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Université Paris VI and Eindhoven University of Technology
and EURANDOM

We prove functional limit laws for the increment functions of empirical
processes based upon randomly right-censored data. The increment sizes
we consider are classified into different classes covering the whole possi-
ble spectrum. We apply these results to obtain a description of the strong
limiting behavior of a series of estimators of local functionals of lifetime
distributions. In particular, we treat the case of kernel density and hazard
rate estimators.

1. Statistical motivation and main results. In the right censorship
model, the data set is given by ��Zi� δi�� 1 ≤ i ≤ n�, where Zi = min�Xi�Yi�
and δi = ��Xi≤Yi� for i ≥ 1, with �E denoting the indicator function ofE. Here,
�Xi� i ≥ 1� is a sequence of independent and identically distributed nonnega-
tive lifetimes, and �Yi� i ≥ 1� is an independent sequence of independent and
identically distributed nonnegative censoring times, defined on the same prob-
ability space �	�� ���. Set X = X1, Y = Y1, Z = Z1, δ = δ1, F�x� = ��X ≤
x�, G�x� = ��Y ≤ x�, H�x� = ��Z ≤ x� = 1− �1−F�x���1−G�x��. We allow
Y to be defective, that is, such that ��Y = ∞� is possibly positive, to cover the
uncensored case corresponding to the particular case where ��Y = ∞� = 1.

The problem of estimating F, together with local functionals of F such as
the lifetime density f�x� = �d/dx�F�x� or the hazard rate function λ�x� =
f�x�/�1−F�x��, assuming that they exist, has received much attention in the
literature [see, e.g., Aalen (1976), Kalbfleisch and Prentice (1980), Gill (1980),
Földes, Rejtő and Winter (1981), Burke, Csörgő and Horváth (1981, 1988),
Csörgő and Horváth (1983), Anderson, Borgan, Gill and Keiding (1993)]. The
nonparametric maximum likelihood estimator ofF andG based upon the data
are the product-limit (PL) estimators Fn and Gn, introduced in Kaplan and
Meier (1958), and defined by

Fn�x� = 1− ∏
i� Zi�n≤x
1≤i≤n

{
1− δi�n

n− i+ 1

}
�(1.1)

Gn�x� = 1− ∏
i� Zi�n≤x
1≤i≤n

{
1− 1− δi�n

n− i+ 1

}
�(1.2)
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where Z1� n ≤ · · · ≤ Zn�n are the ordered Z1� � � � �Zn, and, for each i =
1� � � � � n� δi�n is the δj corresponding to Zi�n = Zj� 1 ≤ j ≤ n (we use the
convention that

∏
 = 1). The Kaplan–Meier empirical process αn and the

Kaplan–Meier censoring process βn are defined by

αn�x� = n1/2�Fn�x� −F�x�� and βn�x� = n1/2�Gn�x� −G�x���(1.3)

for n ≥ 1 and x ∈ �. The aim of this paper is to describe the limiting behavior of
the local oscillations of αn (equivalently of βn by the formal change of δi�n into
1 − δi�n� 1 ≤ i ≤ n) through the study of the increment functions ξn�hn� t�I�
and ηn�hn� t�I�, defined by

ξn�h� t� s� = αn�t+ hs� − αn�t�
= n1/2ηn�h� t� s� − n1/2�F�t+ hs� −F�t���

(1.4)

ηn�h� t� s� = Fn�t+ hs� −Fn�t�
= n−1/2ξn�h� t� s� + �F�t+ hs� −F�t���

(1.5)

for h ≥ 0 and s� t ∈ �. Here, I�s� = s denotes the identity function and
�hn� n ≥ 1� is a sequence of positive constants satisfying conditions among the
following, listed below. We will set log2 u = log+�log+ u�� log+ u = log�u ∨ e�,
and denote by un = ∞�vn� (resp. un ∼ vn) the condition that vn/un → 0 (resp.
un/vn → 1):

(H1) (i) hn → 0; (ii) hn ↓; (iii) nhn ↑;
(H2) nhn/ log2 n → ∞;
(H3) (i) nhn/ log n → ∞; (ii) �log�1/hn��/ log2 n → ∞;
(H4) �log�1/hn��/ log2 n → c ∈ �0�∞�;
(H5) nhn/ log n → γ ∈ �0�∞�;
(H6) �log�1/hn��/ log n → d ∈ �1�∞�.

To motivate our forthcoming theorems, we start by an exposition of their
implications in the framework of nonparametric estimation of f = �d/dx�F by
kernel estimators. Let K be a function (or kernel) fulfilling the assumptions:

(K1) K is of bounded variation on �.
(K2) For some 0 < T < ∞, K�u� = 0 for all �u� ≥ 1

2T.
(K3)

∫∞
−∞K�u�du = 1.

The kernel estimator of f�x� [see, e.g., Watson and Leadbetter (1964a, b),
Tanner and Wong (1983)] is given by

fn�x� =
∫ ∞

−∞
h−1
n K��t− x�/hn�dFn�t��(1.6)

Set, for all x ∈ �,

Ɛ̂fn�x� =
∫ ∞

−∞
h−1
n K��t− x�/hn�dF�t��(1.7)
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In the uncensored case, Ɛ̂fn�x� = Ɛfn�x�, where Ɛ denotes the usual expecta-
tion. Otherwise, in general, Ɛ̂fn�x� and Ɛfn�x� may differ. Note further that,
under (K1) and (K2),

fn�x� − Ɛ̂fn�x� = −h−1
n n−1/2

∫ T

−T
ξn�hn� x�u�dK�u��(1.8)

which follows from (1.3) and (1.4) and (1.6) and (1.7), after integrating by
parts.

The following additional notation and assumptions will be needed. Let
L�x� = ��V ≤ x� be the distribution function of a random variable V. We
denote by L−1�u� = inf�x� L�x� ≥ u� for 0 < u < 1 the quantile function of L,
and by TL = sup�x� L�x� < 1� the upper endpoint of the distribution of V.
Throughout the sequel, we shall assume that the upper endpoints TF and
TG of the distributions of X and Y are such that & = min�TF�TG� > 0, and
let a� a′� b� b′ be specified constants such that 0 < a′ < a < b < b′ < &.
Unless otherwise specified, we assume that F and G fulfill the conditions (F1)
and (F2):

(F1) F�0� = G�0� = 0;
(F2) (i) F and G are continuous on �a′� b′�;

(ii) f = �d/dx�F is defined, continuous and strictly positive on �a′� b′�.

Throughout, * will denote a specified continuous and (strictly) positive
function on �a′� b′�. We assume that *n is an estimator of * fulfilling assump-
tions among (C1) and (C2):

(C1) supa≤x≤b �*n�x�/*�x� − 1� → 0 in probability as n → ∞;
(C2) supa≤x≤b �*n�x�/*�x� − 1� → 0 almost surely as n → ∞.

As follows from the results of Deheuvels and Einmahl (1996), under (H1),
(H2), (K1)–(K3), (F1), (F2) and (C2), for any specified x0 ∈ �a� b�, we have

lim sup
n→∞

±
{

nhn

2 log2 n

}1/2
�fn�x0� − Ɛ̂fn�x0��

{
*n�x0� ×

1−G�x0�
f�x0�

}1/2
= {

*�x0�
}1/2{ ∫ ∞

−∞
K2�u�du

}1/2
a.s.

(1.9)

In this paper, we will prove the following basic limit law concerning fn. Below,
we use the convention c/�c+ 1� = 1 when (H3) holds, that is, when c = ∞.
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Theorem 1.1. Under (H1)(i), (H3) or (H4), (K1)–(K3), (F1)–(F2) and (C1),
we have

lim
n→∞

{
nhn

2�log�1/hn� + log2 n�
}1/2

× sup
a≤x≤b

±�fn�x� − Ɛ̂fn�x��
{
*n�x� ×

1−G�x�
f�x�

}1/2
=
(

c

c+ 1

)1/2{
sup
a≤x≤b

*�x�
}1/2{ ∫ ∞

−∞
K2�u�du

}1/2
in probability.

(1.10)

If, in addition, (H1)(ii)–(iii) and (C2) hold, then

lim sup
n→∞

{
nhn

2�log�1/hn� + log2 n�
}1/2

× sup
a≤x≤b

±�fn�x� − Ɛ̂fn�x��
{
*n�x� ×

1−G�x�
f�x�

}1/2
=
{
sup
a≤x≤b

*�x�
}1/2{ ∫ ∞

−∞
K2�u�du

}1/2
a.s.

(1.11)

and

lim inf
n→∞

{
nhn

2�log�1/hn� + log2 n�
}1/2

× sup
a≤x≤b

±�fn�x� − Ɛ̂fn�x��
{
*n�x� ×

1−G�x�
f�x�

}1/2
=
(

c

c+ 1

)1/2{
sup
a≤x≤b

*�x�
}1/2{ ∫ ∞

−∞
K2�u�du

}1/2
a.s.

(1.12)

Remark 1.1. (i) The assumptions in Theorem 1.1 allow in particular the
following possible choices of interest, denoted by *�j�, j = 1–5, for *, where
ψ is an auxiliary continuous and positive function on �a′� b′�:

*�1��x� = 1� *�2��x� = 1
1−G�x� �

*�3��x� = f�x�� *�4��x� = f�x�
1−G�x� �

*�5��x� = f�x�ψ�x�
�1−F�x��2�1−G�x�� = λ�x�ψ�x�

1−H�x� �

(1.13)

(ii) For each of the above choices of *, an estimator *n of * fulfilling (C1),
(C2) is obtained by replacing in the definition (1.13) of * any one among the
functions f�x�, F�x� or G�x� by fn�x�, Fn�x� or Gn�x�, respectively. The fact
that (C1), (C2) hold for either of these functions is readily verified. First, it is
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straightforward from (1.10) and (1.11), (1.12), taken with *n = * = 1, that,
under the assumptions of Theorem 1.1, supa≤x≤b �fn�x�/f�x�−1� → 0. Second,
the fact that

sup
a≤x≤b

��1−Fn�x��/�1−F�x�� − 1� → 0 and

sup
a≤x≤b

��1−Gn�x��/�1−G�x�� − 1� → 0 a.s.,

is a simple consequence of the strong uniform consistency of the PL estimators
Fn and Gn of F and G [see, e.g., Gu and Lai (1990), Chen and Lo (1997) and
the references therein].

(iii) In particular, the replacement of F by Fn in *�5� corresponds to esti-
mators of the hazard rate function λ�x� = f�x�/�1 − F�x��, which will be
considered in more detail in Section 3.

The following results in the literature are related to (1.11) and (1.12). Under
more stringent assumptions than that given above, Diehl and Stute (1988)
showed that, under (H3),

lim
n→∞

{
nhn

2 log�1/hn�
}1/2

sup
a≤x≤b

�fn�x� − Ɛ̂fn�x��
{
1−G�x�
f�x�

}1/2
=
{ ∫ ∞

−∞
K2�u�du

}1/2
a.s.,

(1.14)

which follows from (1.11) and (1.12), taken with * = 1 and c = ∞. Their
results were extended by Xiang (1994), who established (1.14) under the addi-
tional assumptions on K that K�u� = K�−u� ∀ u ∈ �, and for hn = n−γ with
0 < γ < 1. Related statements are to be found in Stute and Wang (1993), Lo,
Mack and Wang (1989), Schäfer (1986), Liu and Van Ryzin (1985), Padgett and
McNichols (1984) and Mielniczuk (1986). It is to be noted that in the uncen-
sored case, corresponding to when G�x� = 0 for all x ∈ � (see the discussion
in Section 3 below), the conclusion of Theorem 1.1 is obtained by combining
Theorem 4.1 of Deheuvels and Mason (1992) (for c = ∞) with Theorem 3.3
of Deheuvels (1992) (for 0 ≤ c < ∞) [see also Deheuvels (1974), Hall (1981),
Stute (1982b) and Xu (1993)]. For further descriptions of limiting properties
of Kaplan–Meier empirical processes with applications, we refer to Chen and
Lo (1997), Csörgő (1996), Földes and Rejtő (1981), Gijbels and Wang (1993),
Lo and Singh (1986), Major and Rejtő (1988), Müller and Wang (1994), Patil
(1993), Stute (1995, 1996), Yandell (1983) and the references therein.

Theorem 1.1 and related applications (see Section 3 in the sequel) will be
shown to be direct consequences of general functional limit laws for the incre-
ments ξn�hn� t�I� of the Kaplan–Meier empirical process αn [recall (1.3) and
(1.4)], which constitute the main results of this paper. To present the first of
these limit laws in the forthcoming Theorem 1.2, we need to introduce some
notation and vocabulary. We closely follow Deheuvels (1992) where additional
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details can be found, concerning the topological aspects of the function spaces
we consider.

Denote by �B�0�1���� [resp. �AC�0�1����] the set B�0�1� (resp. AC�0�1�)
of all bounded (resp. absolutely continuous) functions l on �0�1�, endowed with
the uniform topology � defined by the sup-norm �l� = sup0≤t≤1 �l�t��. For each
l ∈ AC�0�1�, denote by l̇ = �d/ds�l the Lebesgue derivative of l. For each
l ∈ B�0�1� set

�l�H =
{{ ∫ 1

0
l̇2�s�ds

}1/2
� if l ∈ AC�0�1� and l�0� = 0,

∞� otherwise.
(1.15)

For each η ≥ 0, set

�η = {
l ∈ AC�0�1�� �l�2H ≤ η

}
�(1.16)

Observe that � = �1 is the Strassen set [see, e.g., Strassen (1964)] and that
�η = η1/2�1, where, here and elsewhere, we set λ� = �λl� l ∈ ��. The
following inequality is a direct application of the Schwarz inequality [see, e.g.,
(2.36), page 2021 in Deheuvels (1997)]. For any l ∈ �η,

�l� ≤ �l�H ≤ η1/2�(1.17)

Define a sequence of random subsets of B�0�1� by setting, for each n ≥ 1,

� ±
n �*n� =

{
± �2hn�log+�1/hn� + log2 n��−1/2

×ξn�hn� x�I�
{
*n�x� ×

1−G�x�
f�x�

}1/2
� a ≤ x ≤ b

}
⊆ B�0�1��

(1.18)

In what follows, we shall describe the limiting behavior of � ±
n �*n� as

n → ∞, making use of the following vocabulary and definitions.
Let �	 �
 � denote a set 	 , endowed with the topology 
 induced by a

metric d�l� g�, with l� g ∈ 	 . For each ε > 0 and A ⊆ 	 , A �= , set Aε = �g ∈
	 � ∃ l ∈ A� d�l� g� < ε�. Introduce the Hausdorff set-metric pertaining to 

by setting, for each A�B ⊆ 	 ,

�
 �A�B�=
{
inf�ε>0� A⊆Bε and B⊆Aε

}
� if such as ε>0 exists;

∞� otherwise.
(1.19)

Consider now a sequence ��n ⊆ 	 � n ≥ 1� of nonvoid subsets of 	 for which
there exits a compact subset � of 	 , such that the following property holds.
For each ε > 0, there exists an nε < ∞ such that �n ⊆ � ε for all n ≥ nε.
Under this assumption, we will say that �n has limit set equal to � ⊆ � ,
if � consists of all limits as j → ∞ of convergent sequences lnj ∈ �nj

with
1 ≤ n1 < n2 < · · · and nj → ∞. Likewise, we will say that �n minimally
covers �′ ⊆ � if �′ consists of all limits as n → ∞ of convergent sequences
ln ∈ �n. �′ is possibly void, whereas such is not the case for �. Both �
and �′ are closed (and hence compact when nonvoid) subsets of �	 �
 �, with
 ⊆ �′ ⊆ � ⊆ � . When � = �′, we will say that �n completely covers �.
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Remark 1.2. (i) It is noteworthy [see, e.g., Deheuvels (1992)] that a
sequence �n ⊆ 	 has limit set � �=  and minimally covers �′ ⊆ �, if
and only if the following properties (a)–(c) hold.

(a) � is a compact subset of �	 �
 �;
(b) For each ε > 0, we have for all n sufficiently large,

�′ ⊆ �ε
n and �n ⊆ �ε�(1.20)

(c) For each ε > 0, l′ /∈ �′ and l ∈ � we have

l′ /∈ �ε
n i.o (in n) and l ∈ �ε

n i.o (in n).(1.21)

In particular, (a) implies that �n completely covers � if and only if

�
 ��n��� → 0�(1.22)

(ii) The assumption (a) that � is compact is essential for the equivalence
in Remark 1.2(i) to be fulfilled. When combined with (b), the condition (a)
implies that each sequence �ln� n ≥ 1�, with ln ∈ �n for each n ≥ 1, is
relatively compact in �	 �
 � with limit set included in �. The latter property
is not necessarily satisfied when (a) does not hold.

Our main result may now be stated in the following Theorem 1.2, which
will be shown later on to imply Theorem 1.1. In the statement of this theorem,
�� stands for the Hausdorff set distance (1.19) pertaining to the sup-norm on
B�0�1�, and � ±

n �*n� is as in (1.18).

Theorem 1.2. Assume that H1(i), (H3) or (H4), (F1), (F2) and (C1) hold.
Set

M = sup
a≤x≤b

*�x��(1.23)

Then

lim
n→∞��

(
� ±

n �*n���Mc/�c+1�
) = 0 in probability.(1.24)

If, in addition to these assumptions, (H1)(ii), (iii) and (C2) hold, then, with
probability 1, in �B�0�1����, the sequence �� ±

n �*n�� n ≥ 1� has limit set
equal to �M, and minimally covers �Mc/�c+1�. In particular, under (H3), we
have c = ∞� c/�c+ 1� = 1,

lim
n→∞���� ±

n �*n���M� = 0 a.s.,(1.25)

and �� ±
n �*n�� n ≥ 1� completely covers �M with probability 1.

Remark 1.3. (i) In the uncensored case where G�x� = 0 for all x, and
for F = I (i.e., when X has the uniform �0�1� distribution), Theorem 1.2
reduces to a combination of Theorem 3.1 in Deheuvels and Mason (1992) and
Theorem 1.3 in Deheuvels (1992) [see also (1.11) in the latter]. The extension
of the latter results to the case of an arbitrary F can be obtained by relatively
simple arguments in this simplified setting.
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(ii) In the statement of Theorem 1.2, � ±
n �*n���Mc/�c+1� and �M are sub-

sets of B�0�1�. We note that the conclusion of this theorem is unchanged if we
work in the setting of B�C�D� instead of B�0�1�, where −∞ < C < D < ∞
are arbitrary constants, after the appropriate notational changes. The choice
of C = 0 and D = 1 will be used here and later on for convenience.

(iii) Starting with Finkelstein (1971), there have been a great many papers
giving functional limit laws for uncensored empirical processes, taken either
globally or locally. In addition to the previously mentioned references, we may
add that of Mason (1988), Deheuvels and Mason (1990, 1991, 1994, 1995),
Einmahl (1992, 1997) and Einmahl and Mason (1997, 1998).

Among other results, Deheuvels and Einmahl (1996) have shown that,
under the assumptions (H1), (H2) and (F1), (F2) for each x0 ∈ �a� b�, if M0 =
f�x0�/�1−G�x0��, the sequence

n =
{
�2hn log2 n�−1/2ξn�hn� x0�I�

}
⊆ B�0�1��(1.26)

is almost surely relatively compact and has limit set in �B�0�1���� equal to
�M0

. A comparison of (1.26) with the conclusion of Theorem 1.2 gives emphasis
on the fact that the present work completes the study of the local Kaplan–
Meier empirical process in the neighborhood of a fixed point by that of the
same process on the specified interval �a� b�.

In the remainder of this paper, we will describe the limiting behavior of
the random sets of increment functions �ξn�hn� t�I�� a ≤ t ≤ b� for sequences
hn which are not covered by the assumptions of Theorems 1.1 and 1.2. It is
convenient to distinguish the following main ranges of interest depending on
the rate of convergence of hn to 0. We will speak namely of:

1. Large increments when �log�1/hn��/ log2 n → c ∈ �0�∞�.
2. Standard increments when nhn/ log n → ∞ and �log�1/hn��/ log2 n → ∞.
3. Intermediate increments when nhn/ log n → γ ∈ �0�∞�.
4. Small increments when nhn/ log n → 0.

Following Deheuvels (1996), we distinguish two subclasses of small incre-
ments. We speak of:

4a. Fairly small increments when �log�1/hn��/ log n → 1 (and nhn/ log n → 0).
4b. Extremely small increments when �log�1/hn��/ log n → 1 + 1/κ for some

κ ∈ �0�∞�.
The convention 1 + 1/κ = ∞ is used when κ = 0. Large and standard

increments are treated in Theorems 1.1 and 1.2, and the limit laws in the other
cases are stated in Section 2. Section 3 collects a series of applications of the
theorems of Sections 1, 2. In particular, in Section 3, we describe the limiting
behavior of a classical nonparametric estimator of the hazard rate function
f/�1−F�. The proofs of our main results are postponed until Section 4.
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2. Nonstandard local functional laws for censored processes.

2.1. Introduction: intermediate increments. The assumption (H3)(i) in
Theorems 1.1 and 1.2 limits the validity of these theorems to sequences hn

fulfilling hn = ∞�n−1 log n�. It is the purpose of this section to complete the
study of local increments of αn by a description of the limiting behavior corre-
sponding to sequences such that hn = O�n−1 log n�. We call such results non-
standard by following the vocabulary of Deheuvels and Mason (1990, 1991,
1995). First, we will consider the borderline case, where the condition (H5)
holds for some constant γ ∈ �0�∞�. We assume namely that, as n → ∞,

nhn/ log n → γ ∈ �0�∞��(2.1)

The sequences �hn� n ≥ 1� fulfilling (2.1) will be called intermediate sequences.
We will discuss later small sequences corresponding to when γ = 0 in (H5)
(see, e.g., Section 2.2). In either of these cases depending upon the value of
γ < ∞ in (H5), it is more convenient to work on

ηn�hn� t�I� = Fn�t+ hnI� −Fn�t��(2.2)

rather than with ξn�hn� t�I�. This fact is captured in Remark 2.1.

Remark 2.1. Recalling the definitions (1.4) and (1.5), we may check that,
under (2.1) and (F2)(ii), we have as n → ∞, uniformly over t ∈ �a� b�,

n

log n
ηn�hn� t�I� = �1+ o�1���2γ�1/2�2hn�log�1/hn� + log2 n��−1/2

× ξn�hn� t�I� + �1+ o�1��γf�t�I�
(2.3)

As follows from (2.3), a functional limit law dealing, under (2.1), with the
random functions

n

log n
ηn�hn� t�I� for t ∈ �a� b��

is equivalent, after a simple change of scale and centering, to a functional
limit law dealing with

�2hn�log�1/hn� + log2 n��−1/2ξn�hn� t�I� for t ∈ �a� b��

Throughout the remainder of this subsection, we assume (2.1). In view of
Remark 2.1, our aim is to describe the limiting behavior of the set of random
functions defined in (2.4) below, in terms of ηn�hn� t�I�. Similarly to Section 1,
we let �7�x�� a′ ≤ x ≤ b′� denote a continuous and (strictly) positive function,
and 7n�x�, for a ≤ x ≤ b, an estimator of 7�x� such that

(X.1) supa≤x≤b �7�x�/7�x� − 1� → 0 almost surely as n → ∞.

Given 7n as above, set

�n�7n� =
{

n

log n
ηn�hn� x�I�7n�x�� a ≤ x ≤ b

}
�(2.4)
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Our main result, stated in Theorem 2.1 in the sequel, establishes a strong
limit law for �n�7n�. We start by some preliminary results and notation which
are needed in the present framework. Denote by IRC�0�1� the set of all right-
continuous distribution functions l�x� = � ��0� x�� for x ∈ �, of nonnega-
tive bounded Radon measures � with support in �0�1�, and set IAC�0�1� =
IRC�0�1� ∩ AC�0�1� ∩ �l� l�0� = 0�. We will endow IRC�0�1� with either the
uniform topology �, or with the weak topology � , conveniently defined via
the Lévy metric, for l� g ∈ IRC�0�1�,

dL�l� g� = inf�ε > 0� l�x− ε� − ε < g�x� < l�x+ ε� + ε ∀ x ∈ ���(2.5)

Consider a function 8� � → �∪�∞� fulfilling the following condition, for some
µ ∈ �:

(Cµ) (i) 8�µ� = 0.
(ii) 8 is convex and 8�α� ≥ 0, all α.
(iii) 8�α�/α → ∞ as α → ∞.
(iv) 8�α� = ∞ for α < 0.

Introduce the functional on B�0�1� defined by

J8�l� =


∫ 1

0
8�l̇�u��du� if l�0� = 0 and l ∈ AC�0�1�

with l̇ = �d/du�l;
∞� otherwise.

(2.6)

It is noteworthy that, under (Cµ), J8�l� < ∞ ⇒ l ∈ IAC�0�1�. Consider the
subsets of IAC�0�1� defined, for ρ ≥ 0, by

L8 = �l ∈ B�0�1�� J8�l� < ∞� and B8�ρ� = �l ∈ B�0�1�� J8�l� ≤ ρ��(2.7)

Lemma 2.1. Under (Cµ), the mapping l ∈ B�0�1� $→ J8�l� is lower semi-
continuous with respect to the uniform topology �.

Proof. Let �ln� n ≥ 1� ⊆ B�0�1� and l ∈ B�0�1� be such that �ln− l� → 0.
We need only show that

J8�l� ≤ lim inf
n→∞ J8�ln��(2.8)

There is nothing to prove if lim infn→∞J8�ln� = ∞, so that we may assume,
without loss of generality, that lim infn→∞J8�ln� < ∞. If such is the case,
then lnk ∈ IAC�0�1� along a subsequence �nk� k ≥ 1�, which implies in turn
that l ∈ IRC�0�1�. The fact that �ln − l� → 0 then obviously implies
that dL�lnk� l� → 0, so that we may infer (2.8) from Lemma 3.3 of Lynch
and Sethuraman (1987). ✷

Lemma 2.2. Under (Cµ), for each ρ > 0, B8�ρ� is a convex and compact
subset of �B�0�1����.

Proof. We first observe thatB8�ρ� �=  since the linear function l�t� = µt,
t ∈ �0�1� is such that J8�l� = 0, and therefore belongs to B8�ρ�. To establish
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the convexity of B8�ρ�, consider l1� l2 ∈ B8�ρ� and λ1� λ2 ≥ 0 such that λ1 +
λ2 = 1. The convexity of 8 obviously implies that∫ 1

0
8
(
λ1l̇1�u� + λ2l̇2�u�

)
du ≤ λ1

∫ 1

0
8
(
l̇1�u�

)
du+ λ2

∫ 1

0
8
(
l̇2�u�

)
du ≤ ρ�

so that λ1l1 + λ2l2 ∈ B8�ρ�. To show that B8�ρ� is relatively compact in
�B�0�1����, we make use of the Arzelà–Ascoli theorem. First, we show that
B8�ρ� is uniformly equicontinuous. The convexity inequality for integrals
shows that, for any 0 ≤ c < d ≤ 1 and l ∈ B8,

�d− c�8
(
l�d� − l�c�

d− c

)
≤
∫ d

c
8�l̇�u��du ≤ J8�l� ≤ ρ�(2.9)

Since (Cµ) implies the existence, for any ε > 0, of an αε > 0 such that 8�α� ≥
�ρ/ε��α� for all �α� ≥ αε, it follows from (2.9) that∣∣∣∣ l�d� − l�c�

d− c

∣∣∣∣ ≥ αε ⇒ ρ

d− c
≥ 8

(
l�d� − l�c�

d− c

)
≥ ρ

ε

∣∣∣∣ l�d� − l�c�
d− c

∣∣∣∣
⇒ ∣∣l�d� − l�c�∣∣ ≤ ε�

(2.10)

On the other hand, if we choose 0 ≤ c < d ≤ 1 such that �d− c� ≤ ε/αε, we see
that ∣∣∣∣ l�d� − l�c�

d− c

∣∣∣∣ ≤ αε ⇒ ∣∣l�d� − l�c�∣∣ ≤ �d− c�αε ≤ ε�(2.11)

By combining (2.10) and (2.11), we obtain that �d−c� ≤ ε/αε ⇒ �l�d�−l�c�� ≤ ε,
which establishes the equicontinuity of B8�ρ�. Since l�0� = 0 for all l ∈ B8�ρ�
the uniform boundedness of B8�ρ� is trivial, whence the relative compactness
of B8�ρ�. We conclude by an application of Lemma 2.1, which entails that
B8�ρ� is a closed, nonvoid and relatively compact (and hence compact) subset
of �B�0�1����. ✷

For each v > 0 and x ∈ �, set

hv�x� = vh�x/v� where h�x� =
{
x log x− x+ 1� for x > 0,
1� for x = 0,
∞� for x < 0.

(2.12)

For each c > 0 set

δ−c = sup�x < 1� h�x� ≥ 1/c� and δ+c = inf�x > 1� h�x� ≥ 1/c��(2.13)

We observe that hv fulfills (Cv) for all v > 0. In view of (2.6), set, for all v > 0,

Jv�l� = Jhv
�l� =

{∫ 1

0
vh�l̇�u�/v�dv� if l ∈ IAC�0�1�,

∞� otherwise.
(2.14)

For each v > 0 and ρ > 0, let >v�ρ� and >v denote the sets of functions defined
by

>v�ρ� = Bhv
�ρ� = {

l ∈ B�0�1�� Jv�l� ≤ ρ
}

and >v = >v�1��(2.15)
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Lemma 2.3. We have, for each w > 0 and ρ > 0,

inf
l∈>w�ρ�

l�1� = wδ−w/ρ and sup
l∈>w�ρ�

l�1� = wδ+w/ρ�(2.16)

The proof follows readily from Example 6, page 62 in Deheuvels and Mason
(1991).

Lemma 2.4. Fix 0 < A ≤ B < ∞. Let κ�v� and β�v� be positive and contin-
uous functions of v ∈ �A�B�. Then, the set >�κ�β� defined by

>�κ�β� = ⋃
A≤v≤B

κ�v�>β�v�(2.17)

is a compact subset of �IAC�0�1����.

Proof. Wefirst establish that>�κ�β� is relatively compact in �IAC�0�1����.
Toward this aim, we observe that, by the assumptions of the lemma,

0 < κ′ �= inf
A≤v≤B

κ�v� ≤ κ′′ �= sup
A≤v≤B

κ�v� < ∞�

0 < β′ �= inf
A≤v≤B

β�v� ≤ β′′ �= sup
A≤v≤B

β�v� < ∞�

Since, by (2.14), for each l ∈ >β�v� and λ > 0,

Jλβ�v��λl� = λJβ�v��l� ≤ λ�

we have λ>β�v� ⊆ >λβ�v��λ�, and hence, for each A ≤ v ≤ B,

κ�v�>β�v� ⊆
⋃

κ′≤λ≤κ′′
>λβ�v��λ� ⊆

⋃
κ′β′≤w≤κ′′β′′

>w�κ′′��(2.18)

Now, making use of (2.12), we observe that, for any 0 < u ≤ w and l ∈ IAC�0�1�,
Ju�l� = Jw�l� + u−w+ l�1� log�w/u� ≤ Jw�l� + l�1� log�w/u��(2.19)

By combining (2.19), taken with u = κ′β′, with (2.16), we obtain readily that,
uniformly over all l ∈ >w�κ′′�, with κ′β′ ≤ w ≤ κ′′β′′,

Jκ′β′ �l� ≤ R �= κ′′ +
{

sup
κ′β′≤w≤κ′′β′′

wδ+w/κ′′
}
log�κ′′β′′/κ′β′��

By combining this last inequality with (2.18) and (2.17), we see that

>�κ�β� ⊆ >κ′β′ �R��
In view of (2.15) and Lemma 2.2, >κ′β′ �R� is a compact subset of �IAC�0�1����,
whence the relative compactness of >�κ�β�.

We next assume that g ∈ >κ′β′ �R� is such that, for some sequence �gn� ⊆
IAC�0�1� and some sequence �vn� ⊆ �, we have �gn − g� → 0 as n → ∞
with gn ∈ κ�vn�>β�vn� and A ≤ vn ≤ B for each n ≥ 1. By eventually replac-
ing �gn� by an appropriate subsequence, we may and do assume that, for
some v ∈ �A�B�� vn → v as n → ∞. Set gn = κ�vn�ln and g = κ�v�l,
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so that ln ∈ >β�vn� ⇔ Jβ�vn��ln� ≤ 1. By application of (2.19), we obtain readily
from the continuity of β that �Jβ�v��ln� − Jβ�vn��ln�� = o�1�, and hence, that
lim infn→∞Jβ�v��ln� ≤ 1. Now, the continuity of κ entails that �ln − l� → 0.
By an application of Lemma 2.1 taken with 8 = hv [see, e.g., (2.8)], it follows
that Jβ�v��l� ≤ 1. We have therefore g = κ�v�l ∈ κ�v�>β�v� ∈ >�κ�β�. This
proves that >�κ�β� is closed in �IAC�0�1����. Since this set is also nonvoid
and relatively compact, it is therefore compact. ✷

We are now ready to state the main result of this section. Recall the
definition (2.4).

Theorem 2.1. Under (H5) with γ ∈ �0�∞�, (F1), (F2) and (X1), we have

lim
n→∞����n�7n��� �7�� = 0 a.s.,(2.20)

where

� �7� = ⋃
a≤x≤b

{
7�X�

1−G�x�
}
>γf�x��1−G�x���(2.21)

Remark 2.2. As follows from Lemma 2.4, the limit set � �7� in (2.21) is a
compact subset of �IAC�0�1����. On the other hand, this set is not necessarily
convex. We note that the compactness of � �7� is not straightforward, this set
being defined, via (2.21), as a union of an uncountable collection of compact
subsets of �IAC�0�1����. In view of Remark 1.2(ii), this property will turn out
to be essential for proving that �n�7n� completely covers � �7�.

The proof of Theorem 2.1 is postponed until Section 4. Applications are
given in Section 3.

2.2. Small increments. We now turn to the case of small increments, that
is, when nhn/ log n → 0. Consider the following random sets. Let 7 and 7n

be as in Section 2.1, and set

� �s��7n� =
{(

n

log n
log

(
log n
nhn

))
ηn�hn� x�I�7n�x�� a ≤ x ≤ b

}
�(2.22)

� �es��7n� =
{
nηn�hn� x�I�7n�x�� a ≤ x ≤ b

}
�(2.23)

Introduce the following compact subsets of IRC�0�1�. Set, for each integer
k ≥ 0,

��s� = {
φ ∈ IRC�0�1�� φ�1� ≤ 1

}
�(2.24)

��es��k� = {
φ ∈ IRC�0�1�� φ�x� ∈ �0� � � � � k�}�(2.25)

For the statement of the next theorems, we will make use of the following
notation. Recall the definition (2.5) of the Lévy distance dL. For any A ⊆
IRC�0�1� and ε > 0, we set

A�ε� = {
l ∈ IRC�0�1�� ∃ g ∈ A� dL�l� g� < ε

}
�(2.26)



1314 P. DEHEUVELS AND J. H. J. EINMAHL

For any κ ≥ 0, we denote by &κ' ≥ κ > &κ'−1 the upper integer part of κ, and
use the convention that 1/0 = ∞.

Theorem 2.2. Let (F1), (F2) and (X1) be satisfied. Assume that (H1)(i), (ii),
(H5) with γ = 0 and (H6) with d = 1 hold, that is, that

hn ↓ 0� nhn/ log n → 0 and �log�1/hn��/ log n → 1�(2.27)

Let

T = sup
a≤x≤b

{
7�x�

1−G�x�
}
�(2.28)

Then, we have

lim
n→∞dL

(
� �s��7n��T��s�

) = 0 a.s.(2.29)

Theorem 2.3. Let (F1), (F2) and (X1) be satisfied. Assume that (H1)(i), (ii),
(H6) with d = 1+ 1/κ ∈ �1�∞� hold, that is, that

hn ↓ 0 and �log�1/hn��/ log n → 1+ 1/κ�(2.30)

Define, for each integer k ≥ 0, the compact subset of IRC�0�1�,

��k� = ⋃
a≤x≤b

{
7�x�

1−G�x�
}
��es��k��(2.31)

(i) Then, whenever κ is noninteger, we have

lim
n→∞dL

(
� �es��7n����&κ'�) = 0 a.s.(2.32)

(ii) When κ = 0, we have

lim
n→∞dL

(
� �es��7n����1�) = 0 a.s.(2.33)

(iii) When κ = k ≥ 1 is integer, for each ε > 0, there exists almost surely an
n�ε� < ∞ such that, for all n ≥ n�ε�,

� �es��7n� ⊆ ��k+ 1��ε� and ��k� ⊆ � �es��7n��ε��(2.34)

The proofs of Theorems 2.2 and 2.3 are postponed until Section 4.
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3. Applications.

3.1. Introduction. We will make use of the following analytical proposi-
tion to derive a series of applications of our theorems. With the notation of
Section 1, let �n be a sequence of nonvoid subsets of �	 �
 �.

Proposition 3.1. Assume that �n has limit set � and minimally covers
�′ �= . Let A� 	 → � be a 
 -continuous mapping. Then, we have

lim inf
n→∞

{
sup
l∈�n

A�l�
}
= sup

l∈�′
A�l� and lim sup

n→∞

{
sup
l∈�n

A�l�
}
= sup

l∈�
A�l��(3.1)

Proof. Let d�·� ·� be the distance defining 
 . Set

L1 = lim sup
n→∞

{
sup
l∈�n

A�l�
}

and L2 = sup
l∈�

A�l��

There exists a sequence of indices nj → ∞ and lnj ∈ �nj
such that A�lnj� →

L1. By eventually replacing nj by an appropriate subsequence, we may assume
the existence of l ∈ � such that d�lnj� l� → 0. The continuity of A implies
therefore that A�lnj� → A�l� = L1 ≤ L2. On the other hand, since� is compact,
there exists a g ∈ � such that A�g� = L2. Since, by definition of L2, g is the
limit of some sequence gmj

∈ �mj
with mj → ∞, the definition of L1 entails

that A�g� = L2 ≤ L1. The inequality L1 ≤ L2 implies therefore that L1 = L2.
Set now

L3 = lim inf
n→∞

{
sup
l∈�n

A�l�
}

and L4 = sup
l∈�′

A�l��

Since �′ �=  is compact, there exists a g′ ∈ �′ such that A�g′� = L4, and a
sequence g′

n ∈ �n with d�g′� g′
n� → 0. This implying that A�g′

n� → A�g′� = L4,
it follows that L3 ≥ L4. Suppose now that L3 > L4, and select an ε > 0 so
small that A�l� < L3 − 1

2�L3 −L4� for all l ∈ ��′�ε. Since we have �n ⊆ ��′�ε
i.o. in n, we also have supl∈�n

A�l� ≤ L3 − 1
2�L3 − L4� i.o. in n, which is in

contradiction with the definition of L3. We have therefore L3 = L4. ✷

3.2. Oscillations of the local Kaplan–Meier empirical process. We start by
investigating the oscillation modulus of αn. In the uncensored case, that is,
when G�x� = 0 for all x ∈ �, many papers have been devoted to this prob-
lem, among which we may cite those of Stute (1982a, b), Mason, Shorack and
Wellner (1983), Deheuvels and Mason (1992) and Deheuvels (1992, 1996).
We refer to Deheuvels (1997), Shorack and Wellner (1986) and Csörgő and
Horváth (1994) for further references and details on the subject. In the cen-
sored case, a partial description is to be found in Schäfer (1986).
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Recalling (1.3), (1.4) we first establish the following corollary of Theorem 1.2
concerning the oscillations of αn. Set

	±
n �h� = sup

a≤x≤b
0≤s≤h

±�αn�x+ s� − αn�x�� = sup
a≤x≤b
0≤s≤1

±ξn�h�x� s�(3.2)

and

	n�h� = sup
a≤x≤b
0≤s≤h

�αn�x+ s� − αn�x�� = sup
a≤x≤b
0≤s≤1

�ξn�h�x� s���(3.3)

Set, for convenience,

bn = (
2hn�log�1/hn� + log2 n�

)1/2
�(3.4)

Corollary 3.1. Assume that (H1), (H3) or (H4), and (F1), (F2) hold. Then,
we have

lim sup
n→∞

b−1n 	±
n �hn� = lim sup

n→∞
b−1n 	n�hn� = sup

a≤x≤b

{
f�x�

1−G�x�
}1/2

a.s.(3.5)

and

lim inf
n→∞ b−1n 	±

n �hn� = lim inf
n→∞ b−1n 	n�hn�

=
(

c

c+ 1

)1/2
sup
a≤x≤b

{
f�x�

1−G�x�
}1/2

a.s.
(3.6)

Proof. The mapping,

l ∈ B�0�1� $→ A�f� = sup
0≤t≤1

l�t��

is obviously �-continuous. Recalling the notation (1.3) and (1.18), we see that,
if * = f/�1−G�,

lim sup
n→∞

b−1n 	+
n �hn� = sup

l∈� +
n �*�

A�f��

Setting M = supa≤x≤b *�x�, we infer from Theorem 1.2 and Proposition 3.1
that, almost surely,

lim sup
n→∞

b−1n 	+
n �hn� = sup

l∈�M

A�l� = M1/2�

lim inf
n→∞ b−1n 	+

n �hn� = sup
l∈�Mc/�c+1�

A�l� = M1/2
(

c

c+ 1

)1/2
�

which yields (3.5) and (3.6) for 	+
n . The proofs of (3.5) and (3.6) in the other

cases are similar and omitted.
Similar results to that given above can be derived for the intermediate and

small increments corresponding to the sequences �hn� n ≥ 1� considered in
Section 2. We will restrict ourselves here to the intermediate sequences of
Theorem 2.1.
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Corollary 3.2. Assume that (H5), with γ > 0 and (F1), (F2) hold. Then,
we have

lim
n→∞

n1/2	n�hn�
logn

= lim
n→∞

n1/2	+
n �hn�

logn
=γ sup

a≤x≤b
f�x�(δ+γf�x��1−G�x��−1

)
a.s.(3.7)

and

lim
n→∞

n1/2	−
n �hn�

log n
= γ sup

a≤x≤b
f�x�(1− δ−γf�x��1−G�x��

)
a.s.(3.8)

Proof. In view of Remark 2.1, we make use of the version of Theorem 2.1
holding for a centered form of ηn�hn� t�I�. By combining (2.2) and (2.3) with
(2.20) and (2.21), we see that, under the assumptions of Theorem 2.1, the
almost sure limit set in �B�0�1���� of

��n�7n���c� �=
{
7n�x�

(
n1/2

log n

)
ξn�hn� x�I�� a ≤ x ≤ b

}
(3.9)

is given by

��n�7���c� �=
⋃

a≤x≤b

{
7�x�

(
l

1−G�x� − γf�x�I
)
� l ∈ >γf�x��1−G�x��

}
�(3.10)

We choose 7n ≡ 7 ≡ 1 in (3.9) and (3.10) and consider, as in the just-given
proof of Corollary 3.2, the functional l $→ A�l� = sup0≤t≤1 l�t�. By combining
(3.2) with (3.9) and (3.10), we see that

lim
n→∞

n1/2	+
n �hn�

log n
= lim

n→∞

{
sup

l∈��n�7���c�
A�l�

}
= sup

l∈��n�7���c�
A�l� a.s.(3.11)

In view of (3.11), equality (3.7) for 	+
n (and likewise for 	−

n ) follows readily
from the observation that u�δ+u − 1� is increasing in u > 0, in combination
with (2.18) in Deheuvels and Mason (1991), which yields that

sup�±l�t�� l ∈ >v� = ±vtδ±vt�(3.12)

Equality (3.7) for 	n follows similarly by taking A�l� = sup0≤t≤1 �l�t�� and
making use of the inequality δ+u − 1 > 1 − δ−u for u > 0. Then (3.8) follows
along the same lines via (3.12), with A�l� = sup0≤t≤1�−l�t��, and making use
of the observation that u�1− δ−u � is increasing in u > 0. ✷

3.3. Nonparametric estimation of the hazard rate function. Let (F1), (F2)
be satisfied, and denote the hazard rate (function) pertaining to F by

λ�x� = f�x�
1−F�x� for a′ ≤ x ≤ b′�(3.13)

We will consider the estimator λn of λ defined by

λ�x� = f�x�
1−Fn�x�

�(3.14)
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where fn�x� is as in (1.6) and Fn as in (1.1). Recalling the definition (1.7) of
Ɛ̂fn�x�, we have the following theorem, which largely extends the results of
Zhang (1996). Let * and *n be as in Section 1.

Theorem 3.1. Under (H1)(i), (H3) or (H4), (K1)–(K3), (F1), (F2) and (C1),
we have

lim
n→∞

{
nhn

2�log�1/hn� + log2 n�
}1/2

sup
a≤x≤b

±
(
λn�x� −

Ɛ̂fn�x�
1−F�x�

)

×
{
*n�x� ×

1−H�x�
λ�x�

}1/2
=
(

c

c+ 1

)1/2{
sup
a≤x≤b

*�x�
}1/2{ ∫ ∞

−∞
K2�u�du

}1/2
in probability�

(3.15)

If, in addition, (H1)(ii), (iii) and (C2) hold, then

lim sup
n→∞

{
nhn

2�log�1� hn� + log2 n�
}1/2

sup
a≤x≤b

±
(
λn�x� −

Ɛ̂fn�x�
1−F�x�

)

×
{
*n�x� ×

1−H�x�
λ�x�

}1/2
=
{
sup
a≤x≤b

*�x�
}1/2{ ∫ ∞

−∞
K2�u�du

}1/2
a.s�

(3.16)

and

lim inf
n→∞

{
nhn

2�log�1� hn� + log2 n�
}1/2

sup
a≤x≤b

±
(
λn�x� −

Ɛ̂fn�x�
1−F�x�

)

×
{
*n�x� ×

1−H�x�
λ�x�

}1/2
=
(

c

c+ 1

)1/2{
sup
a≤x≤b

*�x�
}1/2{ ∫ ∞

−∞
K2�u�du

}1/2
a.s�

(3.17)

Proof. An application of the law of the iterated logarithm for αn [see, e.g.,
Földes and Rejtő (1981)], in combination with Theorem 1.1, Remark 1.1 and
the formal replacement of *n by

{
1−Fn�x�
1−F�x�

}2
*n�x��
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reduces the proof of (3.15)–(3.17) to showing that, under the assumptions of
the theorem,

lim
n→∞n−1/2�log2 n�1/2

{
nhn

log�1/hn� + log2 n

}1/2
= lim

n→∞

{
hn log2 n

log�1/hn� + log2 n

}1/2
= 0�

which is obvious from (H1)(i). ✷

4. Proofs.

4.1. Preliminary results and notation. We will work here under slightly
more general assumptions than in the previous sections. As in Section 1, we
letX�Y be nonnegative independent random variables, with Y being allowed
to be defective [i.e., with ��Y = ∞� possibly positive], we set Z = min�X�Y�
and δ = ��X≤Y�. Unless otherwise specified, we will allow the distribution
functions F�x� = ��X ≤ x� and G�x� = ��Y ≤ x� to be discontinuous, so
that the following conventions will be needed. For any function L, we will set,
whenever the corresponding limits exist

L�x−� = lim
t↑x

L�t� and L�x+� = lim
t↓x

L�t��(4.1)

Whenever L is of bounded variation on �c� d�, we will use the following con-
vention for the Lebesgue–Stieltjes integral: for any c ≤ y ≤ z ≤ d, we set

L�z+� −L�y+� =
∫ z

y
dL�u� =

∫ z+

y+
dL�u��(4.2)

Recalling that the above defined F�G are right continuous, that is, such that
F�x� = F�x+� and G�x� = G�x+�, we will set for convenience F−�x� = F�x−�
and G−�x� = G�x−�. Set

TF = sup�x� F�x� < 1�� TG = sup�x� G�x� < 1� and assume

& = min�TF�TG� > 0�

Throughout the sequel, we will assume the conditions (F1), (F2), which are
stated below for convenience:

(F1) F�0� = G�0� = 0.
(F2) (i) F and G are continuous on �a′� b′�.

(ii) f = �d/dx�F is defined, continuous and strictly positive on �a′� b′�.
The distribution function of Z = min�X�Y�, denoted by H�x� = ��Z ≤ x� =
H�x+�, may be decomposed into

H�x� = 1− �1−F�x���1−G�x�� = H�1��x� +H�0��x��(4.3)
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where

H�1��x� = ��Z ≤ x and δ = 1� =
∫ x

0
�1−G−�t��dF�t� = H�1��x+��(4.4)

H�0��x� = ��Z ≤ x and δ = 0� =
∫ x

0
�1−F−�t��dG�t� = H�0��x+��(4.5)

Set H�0�
± �x� = H�0��x±� and H

�1�
± �x� = H�1��x±�. We set further

p = ��δ = 1� =
∫ ∞

0
�1−G−�t��dF�t� = H�1�

− �∞� = 1−H�0�
− �∞��(4.6)

Our assumptions & > 0 and (F2) exclude p = 0, but allow p = 1 when
P�Y = ∞� = 1, that is, when G�x� = 0 for all x ∈ �, which corresponds to
uncensored data. In the latter case, the results of this section will turn out to
be direct consequences of similar theorems for the uniform empirical process
due to Deheuvels and Mason (1992) and Deheuvels (1992). Therefore, we will
assume from now on without loss of generality in our proofs that 0 < p < 1.
Keeping in mind thatH�1��x� [resp.H�0��x�] increases from 0 to p (resp. 1−p)
as x increases from 0 to ∞, denote the quantile functions of H�1� and H�0� by

Q�1��s� = inf�x� H�1��x� ≥ s� for 0 < s < p�(4.7)

Q�0��s� = inf�x� H�0��x� ≥ s� for 0 < s < 1− p�(4.8)

Let �Xn� n ≥ 1� and �Yn� n ≥ 1� be two independent sequences of independent
and identically distributed random variables with X = X1 and Y = Y1. Set
Zn = min�Xn�Yn�� Z = Z1, and δn = ��Xn≤Yn�� δ = δ1, for n ≥ 1. For each
n ≥ 1, define the empirical counterparts of H� H�1� and H�0� by

Hn�x� = n−1
n∑
i=1

��Zi≤x� = H�1��x� +H�0��x� = 1− n−1Nn−�x��(4.9)

where

Nn�x� =
n∑
i=1

��Zi≥x� = n�1−Hn−�x���

Nn−�x� = Nn�x−� =
n∑
i=1

��Zi>x��

(4.10)

H
�1�
n �x� = n−1

n∑
i=1

δi��Zi≤x� and

H
�0�
n �x� = n−1

n∑
i=1

�1− δi���Zi≤x��

(4.11)

Set Hn±�x� = Hn�x±�, H�1�
n±�x� = H

�1�
n �x±� and H

�0�
n±�x� = H

�0�
n �x±�. Intro-

duce the empirical cumulated hazard rate function defined by

In�x� =
∫ x

0

1
1−Hn−�u�

dH
�1�
n �u� = In�x+� for x ≥ 0�(4.12)
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We note that the true cumulated hazard rate function may be defined, for
x ≥ 0, by

I�x� =
∫ x

0

1
1−F−�u�

dF�u� =
∫ x

0

1−G−�u�
1−H−�u�

dF�u�

=
∫ x

0

1
1−H−�u�

dH�1��u��
(4.13)

The Kaplan–Meier PL estimators Fn and Gn of F and G based upon ��Zi� δi��
1 ≤ i ≤ n� are such that [see, e.g., Shorack and Wellner (1986), page 295]

Fn�x� = 1− ∏
i� Zi�n≤x�1≤i≤n

(
1− δi�n

n− i+ 1

)
=
∫ x

0
�1−Fn−�u��dIn�u�

=
∫ x

0

1−Fn−�u�
1−Hn−�u�

dH
�1�
n �u� =

∫ x

0

1
1−Gn−�u�

dH
�1�
n �u�

(4.14)

and likewise

Gn�x� = 1− ∏
i� Zi�n≤x�1≤i≤n

(
1− 1− δi�n

n− i+ 1

)

=
∫ x

0

1
1−Fn�u�

dH
�0�
n �u��

(4.15)

where we set Fn±�x� = Fn�x±� and Gn±�x� = Fn�x±�. Now, introduce the
empirical processes αn = αn+ and βn = βn+ where, for each n ≥ 1 and x ∈ �,

αn±�x� = n1/2�Fn±�x� −F±�x�� and

βn±�x� = n1/2�Gn±�x� −G±�x���
(4.16)

Define likewise

�
�j�
n �x� = n1/2(H�j�

n �x� −H�j��x�) for j = 0�1�(4.17)

We may write

αn�x� = n1/2�Fn�x� −F�x�� = n1/2
{∫ x

0
dFn�u� −

∫ x

0
dF�u�

}
= n1/2

{∫ x

0

1
1−Gn−�u�

dH
�1�
n �u� −

∫ x

0

1
1−Gn−�u�

dH�1��u�

+
∫ x

0

1−G−�u�
1−Gn−�u�

dF�u� −
∫ x

0

1−Gn−�u�
1−Gn−�u�

dF�u�
}

=
∫ x

0

1
1−Gn−�u�

d�
�1�
n �u� +

∫ x

0

βn−�u�
1−Gn−�u�

dF�u� =� α′
n�x� + α′′

n�x��

(4.18)

The following lemma establishes that, in the range of increments which we
consider, the oscillations of α′′

n can be neglected.
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Lemma 4.1. Fix any 0 < R < &. Assume that there exists a version f�x� =
�d/dx�F�x� of the Lebesgue derivative ofF uniformly bounded on �0�R�. Then,
there exists a constant C1�R� < ∞ such that, almost surely for all n sufficiently
large and uniformly over all 0 ≤ s ≤ t ≤ R,

�α′′
n�t� − α′′

n�s�� =
∣∣∣∣∫ t

s

βn−�u�
1−Gn−�u�

dF�u�
∣∣∣∣ ≤ C1�R��log2 n�1/2�t− s��(4.19)

Proof. We recall from the law of the iterated logarithm of Földes and
Rejtő (1981) [see also Csörgő and Horváth (1983) and Gu and Lai (1990),
(1.15)] that, for any specified 0 ≤ R < &,

C2�R� = lim sup
n→∞

�log2 n�−1/2 sup
0≤u≤R

�βn�u�� < ∞ a.s�(4.20)

Set C3�R� = sup0≤u≤R �f�u��. Making use of (4.20), we obtain trivially that,
almost surely for all large n,

�log2 n�−1/2
∣∣∣∣∫ t

s

βn−�u�
1−Gn−�u�

dF�u�
∣∣∣∣

≤ 1
1−Gn−�R� × �log2 n�−1/2 sup

0≤u≤R
�βn−�u�� × �F�t� −F�s��

≤ 1
1−G�R� × 2C2�R�C3�R� × �t− s� =� C1�R��t− s��

which is (4.19). ✷

We will make use of the following fact, stated in (2.13), (2.14), (2.15) in
Deheuvels and Einmahl (1996), to evaluate the increments of α′

n in (4.18).

Fact 4.1. On a suitably enlarged probability space �	�� ���, it is possible
to define �Xn� n ≥ �� and �Yn� n ≥ 1� jointly with a sequence �Un� n ≥ 1�
of independent random variables with a uniform distribution on �0�1�, such
that the following properties hold. For each n ≥ 1, set

Un�s� = n−1
n∑
i=1

��Ui≤s� and an�s� = n1/2�Un�s� − s� for s ∈ ��(4.21)

We have, almost surely,

H
�1�
n �x� = Un�H�1��x�� for 0 < H�1��x� < p(4.22)

and

H
�0�
n �x� = Un�H�0��x� + p� −Un�p� for 0 < H�0��x� < 1− p�(4.23)
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In the remainder of this section, we will work on the probability space of
Fact 4.1. Recalling (4.17), we set, in view of (4.21), (4.22), for each h > 0,

ω
�1�
n �h� = sup

a≤s� t≤b′
�t−s�≤h

∣∣∣� �1�
n �t� −�

�1�
n �s�

∣∣∣
= sup

a≤s� t≤b′
�t−s�≤h

∣∣∣an�H�1��t�� − an�H�1��s��
∣∣∣�(4.24)

In view of (4.18), consider now

An�1�s� t� = α′
n�t� − α′

n�s� −
1

1−G−�s�
∫ t

s
d�

�1�
n �u�

=
∫ t

s

(
1

1−Gn−�u�
− 1
1−G−�s�

)
d
{
�

�1�
n �u� −�

�1�
n �s�}

=
(

1
1−Gn−�t�

− 1
1−G−�s�

){
�

�1�
n �t� −�

�1�
n �s�}

−
∫ t

s

{
�

�1�
n �u� −�

�1�
n �s�}d{ 1

1−Gn−�u�
}
�

(4.25)

Lemma 4.2. Assume that (F2)(i) holds. Then, there exists a function
C4�h�→0 as h → 0, together with a constant C5 such that, almost surely
for all n sufficiently large,

sup
a≤s� t≤b′
�t−s�≤h

�An�1�s� t�� ≤ ω
�1�
n �h� ×

{
C5n

−1/2�log2 n�1/2 +C4�h�
}
�(4.26)

Proof. Making use of the assumption (F2)(i) of continuity ofG, we see that

C4�h� �= 2 sup
a≤s� t≤b′
�t−s�≤h

∣∣∣∣ 1
1−G−�t�

− 1
1−G−�t�

∣∣∣∣→ 0 as h → 0�(4.27)

By combining (4.20) and (4.24), we obtain readily that there exists a constant
C5 such that, almost surely for all n sufficiently large,

sup
a≤t≤b′

∣∣∣∣ 1
1−Gn−�t�

− 1
1−G−�t�

∣∣∣∣ ≤ �1/3�C5n
−1/2�log2 n�1/2�(4.28)



1324 P. DEHEUVELS AND J. H. J. EINMAHL

Thus, by combining (4.20) with (4.27) and (4.28), we see that, almost surely
for all large n,

sup
a≤s� t≤b′
�t−s�≤h

∣∣∣∣( 1
1−Gn−�t�

− 1
1−G−�s�

){
�

�1�
n �t� −�

�1�
n �s�}∣∣∣∣

≤ ω
�1�
n �h� ×

{
sup
a≤t≤b′

∣∣∣∣ 1
1−Gn−�t�

− 1
1−G−�t�

∣∣∣∣
+ sup

a≤s� t≤b′
�t−s�≤h

∣∣∣∣ 1
1−G−�t�

− 1
1−G−�t�

∣∣∣∣}

≤ ω
�1�
n �h� ×

{
�1/3�C5n

−1/2�log2 n�1/2 + �1/2�C4�h�
}
�

(4.29)

Next, we observe that

sup
a≤s� t≤b′
�t−s�≤h

∣∣∣∣∫ t

s

{
�

�1�
n �u� −�

�1�
n �s�}d{ 1

1−Gn−�t�
}∣∣∣∣

≤ ω
�1�
n �h� × sup

a≤s� t≤b′
�t−s�≤h

∣∣∣∣ 1
1−Gn−�t�

− 1
1−Gn−�s�

∣∣∣∣
≤ ω

�1�
n �h� ×

{
�2/3�C5n

−1/2�log2 n�1/2 + �1/2�C4�h�
}
�

(4.30)

We conclude (4.26) by combining (4.29) with (4.30). ✷

Set

ξ
�1�
n �h� t� s� = 1

1−G−�t�
{
�

�1�
n �t+ hs� −�

�1�
n �t�

}
= 1

1−G−�t�
{
an�H�1��t+ hs�� − an�H�1��t��

}
�

(4.31)

The following lemma combines Lemmas 4.1 and 4.2. In the statement of this
result, the constant C1�R� is defined as in Lemma 4.1 for 0 < R < &, whereas
C5 and C4�h� are as in Lemma 4.2.

Lemma 4.3. Assume that (F2)(i) holds. Then, there exist constants C1 =
C1�b� and C5, and there exists a function C4�h� → 0 as h → 0 such that the
following property holds. There exists almost surely an n0 < ∞ such that, for
all n ≥ n0 and h > 0,

sup
a≤t≤b

�ξn�h� t�I� − ξ
�1�
n �h� t�I��

≤ ω
�1�
n �h�

{
C5n

−1/2�log2 n�1/2 +C4�h�
}
+C1h�log2 n�1/2�

(4.32)

For the proof, combine (4.19) and (4.26) with (4.25) and (4.31).
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In the following sections, we will make use of Lemma 4.3 to show that
(4.32) allows a formal replacement of ξn�h� t� s� by ξ

�1�
n �h� t� s� in the proofs of

our results.

4.2. Proofs of Theorems 1.2 and 1.1. This subsection is devoted to the
proofs of Theorems 1.2 and 1.1, so that we assume throughout, unless oth-
erwise specified, that (F1), (F2), (H1) and either (H3) or (H4) hold. We will
work on the probability space of Fact 4.1, and make an instrumental use of
the following useful facts which combine results from Stute (1982a), Mason,
Shorack and Wellner (1983), Deheuvels and Mason (1992) and Deheuvels
(1992). Recalling the notation (1.16) and (4.21), we consider the random sets
of increment functions defined, for 0 ≤ c1 ≤ c2 ≤ 1, n ≥ 1 and λ > 0, by

	n�c1� c2�λ� =
{
b−1n ζn�λhn� t�I�� c1 ≤ t ≤ c2

}
�(4.33)

where bn = �2hn�log�1/hn� + log2 n��1/2 is as in (3.4), and where we set, for
s� t ∈ � and h > 0,

ζn�h� t� s� = an�t+ hs� − an�t��(4.34)

For each h > 0, set

ωn�h� = sup
a≤s� t≤1
�s−t�≤h

�an�t� − an�s���(4.35)

Fact 4.2. Assume that (H1) and (H3) or (H4) hold. Then, for any λ > 0,

lim sup
n→∞

b−1n ωn�λhn� = λ1/2 a.s�(4.36)

Fact 4.3. Let (H1)(i) and (H3) or (H4) be satisfied. Then, for any 0 ≤ c1 <
c2 ≤ 1 and λ > 0, we have

lim
n→∞���	n�c1� c2�λ���λc/�c+1�� = 0 in probability�(4.37)

If, in addition, (H1)(ii) holds, then, for any ε > 0, almost surely for all n
sufficiently large,

�λc/�c+1� ⊆ 	n�c1� c2�λ�ε and 	n�c1� c2�λ� ⊆ � ε
λ �(4.38)

Moreover, for each l ∈ �λ, we have, infinitely often with probability 1,

l ∈ 	n�c1� c2�λ�ε�(4.39)

Lemma 4.4. Assume that (H1) and (H3) or (H4) hold. Then, under
(F1), (F2),

lim
n→∞ b−1n sup

a≤t≤b
�ξn�hn� t�I� − ξ

�1�
n �hn� t�I�� = 0 a.s�(4.40)
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Proof. Setting D = maxa≤t≤b′ f�t��1 − G�t��, we have uniformly over
a ≤ s, t ≤ b′,

�H�1��t� −H�1��s�� ≤ D�t− s��
This inequality, in combination with (4.24) and (4.35), implies that, for all
large n,

ω
�1�
n �hn� ≤ ωn�Dhn�

whence, by (4.36),

lim sup
n→∞

b−1n ω
�1�
n �hn� ≤ D1/2 a.s�

By combining this last inequality with (4.32), and the observation that, under
our assumptions,

C5n
−1/2�log2 n�1/2 +C4�hn� → 0�

and, via (3.4),

b−1n C1hn�log2 n�1/2 = O�h1/2
n � → 0�

we conclude readily (4.40). ✷

Let N ≥ 1 be an arbitrary, but fixed, integer which will be specified later
on. For 1 ≤ i ≤ N, set ti�N = a + �i − 1�N−1�b − a�. For each 1 ≤ i ≤ N, set
λi�N = f�ti�N��1−G�ti�N��, and, for t ∈ �ti�N� ti+1�N�,

ξ
�1�
n�N�hn� t� s� =

1
1−G�t�

{
an

(
H�1��t� + shnf�ti�N��1−G�ti�N��

)
− an

(
H�1��t�

)}
= 1

1−G�t�ζn�λi�Nhn�H
�1��t��I��

(4.41)

Lemma 4.5. Assume that (H1) and (H3) or (H4) hold. Then, under (F1), (F2)
for any ε > 0, there exists an N0 = N0�ε� < ∞, such that, for all N ≥ N0,

lim sup
n→∞

b−1n sup
a≤t≤b

∥∥ξ�1�n�N�hn� t�I� − ξ
�1�
n �hn� t�I�

∥∥ ≤ ε a.s�(4.42)

Proof. Set

eN = max
1≤i≤N

(
sup

ti�N≤t≤ti+1�N+hn

∣∣∣f�t��1−G�t�� − f�ti�N��1−G�ti�N��
∣∣∣)�

and observe from the mean value theorem that, for all 1 ≤ i ≤ N, t ∈
�ti�N� tt+1�N�, and s ∈ �0�1�, for all large n,

�H�1��t+ hns� − �H�1��t� + shnf�ti�N��1−G�ti�N���� ≤ eNhn�
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This, in turn, implies that

lim sup
n→∞

b−1n sup
a≤t≤b

∥∥ξ�1�n �hn� t�I� − ξ
�1�
n�N�hn� t�I�

∥∥
≤ sup

a≤t≤b

{
1

1−G�t�
}
lim sup
n→∞

b−1n ωn�eNhn� =
{

1
1−G�b�

}
e
1/2
N a.s�

Since a choice of N sufficiently large ensures eN to be as small as desired, we
conclude (4.42). ✷

Let R denote a continuous and (strictly) positive function on �a′� b′�. Set

Ri�N = inf
ti�N≤t≤ti+1�N

R�t�
1−G�t� and Si�N = sup

ti�N≤t≤ti+1�N

R�t�
1−G�t� �

So that, if we let �±
N and � be defined by

�−
N = max

1≤i≤N
Ri�Nλ

1/2
i�N� �+

N = max
1≤i≤N

Si�Nλ
1/2
i�N�(4.43)

� = sup
a≤t≤b

{
R�t�

1−G�t�
}{

f�t��1−G�t��
}1/2

= sup
a≤t≤b

R�t�
{

f�t�
1−G�t�

}1/2
�(4.44)

It is straightforward that, as N → ∞,

��±
N −� � → 0�(4.45)

Set

�n�N =
{
R�t�b−1n ξ

�1�
n�N�hn� t�I�� a ≤ t ≤ b

}
�(4.46)

Lemma 4.6. Assume that (H1) and (H3) or (H4) hold. Then, under (F1),
(F2) for any ε > 0, there exists an N1 = N1�ε� < ∞, such that for all N ≥ N1,
almost surely for all n sufficiently large,

��c/�c+1� ⊆ � ε
n�N and �n�N ⊆ ��� �ε�(4.47)

Moreover, for any l ∈ � , we have, infinitely often with probability 1�

� l ∈ � ε
n�N�(4.48)

Proof. Recall (4.34) and (4.41). Fix an arbitrary ε > 0. For any fixed
1 ≤ i ≤ N, set c1 = H�1��ti�N�, c2 = H�1��ti+1�N�, ρ = max1≤i≤N Si�N,

	n� i�N = �b−1n ζn�λi�Nhn� u�I�� c1 ≤ u ≤ c2�
and

�n� i�N =
{
R�t�b−1n ξ

�1�
n�N�hn� t�I�� ti�N ≤ t ≤ ti+1�N

}
(4.49)

=
{ R�t�
1−G�t�b

−1
n ζn�λi�Nhn�H

�1��t��I�� ti�N ≤ t ≤ ti+1�N
}
�(4.50)
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Our assumptions [in particular (F2)(ii)] imply that 0 ≤ c1 < c2 ≤ p ≤ 1 [recall
(4.6)]. Thus by (4.38) there exists almost surely an n0 = n0�ε� i�N� such that,
for all n ≥ n0,

λ
1/2
i�N�c/�c+1� ⊆ 	

ε/�2ρ�
n� i�N and 	n� i�N ⊆

(
λ
1/2
i�N�

)ε/�2ρ�
�

and hence, that

�i�Nλ
1/2
i�N�c/�c+1� ⊆ �

ε/2
n� i�N and �n� i�N ⊆

(
�i�Nλ

1/2
i�N�

)ε/2
�

Here, we have made use of the fact that, for any r > 0, rAε = �rA�rε. Since
�n�N = ⋃N

i=1�n� i�N, it follows that, for all n ≥ n0,

�−
N�c/�c+1� ⊆ �

ε/2
n�N and �n�N ⊆ ��+

N� �ε/2�(4.51)

Since l ∈ �λ ⇒ �l� ≤ λ1/2, it is straightforward that

����±
N�λ���λ� ≤ ��±

N −� �λ1/2�
By combining this inequality, taken with either λ = 1 or λ = c/�c + 1�, with
(4.46) and (4.51), we obtain readily (4.47).

For the proof of (4.48), we select an arbitrary l ∈ � , then make use of (4.43),
to show that we have, infinitely often (in n) with probability 1,

λ
1/2
i�Nl ∈ 	

ε/�2ρ�
n� i�N

and hence

�−
Nl = Ri�Nλ

1/2
i�Nl ∈ �

ε/2
n� i�N ⊆ �

ε/2
n�N�

We conclude (4.48) by choosing N so large that ��−
N −� � < ε/2. ✷

Proof of Theorem 1.2. We have now all the ingredients in hand to prove
Theorem 1.2. First, we let * in (C1), (C2) and R be related via

R�t� =
{
*�t� × 1−G�t�

f�t�
}1/2

⇔ *�t� = R2�t� ×
{

f�t�
1−G�t�

}
�(4.52)

This shows, via (4.44) and (1.23), that

M = sup
a≤t≤b

*�t� = � 2�

We will omit the proof of the “in probability part” in (1.24), since it is similar
to but easier than the proof of the “almost sure part,” which we present now.

We combine (1.18), (4.40), (4.42), (4.44), (4.46) and (4.47) to show that, for
any ε > 0, a choice of N sufficiently large ensures that, almost surely for all
large n,

� +
n �*� ⊆ ��� �ε = � ε

M and ��c/�c+1� = �Mc/�c+1� ⊆ � +
n �*�ε�
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Moreover, by (4.48), it holds that, for any l ∈ � and ε > 0, we have almost
surely,

� l = M1/2l ∈ � +
n �*�ε infinitely often

in the “+” case with � +
n �*n� replaced by � +

n �*�. From (C1) or (C2) it is
immediate that the theorem holds for � +

n �*n� itself. The proof for the “−”
case follows along the same lines and will be omitted.

Proof of Theorem 1.1. First note that it follows immediately from (1.8)
that {

nhn

2�log�1� hn� + log2 n�
}1/2

± �fn�x� − Ɛ̂fn�x��
{
*n�x� ×

1−G�x�
f�x�

}1/2
=
∫ T

−T
∓�2hn�log�1/hn� + log2 n��−1/2ξn�hn� x�u�

×
{
*n�x� ×

1−G�x�
f�x�

}1/2
dK�u��

Define A� l ∈ B�−T�T� ∩M�−T�T� $→ � (here, M�−T�T� stands for the set
of measurable functions on �−T�T�) by

A�l� = −
∫ T

−T
l�u�dK�u�

and let �n = � ±
n �*n�. Then the versions of Theorem 1.2 and Proposition

3.1 obtained with the formal replacements of B�0�1� by B�−T�T�, yield the
statements in (1.11) and (1.12), once we show that for η ≥ 0,

sup
l∈Sη

{
−
∫ T

−T
l�u�dK�u�

}
=
{
η
∫ T

−T
K2�u�du

}1/2
�

This, however, is well known [see, e.g., Section 4.2 in Deheuvels and Mason
(1992)]. Likewise (1.24) implies (1.10); we omit details.

4.3. Proof of Theorem 2�1� We consider here a sequence of numbers �hn�
n ≥ 1� fulfilling condition (H5) with γ > 0, that is, such that, as n → ∞,

nhn/ log n → γ ∈ �0�∞��(4.53)

We will again work on the probability space of Fact 4.1 and we will use the
following fact from Mason, Shorack and Wellner (1983) and Deheuvels and
Mason (1992). Recalling (4.21), define for 0 ≤ c1 < c2 ≤ 1, n ≥ 1 and λ > 0,

˜	n�c1� c2�λ� =
{

n

log n
�Un�t+ hns� −Un�t��� c1 ≤ t ≤ c2

}
and

ω̃n�h� = sup
0≤s<t≤1
t−s≤h

�Un�t� −Un�s���
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Fact 4.4. If (4.53) holds, then for any 0 ≤ c1 < c2 ≤ 1 and λ > 0, we have

lim
n→∞��

(
	̃n�c1� c2�λ�� >λγ

) = 0 a.s�(4.54)

In particular,

lim
n→∞

n

log n
ω̃n�λhn� = λγδ+λγ�(4.55)

with δ+c as in (2.13).

The proof of Theorem 2.1 essentially follows the lines of the proof of
Theorem 1.2 and will therefore not be given in full detail. The main differ-
ence with Theorem 1.2 is that in �n�7n�, Fn is not centered by F. Write

η
�1�
n �h� t� s� = 1

1−G−�t�
{
H

�1�
n �t+ hs� −H

�1�
n �t�

}
= 1

1−G−�t�
{
Un�H�1��t+ hs�� −Un�H�1��t��

}
�

(4.56)

Now under (F1), (F2) it can be shown along the same lines as Lemmas 4.1–4.4
that

lim
n→∞

n

log n
sup
a≤t≤b

∥∥ηn�hn� t�I� − η
�1�
n �hn� t�I�

∥∥ = 0 a.s�(4.57)

So it suffices to study η
�1�
n instead of ηn for the present theorem.

Proof of Theorem 2.1. We first show that for any ε > 0, there exists
almost surely a finite N�ε� such that for all n ≥ N�ε�

�n�7� ⊆ � �7�ε�(4.58)

As in Lemma 4.5 let N ≥ 1 be an arbitrary but fixed integer. Set ti�N =
a+�i− 1�N−1�b−a�, λi�N = f�ti�N��1−G�ti�N��, for 1 ≤ i ≤ n, and write for
t ∈ �ti�N� ti+1�N�, and s ∈ �,

η
�1�
n�N�hn� t� s� =

1
1−G�ti�N�

{
Un�H�1��t� + shnλi�N� −Un�H�1��t��

}
�(4.59)

Write again D = maxa≤t≤b′ f�t��1−G�t��. Note that under (F1), (F2) for any
τ > 0, there exists an N0 = N0�ε� < ∞, such that, with en → 0� for all
N ≥ N0,

lim sup
n→∞

n

log n
sup
a≤t≤b

∥∥η�1�
n�N�hn� t�I� − η

�1�
n �hn� t�I�

∥∥
≤ 1

1−G�b� lim sup
n→∞

n

log n
ω̃n�eNhn�

+ max
1≤i≤N

G�ti+1�N� −G�ti�N�
�1−G�b��2 lim sup

n→∞
n

log n
ω̃n�Dhn�

≤ 1
1−G�b�γeNδ

+
γeN

+ max
1≤i≤N

G�ti+1�N� −G�ti�N�
�1−G�b��2 Dγδ+Dγ ≤ τ a.s��

(4.60)
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since limc↓0 cδ+c = 0, limN→∞ eN = 0, and since G is uniformly continuous on
�a� b�.

For any fixed 1 ≤ i ≤ N write

˜	n� i�N =
{

n

log n
�Un�t+ λi�Nhns� −Un�t��� c1 ≤ t ≤ c2

}
�

with as before c1 = H�1��ti�N�, c2 = H�1��ti+1�N�, and

�n� i�N =
{
7�ti�N� n

log n
η
�1�
n�N�hn� t�I�� ti�N ≤ t ≤ ti+1�N

}
=
{

7�ti�N�
1−G�ti�N�

n

log n
�Un�H�1��t� + Ihnλi�N�

−Un�H�1��t���� ti�N ≤ t ≤ ti+1�N

}
�

Consider

�n�N =
{
7�ti�N� n

log n
η
�1�
n�N�hn� t�I�� a ≤ t ≤ b

}
�

with ti�N such that ti�N ≤ t ≤ ti+1�N. Now by Fact 4.4 we have almost surely
for all large n,

˜	n� i�N ⊆ >
ε/2ρ̃
γλi�N

�

with ρ̃ = max1≤i≤N S̃i�N� S̃i�N = 7�ti�N�/�1−G�ti�N��, and hence

�n� i�N ⊆ S̃i�N>
ε/2ρ̃
γλi�N

�

Since �n�N ⊆ ⋃N
i=1�n� i�N, this implies

�n�N ⊆
N⋃
i=1

�i�N>
ε/2ρ̃
γλi�N

⊆ � �7�ε/2�(4.61)

Combining (4.57), (4.60) and (4.61) yields (4.58).
Next we will show that for every ε > 0, there exists almost surely a finite

N�ε� such that for all n ≥ N�ε�,
� �7� ⊆ �n�7�ε�(4.62)

Since � �7� is compact, it suffices to show that we have for an arbitrary
l ∈ � �7� that l ∈ �n�7�ε. Let t0 ∈ �a� b� be such that l ∈ �7�t0�/�1 −
G�t0���>γf�t0��1−G�t0��. With N ≥ 1 as before let I0�N be an interval of length
1/N having t0 as one of the endpoints. Now combining (4.57) and a slight
modification of (4.60) we obtain for any τ > 0 for N large enough,

lim
n→∞

n

log n
sup
t∈I0�N

∥∥ηn�hn� t�I� − η
�1�
n�N�hn� t�I�

∥∥ ≤ τ a.s��(4.63)
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with the formal replacements of λi�N by λ0 = f�t0��1 −G�t0�� and ti�N by t0
in (4.59). Now (4.62) easily follows from Fact 4.4.

Finally from (X1) it is immediate that in (4.58) and (4.62), �n�7� can be
replaced by �n�7n�. ✷

4.4. Proofs of Theorems 2�2 and 2�3� The proofs of Theorems 2.2 and 2.3
will make an instrumental use of Theorems 1 and 3, respectively, of Deheuvels
(1996). We only present a short proof of Theorem 2.2. The proof of Theorem 2.3
follows along the same lines and will therefore be omitted.

Proof of Theorem 2.2. Similarly to the previous proofs we can show that
it suffices to prove Theorem 2.2 with ηn�hn� t�I� replaced by η

�1�
n �hn� t�I�, as

defined in (4.56). We now have from Theorem 1 in Deheuvels (1996), with D
as before,

lim sup
n→∞

sup
a≤t≤b

n

log n
log

log n
nhn

7n�t�
1

1−G�t�
{
Un�H�1��t+ hn�� −Un�H�1��t��

}

≤ lim sup
n→∞

{
sup
a≤t≤b

7n�t�
1−G�t�

}
sup
a≤t≤b

n

log n
log

log n
nhn

×
{
Un�H�1��t� +Dhn� −Un�H�1��t��

}
≤ lim sup

n→∞

{
sup
a≤t≤b

7n�t�
1−G�t�

}
sup

0≤t≤1−Dhn

n

log n
log

log n
nhn

×
{
Un�u+Dhn� −Un�u�

}
≤ T a.s

This proves that for any ε > 0, there exists almost surely an n�ε� such that
for all n ≥ n�ε�,

� �s��7n� ⊆ �T��s���ε��

So it remains to show that for any ε > 0, there exists a.s. an n�ε� such that
for all n ≥ n�ε�,

�T��s�� ⊆ � �s��7n��ε��(4.64)

It is obvious again from Theorem 1 in Deheuvels (1996), (X1) and the conti-
nuity of 7 and G that we have for any t0 with 7�t0�/�1−G�t0�� = T that

lim
λ↓0

lim sup
n→∞

sup
t∈�a�b�∩�t0−λ� t0+λ�

n

log n
log

log n
nhn

∥∥∥7n�t�η�1�
n �hn� t�I�

− 7�t0�
1−G�t0�

{
Un�H�1��t+ Ihn�� −Un�H�1��t��

}∥∥∥ = 0 a.s�
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Therefore it suffices to show (4.64) with � �s��7n��ε� replaced by{
7�t0�

1−G�t0�
n

log n
log

log n
nhn

{
Un�H�1��t+Ihn��

−Un�H�1��t��
}
� t∈ �a�b�∩�t0−λ� t0+λ�

}�ε/2�
�

for some properly chosen small λ > 0. This follows however from observing
(by inspection of the proof) that the corresponding result for the uniform-(0,1)
distribution, that is, Theorem 1 in Deheuvels (1996), immediately generalizes
to a distribution with a continuous density bounded away from 0 and ∞ on
a fixed closed interval. Because of (F2) and G�b� < 1 we indeed have that
f�1−G� satisfies this condition on the interval �a� b� ∩ �t0 − λ� t0 + λ�. ✷
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