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Abstract

We consider cooperative games with transferable utility (TU-games), in which we allow

for a social structure on any coalition, for instance a network, a hierarchical ordering or

a dominance relation. For every coalition the relative strength of a player within that

coalition is induced by its social structure and is measured by a power function. We call

a payoff vector socially stable if there is a collection of coalitions that can sustain it and

at which all players have the same power. A payoff vector is called economically stable

if it belongs to the core of the superadditive cover of the game. The socially stable core

consists of the socially and economically stable payoff vectors.

We show that the socially stable core is non-empty if the game itself is socially stable.

The socially stable core consists of a finite number of faces of the set of economically

stable payoff vectors. Generically, it consists of a finite number of payoff vectors. Convex

TU-games have a non-empty socially stable core, irrespective of the underlying social

structure. When the game is permutationally convex, the socially stable core is shown to

be non-empty if the power vectors are permutationally consistent and is shown to contain a

unique element if the power vectors are permutationally compatible. We demonstrate the

usefulness of the concept of the socially stable core by applying it to structured hierarchy

games. We also present applications concerning sequencing games and the distribution of

water.

JEL classification: C60, C70, D70
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1 Introduction

A situation in which a finite set of players can obtain certain payoffs by cooperation can

be described by a cooperative game with transferable utility, or simply a TU-game. In a

TU-game players only differ with respect to their position in the game. Examples of mod-

els in which players not only differ with respect to their position in the game, but also

are part of some relational structure (which possibly affects the cooperation possibilities

or payoff distributions) are games in coalition structure and games with limited communi-

cation structure. In games with coalition structure it is assumed that the set of players

is partitioned into disjoint sets which represent social groups. For a particular player it is

more easy to cooperate with players in his own group than to cooperate with players in

other groups (see, e.g., Aumann and Drèze (1974), Owen (1977), Hart and Kurz (1983) and

Winter (1989)). In games with limited communication structure the edges of an undirected

graph on the set of players represent binary communication links between the players such

that players can cooperate only if they are connected (see, e.g. Myerson (1977), Kalai,

Postlewaite and Roberts (1978), Owen (1986) and Borm, Owen and Tijs (1992)).

Another line of research in the field of cooperative games are situations in which the

players are part of some hierarchical structure such as games with a permission structure. In

such games it is assumed that players in a TU-game are part of a hierarchical organization

in which there are players that need permission from other players before they are allowed

to cooperate within a coalition, see for instance Gilles, Owen and van den Brink (1992)

and van den Brink and Gilles (1996). Related is also the model of Faigle and Kern (1992)

who consider feasible rankings of the players. Demange (2004) provides a rationale for the

fact that a hierarchical structure is a widespread organizational form in many areas.

In this paper we consider TU-games with an exogenously given social structure on

any subset of the players, for instance a network, a hierarchical ordering or some dominance

relation. We assume that for every coalition the underlying social structure is represented

by a power vector, whose components reflect the strengths of the individual members of

the coalition within the social structure. From the literature several methods are known to

measure the power of the individual members. The power vector of a coalition is completely

determined by the social structure along which the coalition is organized.

The concept of socially stable core has been introduced in Herings, van der Laan

and Talman (2003) within the more general framework of structured games with non-

transferable utility. For a payoff vector to be in the socially stable core, there should be

neither incentives to deviate from an economic point of view, nor from a social one. A

payoff vector is economically stable if it is feasible and undominated, i.e. when the payoff

vector is in the superadditive cover core of the game, and therefore in the core whenever the

game is superadditive. No player has an incentive to deviate from a core payoff vector from
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an economic point of view. Socially motivated deviations do not occur when all individuals

are equally powerful at the proposed payoff vector. This is formalized by considering the

power vectors of all coalitions that could realize the proposed payoff vector for its members.

If there is a weighted sum of these power vectors that gives all individuals the same power,

then individuals are said to be equally powerful at the proposed payoff and the payoff

vector is called socially stable. The socially stable core consists of all payoff vectors that

are both economically and socially stable. In Herings, van der Laan and Talman (2003),

the property of social stability for a socially structured non-transferable utility game has

been defined, and games satisfying this property are referred to as socially stable NTU-

games. It has been shown that a socially stable game always has a non-empty socially

stable core.

In this paper we consider the class of socially structured TU-games. We show that

any convex game has a non-empty socially stable core. When the game is permutationally

convex for some permutation, the socially stable core is shown to contain the corresponding

marginal vector if the power vectors are permutationally consistent with respect to this

permutation. When the game is permutationally convex and the power vectors are per-

mutationally compatible for some permutation, the corresponding marginal vector is the

unique element of the socially stable core. In general, the socially stable core consists of a

finite union of (disjoint) faces of the set of economically stable payoff vectors. Moreover, it

is proved that, generically, the socially stable core consists of a finite number of elements

only. We demonstrate the usefulness of the concept of the socially stable core by applying

it to structured hierarchy games, in which the underlying social structure of the whole set

of players is a hierarchy and the social structure of any subset of players is induced by it.

For power vectors representing this hierarchy, we prove that the socially stable core consists

of only one element, if the game is superadditive. Finally, we consider some applications

in which the hierarchy on the players is a linear order that arises from the characteristics

of the economic situation. These applications concern sequencing games and the water

distribution problem.

The structure of the paper is as follows. Section 2 gives some preliminaries. In Sec-

tion 3 socially structured transferable utility games are introduced as well as the associated

solution concept of the socially stable core. In Section 4 the main theorems are presented.

Section 5 studies structured hierarchy games, Section 6 sequencing games, and Section 7

the water distribution problem. Section 8 concludes.
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2 Preliminaries

A situation in which a finite set of players can obtain certain payoffs by cooperation can

be described by a cooperative game with transferable utility, or simply a TU-game, being a

pair (N, v), with N = {1, 2 . . . , n} a finite set of n players and v: 2N → IR a characteristic

function assigning to any coalition S ⊆ N of players a real number v(S) as the worth of

coalition S with v(∅) = 0, i.e. the members of coalition S can obtain a total payoff of

v(S) by agreeing to cooperate. In this paper we assume that N is a fixed set of players.

We therefore denote a game (N, v) shortly by its characteristic function v. A TU-game

v is superadditive if v(S ∪ T ) ≥ v(S) + v(T ) for any pair of subsets S, T ⊆ N such that

S ∩ T = ∅. Further, a TU-game v is convex if v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ) for all

S, T ⊆ N .

A payoff vector is a vector x ∈ IRn assigning payoff xi to player i ∈ N . For a vector

y ∈ IRn, y(S) =
∑

i∈S yi denotes the sum over S of the components of y. A solution F

assigns a set F (v) ⊂ IRn of payoff vectors to every TU-game v. A well-known set-valued

solution is the core, assigning to every game v the (possibly empty) set

C(v) = {x ∈ IRn | x(N) = v(N) and x(S) ≥ v(S), for all S ⊆ N}.

It is well-known that the core of a TU-game v is non-empty if and only if v is balanced

(see Bondareva (1963)).

A more general notion of core is obtained by considering payoff configurations. The

concept of payoff configuration was used by Aumann and Maschler (1964) when introducing

the notion of bargaining set, see also e.g. Owen (1982) or Friedman (1989). A payoff

configuration of a TU-game v is a pair (x, Π), where x is a payoff vector and Π a partition

{S1, . . . , Sm} of N , satisfying x(Sj) = v(Sj), for all j = 1, . . . ,m. Let PC be the set of

all payoff configurations. A payoff configuration (x, Π) is undominated if x(S) ≥ v(S) for

all S ⊆ N . We now may define the superadditive cover as the set of all payoff vectors of

undominated payoff configurations. Denoting this set as C̃(v), we have that

C̃(v) = {x ∈ IRn |∃ Π s.t. (x, Π) ∈ PC and x(S) ≥ v(S), for all S ⊆ N}.

Notice that C̃(v) = C(ṽ), where ṽ is the characteristic function given by the superadditive

cover of v,

ṽ(S) = max
Π∈Π|S

∑

T∈Π

v(T ),

with Π|S the collection of all partitions of S, i.e. the set of payoff vectors of undominated

payoff configurations is equal to the core of its superadditive cover. When the game v is

superadditive and thus ṽ = v, it holds that C̃(v) = C(ṽ) = C(v). It is for this reason that

the results carry over to this more general core notion.

3



Aumann and Drèze (1974) take a fixed partition structure, say B ∈ Π|N , and define

the core under partition structure B, denoted by C(v, B), as the set of undominated payoff

vectors satisfying x(S) = v(S) for all S ∈ B. When ṽ(N) =
∑

S∈B v(S), it holds that

C(v,B) = C̃(v) = C(ṽ). For a payoff vector x in C̃(v) and for any partition B ∈ Π|N
satisfying

∑
S∈B v(S) = ṽ(N) we have that x(S) = v(S) for all S ∈ B.

An important point-valued solution is the Shapley value. This value can be defined

in several ways, for instance as a weighted sum of the so-called marginal contributions (see

Shapley (1953)) or as an equal distribution of the so-called Harsanyi dividends of coalitions

(see Harsanyi (1959)) among the players in the coalitions. Because of reasons later on in

this paper, we use here the concept of marginal vector to define the Shapley value. For

a permutation π: N → N , assigning rank number π(i) ∈ N to any player i ∈ N , define

πi = {j ∈ N |π(j) ≤ π(i)}, i.e. πi is the set of all players with rank number at most equal

to the rank number of i, including i himself. Then the marginal value vector mπ(v) ∈ IRn

of game v and permutation π is given by

mπ
i (v) = v(πi)− v(πi \ {i}), i ∈ N,

and thus assigns to player i his marginal contribution to the worth of the coalition consisting

of all his predecessors in π. The Shapley value is equal to the average of the marginal value

vectors over all permutations. When v is convex, the core of v is equal to the convex hull

of all marginal value vectors and thus the Shapley value is in the core.

A game v is permutationally convex, see Granot and Huberman (1982), if there exists

a permutation π such that for all 1 ≤ j < k < n it holds that max[v(S), v(πj∪S)−v(πj)] ≤
v(πk∪S)−v(πk) for all S ⊂ N \πk. When a game v is permutationally convex with respect

to the permutation π, it holds that the corresponding marginal vector mπ(v) is in the core

and, hence, the core is non-empty.

3 Structured TU-Games

Following Herings, van der Laan and Talman (2003) for games with non-transferable utility,

we assume in this paper that in a transferable utility game any subset of agents, including

the grand coalition, is internally organized according to some social structure. A social

structure could be a communication network (e.g., see Myerson, 1977), a hierarchy with a

principal at the top and a function allocating to any of the other players a unique superior

such that from each such player there is a unique path to the principal, or some other

more general dominance relation. On any proper coalition, the social structure could be

completely induced by the social structure on the grand coalition, as is often the case in

models of network formation (e.g., see Jackson and Wolinsky, 1996), but it is also allowed
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that the social structure on a coalition is not induced by the social structure on the grand

coalition but instead for instance is the most efficient internal organization for the coalition

itself. In this paper we assume that the social structures on all the coalitions are given

exogeneously and that the characteristic function v assigns to any coalition S the value

v(S) of the coalition S when organized according to its given social structure.

We assume that for every coalition S there is a power vector p(S) that represents

the strength of the position of every player i ∈ S within the underlying social structure

of coalition S. In case the social structure is given by a directed or undirected graph on

the set of players, we may use one of the power measures known from the literature. A

well-known power measure is the degree or score measure, see e.g. Rubinstein (1980).

According to this measure the power of a node in a given graph is equal to its (out)degree,

being the number of edges in the graph to which the node is incident or in case of a directed

graph the number of edges leaving the node. Other power measures for directed graphs

have been proposed in for instance van den Brink and Gilles (2000) and Herings, van der

Laan and Talman (2005). In the latter paper, the positional power of a player in a directed

graph takes into account the power of its successors and in a hierarchy the resulting power

vector has the property that every player has more power than any of his successors. In

case of undirected graphs, any of the so-called centrality measures may be used as a way

to measure the power of a player.

A (socially) structured TU-game can therefore be described by a finite set of players,

N = {1, . . . , n}, a characteristic function v : 2N → IR, assigning to any coalition S its

value v(S), and a social structure on every coalition, represented by a power function

p : N → IRn, assigning to every coalition S the power vector p(S) of its players within

the underlying social structure of S, where N = 2N \ {∅} is the collection of all non-empty

subsets of N . It is assumed that both the characteristic function and the social structure

(or equivalently its corresponding power vector) are exogenously given. For mathematical

reasons we take the power vector p(S) in IRn and not in IR|S|. For a power vector p(S) of

coalition S it holds that p(S) is a nonnegative vector in IRn, pi(S) = 0 for any i not in

S, and pi(S) > 0 for at least one player i in S. We now have the following definition of a

structured TU-game (STG).

Definition 3.1 (Structured TU-Game)

A structured TU-game is given by the triple Γ = (N, v, p) with N a finite set of players, v

a characteristic function, and p a power function.

In a structured TU-game we are interested in payoff vectors that are socially and

economically stable. If for some payoff vector x ∈ IRn and coalition S ∈ N it holds that

x(S) ≤ v(S), then coalition S can obtain value x(S) without cooperating with players
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outside S and we say that coalition S sustains x. If within coalition S an individual at

payoff vector x, sustained by S, has more power than some of the other individuals in S

and x cannot be sustained by any other coalition, then this individual is able to increase

his payoff at the expense of these other individuals. The payoff vector x is in that case

not socially stable. This process can only be stopped by a credible threat of some of the

other individuals to form another coalition. Such a threat is only credible if the deviating

individuals can guarantee their coalition members at least the same payoff as before, and

have the power to enforce the outcome that leads to these payoffs.

A payoff vector x is called socially stable if nonnegative real numbers or weights can

be assigned to the coalitions S sustaining x in such a way that the weighted total power

of every agent is equal to 1 and thus each agent has the same power. In the sequel, for

S ∈ N , let eS ∈ IRn denote the vector given by eS
i = 1 when i ∈ S and eS

i = 0 otherwise.

Definition 3.2 (Socially Stable Payoff)

For a structured TU-game Γ = (N, v, p), a payoff vector x ∈ IRn is socially stable if the

system of equations

∑

{S|x(S)≤v(S)}
λSp(S) = eN

has a nonnegative solution.

Notice that a payoff vector x satisfying x(N) ≤ v(N) is socially stable whenever

p(N) = eN . The next example shows that this may not hold when p(N) 6= eN . In this

example and also in later examples we often use, for ease of notation, as argument of v

and p the elements of S instead of the set S itself.

Example 3.3 Take N = {1, 2, 3}, v(1) = v(2) = v(3) = 0, v(1, 2) = 4, v(1, 3) = v(2, 3) =

2 and v(1, 2, 3) = 5, and p(i) = e{i} for i = 1, 2, 3, p(1, 2) = (2, 1, 0)>, p(1, 3) = (2, 0, 1)>,

p(2, 3) = (0, 1, 2)> and p(N) = (3, 2, 1)>. Consider the payoff vector x = (2, 2, 1)>. Then

x(S) ≤ v(S) for S = {1, 2} and S = N . Clearly, eN is not a nonnegative combination

of p(1, 2) and p(N), so x is not socially stable. Observe that for any S sustaining this x

it holds that p1(S) > p2(S) > p3(S). When we increase at x the payoff to player 1 at

the expense of for instance player 2 until y = (3, 1, 1)>, then y(S) ≤ v(S) for S = {1, 2},
S = {2, 3} and S = N . Now eN is a nonnegative linear combination of p(1, 2), p(2, 3) and

p(N) and thus y is socially stable. In fact eN is a nonnegative linear combination of only

p(1, 2) and p(2, 3). As a result any payoff vector x satisfying x(S) ≤ v(S) for S = {1, 2}
and S = {2, 3} is socially stable, for instance x = (4, 0, 2)>. 2

In the sequel it will be useful to define stability of a collection of coalitions without

reference to a particular payoff vector.
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Definition 3.4 (Stable Collection of Coalitions)

A collection of coalitions in N , {S1, . . . , Sk}, is stable if the system of equations

k∑

j=1

λjp(Sj) = eN

has a nonnegative solution. A stable collection of coalitions in N is minimal if no proper

subset of it is stable.

A socially stable payoff vector is therefore a payoff vector whose components can be

achieved by every element of some stable collection of coalitions for its members. Observe

that stability of a collection of coalitions reduces to balancedness of the collection when

for every S ∈ N it holds that p(S) = eS. In this case every member of a coalition has

the same power. This might happen when for example the social structure of the grand

coalition is a network connecting each pair of agents. In this way stability can be seen as

a generalization of balancedness. In the remaining of this paper we denote the particular

case of balancedness by p = e.

A socially stable payoff vector may not be feasible. A payoff vector x is said to

be feasible if x(N) ≤ ṽ(N), i.e. when the total payoff can be attained by cooperating

according to some partition of the grand coalition. In Example 3.3 the socially stable

vector (4, 0, 2)> is not feasible, because x(N) = 6 > 5 = ṽ(N) = v(N) (because the game

is superadditive). Furthermore, social stability of a payoff vector x does not imply that

x is undominated, i.e. there may exist an S ∈ N and y ∈ IRn satisfying y(S) ≤ v(S)

and yi > xi for all i ∈ S. A payoff vector that is both feasible and undominated is called

economically stable.

Definition 3.5 (Economically Stable Payoff)

For a structured TU-game Γ = (N, v, p), a payoff vector x ∈ IRn is economically stable if

x(N) = ṽ(N) and x(S) ≥ v(S) for all S ∈ N .

The definition says that a payoff vector x is economically stable if and only if x is

in the superadditive cover core C̃(v) of v. The set of all socially and economically stable

payoff vectors is called the socially stable core of the game.

Definition 3.6 (Socially Stable Core)

The socially stable core of a structured TU-game Γ = (N, v, p), to be denoted SC(v, p) for

N , consists of the set of socially and economically stable payoff vectors of Γ.

A payoff vector x therefore lies in the socially stable core if and only if x is feasible

and undominated (economic stability) and can be sustained by a socially stable collection of
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coalitions (social stability). We want to stress that feasibility requires that x(N) ≤ ṽ(N),

but that sustainability is defined with respect to v. We conclude this section with two

examples. The first example shows that a core element does not need to be socially stable.

Example 3.7 Consider the game (N, v, p) with N = {1, 2, 3}, v(1) = v(2) = v(3) = 0,

v(1, 2) = 1, v(1, 3) = 2, v(2, 3) = 3 and v(N) = 6. The social structure on N is given

by the hierarchy such that agent 1 dominates agent 3 and agent 3 dominates agent 2, e.g.

p1(S) = 3 when 1 ∈ S, p2(S) = 1 when 2 ∈ S and p3(S) = 2 when 3 ∈ S. Clearly, v is

convex and therefore superadditive and thus ṽ(N) = v(N). The core is given by

C(v) = {x ∈ IR3
+| x1 + x2 + x3 = 6, 0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 4, 0 ≤ x3 ≤ 5 }.

Take any payoff vector x in the relative interior of C(v). Such a vector can only be sustained

by the grand coalition N . Since pN 6= eN , the collection {N} is not stable and therefore x

is not an element of the socially stable core. As can easily be seen, the only socially stable

element in the core is (3, 0, 3)>, sustained by the stable collection {{2}, {2, 3}, N}. In this

socially stable core element the weakest agent, agent 2, gets his own value, the middleman,

agent 3, gets his marginal contribution when he joins the weakest agent, and the strongest

agent, agent 1, gets his marginal contribution when he joins the coalition of the weakest

agent and the middleman. 2

The next example considers a game with four players, which is not superadditive.

In particular it stresses the difference between feasibility and sustainability by the grand

coalition N .

Example 3.8 Take (N, v, p) with N = {1, 2, 3, 4}, v(1, 2) = v(3, 4) = 2, v(S) = 2 when

|S| = 3, v(N) = 3 and v(S) = 0 otherwise; and p(1, 2) = (2, 1, 0, 0)>, p(3, 4) = (0, 0, 1, 2)>

and p(S) = eS for all other S. Clearly ṽ(N) = 4 and the set of undominated feasible payoff

vectors is given by

C̃(v) = C(ṽ) = {x ∈ IR4
+|x1 + x2 = 2, x3 + x4 = 2}.

Now take any strictly positive vector x ∈ C̃(v). Then x(S) > v(S) for all S 6= {1, 2}, {3, 4}.
Since eN cannot be written as a nonnegative linear combination of p(1, 2) and p(3, 4), x

is not socially stable. In this case, the requirement of social stability removes all strictly

positive vectors from C̃(v). It then easily follows that the unique element of SC(v, p) is the

payoff vector x = (2, 0, 0, 2)>. For this payoff vector it holds that x(S) ≤ v(S) when S is

{2}, {3}, {1, 2} and {3, 4}. Since eN is a nonnegative linear combination of p(1, 2), p(3, 4),

p(2) and p(3), it holds that x is sustained by the stable collection {{2}, {3}, {1, 2}, {3, 4}}
and thus x ∈ SC(v, p). Observe that for instance x = (0, 2, 0, 2)> is not socially stable,

because p1(1, 2) > p2(1, 2).

8



Notice that not any x ∈ C̃(v) is socially stable although p(N) = eN . The reason

is that for each x ∈ C̃(v) it holds that x(N) = ṽ(N) > v(N) and thus x is not sustained

by N . To obtain total payoff equal to 4, N has to split itself in {1, 2} and {3, 4}, so x is

sustained by these two coalitions. However, as shown above, the collection of these two

coalitions is not socially stable. 2

4 Non-emptiness of the Socially Stable Core

In this section we give sufficient conditions for the non-emptiness of the socially stable core

of a structured TU-game (N, v, p). When p = e, we always have that SC(v, p) = C̃(v). In

case v is also superadditive and thus SC(v, p) = C̃(v) = C(v), we know from Bondareva

(1963) that the socially stable core is non-empty if and only if the game is balanced.

However, for an arbitrary power function p and arbitrary game v, the socially stable core is a

subset of the superadditive cover core and might be empty even if the game is superadditive

and balanced. The balancedness condition for superadditive TU-games is not sufficient for

the non-emptiness of the socially stable core when p 6= e. The next definition of social

stability of the game has been given in the NTU-context in Herings, van der Laan and

Talman (2003).

Definition 4.1 (Socially Stable Game)

A structured TU-game Γ = (N, v, p) is socially stable if every socially stable payoff x of Γ

is feasible.

It should be observed that this social stability condition reduces to the usual bal-

ancedness condition of a TU-game when p = e and the game is superadditive. We now

have the following theorem.

Theorem 4.2

A structured TU-game Γ = (N, v, p) has a non-empty socially stable core if Γ is socially

stable.

Proof. The proof follows from a more general theorem for socially structured NTU-games

given in Herings, van der Laan and Talman (2003). 2

The theorem above requires feasibility to be shown for any socially stable payoff

vector. This may be a demanding task. On the other hand, social stability is sufficient but

not necessary. The next theorem says that for every given power function a convex game

has a non-empty socially stable core. Observe that the proof holds for any game whose

core contains all marginal vectors. However, this does not generalize the result, because a
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game is convex iff the core contains all marginal vectors, see e.g. Ichiishi (1981). Observe

that convexity implies superadditivity, so x(N) = v(N) for any undominated payoff vector.

Theorem 4.3

If v is a convex game, then for every power function p the structured TU-game Γ = (N, v, p)

has a non-empty socially stable core.

Proof. To prove non-emptiness, we first construct for a given power function p a stable

collection of coalitions.

Step 1. Set k = 1, Sk = N , qk = eN , and rk = n. Goto Step 2.

Step 2. Define Tk = {j ∈ Sk |pj(Sk)/q
k
j = maxh∈Sk

ph(Sk)/q
k
h} and tk = |Tk|. Define

λk = (maxh∈Sk
ph(Sk)/q

k
h)−1. Goto Step 3.

Step 3. For j ∈ Tk, define π(j) ∈ N such that {π(j) | j ∈ Tk} = {rk, rk−1, . . . , rk−tk +1}.
If rk = tk, define k∗ = k and stop the procedure; otherwise set k = k + 1 and goto Step 4.

Step 4. Set Sk = Sk−1 \ Tk−1, qk = qk−1 − λkp(Sk−1) and rk = rk−1 − tk−1 = |Sk| > 0.

Return to step 2.

By construction we have that the collection {S1, S2, . . . , Sk∗} is a stable collection of coali-

tions and that π = (π(1), π(2), . . . , π(n)) is a permutation of the elements of N such that

for any k = 1, . . . , k∗ it holds that

Sk = {π(1), π(2), . . . , π(`k)}, with `k =
k∗∑

h=k

th.

Next take the payoff vector x equal to the marginal vector mπ(v). Then it follows for any

k = 1, . . . , k∗ that

∑

j∈Sk

xj =
`k∑

j=1

(v(πj)− v(πj \ {j})) = v(π`k) = v(Sk).

By construction of the sets Sk it follows that x is socially stable. Moreover, since v is

convex we also have that x ∈ C(v). Hence x ∈ SC(v, p). 2

Observe that the marginal vector constructed in the proof is unique if and only if

k∗ = n and thus |Tk| = 1 for all k. When for some k, Tk contains multiple players, we can

take any order of the players within Tk in Step 3. So, in general there are Πk |Tk| different
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permutations satisfying the conditions and inducing a marginal vector in SC(v, p). We,

however, remark that different permutations may induce the same marginal vector.

The assumptions in Theorems 4.2 and 4.3 are independent, i.e. socially stability of

Γ does not imply convexity of v and vice versa. Clearly, when p = e, Γ is socially stable if

and only if v satisfies balancedness. However, balancedness of v does not imply convexity.

The following example shows that convexity of v does not imply social stability of Γ.

Example 4.4 Take N = {1, 2, 3}, v(1) = v(3) = v(1, 3) = 0, v(2) = v(1, 2) = v(2, 3) =

v(1, 2, 3) = 1. Take any power vector function p such that p(1, 2) = (2, 1, 0)> and p(2, 3) =

(0, 1, 2)>. This game is convex, so the socially stable core of Γ = (N, v, p) is non-empty.

The payoff vector x = (1, 0, 1)> is socially stable, being sustained by the stable collection

{{1, 2}, {2, 3}}. However, x is not feasible and thus Γ = (N, v, p) is not socially stable. 2

Theorem 4.3 states that for convex games v the socially stable core is non-empty

for any power function p. When we make joint assumptions on p and v, it is possible to

weaken the assumptions on the characteristic function v. We first define the notion of

π-consistency.

Definition 4.5 A power function p : N → IRn is π-consistent for a permutation π on N ,

when for all coalitions S and for all players i and j in S it holds that π(i) < π(j) implies

pi(S) ≤ pj(S).

When the power function p is π-consistent, the ranking of the players determined by

permutation π is consistent with the ranking of the power of players in any coalition. We

will show that the marginal vector mπ(v) belongs to the socially stable core of Γ = (N, v, p),

when v is permutationally convex for the permutation π and p is π-consistent.

Theorem 4.6 Consider a structured TU-game Γ = (N, v, p), where, for some permutation

π on N, v is permutationally convex and p is π-consistent. Then the socially stable core of

Γ contains the vector mπ(v) as an element.

Proof. As in the proof of Theorem 4.3 it can be constructively shown that the collection

{πi | i ∈ N} is socially stable. Notice that some of the weights might be zero, so the

collection is not necessarily minimal. Take the payoff vector x equal to the marginal vector

mπ(v). Then it follows for any i ∈ N that

∑

j∈πi

xj =
i∑

j=1

(v(πj)− v(πj \ {j})) = v(πi).

It follows that x is socially stable. Moreover, since v is permutationally convex for the

permutation π, it follows from Granot and Huberman (1982) that x ∈ C(v). Hence x ∈

11



SC(v, p). 2

Of course, also under the conditions of Theorem 4.6 the socially stable core may contain

multiple elements. Clearly, when p = e the power function is π-consistent for any π and

SC(v, p) = C̃(v). However, when the power function p is such that for some permutation π

a player i has little power in any coalition involving players from N \πi, the socially stable

core can be shown to consist of a unique element given by the marginal vector mπ(v). To

make this statement more precise, we introduce the notion of π-compatibility.

Definition 4.7 A power function p : N → IRn is π-compatible for a permutation π of N ,

when for all players i ∈ N and for all coalitions S containing i such that S \ πi 6= ∅, it

holds that pi(S) <
∑n

j=1 pj(S)/n.

When a power function is π-compatible, the power of a player i in any coalition that

involves another player that is ranked higher according to π, is less than the average power
∑n

j=1 pj(S)/n. Notice that neither π-compatibility implies π-consistency nor π-consistency

implies π-compatibility.

Theorem 4.8 Consider a structured TU-game Γ = (N, v, p), where for some permutation

π of N, v is permutationally convex and p is π-compatible. Then the socially stable core of

Γ contains the marginal vector mπ(v) as its unique element.

Proof. Without loss of generality, we may normalize power functions such that
∑n

j=1 pj(S) =

n and we may assume that the permutation π corresponds to the ordering π(i) = n+1− i,

i = 1, . . . , n. Let the payoff vector x belong to SC(v, p) and let {S1, . . . , Sm} be a sta-

ble collection of coalitions with (λ1, . . . , λm) a vector of nonnegative weights such that
∑m

j=1 λjp(Sj) = eN and x(Sj) ≤ v(Sj) for j = 1, . . . ,m. Notice that
∑m

j=1 λj = 1.

We define the ordering ≺` onN by S ≺` T if and only if the lowest ranked individual

in S ∪T not in S ∩T belongs to S. Without loss of generality, we may choose {S1, . . . , Sm}
to be minimal, and we can order the coalitions such that Sj ≺` Sj+1.

We claim that, for i = 1, . . . , m, this stable collection satisfies i ∈ Si ⊂ {i, . . . , n}.
Suppose that {S1, . . . , Sm} does not contain the singleton coalition {n}. Since p is π-

compatible, it follows that pn(Sj) < 1, j = 1, . . . , m, so

1 =
m∑

j=1

λjpn(Sj) < 1,

a contradiction. Consequently, {S1, . . . , Sm} does contain the singleton coalition {n}, and

by the properties of ≺` it follows that Sm = {n}.
We now use an induction argument to proceed. Assume it is true that, for some

k′ ≤ m, for k = 1, . . . , k′, n− k ∈ Sm−k ⊂ {n− k, . . . , n}. We show that then n− k − 1 ∈
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Sm−k−1 ⊂ {n − k − 1, . . . , n}. Obviously, it is not the case that Sm−k−1 ⊂ {n − k, . . . , n}
as this would violate the minimality of {S1, . . . , Sm}. Suppose it is not true that Sm−k−1 ⊂
{n − k − 1, . . . , n}, so the lowest ranked player in Sm−k−1 is i′ < n − k − 1. For all Sj, it

holds that pn−k−1(Sj) < 1, so 1 =
∑m

j=1 λjpn−k−1(Sj) < 1, a contradiction. It follows that

the lowest ranked player in Sm−k−1 is n− k− 1. This completes the proof of the induction

step, and it follows as a corollary that m = n.

It remains to be shown that x = mπ(v). We denote mπ(v) by y.

Obviously, it holds that xn = yn = v({n}). We proceed with an induction argument.

Assume it is true that, for some k′, xi = yi for i = n − k′, . . . , n, and
∑n

i=n−k′ xi =

v({n− k′, . . . , n}). We will show that xn−k′−1 = yn−k′−1.

Since x is economically stable, it follows that
∑n

i=n−k′−1 xi ≥ v(πk′+1). From the

induction hypothesis that yi = xi for i = n− k′, . . . , n, we then obtain xn−k′−1 ≥ yn−k′−1.

Since y is economically stable, it follows that
∑

i∈Sn−k′−1
yi ≥ v(Sn−k′−1) =

∑
i∈Sn−k′−1

xi.

Since n− k′ − 1 ∈ Sn−k′−1 ⊂ πk′+1, it follows that xn−k′−1 ≤ yn−k′−1. We have shown that

xn−k′−1 = yn−k′−1. 2

When the power function p is π-compatible, any player has so much power compared to

his lower-ranked players that he is able to extract all payoffs from them, up to the point

where the lower-ranked players could form a deviating coalition. The socially stable core

consists of a unique element, corresponding to the marginal vector mπ(v). We come back

to this property in the next sections.

In general the socially stable core consists of a finite number of faces of C̃(v). To

show this, for a collection of coalitions F ⊂ N , define

CF(v) = {x ∈ C̃(v) | x(S) = v(S) for all S ∈ F},

i.e., CF(v) is a (possibly empty) face of C̃(v). Clearly, when x ∈ SC(v, p) lies in the

(relative) interior of CF(v), then due to the linearity of the constraints every point of the

face CF(v) belongs to SC(v, p). The next example shows a socially stable core consisting

of two disjoint faces.

Example 4.9 Take N = {1, 2, 3}, v(1) = v(2) = v(3) = 0, v(1, 2) = 4, v(1, 3) = 1,

v(2, 3) = 3, v(1, 2, 3) = 6. Since the game is superadditive, C̃(v) = C(v) = {x ∈ IR3| x1 +

x2 + x3 = 6, 0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 5, 0 ≤ x3 ≤ 2}. Take p(1, 2) = (3, 1, 0)>, p(1, 3) =

(2, 0, 1)>, p(2, 3) = (0, 1, 3)>, p(1, 2, 3) = (2, 3, 1)>. For this power function the socially

stable core SC(v, p) consists of two zero-dimensional faces of the core, one being the vertex

(3, 1, 2)> and the other one being the marginal vector (1, 5, 0)>. The vector (3, 1, 2)> is

sustained by the stable collection B1 = {{1, 2, 3}, {1, 2}, {2, 3}} and the vector (1, 5, 0)>

by the stable collection B2 = {{1, 2, 3}, {1, 3}, {3}}. 2
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The example shows the generic case that the socially stable core consists of zero-

dimensional faces of C̃(v) and thus consists of a finite number of payoff vectors. To prove

this, observe that once the number of players is fixed, a structured TU-game is completely

determined by the tuple of payoffs v, which can be represented by a vector in IR2n−1, and

the tuple of power functions, which can be represented by a vector in S(2n−1)n, the unit

simplex in IR(2n−1)n. The Euclidean topology and Lebesgue measure on IR2n−1 × S(2n−1)n

therefore induce a topology and a measure on structured TU-games.

Theorem 4.10 Let N be the set of players. Then there is an open set of payoffs and

power functions with full Lebesgue measure V × P such that for any (v, p) ∈ V × P, the

socially stable core of the structured TU-game Γ = (N, v, p) is either empty or consists of

a finite number of elements.

Proof. Define the closed subset W of IRn with measure zero by

W = ∪(S1,...,Sn−1)∈Nn−1span
[
eS1 , . . . , eSn−1

]
.

Next we define the open subset V of IR2n−1 with full measure by

V = {v ∈ IR2n−1 | ∀(S1, . . . , Sn) ∈ N n with Sj 6= Sj′ when j 6= j′, (vS1 , . . . , vSn) /∈ W}.

Finally, we define the open subset P of S(2n−1)n with full measure as the set of vectors

p = (p(S))S∈N for which it holds that any selection of n vectors from the vectors p(S),

S ∈ N , and eN yields an independent set of vectors.

We now examine the socially stable core for the structured TU-game Γ = (N, v, p),

where (v, p) ∈ V × P. All socially stable core elements are obtained by considering, for

all minimal stable collections of coalitions {S1, . . . , Sm}, the solutions to the system of

equations

x(Sj) = v(Sj), j = 1, . . . , m.

In fact, the union over all stable collections of solutions to the corresponding system is a

superset of the socially stable core. Since {S1, . . . , Sm} is a stable collection, there exists a

vector of nonnegative weights λ such that

m∑

j=1

λjp(Sj) = eN .

Moreover, {S1, . . . , Sm} is minimal, so that the vectors p(Sj) are independent, and in

particular m ≤ n. Since p ∈ P, it holds that m = n.

Consider the system of equations,

x(Sj) = v(Sj), j = 1, . . . , n.
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If the vectors eSj , j ∈ N , are all independent, it follows that this system has exactly one so-

lution, and therefore we obtain at most one socially stable core element. When the vectors

eSj , j ∈ N, are not all independent, it follows from the definition of V that this system of

equations has no solution. Hence, there is at most one solution for each minimal stable col-

lection. Since the number of minimal stable collections is finite, this proves the theorem. 2

Theorem 4.10 shows that in general the socially stable core refines the superadditive cover

core to a great extent. There is typically only a finite number of payoff vectors in the

socially stable core.

5 Structured hierarchy games

A hierarchical structure is a widespread organizational form in many areas. A hierarchy

on N is represented by a tree on N . A tree is a directed graph on N such that there is one

top-player, say player 1, and for each player i 6= 1 there is a unique path of directed edges

(i1, i2), . . . , (ij−1, ij) such that i1 = 1 and ij = i. Following Myerson (1977) we assume that

players can’t cooperate when they are not connected. This yields the so-called restricted

game vr assigning to any coalition S the sum of the worths of the components of S in the

graph, i.e.

vr(S) =
∑

T∈C(S)

v(T ),

where C(S) is the collection of maximally connected subsets of S in the graph. Clearly in

a hierarchy graph we have that a subset S of nodes is connected if and only if there is a

unique player j ∈ S such that for any other player i ∈ S there is a unique path of directed

edges in the graph from j to i and all players on each of these paths are also in S. From

Kaneko and Wooders (1982) and Le Breton, Owen and Weber (1992) it follows that C(ṽr)

is not empty, i.e., the core of the restricted game of the superadditive cover of v is not

empty, see also Demange (1994), who shows that C(vr) is not empty if v is superadditive.

From this Demange (2004) argues that hierarchies yield stability, providing a rationale for

the fact that a group organizes itself in hierarchies so as to achieve coordination.

In this section we consider structured hierarchy games. In such games the social

structure on the set N of agents is given by a hierarchy on N and the social structure on

any subset S is induced by this hierarchy. The characteristic function reflects the hierarchy,

in the sense that v = vr. The power function reflects the hierarchy in the sense that a

player has a higher power than any of its subordinates. To be more precise, for i ∈ N , let

D(i) denote the set of subordinates of player i, i.e. for each j ∈ D(i) there is a unique

directed path from i to j. Then the power vector for the whole set of players is a vector
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p(N) such that for each i and j it holds that pi(N) > pj(N) whenever j ∈ D(i), i.e., the

top player 1 has the highest power and the power is strictly decreasing when descending

in the hierarchy. A natural example is pi(N) = |D(i)|+ 1 for all i ∈ N , i.e., the power of a

player is equal to the number of its subordinates including itself. Further, for any S ⊂ N

and i ∈ S we take pi(S) = pi(N), although it is sufficient assume that pi(S) > pj(S)

whenever j ∈ D(i) and i ∈ S. We now have the following theorem.

Theorem 5.1 Consider a structured hierarchy TU-game Γ = (N, v, p) where v is super-

additive. Then the socially stable core of Γ contains the vector x∗, with

x∗j = v(D(j) ∪ {j})− v(D(j)), for all j ∈ N, (1)

as its unique element.

Proof. Let π be any permutation on N such that for all i and j it holds that π(j) < π(i)

when pj(N) < pi(N). Clearly, the collection {π1, . . . , πn} is stable. In Demange (2004)

it has been shown that mπ(v) ∈ C(v). Since v = vr, we have that x∗ = mπ(v), being

sustained by the stable collection {π1, . . . , πn}. Therefore x∗ is an element of the socially

stable core. So, it remains to be proven that x∗ is the unique socially stable element of the

core for any power function p reflecting the hierarchy. Let x be an arbitrary element of

the socially stable core and let B = {S1, . . . , Sm} be a stable collection sustaining x. For

i 6= 1, let b(i) be the unique predecessor of i in the hierarchy and define b(1) = 0. Recall

that player 1 is the topman of the hierarchy. Since pb(i)(S) > pi(S) for any S with b(i) ∈ S,

for every player i ∈ N it must hold that there exists an index h(i) ∈ {1, . . . , m} such that

i ∈ Sh(i) and b(i) /∈ Sh(i). Since D(i) is the number of subordinates of player i ∈ N , we

have that |D(i)| = 0 when i is a leave (being a node without subordinates), |D(1)| = n−1,

and |D(j)| > |D(i)| for all j and i ∈ D(j). We proceed now by induction on |D(i)|. Let

node i be a leave, i.e., D(i) = ∅. Notice that in a hierarchy such a node always exists.

Then {i} is a component of Sh(i) in the graph, since b(i) /∈ Sh(i). From (i) x is sustained by

Sh(i), (ii) x is in the core and (iii) v = vr it follows that xi = v(i), and thus xi = x∗i when

|D(i)| = 0.

Now, let xi = x∗i for any player i ∈ N with |D(i)| ≤ k for some k, 0 ≤ k < n − 1.

When there is no player j ∈ N with |D(j)| = k + 1, then xi = x∗i also holds for any player

i ∈ N with |D(i)| ≤ k + 1. Otherwise, let j ∈ N be any player with |D(j)| = k + 1.

Since Sh(j) sustains x and x is in the core, we have that x(Sh(j)) = v(Sh(j)). Since v = vr,

it holds that v(Sh(j)) is equal to the sum of the values of all the components of Sh(j) in

the graph. Together with the fact that x is in the core this implies that x(S) = v(S)

for any component S in the graph of Sh(j). Let C(j) be the component of Sh(j) in the

graph containing j. For any i ∈ N , define D0(i) = D(i) ∪ {i}. Since b(j) /∈ Sh(j) we have
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that C(j) ⊂ D0(j). Moreover, because of the tree structure and the fact that j ∈ C(j),

we have that Sh(j) \ C(j) is partitioned in a collection of components {D0(i1), . . . , D
0(il)}

with is ∈ D(j) for all s = 1, . . . , l. Because of the induction hypothesis we have that

x(D0(is)) = x∗(D0(is)) = v(D0(is)) for all s. Hence,

x(D0(j)) = x(C(j)) +
l∑

s=1

x(D0(is)) = v((C(j)) +
l∑

s=1

v(D0(is))

≤ v(D0(j)) ≤ x(D0(j)),

where the first inequality follows from the superadditivity of v and the latter inequality

from the fact that x is in the core. Hence x(D0(j)) = v(D0(j)).

To complete the proof, observe that D(j) is partitioned in the graph in a collection

of components {D0(j1) . . . , D0(jk)}, where {j1, . . . , jk} is the set of followers of j. From

the induction hypothesis we have that x(D0(js)) = x∗(D0(js)) = v(D0(js)) for all s. It

then follows that

xj = x(D0(j))−
k∑

s=1

x(D(js)) = v(D0(j))−
k∑

s=1

v(D0(js))

= v(D(j) ∪ {j})− v(D(j)) = x∗j ,

where the second last equality comes from the fact that v = vr. This proves the induction

step. Since the number of players is finite this completes the proof. 2

We remark that the permutation π for which x∗ = mπ(v) is in general not unique. Ev-

ery permutation π that satisfies the condition in the proof yields x∗ as marginal vector.

The same holds for the choice of the power vectors. Every power vector p(N) satisfying

pi(N) > pj(N) whenever j ∈ D(i), yields the same socially stable core, consisting of the

unique element x∗. The outcome x∗ is very natural. Every individual receives a payoff equal

to what he is contributing when he joins his subordinates. The core typically also contains

other elements than the vector x∗ = mπ(v). In particular, following Demange (2004), we

can replace the hierarchy graph by a communication graph by replacing all directed edges

by undirected edges. Then we can choose arbitrarily some other player and reconstruct a

new directed graph with this player as the top-player. Clearly, also the marginal vector

with respect to a permutation reflecting this new directed graph is in the core of the game.

So, for a given topman, the socially stable core with respect to a power function reflecting

the corresponding hierarchy reduces the core containing several marginal vectors to one

marginal vector. The next sections discuss some examples when the hierarchy is a linear

order.
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6 Sequencing games

A one-machine sequencing situation, see e.g. Curiel (1988) or Hamers (1995) is described

as a triple (N, q, c), where N = {1, . . . , n} is the set of jobs in a queue to be processed,

q ∈ IRn
+ is an n-vector with qi the processing time of job i and c = (ci)i∈N is a collection of

cost functions ci: IR+ → IR+, specifying the costs ci(t) when t is the total time needed to

complete job i. For an ordering ρ on N describing the positions of the jobs in the queue,

the completion time of job i is given by Ti(ρ) =
∑
{j|ρ(j)≤ρ(i)} qj, i.e. the completion time

is the sum of its waiting time and its own processing time, and the costs of processing i

are given by Ci(ρ) = ci(Ti(ρ)). The total costs of a coalition S ⊆ N given an ordering ρ

are equal to CS(ρ) =
∑

i∈S Ci(ρ). In the sequel we assume without loss of generality that

the initial positions of the jobs in the queue are given by the ordering ρ0 with ρ0(i) = i for

all i ∈ N , so that the costs of a coalition S of jobs according to ρ0 are given by

CS(ρ0) =
∑

i∈S

Ci(ρ
0) =

∑

i∈S

ci(
∑

{j|j≤i}
qj), S ⊆ N.

Now, each coalition S of jobs can obtain cost savings by rearranging the jobs among the

members of S. Then the minimal cost of the grand coalition is given by

CN = min
ρ

CN(ρ).

However, members of any other coalition S can only rearrange their positions under the

condition that the members of S are not allowed to ‘jump’ over jobs outside S. So, an

ordering ρ is admissible for S if for any j 6∈ S the set of its predecessors does not change

with respect to the initial situation, i.e. if for any j 6∈ S it holds that {k ∈ N | ρ(k) <

ρ(j)} = {k ∈ N | ρ0(k) < ρ0(j)} = {k ∈ N | k < j}. Let A(S) be the set of admissible

orderings for S. Then the minimal cost of S is given by

CS = min
ρ∈A(S)

CS(ρ).

This gives the cost savings sequencing game (N, v) with N the set of jobs as the set of

players and characteristic function v given by

v(S) = CS(ρ0)− CS, S ⊆ N.

In the following, we use the terminology players instead of jobs. Obviously, since for

any S only orderings in A(S) are admissible, only connected coalitions (i.e. coalitions of

consecutive players) can realise cost reductions. For i < j, denote the set {i, i+1, . . . , j} of

consecutive players by [i, j] and let L denote the set of all coalitions of consecutive players,

i.e.

L = {T ∈ N | T = [i, j], 1 ≤ i ≤ j ≤ n}.
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For some S ∈ N , let P (S) be the unique minimal partition of S in coalitions of

consecutive players, i.e. T ∈ L if T ∈ P (S) and T1 ∪ T2 6∈ L for any pair T1, T2 ∈ P (S).

Then it holds that

v(S) =
∑

T∈P (S)

v(T ), S ∈ N ,

i.e. the value of a coalition S is equal to the sum of the values of the coalitions of consecutive

players in its unique minimal partition. From this property it follows immediately that the

characteristic function v is superadditive and that the game v coincides with its restricted

game vr, i.e. v = vr. Moreover, v satisfies permutational convexity, implying that v has

a non-empty core. More precisely, let u and ` be the two permutations on N defined by

u(i) = i, i = 1, 2, . . . , n, and `(i) = n + 1− i, i = 1, 2, . . . , n. Further, denote µ(v) = mu(v)

and λ(v) = m`(v) as the corresponding marginal value vectors. Then it immediately follows

that v satisfies the permutational convexity conditions for the two permutations u and `,

implying that the two marginal vectors µ(v) and λ(v) are in the core C(v).

We now want to apply the results of the previous section. Therefore, observe that

the set L of connected coalitions equals the set of connected sets of nodes in the undirected

line graph on N with the set of edges given by E = {(i, i + 1)|i = 1, . . . , n − 1}. We can

convert this undirected graph into a linearly ordered hierarchy by taking either player 1

or player n as topman. In the former case the hierarchy is decreasing from 1 to n, in the

latter case from n to 1. Now, let p be a power function representing the hierarchy. In case

player 1 is the topman we have for every S ∈ N that

pi(S) < pj(S) when i > j, i, j ∈ S (2)

and in case player n is the topman we have that

pi(S) < pj(S) when i < j, i, j ∈ S. (3)

The following result follows now immediately from Theorem 5.1.

Corollary 6.1

For any sequencing game it holds:

(i) λ(v) is the unique element of SC(v, p) when p satisfies condition (2).

(ii) µ(v) is the unique element of SC(v, p) when p satisfies condition (3).

In case (i) player n gets its own value and player 1 is able to extract all gains from

his cooperation with his subordinates, in case (ii) player 1 gets its own value and player n

is the topman who is able to extract all gains from cooperation. To discuss these results,

we now consider the special case of linear costs, i.e., ci(t) = αit for all t ≥ 0 with αi > 0. It

is well-known that in this case the characteristic function v is convex, see e.g. Curiel (1988)
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or Hamers (1995). Moreover, in these references it has been shown that under linear costs

for each coalition [i, j] ∈ L it holds that

v([i, j]) =
∑

{h,k∈[i,j]|h<k}
ghk,

where ghk = max(0, αkqh − αhqk) is the gain of a switch between player h and k in any

ordering such that player h is directly in front of k. Now, the net-costs of player h resulting

from marginal vector µ(v) are given by the costs of the waiting time in the initial order

minus the savings obtained from cooperation, i.e., the net-costs cu
h(N, q, c) of player h ∈ N

in the linear cost sequencing situation (N, q, c) induced by mu(v) is given by

cu
h(N, q, c) = Ch(ρ

0)− µh(v) = Ch(ρ
0)− (v([1, h])− v([1, h− 1]))

= Ch(ρ
0)− (

∑

{i,j∈[1,h]|i<j}
gij −

∑

{i,j∈[1,h−1]|i<j}
gij)

= Ch(ρ
0)−

h−1∑

i=1

gih.

So, according to this solution all the savings obtained from a switch of player h with any of

its predecessors goes to player h. Fernández, Borm, Hendrickx and Tijs (2005) show that

this cost-assignment rule is the unique solution being stable (i.e. cu(N, q, c) is in the core of

the cost-game for any linear cost sequencing situation (N, q, c)) and satisfying the so-called

property of Drop Out Monotonicity (DOM). Clearly, the stableness property follows from

the fact that µ(v) is in the core of the cost-savings game. To state DOM, let (N−k, q−k, c−k)

with player set N−k = N \ {k} be the (n − 1)-player sequencing situation obtained when

player k leaves the queue (i.e., job k is cancelled) and let v−k be the corresponding char-

acteristic function. Then a cost assignment rule r assigning costs rh(N, q, c) for all h ∈ N

satisfies DOM if for any linear cost situation (N, q, c) it holds that

rh(N−k, q−k, c−k) ≤ rh(N, q, c), h ∈ N−k,

i.e. if one of the players leaves the queue, for each of the remaining players the costs are

non-increasing.

The cost rule cu induced by µ(v) indeed satisfies DOM. In fact, it follows by straight-

forward calculations that

cu
h(N−k, q−k, c−k) = ch(N, q, c), h = 1, . . . , k − 1,

and

cu
h(N−k, q−k, c−k) = cu

h(N, q, c)−min(αhqk, αkqh) < cu
h(N, q, c), h = k + 1, . . . , n.

So, for the players in front of k there is no change in the net-costs, whereas for any player

h after k the decrease αhqk in initial costs when k leaves the queue is bigger than the loss
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of the cost-savings gkh (if positive) from a switch between k and h. The DOM property

advocated in Fernández et al. (2002) seems to be very appealing and reasonable: when

player k drops out, the players in front of k are not affected, while for the players after k

the costs are decreasing.

On the other hand, let (N j, q, c) denote the adjusted sequencing situation in which

some player j refuses to cooperate with any player k > j. As a consequence of this refusal

of j, any coalition [i, h], i ≤ j < h, cannot form and hence all the gains gih of a switch

between i and h, i ≤ j < h, cannot be realized anymore. Let vj be the corresponding

characteristic function of the cost-savings game. For S ∈ N , let P j(S) be the unique

minimal partition of S in coalitions of consecutive players not containing both j and j +1,

i.e. T ∈ L if T ∈ P j(S) and if T1 ∪ T2 ∈ L for some pair T1, T2 ∈ P j(S), then j ∈ T1 and

j + 1 ∈ T2 (or reversely). Then it holds that

vj(S) =
∑

T∈P j(S)

v(T ), S ∈ N ,

i.e. the value of a coalition S is equal to the sum of the values of the coalitions in its

unique minimal partition P j(S). From this property it follows immediately that the net-

cost according to µ(vj) becomes equal to

cu
h(N

j, q, c) =





Ch(ρ
0)−∑h−1

i=1 gih = cu
h(N, q, c), h = 1, . . . , j,

Ch(ρ
0)−∑h−1

i=j+1 gih, h = j + 1, . . . , n.

Comparing this with the costs cu
h(N, q, c) of the original situation, it follows that the costs

do not change for the players 1, . . . , j, whereas a player h after j looses all the gains gih,

i ≤ j, and therefore suffers from an increase in the costs with
∑

i≤j gih. So, the unique core

outcome satisfying DOM has the serious drawback that it does not give any incentive to a

player to cooperate with its successors in the queue: not cooperating does not hurt her. To

make the point more clear, consider a two player sequencing situation. Of course, nothing

happens if the initial order of 1 before 2 is optimal already. So, suppose it is optimal to

reverse the initial order and to place 2 in front of 1 generating a decrease g12 of the costs.

According to the payoff vector µ(v), this decrease is fully assigned to player 2. Why should

player 1 be willing to cooperate by agreeing to take the second position? On the contrary,

player 1 has the power to play the noncooperative ultimatum game and to offer the first

place in the queue to player 2 if player 2 is willing to give all the gains of this change to

player 1, i.e. player 1 is willing to sell his place against a price equal to α1q2 (the additional

costs of waiting for player 1) plus the gains g12 of this trade.

Extending this reasoning we obtain that any player j < n can decide upon whether

or not to cooperate with his successors. This is modelled by the hierarchy with player one

as the topman and a corresponding power function satisfying condition (2). According to
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Corollary 6.1 then λ(v) = m`(v) is the unique element in SC(v, p). So, the marginal vector

λ(v) is economically stable and socially stable with respect to a social structure reflecting

the dominance of any player j over its successors in the sequence. The resulting costs

induced by λ(v) are given by

c`
h(N, q, c) = Ch(ρ

0)− λh(v) = Ch(ρ
0)− ∑

h<j

ghj, h ∈ N.

Of course, this cost rule does not satisfy DOM, but any player i gets the gains of switching

with her successors and therefore is willing to cooperate with her successors.

7 The water distribution problem

In their paper ‘Sharing a river’ Ambec and Sprumont (2002) consider the problem of the

optimal distribution of water to agents located along a river from upstream to downstream.

Let N = {1, . . . , n} be the set of agents, numbered successively from upstream to down-

stream and let fi ≥ 0 be the flow of water entering the river between agent i − 1 and i,

i = 1, . . . , n, with f1 the inflow before the most upstream agent 1. Agent i, i = 1, . . . , n,

has a quasi-linear utility function given by ui(xi, ti) = bi(xi) + ti, where ti is a monetary

compensation to agent i, xi is the amount of water allocated to agent i, and bi: IR+ → IR a

continuous non-decreasing function yielding the benefit bi(xi) to agent i of the consumption

xi of water. An allocation is a pair (x, t) ∈ IRn
+×IRn of water distribution and compensation

scheme, satisfying

n∑

i=1

ti ≤ 0 and
j∑

i=1

xi ≤
j∑

i=1

fi, j = 1, . . . , n.

The first condition is a budget condition and says that the total amount of compensations

is non-positive, i.e. the compensations only redistribute the total welfare. The second

condition reflects that any agent can use the water that entered upstream, but that the

water inflow downstream of some agent can not be allocated to this agent. Because of

the quasi-linearity and the possibility of making money transfers, an allocation is Pareto

optimal if and only if the distribution of the water streams maximizes the total benefits,

i.e. the water distribution x∗ ∈ IRn
+ solves the following maximization problem:

max
x

n∑

i=1

bi(xi) s.t.
j∑

i=1

xi ≤
j∑

i=1

fi, j = 1, . . . , n. (4)

A welfare distribution allocates the total benefits of an optimal water distribution x∗ over

the agents, i.e. it is a vector z ∈ IRn assigning utility zi to agent i and satisfying
∑n

i=1 zi =
∑n

i=1 bi(x∗i ). Clearly, any welfare distribution can be implemented by the allocation (x, t)

with xi = x∗i and ti = zi − bi(x∗i ), i = 1, . . . , n.
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The problem to find a reasonable welfare distribution can be modelled as a TU-

game. Obviously, for any pair of players i, j with j > i it holds that the water inflow

entering the river before the upstream agent i can only be allocated to the downstream

agent j if all agents between i and j cooperate, otherwise any agent between i and j can

take the flow from i to j for its own use. Hence, only coalitions of consecutive agents

are admissible. Clearly, for S = N , v(N) =
∑n

i=1 bi(x∗i ) with x∗ ∈ IRn the solution of

maximization problem (4). For any connected coalition S = [i, j] ∈ L, its worth is given

by

v([i, j]) =
j∑

h=i

bh(x∗Sh ),

where x∗S = (x∗Sh )j
h=i solves

max
xi,...,xj

j∑

h=i

bh(xh) s.t.
h∑

k=i

xk ≤
h∑

k=i

fk, h = i, . . . , j. (5)

Without loss of generality we normalize the benefit functions by taking bi(fi) = 0, implying

that v({i}) = bi(fi) = 0, i = 1, . . . , n, so that the values v(S) for |S| ≥ 2 represent the

net-gains of cooperating. Again, for an arbitrary coalition S ∈ N , the value v(S) is equal

to the sum of its consecutive parts, i.e.,

v(S) =
∑

T∈P (S)

v(T ), S ∈ N ,

with P (S) the minimal partition as defined in the previous section. Clearly, the game v is

superadditive, v = vr, and hence it follows from Granot and Huberman (1982) that v is

permutationally convex for the permutations u and `. Consequently, both marginal vectors

µ(v) and λ(v) are core solutions. In case all functions bi are differentiable with derivative

going to infinity as xi tends to zero, strictly increasing and strictly concave, Ambec and

Sprumont (2002) have even shown that the game is convex and hence that the core contains

all marginal vectors.

Under the conditions for convexity, Ambec and Sprumont (2002) have shown that

the marginal vector corresponding to the permutation u is the unique element in the core

of the game satisfying a so-called fairness condition. This condition (quite different from

the fairness condition of Myerson to characterize the Shapley value) says that any coalition

S gets at most its aspiration level, being the highest utility it can obtain when it may use

all the water of all the agents 1, . . . , ŝ, where ŝ = max{s | s ∈ S}. Clearly, this implies that

any coalition [1, j] can get at most v([1, j]), j = 1, . . . , n, so that it trivially follows that

indeed the marginal vector mu(v) assigning µi(v) = v([1, i])− v([1, i− 1]), i = 1, . . . , n, is

the unique candidate in the core satisfying the aspiration requirements. For the proof that

it indeed satisfies the requirements we refer to Ambec and Sprumont (2002).
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As in the sequencing situation again we have that the payoff vector µ(v) has the

property that when a player j does not want to cooperate, the players in front of j, including

j itself, are not hurt. Like in the sequencing game, this is a very counterintuitive outcome.

Although any upstream coalition [1, j] can prevent that coalition [j + 1, n] gets more than

v([j + 1, n]) by using all flows f1, . . . , fj by itself, all benefits from cooperating go to the

coalition [j + 1, n]. Again the outcome µ(v) has the serious drawback that it does not give

any incentive to a player j to cooperate with its successors in the queue. Repeating the

reasoning once more, again consider a two agent situation. In this case there is no gain of

cooperation when in the optimal solution player 1 fully consumes its upstream inflow f1.

However, suppose it is optimal to allocate a part of f1 to the second agent. According to

the outcome µ(v), agent 1 is just compensated by agent 2 for its loss of utility, i.e. player

1 receives a compensation t1 = b1(f1)− b1(x∗1), giving her utility b1(f1) = v({1}) = 0 . So,

like in the sequencing game, there is no reason for player 1 to cooperate. However, player 1

has the power to play the noncooperative ultimatum game and to pass the stream f1−x∗1 to

player 2 if this player is willing to give up all the gains of cooperation, i.e. player 1 is willing

to sell this stream against a price (or compensation) t1 equal to v({1, 2})−v(2) = v({1, 2}).
Player 2 is indifferent to accepting this offer or not and therefore is willing to accept the

offer (or any slightly lower price). Also in this river game we may argue that player 1 is in

control of whether or not to cooperate by letting through a part of its water inflow f1. In

general, any player is in control of cooperation with its successors. This can be modelled

by a hierarchy consisting on the line graph with player 1 as the topman and corresponding

power function satisfying condition (2). According to Corollary 6.1, λ(v) is the unique

element in the socially stable core, yielding an outcome reflecting to a social structure in

which any player j dominates its successors in the sense that player j controls the water

inflow up to j.

8 Conclusions

In this paper we consider structured transferable utility games. In such games each coalition

is organized according to some social structure, for instance a network, a hierarchy or some

other dominance relation. There exist several measures in the literature to measure the

power of the players within a coalition having some social structure. In this way the social

structure of a coalition can be represented by a power vector. A collection of coalitions

is stable if weights can be assigned to these coalitions such that the total weighted power

of every agent is the same. Stability generalizes the well-known concept of balancedness,

where all members of a coalition have the same power. The socially stable core consists of

the economically stable payoff vectors that are sustained by a stable collection of coalitions.
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The socially stable core is a subset of the superadditive cover core, and therefore of

the core whenever the game is superadditive. We provide several results on non-emptiness

and uniqueness of the socially stable core. If the game is convex, then the socially stable

core is non-empty for any social structure. Also, the socially stable core is non-empty

if for some permutation the game is permutationally convex and the power function is

permutationally consistent. If the game is permutationally convex and the power function

is permutationally compatible, then the socially stable core consists of only one element,

being the marginal vector corresponding to the permutation. Generically, the socially

stable core consists of a finite number of elements only. Therefore, the socially stable core

is a forceful selection device for the superadditive cover core.

The socially stable core concept is applied to structured hierarchy games. Under

rather mild conditions the socially stable core of a structured hierarchy game consists only

of a specific marginal vector. This vector is completely determined by the hierarchical

structure on the players. The sequencing problem and the water distribution problem are

modeled as two examples of structured hierarchy games. As a consequence, we are able to

advocate a unique solution for these two problems.

In this paper the social structure has been given exogenously. In the network liter-

ature, the social structure is the result of a link formation process. It would be interesting

to combine insights provided by this paper with those coming from the network formation

literature. In this way one can both endogenize the social structure and the distribution

of network payoffs, which opens up an interesting line of further research.
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