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Abstract

By a cooperative game in coalitional structure or shortly coalitional game we mean

the standard cooperative non-transferable utility game described by a set of payoffs for

each coalition being a nonempty subset of the grand coalition of all players. It is well-

known that balancedness is a sufficient condition for the nonemptiness of the core of such

a cooperative non-transferable utility game. In this paper we consider non-transferable

utility games in which for any coalition the set of payoffs depends on a permutation or

ordering upon any partition of the coalition into subcoalitions. We call such a game a

cooperative game in permutational structure or shortly permutational game. Doing so we

extend the scope of the standard cooperative game theory in dealing with economic or

political problems. Next we define the concept of core for such games. By introducing

balancedness for ordered partitions of coalitions, we prove the nonemptiness of the core

of a balanced non-transferable utility permutational game. Moreover we show that the

core of a permutational game coincides with the core of an induced game in coalitional

structure, but that balancedness of the permutational game need not imply balancedness

of the corresponding coalitional game. This leads to a weakening of the conditions for

the existence of a nonempty core of a game in coalitional structure, induced by a game

in permutational strucuture. Furthermore, we refine the concept of core for the class of

permutational games. We call this refinement the balanced-core of the game and show that

the balanced-core of a balanced permutational game is a nonempty subset of the core.

The proof of the nonemptiness of the core of a permututational game is based on a

new intersection theorem on the unit simplex, which generalizes the well-known intersec-

tion theorem of Shapley.

Key words: non-transferable utility game, balancedness, core, unit simplex, closed

covering, intersection theorem



1 Introduction

It is well-known that balancedness is a sufficient condition for the nonemptiness of the

core of the standard cooperative non-transferable utility game described by a set of payoffs

for each coalition being a nonempty subset of the grand coalition of all players. In the

following we call such a non-transferable utility game a game in coalitional structure or

shortly coalitional game. We also speak about coalitional balancedness if we mean the well-

known concept of balancedness of a family of coalitions. Scarf [12] gave a constructive proof

of the nonemptiness of the core of a coalitionally balanced game in coalitional structure

based on the complementary pivoting technique introduced by Lemke and Howson [9].

Shapley [13] generalized the intersection theorem of Knaster-Kuratowski-Mazurkiewicz on

the unit simplex in order to prove the nonemptiness of the core, see also Ichiishi [5]. In

Billera [3] balancedness of a coalitional game has been generalized to π-balancedness of

such a game.

In this paper we generalize the concept of a cooperative non-transferable utility

game to a non-transferable utility game in which for any nonempty coalition a (possibly

empty) set of attainable payoffs is given for any permutation or ordering upon a partition

of the coalition into subcoalitions. This dependency on an ordered partition of the coalition

reflects the situation in which the payoff set of a coalition is determined by the sequence in

which the coalition is formed or on any hierarchy of the members of the coalition. In this

way it is possible to differentiate between the players in the coalition, for instance between

the player who takes the initiative to form the coalition, or is the most powerful player

in the coalition, and the other players in the coalition. Another example is a situation

when there is need for players to stand in a queue in order to get their payoff and waiting

costs are involved. In such an environment it is necessary to differentiate the players in

a coalition according to all the orderings of subsets of the coalition. Also for scheduling

problems the outcome depends very much on the ordering of machines (i.e., players) to be

processed.

Nowak and Radzik [11] have considered games in permutational form in case of

transferable utilities and only permutations on the set of elements of a coalition are consid-

ered. For such TU games the value of the characteristic function depends on the ordering

of the members of the coalition. Nowak and Radzik generalize the concept of the Shapley

value for such games. We also refer to the work of Myerson [10], who used undirected graphs

to model communication structures in cooperative games. In this paper we consider non-

transferable utility games with payoff sets for any permutation upon each possible partition

of the coalitions. We call such a game a non-transferable utility game in permutational

structure or shortly permutational game. The core of a permutational game consists of

all payoff vectors attainable for the grand coalition such that there is no coalition having
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a partition and permutation on the elements of this partition through which the coalition

can improve upon the payoffs of all players in the coalition. Generalizing the concept of

coalitional balancedness to balancedness for ordered partitions of coalitions, we prove the

nonemptiness of the core of a balanced permutational game by applying a new intersection

theorem on the unit simplex. Moreover we prove that the core of a permutational game

coincides with the core of an induced game in coalitional structure. We also give an exam-

ple showing that balancedness of the permutational game does not imply balancedness of

the corresponding coalitional game. This therefore leads to a weakening of the conditions

for the existence of a nonempty core of a game in coalitional structure. Next we refine the

concept of core for a permutational game and show that for balanced permutational games

this refinement is a nonempty subset of the core. We call this refinement the balanced-core

of the game. By some examples we demonstrate that the balanced-core is indeed a proper

subset of the core.

In Section 2 we introduce the concept of non-transferable utility permutational

game. We also define for any permutational game an induced coalitional game and show

that the core of the permutational game coincides with the core of the induced coalitional

game. In Section 3 we define the concept of permutational balancedness and show that per-

mutational balancedness of a permutational game does not imply coalitional balancedness

of the induced coalitional game. In Section 4 we prove that balancedness of a permuta-

tional game is a sufficient condition for the nonemptiness of the core. This proof follows

from a new intersection theorem on the unit simplex. If the induced coalitional game is not

balanced, the nonemptiness of the core of this game follows from the nonemptiness of the

core of the permutational game. In Section 5 we introduce the concept of balanced-core of

a permutational game. In Section 6 we make some concluding remarks.

2 Permutational games

In an n-player cooperative non-transferable utility game introduced by Aumann and Peleg

[2] each nonempty subset of players, called a coalition, can obtain any vector out of a certain

subset of IRn as payoff vector. An attainable payoff vector lies in the core of the game if

no coalition can improve upon this vector, see Aumann [1]. In this paper we introduce a

cooperative non-transferable utility game in which the set of payoff vectors of a coalition

is allowed to depend on the permutation or ordering on a partition of subcoalitions of the

players in the coalition.

The set {1, . . . , n} of the n players in the game is denoted by N . For a nonempty

subset S of N , called a coalition of players, let P t

S
denote a partition {S1, . . . , St} of S

into t subcoalitions of S and let π(P t
S) = (π1(P

t
S), . . . , πt(P

t
S)) denote a permutation or
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ordering of the elements of P t

S. In the sequel a partition into t subcoalitions is called a

t-partition and a permutation π(P t

S
) on a t-partition of S is called an ordered t-partition of

S. Furthermore, let Πt

S be the set of all ordered t-partitions of S and let ΠS be the union

over t = 1, . . . , s of all the sets Πt

S
, where s = |S| denotes the number of elements of the

set S. Finally, let PN denote the set of all ordered partitions of subsets of N , i.e.,

PN = ∪S⊂NΠS.

Definition 2.1 Permutational Game

A non-transferable utility game in permutational structure or permutational game with n

players is a function V from PN to the collection of subsets of IRn satisfying that for every

π(P t
S) ∈ PN , the set V (π(P t

S)) ⊂ IRn is a cylinder in the sense that for any two vectors

u and v in IRn with ui = vi for all i ∈ S, it holds that u ∈ V (π(P t

S
)) if and only if

v ∈ V (π(P t

S)).

In the sequel we denote a permutational game with n players and function V by the pair

(PN , V ). We call V the payoff function of the game (PN , V ). If u ∈ V (π(P t

S
)) for some

t-partition {S1, . . . , St} of the coalition S, the members of S can guarantee themselves a

payoff ui for member i ∈ S, independent of what the players outside the coalition do, by

agreeing on the permutation π(P t
S) of the t-partition P t

S = {S1, . . . , St} of S. In case S

is the grand coalition N , V (π(P t

N )) denotes the set of payoff vectors the players of the

grand coalition can guarantee themselves when the players coordinate according to the

permutation π(P t

N ). For ease of notation we define for any S ⊂ N the set of payoffs V (S)

by V (S) = V (π(P 1

S)), i.e., V (S) is the set of payoff vectors the coalition S can guarantee

itself without partitioning itself into subcoalitions.

For any permutational game (PN , V ), let the function V ′ from the collection of

subsets of N to the collection of subsets of IRn be defined by

V ′(S) = ∪π∈ΠSV (π), S ⊂ N .

Then the function V ′ induces a non-transferable utility n-player game in coalitional struc-

ture, denoted by (N , V ′). Observe that V (S) ⊂ V ′(S), but that generally V ′(S) is not

equal to V (S). Moreover in Definition 2.1 we allow for empty payoff sets. Hence, it might

be possible that some of the payoff sets V ′(S) are also empty. The core of the induced

coalitional game (N , V ′), denoted by C(N , V ′), is as usual defined by the set of vectors

u ∈ V ′(N ) such that there do not exist a coalition S ⊂ N and a vector v ∈ V ′(S) such

that vi > ui for all i ∈ S. Analogously we say that a payoff vector u is in the core of the

permutational game if u ∈ V ′(N ) and there is no permutation π(P t

S
) of a t-partition of a

coalition S in which the coalition S can improve upon u.
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Definition 2.2 Core of a Permutational Game

The core of a non-transferable utility permutational game (PN , V ) is the set of vectors

u ∈ IRn satisfying that u ∈ V ′(N ) and there do not exist a coalition S with ordered

partition π(P t

S
) ∈ PN and a vector v ∈ V (π(P t

S
)) such that vi > ui for all i ∈ S.

Observe that a core element is an element of V ′(N ) because any vector u lying in a set

V (π(P t
N )) of some permutation of some t-partition P t

N of the grand coalition is attainable

and hence the payoff set of the grand coalition is not restricted to the set V (N ). In the

sequel we denote the core of a permutational game (PN , V ) by C(PN , V ). Now we have

the following lemma.

Lemma 2.3 Equivalence of Cores

For any permutational game (PN , V ) and the induced coalitional game (N , V ′) it holds

that C(PN , V ) = C(N , V ′).

Proof.

For some u ∈ IRn, first suppose u �∈ C(N , V ′). Then there exists a coalition S ⊂ N and

a vector v ∈ IRn such that v ∈ V ′(S) and vi > ui for all i ∈ S. By the definition of

V ′(S) this implies that there is some ordered partition π(P t

S
) such that v ∈ V (π(P t

S
)).

Hence u �∈ C(PN , V ). Secondly, suppose that u �∈ C(PN , V ). Then there exist an ordered

partition π(P t

S
) of some coalition S and some vector v ∈ V (π(P t

S
)) such that vi > ui for

all i ∈ S. By definition we have that v ∈ V ′(S). Hence u �∈ C(N , V ′). �

We conclude this section with an example of an economic situation which can be

modelled as a permutational game.

Example 2.4

We consider a firm with n employees. These employees have to perform all kinds of work,

ranging from manual work (unskilled labour) to managerial work (high skilled labour).

The employees have also different levels of skills. The problem is to which tasks which

employees should be assigned. A coalition S denotes the set of employees getting a job,

while the members outside S will be fired. Given a coalition S, the total amount work can

be splitted up in t different tasks, with t ranging from 1 to |S|. For t = 1, each member

of the coalition has to do the same task, including all types of work. So, in this case each

member has to do for example both manual work and managerial work. For t = |S|, the

work to be done is splitted up in specialized tasks as far as possible and all members of S

have different tasks. Generally, for 1 ≤ t ≤ |S| we have t different tasks. To each task

a group of employees of the set S will be assigned, yielding an ordered t-partition P t

S
of

4



S. So, each member of S is assigned to precisely one task. We assume that these groups

are ordered in such a way that the members of first group in this ordering are performing

the most skilled labour and the members of the last group are performing the lowest skilled

labour. The profit of the firm will depend on the ordered t-partition of subcoalitions and

will be higher if the higher educated employees are asigned to the tasks needing more skills.

Moreover it is assumed that the marginal utility of money for an employee in S depends on

the task to which he is assigned. For instance, a high-skilled worker is more satisfied and

therefore has a higher marginal utility of money when he is assigned to high-skilled tasks

than when he is assigned to low-skilled tasks. For the permutation π(P t

S
), let the number

bi(π(P
t
S)) denote the marginal utility of money for employee i ∈ S and let its inverse be

defined by ai(π(P
t

S
)) = b−1i (π(P t

S
)), i ∈ S. Furthermore, let R(π(P t

S
)) denote the profit if

the tasks are divided according to π(P t
S). Finally, we assume that every employee has an

outside option giving him payoff zero and that the firm can not be run by the employees if

the assignment of the tasks is such that losses are made. Then the payoff sets are given by

V ({i}) = {x ∈ IRn | xi ≤ 0}, i ∈ N ,

and for any ordered partition π(P t

N ) by

V (π(P t

S)) = ∅ if R(π(P t

S)) < 0.

and

V (π(P t

S
)) = {x ∈ IRn |

∑

j∈S

aj(π(P
t
S))xj ≤ R(π(P t

S))} if R(π(P t
S)) ≥ 0.

For illustration, take N = {1, 2} and let the data be given as in the following table.

partition R a1 a2

{1, 2} 3 3
2

1

{1}, {2} 4 4 1

{2}, {1} 3 1 2

The payoff sets corresponding to these data are drawn in Figure 1. The core of this game

consists of all nonnegative elements on the boundary of V ′({1, 2}), so C(PN , V ) = {x ∈

IR2+ | x2 = 4−4x1 if 0 ≤ x1 ≤
2
5
, x2 = 3− 3x1

2
if 2

5
≤ x1 ≤

3
2
, x2 = 3/2− x1

2
if 3

2
≤ x1 ≤ 3}.

3 Balanced permutational games

The core of a non-transferable utility permutational game might be empty. However, it will

be shown that the core is nonempty if the permutational game satisfies some balancedness

5



Figure 1: Example 2.4, the payoff sets of the ordered partitions of {1, 2}
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condition and every set V (π(P t
S)), π(P

t
S) ∈ PN , is comprehensive, closed and bounded from

above in its projection space IRS defined by IRS = {(xi)i∈S|x ∈ IRn}. The balancedness

condition differs from the well-known concept of balancedness of coalitions, in the sequel

to be called coalitional balancedness. In this section we introduce the concept of permu-

tational balancedness for ordered partitions of coalitions and define the related concept of

a permutationally balanced game. Moreover we show by an example that permutational

balancedness of the permutational game does not imply coalitional balancedness of the

induced coalitional game. Since it will be proved in Section 4 that balancedness of the

permutational game is sufficient for the nonemptiness of the core, it also follows that it is

sufficient for the nonemptiness of the core of a coalitional game induced by a permutational

game that the underlying permutational game is balanced.

First, for some coalition S ⊂ N and permutation π(P t
S) of a t-partition of S, we

define the n-vector mπ(P t
S
) by

m
π(P t

S
)

j = 0, if j �∈ S

and

m
π(P t

S
)

j =
2(t− r + 1)

t(t+ 1)sr
, if j ∈ πr(P

t
S),

where sr = |πr(P t
S)|. Observe that

∑n
j=1m

π(P t
S
)

j = 1. Furthermore, let m denote the vector

all of whose components are equal to n−1, i.e., m = mπ(P 1

N
). For the ordered partition

πj(P tj

Sj) = (πj
1(P

tj

Sj), . . . , π
j
tj(P

tj

Sj)), j ∈ {1, . . . , k}, the vector mπ(P t
S
) can be seen as the

power vector of the members of coalition S in the ordered partition. Each member in a

same subcoalition is assigned with the same power. The power of a subcoalition being the

sum of the powers of its members depends on the rank of the subcoaliton in the ordering,

in such a way that the power of a subcoalition πj
h(P

tj

Sj) is a fraction tj−h+1

tj
of the power of

subcoalition πj
1(P

tj

Sj).

Example 3.1

Take n = 3 and consider the ordered 2-partition π(P 2
{1,2}) = ({1}, {2}) of the subset {1, 2}.

Then mπ(P t
S
) = (2

3
, 1
3
, 0)�. For the ordered 3-partition π(P 3

N ) = ({1}, {2}, {3}) we obtain

mπ(P3

N
) = (1

2
, 1
3
, 1
6
)�. The ordered 2-partition π(P 2

N ) = ({1, 2}, {3}) of N gives mπ(P 2

N
) =

(1
3
, 1
3
, 1
3
)� and the ordered 2-partition π(P 2

N ) = ({3}, {1, 2}) of N gives mπ(P2

N
) = (1

6
, 1
6
, 2
3
)�.

Observe that only the components j ∈ S of the vector mπ(P t
S
) get a positive power, the powers

of two components is equal if they are in the same subset of the partition and that the total

power of the components in some subset becomes greater if the subset has a higher priority

in the ordering.
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Definition 3.2 Permutational Balancedness

A family B = {π1, . . . , πk} of k ordered partitions in PN is permutationally balanced if

there exist positive numbers λ∗j , j = 1, . . . , k, such that

k∑

j=1

λ∗jm
πj = m.

Permutational balancedness of a family B of k ordered partitions π1(P t1

S1), . . . , π
k(P tk

Sk) in

PN means that to any ordered partition πj(P tj

Sj), j = 1, . . . , k, a weight λ∗j can be assigned

in such a way that the total power of every player i ∈ N is the same and therefore equal

to mi =
1
n
. Geometrically it means that B is permutationally balanced if and only if the

vector m lies in the relative interior of the convex hull of the vectors mπj(P tj

Sj
), j = 1, . . . , k.

Notice that in Definition 3.2 it must hold that
∑k

j=1 λ
∗
j = 1.

Example 3.3

Take n = 3. Then the family {π1, π2, π3} of two ordered 2-partitions and one 1-partition

given by π1 = ({1}, {2}), π2 = ({2}, {3}) and π3 = ({3}) is permutationally balanced.

Since mπ1 = (2
3
, 1
3
, 0)�, mπ2 = (0, 2

3
, 1
3
)�, and mπ3 = (0, 0, 1)�, this family is permutational

balanced with weights λ∗1 = 1
2
, λ∗2 = 1

4
, and λ∗3 = 1

4
. Observe that the ordered 2-partition

({1, 2}, {3}) of N is permutationally balanced, but that the family of the ordered 2-partition

({1}, {2}) and the ordered 1-partition ({3}) is not permutationally balanced.

In case B is a family of 1-partitions we have that πj(P tj

Sj) = (Sj) and hence the

system of equations in the balancedness condition reduces to

k∑

j=1

λ∗jm
Sj = m,

with mSj

h = 1
|Sj | if h ∈ Sj and mSj

h = 0 if h �∈ Sj, which is equal to the well-known

concept of coalitional balancedness of the family of subsets {S1, . . . , Sk} of N . Therefore,

the concept of permutational balancedness contains the concept of coalitional balancedness

for a family of 1-partitions as a special case.

Definition 3.4 Balanced Permutational Game

A non-transferable utility permutational game (PN , V ) is permutationally balanced if for

every permutationally balanced family B = {π1, . . . , πk} of ordered partitions in PN it holds

that

∩k
i=1V (πi) ⊂ V ′(N ).
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In the sequel we speak shortly about a balanced permutational (or coalitional)

game if we mean a permutationally (coalitionally) balanced non-transferable utility per-

mutational (coalitional) game. For a given permutational game (PN , V ) any vector in the

set V ′(S) is attainable for coalition S. Since V (S) ⊂ V ′(S), and generally V ′(S) �= V (S),

the induced coalitional game (N , V ′) need not to be coalitionally balanced if (PN , V ) itself

is permutationally balanced. This fact is shown in the next example.

Example 3.5

Take n = 3 and define the permutational game (PN , V ) by

V (i) = {x ∈ IR3 | xi ≤ 0}, i = 1, 2, 3,

V (1, 2) = {x ∈ IR3 | 2x1 + x2 ≤ 3},

and

V (2, 1) = {x ∈ IR3 | x1 + 2x2 ≤ 3},

where V (i) denotes V ({i}) and V (i, j) denotes V (({i}, {j})). Furthermore,

V (N ) = V (3) ∩ V (1, 2) ∩ V (2, 1),

and

V (π) = ∅, otherwise.

Observe again that we allow for empty payoff sets. The induced coalitional game is given

by

V ′({i}) = V (i), i = 1, 2, 3,

V ′({1, 2}) = V (1, 2) ∪ V (2, 1) ∪ V ({1, 2}) = V (1, 2) ∪ V (2, 1),

since V ({1, 2}) = ∅,

V ′({1, 3}) = V ′({2, 3}) = ∅,

and

V ′(N ) = V (N ).

The projection of the sets V (1, 2) and V (2, 1) on the (x1, x2)-space is given in Figure 2.

The shaded area in this figure is the projection of the set V ({1, 2, 3}) = V ′({1, 2, 3}) on the

(x1, x2)-space. Both the permutational game (PN , V ) and the coalitional game (N , V ′) have

the point (1, 1, 0)� as the unique core element. For the permutational game this point lies

9



in V (N ) and there is no coalition having an ordered partition through which the coalition

can improve upon this outcome. The coalition {1, 2} can improve on each other point in

V (N ) through the ordered 2-partition ({1}, {2}) or the ordered 2-partition ({2}, {1}). Also

for the coalitional game the outcome (1, 1, 0)� is the unique element of V ′(N ) on which the

coalition {1, 2} cannot improve upon. Clearly the coalitional game is not balanced, since the

family of coalitions {1, 2} and {3} is coalitionally balanced, whereas the point x = (1
2
, 2, 0)�

lies in V ′({1, 2})∩V ′({3}) but not in V ′(N ). On the other hand the permutational game is

permutationally balanced. In fact there are only four relevant families of ordered partitions

to consider, namely the family of the three ordered 1-partitions ({1}), ({2}), ({3}), the

family of two ordered 2-partitions and one ordered 1-partition ({1}, {2}), ({2}, {1}), ({3}),

the family of one ordered 2-partition and two ordered 1-partitions ({1}, {2}), ({2}), ({3}),

and the family of one ordered 2-partition and two ordered 1-partitions ({2}, {1}), ({1}),

({3}). For each of these families we have that the intersection of the sets of payoffs of the

members of the family is a subset of V ′(N ), for instance V (1, 2) ∩ V (2) ∩ V (3) ⊂ V ′(N ).

For all other permutationally balanced families we have that the intersection of the payoff

sets of the members of the family is empty and hence is a subset of V ′(N ).

4 Nonemptiness of the core of a balanced permuta-

tional game

In order to prove the nonemptiness of the core of a balanced permutational game we first

introduce an intersection theorem on the (n− 1)-dimensional unit simplex ∆ defined by

∆ = {x ∈ IRn+ |
n∑

j=1

xj = 1}.

In this theorem the simplex ∆ is covered by closed subsets Cπ, π ∈ PN , satisfying some

boundary condition. Under this condition there exists a balanced collection of permutations

for which the corresponding subsets of ∆ have a nonempty intersection. This is stated in

the next lemma, which is a generalization of the well-known intersection theorem of Shapley

[13], in which only sets CS are defined for coalitions S ⊂ N . The lemma is also closely

related to intersection theorems given in Ichiishi and Idzik [6] and in van der Laan, Talman

and Yang [8].

Lemma 4.1

Let {Cπ(P t
S
) | π(P t

S) ∈ PN} be a collection of closed sets covering ∆ satisfying that if x

lies in the boundary of ∆ and x ∈ Cπ(P t
S
), then S ⊂ {i ∈ N | xi > 0}. Then there is
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Figure 2: Example 3.4, balanced permutational game
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a permutationally balanced family {π1, . . . , πk} of k ordered partitions in PN for which it

holds that

∩k
j=1C

πj �= ∅.

Proof.

For any ordered partition π ∈ PN , define the vector cπ = m−mπ. For x ∈ ∆, define the

set F (x) by

F (x) = Conv({cπ | x ∈ Cπ}),

where Conv(X) denotes the convex hull of a set X ⊂ IRn. Clearly, for every x ∈ ∆, the

set F (x) is nonempty, convex, and compact. Moreover, ∪x∈∆F (x) is bounded and F is an

upper hemi-continuous mapping from the set ∆ to the collection of subsets of the set Y n

defined by

Y n = {y ∈ IRn | m�y = 0 and yi ≥ −1 for i = 1, . . . , n}.

Both sets ∆ and Y n are nonempty, convex, and compact. Next, let G be the mapping

from Y n to the collection of subsets of ∆ defined by

G(y) = {x ∈ ∆ | x′�y ≤ x�y for every x′ ∈ ∆}.

Clearly, for every y ∈ Y n the set G(y) is nonempty, convex, and compact, and G is up-

per hemi-continuous. Hence, the mapping H from the nonempty, convex, compact set

∆×Y n into the collection of subsets of ∆×Y n defined by H(x, y) = G(y)×F (x) is upper

hemi-continuous and for every (x, y) ∈ ∆× Y n, the set H(x, y) is nonempty, convex, and

compact. According to Kakutani’s fixed point theorem the mapping H has a fixed point

on ∆ × Y n, i.e., there exist x∗ ∈ ∆ and y∗ ∈ Y n satisfying y∗ ∈ F (x∗) and x∗ ∈ G(y∗).

Let α∗ = x∗�y∗. From x∗ ∈ G(y∗) it follows that x�y∗ ≤ α∗ for every x ∈ ∆. By taking

x = e(i), where e(i) is the i-th unit vector, we obtain that y∗i ≤ α∗, i = 1, . . . , n. Hence,

y∗i = α∗ if x∗i > 0 and y∗i ≤ α∗ if x∗i = 0. On the other hand, y∗ ∈ F (x∗) implies there

exist nonnegative numbers λ∗1, . . . , λ
∗
k satisfying

∑k
j=1 λ

∗
j = 1 and y∗ =

∑k
j=1 λ

∗
jc

πj , where

πj, j = 1, . . . , k, are such that x∗ ∈ Cπj . Without loss of generality we may assume that

λ∗j > 0 for every j = 1, . . . , k. We now show that y∗ = 0 and hence that the collection

{π1, . . . , πk} is permutationally balanced. Since by definition of the set Y n, m�y∗ = 0, we

obtain that α∗ ≥ 0. Moreover, by the boundary condition we have that x∗i = 0 implies that

i �∈ Sj for every j = 1, . . . , k, with Sj the set satisfying πj = πj(P tj

Sj), and hence cπ
j

i = 1
n
.

Hence, when x∗i = 0, then y∗i =
∑k

j=1 λ
∗
jc

πj

i =
∑k

j=1 λ
∗
jn

−1 > 0. Therefore, 0 < y∗i ≤ α∗ if

x∗i = 0 and y∗i = α∗ ≥ 0 if x∗i > 0. Since
∑n

j=1 y
∗
i = 0, this implies that x∗i > 0 for every

i ∈ N and α∗ = 0. So, y∗ = 0. Consequently, {π1, . . . , πk} is permutationally balanced.
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Since x∗ ∈ ∩k
j=1C

πj , this completes the proof. �

By applying Lemma 4.1 we can prove the nonemptiness of the core of a balanced permu-

tational game.

Theorem 4.2

A non-transferable utility permutational game (PN , V ) has a nonempty core if

i) the set V ({i}) is given by V ({i}) = {x ∈ IRn | xi ≤ αi} for some αi ∈ IR,

ii) the game is permutationally balanced,

iii) for every S ⊂ N and for every π ∈ ΠS, the set V (π) is comprehensive and closed, and

the set {(xi)i∈S ∈ IRS | x ∈ V (π) and xi ≥ αi for all i ∈ S} is bounded.

Proof.

Without loss of generality we may assume that 0 ∈ V ({i}) for any i ∈ N . To prove

the theorem we define a closed covering {Cπ | π ∈ PN} of ∆ satisfying the conditions of

Lemma 4.1 and show that an intersection point of a permutationally balanced collection

of these sets induces an element in the core of the game. For given M > 0 and for any

x ∈ ∆, let the number λx be determined by

λx = max{λ ∈ IR | −Mx+ λm ∈ ∪π∈PNV (π)}.

Since 0 ∈ V ({i}) and because of iii), for every M > 0, λx exists for any x ∈ ∆. Moreover,

following Shapley [13], by the condition of boundedness from above, M > 0 can be chosen

so large that for every i ∈ N and x ∈ ∆, xi = 0 implies that i �∈ S for any S satisfying

−Mx+ λxm ∈ V (π(P t
S)). Now, for π ∈ PN we define

Cπ = {x ∈ ∆ | −Mx+ λxm ∈ V (π)}.

Since every V (π) is closed and comprehensive, the collection of sets {Cπ|π ∈ PN} is a

collection of closed sets covering the simplex ∆, and satisfying the boundary condition of

Lemma 4.1. Hence there is a balanced family B = {π1, . . . , πk} of elements of PN such that

∩k
j=1C

πj �= ∅. Let x∗ be a point in this intersection, so x∗ ∈ Cπj for j = 1, . . . , k. Since the

game is balanced we have that ∩k
j=1V (πj) ⊂ V ′(N ) and hence u∗ = −Mx∗+λx∗m ∈ V ′(N ).

Now, suppose there exist a vector v ∈ IRn and an ordered partition π(P t
S) ∈ PN of a

coalition S such that v ∈ V (π(P t
S)) and vi > u∗i for all i ∈ S. Since V (π(P t

S)) is com-

prehensive and cylindric, there is a µ > 0 such that u∗ + µm ∈ V (π(P t
S)). However, then

−Mx∗ + (λx∗ + µ)m ∈ V (π(P t
S)), which contradicts that −Mx∗ + λm �∈ V (π(P t

S)) for any

λ > λx∗. Hence u∗ ∈ C(PN , V ). �
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5 Balanced-core of permutational games

For permutational games the concept of the core can be refined to what we will call the

balanced-core. The balanced-core consists of all elements of the core that can be sup-

ported by a balanced collection of ordered partitions of coalitions and will be denoted by

BC(PN , V ). We show that the balanced-core is nonempty if the game is permutationally

balanced. In case the permutational game happens to be a coalitional game its balanced-

core is equal to the core. In general the balanced-core of a permutational game is a proper

subset of the core of this game, and so the balanced-core of a permutationally balanced

game is a nonempty subset of its core.

Definition 5.1 Balanced-core

The balanced-core of a non-transferable utility permutational game (PN , V ) is the set of all

vectors u ∈ V ′(N ) satisfying that

i) for any S ⊂ N , there do not exist an ordered partition π(P t
S) ∈ PN and a vector

v ∈ V (π(P t
S)) such that vi > ui for all i ∈ S,

ii) there exists a permutationally balanced family {π1, . . . , πk} of k ordered partitions in

PN , such that u ∈ ∩k
j=1V (πj)).

Clearly, it follows immediately from condition i) of Definition 5.1 that a payoff vector in

the balanced-core lies also in the core of the permutational game. Condition ii) says that

an element of the core is an elememt of the balanced-core only if it lies in the intersection

of the payoff sets of a balanced collection of ordered partitioned coalitions. One could

say that a core element lies in the balanced-core if it is supported by a balanced family

of ordered partitions of coalitions. Since every player participates with equal weight in a

balanced family of coalitions this gives some appealing stability property to the elements in

the balanced-core. All players have an equal weight in supporting a balanced-core payoff

vector. In some economic situations only one ordered partitioning of a coalition may

actually be formed. In such situations the weight of an ordered partitioned coalition in the

permutationally balanced family of ordered partitioned coalitions supporting the balanced-

core element selected as the outcome can be interpreted as the probability with which the

ordered partitioned coalition indeed forms. The following theorem is straightforward.

Theorem 5.2

A non-transferable utility permutational game (PN , V ) satisfying the conditions i)-iii) of

Theorem 4.2 has a nonempty balanced-core.

Proof.

In the proof of Theorem 4.2 it is shown that there exists a core element u∗ satisfying

u∗ ∈ ∩k
j=1V (πj)
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for a permutationally balanced collection {π1,. . ., πk} of elements of PN . Clearly, such an

element u∗ is in BC(PN , V ). �

Observe that a permutational game is essentially a coalitional game if for any ordered

partitioning π(P t
S) with t > 1 it holds that V (π(P t

S)) ⊂ V (S), implying that for the induced

coalitional game it holds that V ′(S) = V (S). In this case the balanced-core is equal to the

core, because also V ′(N ) = V (N ). Hence, in this case any core element lies in V (N ) and

therefore is stable with respect to the permutationally balanced family {N}. However, in

general the set V (N ) is a proper subset of V ′(N ). In this case the core may contain many

elements that do not belong to the balanced-core. This is illustrated in the next examples.

Example 5.3

( i) Consider the permutational game defined in Example 2.4 for n = 2. We have seen

already that the core consists of all nonnegative elements on the boundary of V ′(N ). How-

ever, the balanced-core is given by BC(PN , V ) = {x ∈ IR2+ | x2 = 3− 3x1
2
, 2
5
≤ x1 ≤

3
2
},

with the unpartitioned coalition {1, 2} as the unique element of the supporting permuta-

tionally balanced family of coalitions. By giving the players equal votes the unpartitioned

coalition {1, 2} forms and the payoff is divided according to some balanced-core element.

( ii) Consider the same example, except that we take R(π(P 1
N )) = 1, i.e.,

V ({1, 2}) = {x ∈ IR2 | 3x1 + 2x2 ≤ 1}.

Then again the core consists of all nonnegative elements on the boundary of V ′(N ) and is

given by C(PN , V ) = {x ∈ IR2+ | x2 = 4−4x1 if 0 ≤ x1 ≤
5
7
, x2 = 3/2− x1

2
if 5

7
≤ x1 ≤ 3}.

However, the balanced-core is given by BC(PN , V ) = {(5
7
, 8

7
)�} and its unique element is

supported by the permutationally balanced family {({1}, {2}), ({2}, {1}) with a weight of 1
2

for both members of this family. Both partitioned coalitions may form with probability 1
2
.

(iii) Finally, let the payoff sets be defined by V ({i}) = {x ∈ IR2 | xi ≤ 0}, i = 1, 2,

V ({1}, {2}) = {x ∈ IR2 | x1 + x2 ≤ 2}, and V ({2}, {1}) = V ({1, 2}) = ∅. Then

C(PN , V ) = {x ∈ IR2+ | x1 + x2 = 2} and BC(PN , V ) = {(2, 0)�}. The unique element

of the balanced-core is supported by the permutationally balanced family {({1}, {2}), ({2})}

with a weight of 3/4 for the ordered partition ({1}, {2}) of coalition {1, 2} and a weight of

1/4 for the one person coalition {2}.
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6 Concluding remarks

In this paper we introduced permutational games and proved that the (balanced-)core

of such a game is nonempty if the game is permutationally balanced. This concept of

balancedness is a generalization of the well-known concept of balancedness of coalitions.

Analogously the existence result concerning the nonemptiness of the core is more general

than for games in coalitional structure. A game in coalitional structure is a special case

in the family of games in permutational structure. Indeed, when V (π(P t
S)) = ∅ for every

t ≥ 2, then the permutational game is a game in coalitional structure and permutational

balancedness coincides with coalitional balancedness. In general the induced coalitional

game (N , V ′) of a balanced permutational game, need not to be coalitionally balanced.

Since a permutational game and its induced coalitional game have the same core, it fol-

lows that permutational balancedness of the underlying permutational game is a sufficient

condition for the nonemptiness of the core.

Billera [3] has pointed out that in case of coalitional games there are many ways

to define the powers of the players. In the same way there is a lot of freedom to define

the powers in case of permutational games. For example, for a given ordered partition

π(P t
S) ∈ PN of a coalition S, one could define the n-dimensional power vector mπ(P t

S
) by

m
π(P t

S
)

j = 0, if j �∈ S

and

m
π(P t

S
)

j =
tr−1(t+ 1)1−r

∑t
h=1 sht

h−1(t+ 1)1−h
, if j ∈ πr(P

t
S),

where sh = |πh(P
t
S)|. It is easily seen that

∑n
j=1m

π(P t
S
)

j = 1. In this case we have that

m
π(P t

S
)

k > m
π(P t

S
)

l for any k ∈ πi(P
t
S) and l ∈ πj(P

t
S) if 1 ≤ i < j ≤ t. This implies that every

member in a higher ranked subcoalition has always more power than any member in a lower

ranked subcoalition. Notice however that this has consequences in forming permutationally

balanced families and hence on the fact whether or not a game in permutational structure

is permutationally balanced. Since the core of a game does not depend on the definition

of the power vectors, this implies that for the nonemptiness of the core of a permutational

game it is sufficient to have permutational balancedness with respect to some collection

of power vectors. Notice that if we take mπ(P t
S
) = mS for every π(P t

S) ∈ PN , then the

permutational game is balanced with respect to these constant (for every S) vectors if and

only if the induced coalitional game is balanced. Hence, an induced coalitionally game

being balanced implies that the original permutational game is permutationally balanced

with respect to some collection of power vectors. Clearly, the other way around is not true,

i.e., a coalitional game induced by a balanced permutational game may not be coalitionally
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balanced with respect to any set of power vectors. While the core is independent of the

choice of the power vectors, the balanced core does depend on this choice. The choice

of the power vectors should depend on the economic situation under consideration. The

appropriate power vectors in a given application is a point of further research.

In Kamiya and Talman [7] a simplicial algorithm was proposed to find a core element

of a coalitional game. Similarly, we can apply the simplicial algorithm on the unit simplex

∆ of Doup and Talman [4] to find approximately an element of the balanced-core and so

a core element of a balanced permutational game.
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