Aqk(t) + δ

k(t)
1 rk . (2)

Adding λ(t) times inequality (1) to (1−λ(t)) times inequality (2) results in (k ∈ M)

ei Aq̂t + εt
1ri � ek Aq̂t + εt

1rk, (3)

which boils down to

ei (A + εt
1 R)q̂ t � ek(A + εt

1 R)q̂ t (4)

for all k ∈ M . Hence, p̂t is a best response to q̂ t with respect to the game (A +
εt

1 R, B + εt
2S). ��

Because IRE and strict IRE coincide, Lemma 1 implies that one might as well only
look at perturbations of the form (A(ε), B(ε)) = (A + εR, B + εS).

Corollary 1 (p, q) ∈ IRE(A, B) if and only if it is the limit of some trajectory
(pε, qε)ε↓0 with (pε, qε) ∈ E(A + εR, B + εS).

4 The structure of IRE

In bimatrix games, the set of Nash equilibria is the union of finitely many Nash
components (Jansen 1981). This section shows that the set of informationally robust
equilibria of a bimatrix game can be divided into a finite set of components as well.
Let (A, B) be a bimatrix game. By definition, a set of strategy profiles G is called
an IRE component if

(i) G is a convex subset of IRE(A, B),
(ii) G is a product set, i.e., G = G1 × G2 for some G1 ⊆ �m , G2 ⊆ �n ,

(iii) G is maximal with respect to properties (i) and (ii).

Replacing IRE(A, B) by E(A, B) yields the definition of a Nash component. To
get acquainted with the material, let us start with an example. It shows that different
IRE components can be situated in the same Nash component.

Example 2 Let (A, B) be ⎡
⎣(7, 4) (2, 5) (3, 2)

(6, 3) (4, 3) (5, 3)
(4, 2) (2, 6) (6, 5)

⎤
⎦ .

Figure 2 provides the pure best reply figures. The left-hand side figure, i.e., the one
concerning player 1, displays the mixed strategy space of player 2, divided in three
parts. Their relative interiors are the areas in which the strategies of player 2 are
situated with unique best replies. Four boundary points have been given a name,
i.e., a = (2/3) f1 + (1/3) f2, b = (2/3) f1 + (1/3) f3, c = (2/3) f3 + (1/3) f1 and
d = (2/3) f3 + (1/3) f2. The right-hand side figure shows that e2 has three pure
best replies and all other (mixed) strategies of player 1 have f2 as their unique best
reply. Let (p, q) be a Nash equilibrium of (A, B). If P B2(B, p) = { f2}, then q
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Fig. 2 Pure best reply figures of player 1 (left) and player 2 (right)

can only be f2. The unique best reply on f2 is e2, but P B2(B, e2) = { f1, f2, f3}.
Hence, P B2(B, p) = { f1, f2, f3} and p equals e2. Therefore e2 must be a best
reply on q , so q is situated in the convex hull of a, b, c, d and f2. We conclude that
the unique Nash component is {e2}× conv({a, b, c, d, f2}).

Let ε be a positive number close to zero. The perturbed game (A, B, ε) equals

⎡
⎣(7 + 2ε, 4 + 4ε) (2 + 2ε, 5 + 3ε) (3 + 2ε, 2 + 5ε)

(6 + 6ε, 3 + 4ε) (4 + 6ε, 3 + 3ε) (5 + 6ε, 3 + 5ε)
(4 + 2ε, 2 + 4ε) (2 + 2ε, 6 + 3ε) (6 + 2ε, 5 + 5ε)

⎤
⎦ .

The pure best reply figures of the perturbed game are depicted in Figure 3.
It turns out that the point at which player 2 is indifferent between all his three
pure strategies has shifted slightly from e2 into the interior of the strategy space of
player 1. This leads to three areas with a unique pure best reply. Three boundary
points have been given a name, i.e., x̃ = (1/2ε, 1 − 1/2ε, 0), ỹ = (ε, 1 − ε, 0)
and z̃ = (0, 1 − 2ε, 2ε). It is easy to infer that the perturbed game has three Nash
equilibria: (x̃, b̃), converging to (e2, b); (ỹ, ã), converging to (e2, a); and (z̃, d̃),
converging to (e2, d).

In the example above, the IRE are all extreme points of the Nash component
of the game. The example in the introduction of this paper shows that not all Nash

Fig. 3 pure best reply figures of the perturbed game (A, B, ε)
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components necessarily contain an IRE. The main result of this section is that for
every bimatrix game all IRE components are faces of a Nash component.

Theorem 3 Let (A, B) be a bimatrix game. Then IRE(A, B) is the union of finitely
many IRE components, each of which is a face of a Nash component, and thereby
a polytope.

In the following proof the phrase “(p, q) is situated on the face F of polytope P”
denotes that (p, q) is an element of the relative interior of F . Note that for every
(p, q) ∈ P , there is exactly one face with this property.

Proof The heart of the proof consists of showing the following assertion. Let (p, q)
be an informationally robust equilibrium of the game (A, B). Let (p′, q ′) be situ-
ated on the same face of the same component of E(A, B) as (p, q). Then (p′, q ′)
is an element of IRE(A, B) as well. Once we have established to show the validity
of this assertion, the fact that IRE(A, B) is a closed set leads to the observation
that IRE components behave like Nash components, which completes the proof.

Hence, let us focus on the assertion above. Because a component is the carte-
sian product of two polytopes, (p′, q) is situated on the same face as (p, q) and
(p′, q ′) are. We assume that q equals q ′, since if we can prove that (p′, q) ∈ IRE,
we can repeat the argument for (p′, q ′), given that (p′, q) ∈ IRE. Inside the rela-
tive interior of the face of a Nash component the carrier C(·) and pure best reply
correspondence P B2(B, ·) are constant (see e.g. Jurg 1993, Sect. 2.2). Hence, we
have C(p) = C(p′) and P B2(B, p) = P B2(B, p′). Furthermore, since (p, q) ∈
IRE(A, B), there is a decreasing sequence (εt )t∈N with limit 0 and a series of
profiles (pt , qt )t∈N converging to (p, q) such that (pt , qt ) is an equilibrium of the
game (A(εt ), B(εt )). For all t , define

p̂t = p′ − p + pt .

Then p̂t converges to p′. For large t , p̂t is a strategy of player 1, because
∑
i∈M

p̂t
i =

∑
i∈M

p′
i −

∑
i∈M

pi +
∑
i∈M

pt
i = 1

and if p̂t
i < 0, then i ∈ C(p) = C(p′), so p′

i > 0. Hence, increasing t will
sufficiently lead to a positive value of p̂t

i . The proof is complete when we can show
that ( p̂t , qt ) ∈ E(A(εt ), B(εt )). We have

C( p̂t ) ⊆ C(p′) ∪ C(p) ∪ C(pt ) = C(pt ) ⊆ P B1(A(εt ), qt ),

so it remains to show that C(qt ) ⊆ P B2(B(εt ), p̂t ). Let j ∈ C(qt ) and � ∈
P B2(B(εt ), p̂t ). Since C(qt ) ⊆ P B2(B(εt ), pt ), we have

pt (B + εt S) f� � pt (B + εt S) f j . (5)

Because pure best reply correspondences are upper semi-continuous (see Section
2), for t sufficiently large we obtain

C(qt ) ⊆ P B2(B(εt ), pt ) ⊆ P B2(B, p) and P B2(B(εt ), p̂t ) ⊆ P B2(B, p′).
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Combining these statements gives

{ j, �} ⊆ P B2(B, p) = P B2(B, p′).

This implies that

pB f� = pB f j and − p′B f� = −p′B f j . (6)

Because the columns of S are constant, we have

p(εt S) f� = p′(εt S) f� and p(εt S) f j = p′(εt S) f j . (7)

Observations (5), (6) and (7) imply

(p − p′ + pt )(B + εt S) f� � (p − p′ + pt )(B + εt S) f j .

Hence, like �, the strategy j is an element of P B2(B(εt ), p̂t ). We conclude that
( p̂t , qt ) is an element of E(A(εt ), B(εt )). ��

5 Potential games

Potential games have been introduced by Monderer and Shapley (1996). There are
many economic situations that can be modeled by potential games. For an overview
we refer to Voorneveld (1999). The main virtue of having a potential function for a
finite game is that it implies the existence of an (easily traceable) Nash equilibrium
in pure strategies. Perhaps the most natural definition of a potential is the cardinal
(or exact) potential function. On the other hand, the ordinal potential generalizes
this concept to a much wider class of games and can still be used to obtain the result
of this section. Therefore, we give the definition of the latter type of potential.

Definition 4 A bimatrix game (A, B) is an ordinal potential game if there exists
a function P : � −→ R such that for all p, p′ ∈ �m and q, q ′ ∈ �n:

p Aq > p′ Aq i f and only i f P(p, q) > P(p′, q), and

pBq > pBq ′ i f and only i f P(p, q) > P(p, q ′).

The function P is called an (ordinal) potential of the game (A, B).

It turns out that IRE and the set of strategy pairs at which the potential is maximal
always have at least one profile in common.

Theorem 4 Let (A, B) be a bimatrix game with ordinal potential P. Then there
exists a pure informationally robust equilibrium that maximizes the potential.

Proof Define the m×n-matrix P̄ as the restriction of P to the pure strategy profiles
of (A, B):

P̄i j = P(ei , f j ). (i ∈ M, j ∈ N )
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By definition of a potential, for all i, k ∈ M and all j, � ∈ N :

Ai j > Akj ⇐⇒ P̄i j > P̄k j ,

Bi j > Bi� ⇐⇒ P̄i j > P̄i�. (8)

Let us call a matrix satisfying (8) a potential matrix of (A, B). Firstly, we show
that the perturbation (A + εR, B + εS) has potential matrix P̄ + ε(R + S) if ε > 0
is chosen sufficiently small. Let i, k ∈ M and j ∈ N . If Ai j = Akj , then P̄i j = P̄k j
and therefore

(A + εR)i j > (A + εR)k j ⇐⇒ (P̄ + εR)i j > (P̄ + εR)k j . (9)

If Ai j > Akj , then P̄i j > P̄k j and we can choose ε sufficiently small to obtain the
validity of the statements (A +εR)i j > (A +εR)k j and (P̄ +εR)i j > (P̄ +εR)k j
in (9). Similarly, (9) holds when Ai j < Akj and ε is sufficiently small (switch the
roles of i and k).Because S has constant columns we have Si j = Sk j , making (9)
equivalent with

(A + εR)i j > (A + εR)k j ⇐⇒ (P̄ + εR + εS)i j > (P̄ + εR + εS)k j .

Similarly, for all i ∈ M and all j, � ∈ N and sufficiently small ε:

(B + εS)i j > (B + εS)i� ⇐⇒ (P̄ + εR + εS)i j > (P̄ + εR + εS)i�.

Hence, the perturbations have potential matrices as well. It is easy to infer that a
pure strategy profile maximizing a potential matrix is a Nash equilibrium. There
are finitely many pure profiles, so for any sequence of perturbed games converging
to (A, B), there exists a subsequence of it and a pure profile (ei , f j ) such that
(ei , f j ) is a “potential matrix maximizer” in all games in the subsequence. Since
the potential matrices of the perturbed games converge to P̄ , (ei , f j ) is a pure IRE
maximizing the potential P . ��
Remark 1 A function P : � −→ R is called a cardinal or exact potential of (A, B)
if for all p, p′ ∈ �m and all q, q ′ ∈ �n we have

p Aq − p′ Aq = P(p, q) − P(p′, q) and pBq − pBq ′ = P(p, q) − P(p, q ′).

In the case that P is a cardinal potential, P is the multilinear extension of P̄ . Along
the lines of the proof of Theorem 4 it can be shown that the multilinear extension
of (P̄ + ε(R + S)) is a cardinal potential of the perturbed game (A + εR, B + εS).

In general, not all potential maximizers survive. In the following cardinal po-
tential game, the set of potential maximizers is the union of two line segments. IRE
selects a single equilibrium.

Example 3 Consider the game

(A, B) =
[
(1, 1) (2, 1)
(1, 2) (0, 0)

]
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with cardinal potential (matrix)

P =
[

1 1
1 −1

]
.

Its set of Nash equilibria E(A, B) is given by ([e1, e2] × { f1}) ∪ ({e1} × [ f1, f2]).
All equilibria maximize P . The perturbed game

(A(ε), B(ε)) =
[
(1 + 2ε, 1 + 2ε) (2 + 2ε, 1 + ε)
(1 + ε, 2 + 2ε) (ε, ε)

]

has potential matrix

P + ε(R + S) =
[

1 + 4ε 1 + 3ε
1 + 3ε −1 + 2ε

]
.

Its only Nash equilibrium is (e1, f1).

6 Matrix games

A zero-sum or matrix game is a bimatrix game (A, B) with B = −A and is denoted
simply by A. Recall that in matrix games, the set of Nash equilibria has a product
structure, i.e., E(A) = O(A)1 × O(A)2, where O(A)1 are the optimal (maximin)
strategies of player 1 and O(A)2 are the optimal (minimax) strategies of player 2.
Since maximin/minimax strategies in combination yield the set of Nash equilib-
rium profiles, it makes sense to refer to elements of O(A)1 or O(A)2 separately
as equilibrium strategies. This section shows that also IRE(A) has such a product
structure. It is, like the Nash equilibrium set, a polytope and an element of it can
be found in polynomial time.

Let A be a zero-sum game. By recalling Figure 1, it is easy to see that outcomes
of perturbed games are convex combinations of outcomes of the original game,
so each perturbation is a zero-sum game as well. Hence, it suffices to give the
perturbations of the payoff to player 1:

A(ε1, ε2)i j = (1 − ε1 − ε2)Ai j + ε1 min
�∈N

Ai� + ε2 max
k∈M

Akj .

The matrix R becomes ((i, j) ∈ M × N ),

Ri j = max{Ai� | � ∈ P B2(−A, ei )} = min
�∈N

Ai�.

Similarly, for i in M and j in N ,

Si j = max{−Akj | ek ∈ P B1(A, f j )} = min
k∈M

−Akj = − max
k∈M

Akj .

By Lemma 1, one might as well consider the perturbed game

(A + ε1 R, −A + ε2S).

This game is best reply equivalent with the zero-sum game

A + ε1 R − ε2S.
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Finally, because IRE and strict IRE coincide, one might as well consider the per-
turbed game

A + ε(R − S).

Let r ∈ R
M be any column of R (they are identical) and let s ∈ R

N be any row of
S.

Theorem 5 Let A be a zero-sum game. Let O(A)1 and O(A)2 be the polytopes of
optimal strategies of players 1 and 2, respectively. Then IRE(A) is a product set,
i.e., it can be decomposed: IRE(A) = I O(A)1 × I O(A)2. I O(A)1 is the face of
O(A)1 at which the linear function

O(A)1 −→ R, p �→ 〈p, r〉
is maximized. Similarly, I O(A)2 is the face of O(A)2 at which the linear function

O(A)2 −→ R, q �→ 〈−s, q〉
is minimized.

The proof is based on the following idea. We have seen that IRE(A) ⊆ E(A). It
appears that the primal concern of a player is to play an optimal strategy of the
original game A. The term εR is of secondary concern to player 1. Hence, he should,
within his Nash polytope, maximize this term. The term −εS has no strategic influ-
ence to player 1 since the columns of S are constant. Because of its technical nature
the proof has been postponed to the appendix. It requires acquaintance with the
Simplex method (e.g. Nemhauser and Wolsey 1988).

The nature of zero-sum games supports the refinement of informationally
robustness. For instance, it reduces the harm “not having a poker face” can have,
or the disutility that occurs if it is possible to be “cheaten” with small probabilities.
Let us give as an illustration a situation in which IRE selects in our opinion the
profile that fits best with the context.

Example 4 Consider a situation in which a penalty shot has been assigned to a
soccer team. Let us give the forward taking the penalty three options: aim at the
left corner, the right corner, or just give a firm kick. If the forward is skilled, it is
obvious that the best thing to do is aim at a corner. If his aiming is poor, however,
and he faces an excellent keeper, he would better shoot firmly and hope for the best.
The keeper has three pure strategies as well: dive to the left (from the perspective
of the forward), dive to the right, or stand still and react on the shot. In our example,
depicted in Figure 4, the forward is moderate and we have designed the figures such
that he has various optimal strategies. Because the forward cannot aim perfectly,
the figures in the matrix do not represent certain outcomes, but expectations.

The keeper has one optimal strategy: q = (1/2)( f1 + f2). The forward has two
extreme optimal strategies: p1 = (1/2)(e1 + e2) and p2 = (1/6)(e1 + e2 + 4e3).
Which one is better? In spite of the fact that p2 is weakly dominated by p1, the
concept of IRE recommends p2. In the spirit of the concept, p2 should be played
according to the following lines of thought of the forward:
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Fig. 4 A penalty shot

Suppose the keeper can see which corner I am aiming at. Then my chances
reduce. On the other hand, if the keeper can see I go for the firm kick, this
information is of less value to him.

By using Theorem 5, it is easy to infer that (p2, q) is, indeed, the only informa-
tionally robust equilibrium; any row r of R equals (−1,−1,−1/2) and −1 =
〈r, p1〉 < 〈r, p2〉 = −2/3.

7 Concluding remarks and future work

Informationally robust equilibria refine Nash equilibria by introducing small prob-
abilities of information leakage. This final section contains brief discussions of the
possibilities to generalize information robustness to settings with infinite strategy
spaces and more than two players.

Extending the definition of perturbed games to settings with infinite strategy
spaces can be done as follows. Assume that player i = 1, 2 has a set Si of pure
strategies which is a non-empty and compact subset of some finite-dimensional
Euclidean space, and that his utility function ui : S1 × S2 → R is continuous.
With probability ε1, first player’s action s1 ∈ S1 is revealed to player two, who
will choose a best reply from P B2(s1) = argmaxs2∈S2

u2(s1, s2), a non-empty and
compact set. Breaking ties by selecting a best reply that maximizes first player’s
utility means choosing an element solving maxs2∈P B2(s1) u1(s1, s2), which has a
well-defined solution, since u1 is continuous and P B2(s1) non-empty and compact.
Hence, the definition of a perturbed game easily translates to cases with infinite
strategy spaces. However, there are relatively simple examples showing that the
perturbed utility functions are not continuous. The choice of the tie breaking rule,
however, guarantees equilibrium existence in these perturbations (see e.g. Hellwig
et al. 1990).

Extending information robustness to games with more than two players requires
careful modeling of the timing and content of information leakage. We give three
suggestions:

(i) Each player, but at most one at a time, hears with a small possibility the strat-
egies of all of his opponents. The player can best reply to this observation.

(ii) Each player, but at most one at a time, reveals with a small possibility his
strategy to all of his opponents. The others play an (n − 1)-person game
thereafter.
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(iii) For each ordered pair of players (i, j), there is a slight chance that i finds out
the action of player j .

The proper model of information leakage in such larger games probably depends on
the exact situation being studied and is an interesting direction for further research.

Appendix

In order to prove Theorem 5, a result is needed from Linear Algebra, providing
sufficient conditions for convergence of solution sets of perturbed systems of linear
equations.

Claim Let D be an m × n-matrix and let (dt )t∈N be a sequence in R
m converging

to d . Let for all t in N, Ft ⊂ R
n be the set of feasible points of the system of

equations {x ∈ R
n+ | Dx = dt }. Let F be the set of feasible points of {x ∈ R

n+ |
Dx = d}. Suppose there exists a uniform bound M ∈ N, i.e., ‖x‖ � M for all
x ∈ ⋃

Ft . If all solution sets Ft are non-empty, then Ft converges to F in the
sense that

(i) if x̂ t ∈ Ft for all t ∈ N and lim
t→∞ x̂ t = x̂ , then x̂ ∈ F ,

(ii) for all x̂ ∈ F there exists a sequence (x̂ t )t∈N in (Ft )t∈N converging to x̂ .

Proof It is easy to infer statement (i) by a continuity argument. The difficult part
is to show that any element of F is the limit of some sequence in (Ft )t∈N. The
proof will be by induction to n; the number of columns. The case n = 1 is left to
the reader. We distinguish between two cases.
Case I: There exists a strictly positive element s ∈ R

n++ of F.
Linear operations like adding rows to others, or multiplying a row with a non-

zero number will not change the solutions sets, nor the feature that the constraint
vectors converge. Hence, without loss of generality, D has an echelon form

D =
[

Ir M
0̄ 0̄

]
,

in which r is the rank of D, Ir is an identity matrix, M is some matrix with r rows
and n − r columns and the zeros represent zero matrices. Because Ft �= ∅ for all
t ∈ N, we have that di = dt

i = 0 for all t ∈ N and all i > r . Hence, we might as
well remove the m − r zero-rows of D, which boils down to assuming that D is of
full rank: r = m. Let q = (d1, . . . , dm, 0, . . . , 0) ∈ R

n . Then Dq = d . Similarly,
let qt = (dt , 0̄) ∈ R

n , so Dqt = dt . Define st = s + qt − q . Let δ > 0 be such
that si > δ for all i � n. Then st

i > (1/2)δ for large t and i � n.
Let x̂ be any element of F . Define x̂ t = x̂ + qt − q . Then Dx̂t = dt and

x̂ t −→ x̂ . Let λt = min{λ ∈ [0, 1] | λst + (1 − λ)x̂ t � 0̄} and define x̃ t =
λt st + (1 − λt )x̂ t ∈ Ft . Let ε > 0. Choose t so large that x̂ t

i > −ε for all i . If
x̂ t /∈ R

n+, then

λt = max
i�n

−x̂ t
i

st
i − x̂ t

i
� ε

1
2δ

.
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Since δ is fixed and ε can be chosen to be as small as desired, λt tends to 0. Hence,
‖x̂ − x̃ t‖ converges to 0 if t tends to ∞. This ends Case I.
Case II: For some i � n, xi = 0 for all x ∈ F.

Without loss of generality, choose i = n. Let δt = minx∈Ft xn . Let δ be
an accumulation point of (δt )t∈N. Because of the uniform bound M , there exists a
sequence xt1, xt2 , xt3, . . . converging to, say, x with xtk

n = δtk and limk→∞ δtk = δ.
By continuity, x ∈ F and limk→∞ δtk = xn = 0. Hence, 0 is the only accumu-
lation point; limt→∞ δt = 0. Substitute, for all t ∈ N, xn = δt in the equation
set Dx = dt . The solution sets may become smaller, but remain non-empty. By
now, the right column can be removed from all sets of equations and we obtain
a setting with one-dimension less. Hence, we can apply the induction hypothe-
sis. For an arbitrary element x̂ = (x̂1, . . . , x̂n−1, 0) of F , we can give an element
(x̂ t

1, . . . , x̂ t
n−1, δ

t ) in Ft close to x̂ . s ��
Notice that if the constraint matrix D is perturbed as well, convergence is not

guaranteed. For example, if

Dt =
[

1 − 1
t 1 + 1

t
1 + 1

t 1 − 1
t

]
and dt =

[
2
2

]
,

the solution sets of Ft all equal {(1, 1)}, while the solution set of F equals {(x,
2 − x) : x ∈ [0, 2]}.
Proof of Theorem 5 Because for every ε > 0, E(A + ε(R − S)) is a product set
and a polytope and because I RE(A) coincides with strict I RE(A) (Theorem 2),
IRE(A) is a product set and a polytope as well, say IRE(A) = I O(A)1× I O(A)2 ⊆
�m × �n . The assertions concerning I O(A)1 and I O(A)2 are so similar that we
suffice with the proof of the latter. Assume without loss of generality that A > 0.
Then R is as well a strictly positive matrix and S is a strictly negative matrix.
Furthermore, v(A), the value of the game, is strictly positive. Let (εt )t∈N be a
decreasing sequence with limit 0. O(A + εt (R − S))2 is the set of optimal solu-
tions of the linear program

minimize v subject to
v∈R+, q∈R

N+

⎡
⎢⎢⎣

0 1 · · · · · · 1
1
... −A + εt (S − R)
1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

v
q1
...

qn

⎤
⎥⎥⎦ �

⎡
⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎦ .

The left column will be referred to as column v, the top row as row 0 and each
other row by its corresponding pure strategy: row i (i ∈ M). If we would like to
apply the Simplex method, for each row a slack variable has to be added, except
for row 0, since

∑
j∈N q j has to equal 1. We get

minimize

〈
ev,

⎡
⎣v

q
p

⎤
⎦

〉
s.t.

v∈R+, q∈R
N+ , p∈R

M+

⎡
⎢⎢⎣

0 1 · · · · · · 1 0 · · · 0
1
... −A + εt (S − R) −Im
1

⎤
⎥⎥⎦

⎡
⎣v

q
p

⎤
⎦ =

⎡
⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎦ .
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Here, ev denotes the unit vector of R × R
N × R

M corresponding to v and Im
denotes the m × m identity matrix. By adding row 0 of the table εt ri times to row i
(i ∈ M), the table becomes independent of the matrix R, except for the constraint
vector. The resulting table will be denoted by L Pt :

minimize

〈
ev,

⎡
⎣v

q
p

⎤
⎦

〉
s.t.

v,q,p�0

⎡
⎢⎢⎣

0 1 · · · 1 0 · · · 0
1
... −A + εt S −Im
1

⎤
⎥⎥⎦

⎡
⎣v

q
p

⎤
⎦ =

⎡
⎢⎢⎣

1
εt r1

...

εt rm

⎤
⎥⎥⎦ . (10)

Denote the constraint matrix in the program L Pt by Dt . The program and con-
straint matrix obtained by substituting εt = 0 will be called L P and D, respectively.
They correspond to the non-perturbed game A. After having performed the Simplex
method, the table has become of the following form:2

minimize 〈at ,
[
v, q, p

]ᵀ〉 s.t.
v,q,p�0

Bt [
v, q, p

]ᵀ = bt . (11)

Let us recall the features of the Simplex method that are important for our purpose.
The final object vector at ∈ R+ ×R

N+ ×R
M+ is non-negative and equals the sum of

the original object vector ev and some linear combination of the rows of L Pt . The
main principle of the Simplex method is, that one might as well optimize the final
object vector, because for any row Dt

i ·, the inner product 〈Dt
i ·, x〉 is independent

on x (as long as x is chosen feasible). The set of optimal points consists of all
feasible points with inner product zero with the final object vector. Because the
tables consists of linear equations, we can normalize them such that for all t ∈ N,
all numbers in Bt , bt and at are in some compact segment, e.g., [−1, 1]. Hence, by
taking a suitable subsequence of the sequence (εt )t∈N, we can accomplish that Bt ,
bt and at converge to, say, B, b and a, respectively. This limit (minimize 〈a, x〉 s.t.
Bx = b) is a table for the original game and could have been obtained by applying
the Simplex method on L P . Hence, a equals ev plus some linear combination of
the rows of L P:

a = ev +
m∑

i=0

ci Di · for some c ∈ R × R
M . (12)

Because v(A) is strictly positive, we have that xv = v(A) > 0 for all optimal
points, so av = 0. Focussing at the first column of L P , equation (12) gives

0 = av = (ev)v +
m∑

i=0

ci Div = 1 +
m∑

i=1

ci . (13)

We have that at
i > 0 for large t and all i ∈ C(a). Hence, all variables correspond-

ing to elements of C(a) have value 0 in any optimal point and all corresponding
columns can be removed3 from the tables L Pt and L P without changing optimal
sets: columns in C(a) ∩ M correspond to pure strategies on which player 1 can

2 The ᵀ denotes that the vector is transposed.
3 The removed variables of course still have to be stored and are set to be zero.
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put some weight while playing optimal in the original game A and columns in
C(a) ∩ N correspond to pure strategies on which player 2 does not put positive
weight in any equilibrium of A. Denote the complement of the carrier of a by Z(a)
(the ‘zero part’ of a):

Z(a) = {i : ai = 0}.
Denote the matrices Dt and D of which the redundant columns have been deleted
by D̄t and D̄, respectively. Similarly, let ēv = (1, 0, . . . , 0) ∈ R

Z(a) be the first
unit vector of R

Z(a), let s̄ ∈ R
Z(a) be the restriction of the vector (0, s, 0, . . . , 0) ∈

R × R
N × R

M and let āt be the restriction of at (so āt = 0̄ for all t). We can omit
these columns as well in equation (12):

0̄ = ā = ēv +
m∑

i=0

ci D̄i ·

Adding the rows of D̄t to ēv , weighted by the same combination c, results in

ēv +
m∑

i=0

ci D̄t
i · =

m∑
i=0

ci
(
D̄t

i · − D̄i ·
) =

m∑
i=1

ciε
t s̄ = (−1) · εt s̄.

To infer the second equality, consider program L Pt , (equation (10)): the difference
between row i of L Pt and row i of L P is εt times the vector (0, s, 0, . . . , 0) for
all i � 1. For the third equality we refer to (13). Hence, for all t ∈ N, instead
of minimizing 〈ēv, x〉, we might as well minimize 〈−εt s̄, x〉, or 〈−s̄, x〉. Call the
alternative optimization problem AL Pt :

minimize 〈−s̄, x〉 s.t.
x∈R

Z(a)
+

D̄t x = [
1, εt r1, . . . , ε

t rm
]ᵀ

.

Let us repeat the results so far. For all t ∈ N, the set O(A+εt (R−S))2 is described
by AL Pt in the sense that for all q ∈ �n , the following statements are equivalent:

(i) q ∈ O(A + εt (R − S))2 and
(ii) q j = 0 for all j ∈ N ∩ C(a) and q j = x j for all j ∈ N ∩ Z(a) and some

optimal solution x ∈ R
Z(a)
+ of AL Pt .

Consequently, the program obtained by substituting εt = 0 in AL Pt will be called
AL P . The set of feasible points of AL P corresponds to O(A)2 in the sense that
for all q ∈ �n: q ∈ O(A)2 if and only if q j = 0 for all j ∈ N ∩ C(a) and q j = x j

for all j ∈ N ∩ Z(a) and some feasible point x ∈ R
Z(a)
+ of AL P . The optimal

set of AL P corresponds to the face of O(A)2 of which Theorem 5 claims that it
coincides with I O(A)2. Hence, we are done if we can show that the optimal set of
AL Pt converges to the optimal set of AL P .

After having performed the Simplex method on table AL Pt , we get again a
table of the form

minimize 〈ht , x〉 s.t.
x�0

Gt x = gt .
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Here, ht ∈ R
Z(a)
+ . The following lines of argumentation copy the one just after

equation (11), so details are omitted. Assume that ht converges to h. Then

h = −s̄ +
m∑

i=0

c̄i D̄i · for some c̄ ∈ R × R
M . (14)

We have that ht
i > 0 for large t and all i ∈ C(h). Columns corresponding to

elements of C(h) are removed from the tables AL Pt and AL P without changing
optimal sets. Denote the matrices D̄t and D̄ of which the redundant columns have
been deleted by D̂t and D̂, respectively. Similarly, let êv ∈ R

Z(h) be the first unit
vector of R

Z(h), let ŝ ∈ R
Z(h) be the restriction of s̄. Omit the redundant columns

in equation (14):

0̄ = −ŝ +
m∑

i=0

c̄i D̂i ·

If we add the rows of D̂t to −ŝ, weighted by combination c̄, we obtain

−ŝ +
m∑

i=0

c̄i D̂t
i · =

m∑
i=0

c̄i (D̂t
i · − D̂i ·) =

m∑
i=1

c̄iε
t ŝ.

The object vector −ŝ manifests to be a linear combination of the rows of D̂t . Hence,
the linear function 〈−ŝ, ·〉 is constant on the polytope Ft = {x ∈ R

Z(h)
+ | D̂t x =[

1, εt r
]ᵀ}, say kt = 〈−ŝ, x〉 for all x ∈ Ft . Add to all rows of AL Pt but the first,

the equation εt 〈−s, x〉 = εt kt , to obtain

Ft =
{

x ∈ R
Z(h)
+

∣∣∣ D̂x = [1, εt (r1 + kt ), . . . , εt (rm + kt )]ᵀ
}

.

Observe that the constraint matrix of this description is no longer dependent on t .
Conclusion: we have found a description of the form (D̂x = dt , x � 0) of the
optimal set of AL Pt and a description (D̂x = (1, 0, . . . , 0), x � 0) of the optimal
set of AL P . Apply Claim 7 and conclude the validity of Theorem 5. ��
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