
Composition Norm Dynamics Calculation
with Conceptual Graphs

Aldo de Moor

Infolab, Tilburg University, The Netherlands
e-mail:ademoor@kub.nl

Abstract. Network information system specification in virtual professional com-
munities requires a legitimate user-driven approach. In such an approach, only
specification changes are produced that are not only meaningful but also accept-
able to all users. To do so, for each requested change, a relevant user group needs
to be selected to work out the required knowledge definition changes. This paper
describes the mechanism through which such a relevant user group can be calcu-
lated. The dynamics of the composition norms that guide the required specifica-
tion behaviour are explained. The conceptual graph notation for four categories
of specification knowledge is given. The Peirce conceptual graph workbench is
used to demonstrate the composition norm dynamics calculation.

1 Introduction

Collaborative work is increasingly being done in a distributed fashion, supported by
commonly available Internet-based information tools such as mailing lists or the web.
We define thevirtual professional communitiesin which such collaboration is to take
place as communities or networks of professionals whose collaboration on activities re-
quired to realize shared goals is mostly or completely computer-enabled. The workflows
of these communities are often supported by network information systems consisting of
linked and configured standard information tools. The communal requirements and sys-
tems typically evolve strongly, with the users having an important role both as sources
and as modellers of the system specifications. Active user participation in the spec-
ification process of such continuously evolving network information systems is very
important, since community members have the most detailed knowledge about when
breakdowns in work arise and how they can be resolved. One significant weakness of
the traditional methods supporting specification processes is that they do not sufficiently
involve the users (see [3] for a detailed study). They tend to rely on external analysts
controlling the specification process, leaving the users only the rather passive role of
being interviewed by them. Other methods, in particular socio-technical specification
methods (such as Soft Systems Methodology), often overinvolve users in the sense of
letting them participate in every conceivable change process. To increase the efficiency

0 This paper has been published in Proceedings of the Eighth International Conference on Con-
ceptual Structures - Logical, Linguistic, and Computational Issues (ICCS 2000), Darmstadt,
Germany, August 2000. Lecture Notes in AI, No.1867, Springer-Verlag, Berlin, ISBN 3-540-
67859-X, pp.522-535.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6416554?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and willingness of users to participate in change processes, it must therefore be exactly
known for each specification process what subset of all users is to take part, and in which
capacity these are to be involved. To adequately determine therelevant user group, a
legitimate user-driven specification approachis required. First, in such an approach,
the community members are not just to provide specification knowledge, but also to
control the process in which this knowledge is produced, thus making the specification
proces trulyuser-driven. Second, the members of virtual professional communities, like
their counterparts in traditional communities, are guided in their work by sharedsocial
norms. These norms should govern both the operations of a network and the specifi-
cation processes in which the network and its information system is being defined. As
these networks are egalitarian in nature, such norms cannot be imposed from above,
but should originate from the community as a whole. Thus, the user-driven specifica-
tion process needs to belegitimateas well, in the sense that specification changes are
not only meaningful, but alsoacceptableto all members of the community. We call the
norms that regulate the acceptable specification behaviour of the members of a virtual
professional communitycomposition norms(while we refer to the norms that regulate
operational workflow behaviour asaction norms).

The RENISYS (REsearchNetworkInformationSYstemSpecification) method [3]
supports such a legitimate user-driven approach. It allows users facing abreakdown
in their work to identifyproblematic knowledge definitionswhich they feel should be
changed. For each of these definitions, RENISYS calculates the relevant user group,
which it provides with the appropriate related knowledge definitions and the discussion
environment needed for the group to work out the acceptable definition changes.

In [2], we explained how ontological and normative knowledge can be represented
in conceptual graphs, and how these knowledge categories can be used to produce le-
gitimate knowledge definition changes. In [4], we explored how the context lattices
proposed in [8] can be applied to to efficiently structure, query, and update composition
norms. Based on this work, we now show how the RENISYS method uses conceptual
graph theory to determine the exact relevant user group required for a particular required
specification change. To do so, thecomposition norm dynamicsneed to be calculated.
In this way, a set of applicable norms can be calculated for each user and composition
(part of the specification process necessary to resolve the breakdown). By then calcu-
lating what is the resultant effect of such a norm set, the method can determine whether
a particular user is permitted, required, or prohibited to take part in certain stages of the
specification process. This calculation, however, falls outside the scope of the current
paper (see [3] for a detailed description).

Sect. 2 describes the semantics of composition norm dynamics. The conceptual
graph notation of the various categories of knowledge definitions that are the output of
specification processes are explained in Sect. 3. In Sect. 4, it is shown how the norm
dynamics can be calculated using a standard conceptual graph workbench. The final
section contains some discussion and conclusions.

2 Composition Norm Dynamics

The structure of composition norms has been extensively discussed elsewhere [3]. We
therefore restrict ourselves here to briefly outline their main elements:

� deontic effect: the intended effect of a norm on the person who is to make a
composition. A composition is eitherpermitted, required, or forbidden.

� actor: the role, for example that of editor or reviewer, that a person is to play in
order to be affected by the norm.

� control process. This concerns either aninitiation, execution, or evaluationof the
specification process at hand.

� specification process. In a specification process, a knowledge definition is changed.
These change processes are eithercreations, modifications, or terminationsof such
definitions. The knowledge definitions themselves can be of four different categories:
type definitions, state definitions, action norms, and composition norms. The role of
the norms was already described in the previous section, while type definitions de-
scribe ontological knowledge, and state definitions represent states-of-affairs. For each
knowledge definition category, a separate specification process has been defined. Thus,
there are twelve customized specification processes, such as ‘CreateType’ or ‘Termi-
nateState’. The characteristics of these knowledge definitions and their specification
processes have been discussed in detail in [4] and [3]. Their conceptual graph notation
is presented in Sect. 3.

The formal notation for a composition normdcn is the following:
dcn = hid; de; a; cp; spi, whereid is the identifier of the norm,de is the deontic effect,
a the actor,cp the control process andsp the specification process. An example of such
a norm could be:dcn1 =
h#12; P erm;List Owner; Exec;Modify Type(Mailing List)i1. This norm says
that a list owner is permitted to carry out changes in the (functionality) definitions of
a mailing list, for example, by declaring the list to have an open instead of closed sub-
scription procedure.

ExampleAssume that the set of legitimate composition normsDCN consists of the
following definitions:

– h#58; P erm;Publ Coord; Init; T erminate State(Reviewer)i
– h#59; Req;Editor; Exec;Modify Type(Review)i
– h#60; P erm;Actor;Control; Specify(Definition)i
– h#61; Req;Editor; Control; Create Type(Edit)i
– h#62; F orb; Journal Editor; Eval;Create Type(Edit)i
– h#63; Req;Reviewer; Init; Create Type(Edit)i
– h#64; P erm;Reviewer;Control; Create Type(Edit Report)i
– h#65; F orb; Reviewer;Eval; Create Type(Edit Report)i

1 Note that, for simplicity, in the examples we represent the actor and control process entities by
their types labels, instead of giving the full entity definition that would also include an iden-
tifier and a referent. Furthermore, the (nested) structure of the specification process is not yet
formally defined, this we will do in Sect. 3. The predicate stands for the type of specification
process, its argument for the knowledge definition being changed.

Composition norm #58 indicates that a publication coordinator may start the re-
moval of a particular reviewer of a journal. Norm #59 expresses that an editor must
revise the review process, if prompted. Norm #60 is a very generic norm, saying that
any actor may control any specification process. Such a generic norm is typically de-
fined at the initiation of a network, when the information system is still small in scope
and only few users and actor roles have been defined. Norm #61 says that an editor
must control the creation of new types of edit processes. However, according to norm
#62 a journal editor is not allowed to evaluate such newly created process types. This
norm could be introduced to ensure that such an editor cannot manipulate the results of
his own work processes. Norm #63 says that a reviewer is responsible for starting the
creation of a new edit process, for example when he is no longer satisfied with the way
reviews are being handled. Norm #64 permits a reviewer to fully control the creation
of report edit process types. Finally, norm #65 says that a reviewer is not allowed to
evaluate a newly created report edit process definition. Such a privilege could instead
be granted, for instance, only to the editorial board.

The types of the various norm elements are ordered using the following type hier-
archy2:

T >

Definition
Entity>

PD Actor>
Editor>

Journal Editor
Publ Coord
Reviewer

Control>
Init
Exec
Eval

Activity >

Edit >
Edit Report

Review
Specify>

CreateType
Modify Type
TerminateState

Composition norms play different roles depending on the users and specification
processes they apply to at a particular moment in time. We refer to the way in which
the status of norms can change asnorm dynamics. These dynamics for composition
norms can be summarized as follows: at any time, a composition norm base contains
the set oflegitimatenormsDCN . A legitimate composition norm isinvokedwhen there

2 This hierarchy is formed by the relevant parts of the ontological framework introduced in [3],
combined with some new, example-based types (in italics). Note that not all intermediate types
are presented here to conserve space.

is at least one user with whom the norm matches. Invoked norms becomeactiveif they
match with theactive specification process, which is the process in which a problematic
definition is currently to be changed. Each specification process consists of three parts:
its initiation, execution, and evaluation. These parts are called thespecification process
compositions, which in the case of the active specification process we also refer to as
active compositions. For each combination of user and active composition, a set ofap-
plicable normsexists, which determines what is the acceptable specification behaviour
for that user and composition.

These norm dynamics need to be known, because they restrict the sets on which
norm calculations need to be carried out. This is especially important in case of large
numbers of norm definitions. In order to model the norm dynamics, two matching pro-
cesses need to be defined. Auser matchis defined as a match between a user and an
actor component of some composition norm. This means that at least one of the actor
roles that the user plays is a subtype of the norm actor component. Acomposition match
is defined as a match between aspecification process compositionand the composition
part of some composition norm, also called thenorm composition part. Such a match
implies that the specification process composition must be a specialization of the norm
composition part, as we support the view that generic norms are stronger than more spe-
cific norms. Thus, a specification process composition matches with, i.e. is governed by
some composition norm, if the norm composition part is more generic than the spec-
ification process composition. In Sect. 4 we show how to calculate this match using
conceptual graphs.

Definition 1
Let there be a composition normdcn = hid; de; a; cp; spi 2 DCN . comp is a func-

tion on the argument ofdcn that produces the norm composition part:comp(dcn) =
hcp; spi. Furthermore,U is the set of users,E is the set of entities (U � E). Function
type(e) returns the type, andref(e) returns the referent of entitye.

Let there be a useru 2 U and an actora of some composition normdcn =
hid; de; a; cp; spi 2 DCN . There is auser matchbetweenu anda, denoted asu �u a, if
9 e 2 E j ref(e) = ref(u) ^ type(e) � type(a).

Let there be some specification process compositioncomp 2 Comp (the set of all
possible compositions, which is the Cartesian product of all control processes and all
specification processes), and a norm composition partcomp(dcn). There is acomposi-
tion matchbetweencomp andcomp(dcn), denoted ascomp �n comp(dcn), if comp

is a specialization ofcomp(dcn). There is such a specialization if both the control
process part and the specification process ofcomp are specializations of their counter-
parts incomp(dcn). A specification process is a specialization of another specification
process if both the type and the embedded knowledge definition of the first are special-
izations of the second.

ExampleThe set of legitimate normsDCN = f#58; : : : ;#65gThe active specification
process is the creation of a report edit process type, informally labeled
Create Type(Edit Report). We further assume that the network contains two users:
John, a journal editor, and Jack, a reviewer.

For composition norm #60, for instance, the norm composition partcomp(#60) is
hControl; Specify(Definition)i. Given were a user John (more precisely:u1 2 U
with type(u1) = User andref(u1) = John)) and an entitye1 (with type(e1) =
Journal Editor andref(e1) = John)). Say there is an active composition
comp1 = hInit; Create Type(Edit Report)i:

u1 �ua holds, becauseref(e1) = ref(u1) ^ type(e1) < Actor (the norm actor).
comp1 �n comp(#60) holds, because the various parts ofcomp are specializations

of their counterparts incomp(#60).

We say that a (legitimate) composition norm becomes aninvoked composition norm
if there is a user match between some user and the norm actor.

Definition 2
DCN I is the set of invoked composition norms.

The functionDCN I: P(U) ! P(DCN) determines which legitimate composition
norms are inDCN I (whereP denotes the powerset):
DCN I(U) = fdcn = hid; de; a; cp; spi 2 DCN j 9u 2 U : u �u ag

ExampleThe set of invoked normsDCN I = f#59; : : : ;#65g. Legitimate composi-
tion norm #58 is not invoked, because there are no users playing roles that are subtypes
of thePubl Coord actor role. All the other norms are invoked, because there is at least
one user playing some role that is a subtype of these norms.

Whereas the invocation of legitimate norms depends on which users are participat-
ing in the community, the actual activation of the invoked composition norms depends
on the currentlyactive specification process. An invoked composition norm is anactive
composition normif at least one of the active compositions (i.e. the initiation, execution,
or evaluation of the active specification process) matches with the composition part of
the invoked norm.

Definition 3
DCN A is the set of active composition norms.

spa is the active specification process. The set of active compositionsCompA =
fhInit; spai; hExec; spai; hEval; spaig.

The functionDCN A : SP ! P(DCN I) determines which invoked norms are in
DCN A:
DCN A(spa) = fdcn i 2 DCN I j 9 compa 2 CompA : compa �n comp(dcn i)g

ExampleThe set of active normsDCN A = f#60; : : : ;#65g For instance, none of the
active compositions of the active specification process
Create Type(Edit Report) is a specialization of the norm composition part of in-
voked norm #59, which is therefore not an active composition norm. For all other in-
voked norms, there is at least one active composition ofspa which is a specialization
of the norm composition part.

Legitimate Norms

Invoked Norms

Active Norms

#58

#59

#60 #63#64

#61#62 #65

Fig. 1. Norm Dynamics Example

Active norms do not have an effect on all users. We call an active composition norm
applicableto a particular user for a particular active composition if (1) the user matches
with the actor part of the norm and (2) the active composition matches with the norm
composition part.

Definition 4
DCN APPL(u;compa) is the set of applicable composition norms for useru and active
compositioncompa. The functionDCN APPL : U � CompA ! P(DCN A) deter-
mines which active norms are inDCN APPL(u;compa) for u andcompa:
DCN APPL(u; compa) =
fdcn a = hid; de; a; cp; spi 2 DCN A j u �u a ^ compa �n comp(dcn a)g

ExampleThe applicable norm sets are:
�DCN APPL(John;Init Create Type(Edit Report)) = f#60;#61;#62g
�DCN APPL(John;Exec Create Type(Edit Report)) = f#60;#61g
�DCN APPL(John;Eval Create Type(Edit Report)) = f#60;#61;#62g
�DCN APPL(Jack;Init Create Type(Edit Report)) = f#60;#63;#64g
�DCN APPL(Jack;Exec Create Type(Edit Report)) = f#60;#64g
�DCN APPL(Jack;Eval Create Type(Edit Report)) = f#60;#64;#65g

For example,DCN APPL(John;Init Create Type(Edit Report)) contains active com-
position norm #60, because (1) there is a user match between John and the actor com-
ponent of this norm (the journal editor role that John plays is a subtype ofActor) and
(2) there is a composition match between active composition
hInit; Create Type(Edit Report)i and norm composition part
hControl; Specify(Definition)i.

The different norm sets are depicted in Fig. 1. The various subsets depicted within
the set of active norms represent the different sets of applicable norms determined
above. In the next section, the informal notation of the knowledge definitions that are
the object of specification processes is made formal using conceptual graph notation.

3 Specification Knowledge Definition Representation

Four different categories of specification knowledge definitions are distinguished in
RENISYS: type definitions, state definitions, action norms and composition norms.
Type definitions are used to represent ontological knowledge, state definitions represent
states-of-affairs, action norms regulate operational workflow behaviour, while compo-
sition norms govern the meta-level specification behaviour. Since the role of these def-
initions in the specification process has already been discussed quite extensively in [2]
and [4], we here only show how they are represented in conceptual graphs, along with
a simple example. One main advantage of using conceptual graphs over, for example,
SQL tables and operations, is that in this way generalization hierarchies of specification
knowledge can be taken into account.

The general graph structure of a specification knowledge definition is:

[k : def]:

Here,k is a knowledge category, whereasdef represents the definition core in graph
format. As the specific graph representation format of the definitions varies for the
various knowledge categories, their formats are discussed separately.

3.1 Type Definitions

Definition 5
A type definitiondt = hid; td; tg; E;Ri 2 DT , with td the defined type,tg the genus
type,E a set of entities, andR the set of relations connecting them, is defined as:

[Type : [td : �x]! (Def)! [tg : �x] dif(dt)]:

dif(dt), the differentia of the type definition, is connected to the genus concept
[tg : �x] by its relations that have the genus placeholderX in their source or destination
concepts. Thus, the differentia forms a subgraph that specializes the genus to the de-
fined type. This representation of the type definition is different from the one used by
Sowa (1984,p.106). The source entity of the(Def)-relation denotes the defined type,
the destination entity the genus type.

ExampleA (partial) type definition of the report-editing process could be:

[Type : [Edit Report : �x]! (Def)! [Edit : �x]�
(Matr)! [Draft Report]
(Rslt)! [Edited Report]]:

3.2 State Definitions

Definition 6
A state definitionds = hid; E;Ri 2 DS is defined as:

[State : def]:

def is the conceptual graph formed by the concepts inE linked by the relations in
R. To be meaningful, state definitions need to be circumscribed by the available type

definitions.

ExampleThe state definition that says that Harry is the list owner of the CG-mailing
list is represented as:

[State : [List Owner : #Harry]! (Poss)! [Mailing List : #CG]]:

3.3 Action Norms

Definition 7
An action normdan = hid; de; a; cp; wi 2 DAN is represented as follows:

[an : a (Agnt) cp! (Obj)! w]:

de is the deontic effect of the norm.a; cp; w stand for some actor3, control process,
and workflow, respectively. The norm category labelan is:

an =

8<
:
Perm Act if de = Perm

Req Act if de = Req

Forb Act if de = Forb

ExampleThe graph representation of the action norm that says that an editor may carry
out the editing process is:

[Perm Act : [Editor] (Agnt) [Exec]! (Obj)! [Edit]]:

3.4 Composition Norms

Definition 8 A composition normdcn = hid; de; a; cp; spi 2 DCN is represented as:
[cn : a (Agnt) cp! (Obj)! dp! (Rslt)! def]:

Here,de; a; cp; sp mean the deontic effect, actor, control process, and specification
process.dp = [type(sp)] anddef = ref(sp). The composition category label is:

cn =

8<
:
Perm Comp if de = Perm

Req Comp if de = Req

Forb Comp if de = Forb

ExampleComposition norm #58 is represented as:

[Perm Comp : [Publ Coord] (Agnt) [Init]! (Obj)�
[Terminate State]! (rslt)! [State : [Reviewer]]]:

4 Norm Dynamics Calculation with Conceptual Graphs

This section illustrates how conceptual graph theory can be used to calculate the norm
dynamics discussed in Sect. 2. To this purpose we use the Peirce conceptual graphs

3 The meaning of the termactor is different from its interpretation in CGT, where it refers to a
node in a dataflow graph that can perform computations on the declarative graph knowledge
[9, p.188]

workbench4, which was developed by Gerard Ellis. Among other things, the Peirce tool
allows for the handling of nested graphs, which are needed to represent composition
norms5.

Type Hierarchy

The knowledge base has been loaded with the type hierarchy described in Sect. 2.
These type definitions are represented as follows:

Editor < PD_Actor.
Journal_Editor < Editor.

Publ_Coord < PD_Actor.
Reviewer < PD_Actor.
[...]

State Definitions

The Peirce knowledge base contains these state definitions to describe that user John
is a journal editor and Jack a reviewer:

[State: [User: #John]].
[State: [User: #Jack]].
[State: [Journal_Editor: #John]].
[State: [Reviewer: #Jack]].

Composition Norms

The setDCN consists of legitimate composition norms #58-#65. These norms are
represented, in order, as:

[Perm_Comp: [Publ_Coord] <- (Agnt) <- [Init] -> (Obj) -
-> [Terminate_State] -> (Rslt) -> [State: [Reviewer]]].

[Req_Comp: [Editor] <- (Agnt) <- [Exec] -> (Obj) -
-> [Modify_Type] -> (Rslt) -> [Type: [Review]]].

[Perm_Comp: [Actor] <- (Agnt) <- [Control] -> (Obj) -
-> [Specify] -> (Rslt) -> [Definition]].

[Req_Comp: [Editor] <- (Agnt) <- [Control] -> (Obj) -
-> [Create_Type] -> (Rslt) -> [Type: [Edit]]].

[Forb_Comp: [Journal_Editor] <- (Agnt) <- [Eval] -> (Obj) -
-> [Create_Type] -> (Rslt) -> [Type: [Edit]]].

[Req_Comp: [Reviewer] <- (Agnt) <- [Init] -> (Obj) -
-> [Create_Type] -> (Rslt) -> [Type: [Edit]]].

[Perm_Comp: [Reviewer] <- (Agnt) <- [Control] -> (Obj) -
-> [Create_Type] -> (Rslt) -> [Type: [Edit_Report]]].

[Forb_Comp: [Reviewer] <- (Agnt) <- [Eval] -> (Obj) -
-> [Create_Type] -> (Rslt) -> [Type: [Edit_Report]]].

Invoked Norms Calculation

4 http://www.cs.adelaide.edu.au/users/peirce/
5 As in Peirce the symbols ‘@’ and ‘.’ cannot be used in the referent, they are both replaced

by a ‘ ’. The ‘>’-symbol indicates the prompt. A further explanation of the precise syntax of
commands and graphs is given in [5] and is not repeated here.

For each composition normdcn 2 DCN , dcn is in the set of invoked composition
normsDCN I if there is a user matchu�ua, with u being some user anda the actor part
of dcn (see Def.1 and 2).

The (temporary) set of user referentsRU consists of the referents of the user con-
cepts in state definitions of users. These definitions are retrieved by the following oper-
ation.

> (Specialisations) -> [[State: [User]]]?
[State: [User: #John]].
[State: [User: #Jack]].
true
>

RU = f#John;#Jackg
Now,8dcn 2 DCN , with a the type label of the actor part ofdcn: if 9 ru 2 RU such

that there is a specialization of[State : [a : ru]], thendcn 2 DCN I .
For example, for composition norm #58 (witha = Publ Coord):

> (Specialisations) -> [[State: [Publ_Coord: #John]]]?
no specializations
true
>
> (Specialisations) -> [[State: [Publ_Coord: #Jack]]]?
no specializations
true
>

Thus, composition norm #5862 DCN I .
On the other hand, for composition norm #59 (witha = Editor):

> (Specialisations) -> [[State: [Editor: #John]]]?
[State: [Journal_Editor: #John]].
true
> (Specialisations) -> [[State: [Editor: #Jack]]]?
no specializations
true

Thus, since John is affected by it, composition norm #592 DCN I . Similar calcu-
lations can be made for the other norms. It can thus be derived thatDCN I consists of
composition norms #59-#65.

Active Norms Calculation

An invoked norm is also an active norm if there is a composition match between
one of the active compositions and the norm composition part (see Def.3).

In order to calculate the active norms, several temporary graphs are needed:
� Every active compositioncompa 2 CompA is stored in a separate graph.
� For each invoked composition normdcn i 2 DCN I , its norm composition part is

stored in a new graph. Now,8dcn i 2 DCN I : dcn i 2 DCN A if at least one of the
active composition graphs is a specialization of the norm composition part graph. For
example:

� The active composition graphs are:

[Init] -> (Obj) -> [Create_Type] -> (Rslt) -> [Type: [Edit_Report]].
[Exec] -> (Obj) -> [Create_Type] -> (Rslt) -> [Type: [Edit_Report]].
[Eval] -> (Obj) -> [Create_Type] -> (Rslt) -> [Type: [Edit_Report]].

� For invoked composition norm #59, the norm composition part graph is:

[Exec] -> (Obj) -> [Modify_Type] -> (Rslt) -> [Type: [Review]].

Performing the specialization operation gives the following result:

> (Specialisations) -> [[Exec] -> (Obj) -> [Modify_Type] -> (Rslt) -
-> [Type: [Review]]]?

[Exec]->(Obj)->[Modify_Type]->(Rslt)->[Type: [Review]].
true
>

Since the operation only returns the norm composition graph itself, and none of the
active composition graphs, composition norm #5962 DCN A

� For invoked composition norm #60, however, the norm composition part graph is:

[Control] -> (Obj) -> [Specify] -> (Rslt) -> [Definition].

For this graph, the specialization operation returns:

> (Specialisations) -> [[Control] -> (Obj) -> [Specify] -> (Rslt) -
-> [Definition]]?
[Exec]->(Obj)->[Create_Type]->(Rslt)->[Type: [Edit_Report]].
[Init]->(Obj)->[Create_Type]->(Rslt)->[Type: [Edit_Report]].
[Control]->(Obj)->[Specify]->(Rslt)->[Definition].
[Eval]->(Obj)->[Create_Type]->(Rslt)->[Type: [Edit_Report]].
true
>

At least one (in fact, all three) of the active composition graphs are returned, so com-
position norm #602 DCN A. Similar calculations can be made for the other norms.
DCN A consists of composition norms #60-#65.

Applicable Norms Calculation

For each combination of useru and active compositioncompa, a set of applicable
normsDCN APPL(u;compa) is defined (see Def.4). An active norm is in such a set if
there are both a user match betweenu and the actor part of the norm, and a composition
match betweencompa and the norm composition part.

For example, to calculateDCN APPL(u;compa), with u = John andcompa =
[Init]� > (Obj)� > [Create Type]� > (Rslt)� > [Type : [Edit Report]]:

� To see whether composition norm #60, which hasActor as the type label of its
actor part, is in this set, we first need to determine whether there is a user match:

> (Specialisations) -> [[State: [Actor]]]?
[State: [User: #John]].
[State: [User: #Jack]].
[State: [Journal_Editor: #John]].
[State: [Reviewer: #Jack]].
true
>

Thus, there is indeed a user match between John and the actor part of norm #60.
Now, it must be seen if there is a composition match as well.

The norm composition part graph for norm #60 is:

[Control] -> (Obj) -> [Specify] -> (Rslt) -> [Definition].

The matches with the active composition graphs are:

> (Specialisations) -> [[Control] -> (Obj) -> [Specify] ->
(Rslt) -> [Definition]]?
[Exec]->(Obj)->[Create_Type]->(Rslt)->[Type: [Edit_Report]].
[Init]->(Obj)->[Create_Type]->(Rslt)->[Type: [Edit_Report]].
[Control]->(Obj)->[Specify]->(Rslt)->[Definition].
[Eval]->(Obj)->[Create_Type]->(Rslt)->[Type: [Edit_Report]].
true
>

Thus,compa is in the set of results, and the composition match is therefore success-
ful. Since both the required user and composition match exist, composition norm #60
2 DCN APPL(John; [Init]�>(Obj)�>[Create Type]�>(Rslt)�>[Type: [Edit Report]]).

Similar calculations can be made for the other composition norms in this set, as
well as for the other applicable norm sets. A more efficient calculation would reuse the
results of the user matches done in the calculation of the invoked norms, and the com-
position matches done for the active norms calculation. For clarity, the specialization
operations were repeated here, however.

5 Discussion and Conclusions

Existing specification approaches are not very well-suited for network information sys-
tem specification for virtual professional communities, since these require a legitimate
user-driven approach. Traditional waterfall-based specification methods, such as SDM,
are quite rigid and depend to a large extent on external analysts controlling the specifi-
cation process [1]. Other methods, notably those based on a socio-technical paradigm,
such as Soft Systems Methodology or ETHICS, assign a more prominent role to ac-
tive user participation in the specification process [11, 6]. However, they still do not
adequately support evolutionary systems development and are indiscriminate in which
users to in involve in what particular specification change processes.

In this paper, we have demonstrated how to calculate the relevant group of users
to involve in a particular specification change process. To this purpose, a user facing a
breakdown in his work can identifyproblematic knowledge definitions, which he or she
would like to see changed. Composition norms are essential to precisely regulate the
specification processes needed to resolve these problematic definitions. They describe
the meta-level change behaviour. This in contrast with numerous workflow modelling
methods, either activity-based (i.e. specifying logistical workflows), or conversation-
based (modelling communications and commitments) that do not provide guidelines on
who is to changewhat [7]. In [3] we describe how to determine theresultant deontic
effectof a set of applicable norms, which states whether a particular user is ultimately
permitted, required, or forbidden to control (i.e. initiate, execute, or evaluate) a particu-
lar specification process. This, among other things, requires for occurring norm conflicts

to be resolved, which we have done making use of work done in dynamic deontic logic
such as described in [12]. The actual change process is a form of a conversation by the
selected users from the relevant user group. A Specification Process Model, based on
Van Reijswoud’s speech-act theory-based Transaction Process Model [10], prescribes
the conversational moves that the various users can make. A prototype web server with
mail functionality has been developed that can be used to support the specification pro-
cess of a restricted set of knowledge definitions. Several case studies have been done
that demonstrate how this support can facilitate network evolution. The still limited
functionality of the tool will soon be upgraded to provide robust support for the full
specification process.

Conceptual graph theory provides the theoretical constructs and tools to allow for
such specification knowledge to be represented in a concise way and for the necessary
calculations to be carried out efficiently. In [2], the importance of finding new appli-
cations such as these for CGT was discussed. We have now concretely demonstrated
how existing tools such as the Peirce conceptual graph workbench can be applied to
supporting the legitimate user-driven specification process. Of course, much work still
needs to be done on optimizing the algorithms used, and on the integration of standard
conceptual graph tool functionality with the RENISYS tool. These optimization and
integration problems is the subject of current and future research.

References

1. F.P. Brooks.The Mythical Man-Month: Essays on Software Engineering. Addison-Wesley,
anniversary edition, 1995.

2. A. De Moor. Applying conceptual graph theory to the user-driven specification of network
information systems. InProceedings of the Fifth International Conference on Conceptual
Structures, University of Washington, Seattle, August 3–8, 1997, pages 536–550. Springer-
Verlag, 1997. Lecture Notes in Artificial Intelligence No. 1257.

3. A. De Moor.Empowering the User: A Method for the Legitimate User-Driven Specification
of Network Information Systems. PhD thesis, Tilburg University, The Netherlands, 1999.

4. A. De Moor and G. Mineau. Handling specification knowledge evolution using context
lattices. InProceedings of the Sixth International Conference on Conceptual Structures,
ICCS’98, Montpellier, France, August 10–12, 1998, pages 416–430, 1998.

5. G. Ellis and S. Callaghan.PEIRCE User Manual. Peirce Holdings International, Fitzroy,
Australia, 1997.

6. R. Hirschheim and H.K. Klein. Realizing emancipatory principles in information systems
development: The case for ETHICS.Management Information Systems Quarterly, 18(1):83–
109, 1994.

7. M. Klein. Challenges and directions for coordination science. InProceedings of the Second
International Conference on the Design of Cooperative Systems (COOP’96), Juan-les-Pins,
France, June 12-14, pages 705–722, 1996.

8. G. Mineau and O. Gerb´e. Contexts: A formal definition of worlds of assertions. InProceed-
ings of the Fifth International Conference on Conceptual Structures, University of Wash-
ington, Seattle, August 3–8, 1997, pages 80–94. Springer Verlag, 1997. Lecture Notes in
Artificial Intelligence, No. 1257.

9. J.F. Sowa.Conceptual Structures: Information Processing in Mind and Machine. Addison-
Wesley, 1984.

10. V. Van Reijswoud.The Structure of Business Communication: Theory, Model and Applica-
tion. PhD thesis, Delft University, 1996.

11. R. Vidgen. Stakeholders, soft systems and technology: Separation and mediation in the
analysis of information system requirements.Information Systems Journal, 7:21–46, 1997.

12. R.J. Wieringa, J.-J.Ch. Meyer, and H. Weigand. Specifying dynamic and deontic integrity
constraints.Data and Knowledge Engineering, 4:157–189, 1989.

