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Prologue

It was in my first year as an undergraduate student that I took the game theory course

of Stef Tijs. According to the course description, this should not be a problem, since

knowledge from other courses was not required. This was reassuring: as a first year

undergraduate student, I still had an abundant lack of previous knowledge from other

courses. The fact that I was surrounded by students in their third year and up, for

whom this course was originally intended, did not temper my enthusiasm. Neither did

the frequent use of correspondences, fixed point theorems, duality theory and other rather

advanced mathematical tools, although I did learn that ‘No previous knowledge required’

really meant: ‘No previous knowledge required, other than all this mathematical stuff

we have been trying to teach you in the compulsory courses during your first three, four

years as an undergraduate’. It was hard work, but I was succesful in the exam and have

been fascinated by game theory ever since. I thank Stef Tijs for his stimulating way of

teaching game theory and for his support over the years.

Peter Borm has been closely involved in my work. I am very grateful to him for his

support and the discussions we had, many of them outside the scope of work.

I also want to thank the co-authors with whom I worked on chapters in this thesis,

including Henk Norde, Dries Vermeulen, Maurice Koster, Hans Reijnierse, and Lina

Mallozzi. I especially want to mention the collaboration with Edward Droste and Michael

Kosfeld and the many discussions we had on bounded rationality.

Several colleagues have noticed my particular way of writing. One comment1 on style,

in particular on the use of personal pronouns. It is inconvenient, in referring to generic

players, to continuously use ‘he/she’. Moreover, formally, at the level of abstraction of

this thesis, a player is neither a male nor a female, but an element i of a player set N .

The gender, hair color, shoe size, and weight of this player i ∈ N are of no concern in

the models considered in this thesis. In cases where such matters are of concern, they

should be modelled explicitly. A certain female player and I played a Battle of the Sexes

about the use of gender labels. The outcome was that we both accepted the validity of

the other person’s arguments, but in no way saw our own arguments refuted. In the end,

I decided to use male pronouns, which is equally incorrect as using female pronouns, but

shorter.

1Well, two: footnotes should be avoided at all costs.
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ii Prologue

During the work on my thesis, I had the opportunity to do research at several foreign

universities. I was a guest twice at the Department of Statistics and Operations Research

at the University of Vigo, Spain. In addition to the work we did there, I am grateful

for the hospitality I received, the friendship, and the time they took to show me around

Galicia. Estela Sánchez Rodŕıguez, Gloria Fiestras Janeiro, Gustavo Bergantiños Cid,

Ignacio Garćıa Jurado, thank you very much! I am particularly pleased that Ignacio also

joined my Ph.D. committee.

I very much enjoyed the joint work I did with Anne van den Nouweland, another

member of the thesis committee, part of which took place during my stay at the Univer-

sity of Oregon (USA). Anne and Ron Croonenberg made it a pleasant time.

The spring semester of 1999 I spent in Sweden as a guest at the Department of Eco-

nomics of Stockholm University. My thanks to Martin Dufwenberg for this opportunity.

It was a productive period. During my stay I finished three papers, including joint work

with Sofia Grahn and Martin Dufwenberg. Moreover, the first part of my thesis was

written there. Spring in Sweden in no way implies the absence of snow. I have particu-

larly good memories of a barbecue where all participants, even though it took place in

the middle of May, were wearing a full winter outfit, including gloves, scarf, and cap.

I also want to express my gratitude to the other members of the thesis committee,

Dov Monderer and Peter Wakker, for the time and effort they spent on my thesis.

Finally, I want to thank my parents and Peter for their support and encouragement

and Sofia for making it perfectly clear what is the most important result of my years as

a Ph.D. student.

Mark Voorneveld

September 1999

Tilburg



Contents

Prologue i

Contents iii

I Potential Games 1

1 Introduction to Part I 3

1.1 Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Pure and mixed Nash equilibria . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Potential games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Exact Potential Games 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Exact potential games . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Rosenthal’s congestion model . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Strong Nash Equilibria and the Potential Maximizer 19

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Congestion games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 On the structure of the class C . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Strong Nash equilibria and the potential maximizer . . . . . . . . . . . . 25

3.5 Extensions of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Sequential Production Situations and Potentials 31

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Conclusions and extensions of the model . . . . . . . . . . . . . . . . . . 45

5 Ordinal Potential Games 47

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

iii



iv Contents

5.2 Ordinal potential games . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Characterization of ordinal potential games . . . . . . . . . . . . . . . . . 50

5.4 Countable and uncountable games . . . . . . . . . . . . . . . . . . . . . . 52

6 Voluntary Contribution to Multiple Facilities; A Class of Ordinal Po-

tential Games 55

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3 Contribution games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.4 Contribution games are ordinal potential games . . . . . . . . . . . . . . 65

6.5 Equilibria of contribution games . . . . . . . . . . . . . . . . . . . . . . . 67

6.6 Strong Nash equilibria and the core . . . . . . . . . . . . . . . . . . . . . 74

7 Best-Response Potential Games 79

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.2 Best-response potential games . . . . . . . . . . . . . . . . . . . . . . . . 79

7.3 Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.4 Relations with other potential games . . . . . . . . . . . . . . . . . . . . 82

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8 Equilibria and Approximate Equilibria in Infinite Potential Games 87

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8.2 Definitions and preliminary results . . . . . . . . . . . . . . . . . . . . . 88

8.3 Infinite exact potential games . . . . . . . . . . . . . . . . . . . . . . . . 89

8.4 Infinite potential games . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.5 Continuity of potential functions . . . . . . . . . . . . . . . . . . . . . . 93

9 Ordinal Games and Potentials 97

9.1 Potential functions and utility functions . . . . . . . . . . . . . . . . . . 97

9.2 Preference structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

9.3 The representation theorem . . . . . . . . . . . . . . . . . . . . . . . . . 102

9.4 Uncountable sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9.5 Ordinal games and potentials . . . . . . . . . . . . . . . . . . . . . . . . 105

II Multicriteria Games 107

10 Introduction to Part II 109

10.1 Multicriteria optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 109

10.2 Multicriteria games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

10.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



Contents v

11 Pareto Equilibria in Noncooperative Multicriteria Games 119

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

11.2 Pareto equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

11.3 The consistency axiom . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

11.4 Finite multicriteria games . . . . . . . . . . . . . . . . . . . . . . . . . . 126

11.5 Mixed extensions of finite multicriteria games . . . . . . . . . . . . . . . 128

12 The Structure of the Set of Equilibria for Two-Person Multicriteria

Games 131

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

12.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

12.3 Stability regions and structure . . . . . . . . . . . . . . . . . . . . . . . . 133

12.4 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

12.5 Multicriteria games of size 2× n . . . . . . . . . . . . . . . . . . . . . . 139

13 Compromise, Nash Bargaining, and Perfect Equilibria 143

13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

13.2 Compromise equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

13.3 Nash bargaining equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . 147

13.4 Perfect equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

13.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

14 Pareto-Optimal Security Strategies 157

14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

14.2 Definitions and preliminary results . . . . . . . . . . . . . . . . . . . . . 158

14.3 Characterizations of POSS . . . . . . . . . . . . . . . . . . . . . . . . . . 161

14.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

15 Cooperative Multicriteria Games with Public and Private Criteria 165

15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

15.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

15.3 The core and dominance outcome core . . . . . . . . . . . . . . . . . . . 171

15.4 Core axiomatizations with converse consistency . . . . . . . . . . . . . . 174

15.5 A core axiomatization with enlightening . . . . . . . . . . . . . . . . . . 179

15.6 Application to TU-games . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

15.7 Claim games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

16 Best-Reply Matching in Ordinal Games 195

16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

16.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

16.3 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

16.4 Motivation and interpretation . . . . . . . . . . . . . . . . . . . . . . . . 200



vi Contents

16.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

16.6 Size and structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

16.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

16.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

17 Random Games 217

17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

17.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

17.3 Random games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

17.4 Maximum likelihood equilibria . . . . . . . . . . . . . . . . . . . . . . . . 223

References 229

Index 239

Samenvatting 243



Part I

Potential Games

1





Chapter 1

Introduction to Part I

1.1 Games

Game theory is a mathematical theory that designs and uses tools to study interaction

between decision makers. This thesis mainly deals with noncooperative or strategic

games, games in which the involved players cannot make binding agreements. Suppose

that two classes in a school are working on a project and have to decide where to get

their information. This can be either via the school library or their computer lab which

gives access to the Internet.

If both classes decide to use the library, people are getting in each other’s way and

the required books will be hard to get hold of. In this case, each of the classes gets only

half the information it needs. If both classes occupy the computer lab, network facilities

will slow down due to crowding, but each class will be able to retrieve sixty percent of the

necessary information. If one of the classes goes to the library and the other class goes

to the computer lab, the library class will find only eighty percent of the information

(due to some of the necessary books being lent), whereas the computer class will find all

information it needs.

A schematic way to represent this situation is given in Figure 1.1: there are two

players, namely class 1 and class 2. Each class has two strategies: go to the Library or

Class 1

Class 2

Library Internet

Library 50, 50 80, 100

Internet 100, 80 60, 60

Figure 1.1: The information game

use the Internet. The numbers in the corresponding cells give the payoffs of the game,

the percentage of information that the first, respectively the second class obtains. For

3



4 Introduction to Part I

instance, if class 1 goes to the library and class 2 to the computer lab, class 1 gets eighty

percent of the necessary information and class 2 gets all necessary information.

The basic assumptions are that the two classes simultaneously and independently

have to choose where to search for information and that each class tries to maximize its

amount of information. But this is hard: the right thing to do depends on the choice

of the opponent. The best thing to do is to go where the other class is not. Thus, the

strategy profiles (Library, Internet) and (Internet, Library) where one class goes to the

library and the other class goes to the computer lab are in some sense ‘stable’: each

class chooses the best option given the choice of the other class. Such a strategy profile,

where each player chooses a best strategy given the strategy choices of the other players,

is a Nash equilibrium.

But not each game has a Nash equilibrium of this type. Consider the Matching

Pennies game in Figure 1.2: Two players each have a penny. They have to decide to

Player 1

Player 2

H T

H 1,−1 −1, 1

T −1, 1 1,−1

Figure 1.2: Matching Pennies

show either heads or tails. If both show heads or both show tails, the penny of player

2 goes to player 1, otherwise the penny of player 1 goes to player 2. No matter what

strategy pair is chosen, there will always be a player with an incentive to deviate.

1.2 Pure and mixed Nash equilibria

The absence of Nash equilibria as described above is usually solved by introducing a

larger strategy space: instead of just choosing one of the (pure) strategies, a player may

choose each of his pure strategies with a certain probability, a so-called mixed strategy.

Assume that in the Matching Pennies game the first player shows heads with probability

p and the second player with probability q. Then the expected payoff to player 1 is

pq−p(1−q)− (1−p)q+(1−p)(1−q) = (2p−1)(2q−1); the expected payoff to player 2

is (1−2p)(2q−1). If player 2 chooses heads with probability smaller than 1
2
, then player

1’s best response is to choose tails (with probability one). However, if player 2 chooses

heads with probability equal to 1
2

(assuming that it is a fair coin, one might say that he

throws the penny and shows the side it comes down on), then player 1’s expected payoff

will be zero whatever he does: he is indifferent between all probability distributions over

heads and tails. For higher probabilities (q > 1
2
), the unique best response is to show

heads. A similar reasoning holds for the second player, so the unique Nash equilibrium
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of this game, i.e., the unique pair of mixed strategies in which each player chooses a best

response against the strategy of his opponent, is the strategy pair in which p = q = 1
2
.

The game that arises if each player in a strategic game, with finitely many players

and each player having finitely many pure strategies, is allowed to choose a probability

distribution over his pure strategy set is called the mixed extension of the strategic game.

Nash (1950a, 1951) established the existence of equilibria in mixed extensions of finite

strategic games.

The use of mixed strategies can be motivated in several ways and is valid in many

situations. Osborne and Rubinstein (1994, Section 3.2), for instance, give a detailed

discussion of interpretations of mixed strategies, including critical comments. Equilibria

in pure strategies, however, are particularly appealing. They are simple and allowing

mixed strategies does not provide the players with opportunities for profitable deviation:

a pure-strategy Nash equilibrium is also an equilibrium in the mixed extension of a finite

strategic game. The simplicity argument applies to other games than mixed extensions

of finite strategic games as well. If players have an infinite set of pure strategies it

is relatively uncommon to consider the additional complication of allowing players to

choose probability measures over these strategies. Moreover, it is natural to consider

pure-strategy equilibria in one-shot games: only pure strategies can be observed as

outcomes of these games. This motivates the search for games possessing pure-strategy

Nash equilibria.

1.3 Potential games

The first part of this thesis, consisting of chapters 2 through 9, is concerned with a

special tool for detecting games with pure-strategy Nash equilibria: so-called potential

functions. Recall the game in Figure 1.1 and consider the real-valued function P on the

strategy space of this game as given in Figure 1.3. Notice that the change in payoff to a

Class 1

Class 2

Library Internet

Library 130 180

Internet 180 160

Figure 1.3: A potential function

unilaterally deviating player exactly matches the change in the function P . For instance,

if player 2 deviates from (Library, Library) to (Library, Internet) his payoff increases by

100 − 50 = 50 and the function P increases by 180 − 130 = 50. The function P is

therefore called an exact potential of the information game in Figure 1.1. Abstracting

from irrelevant information — namely how unilateral deviations affect the payoffs to
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players other than the deviating player — this potential function provides the necessary

information for the computation of the (pure) Nash equilibria: both (Library, Internet)

and (Internet, Library) are pure Nash equilibria, since every unilateral deviation from

these strategy profiles decreases the value of the potential function.

Thus, a potential function is an economical way to summarize the information con-

cerning pure Nash equilibria into a single function. Moreover, every finite game with

a potential function has an equilibrium in pure strategies: since the strategy space is

finite, the potential achieves its maximum at a certain pure-strategy profile. This must

be a Nash equilibrium. If not, a player could benefit from deviating; but by definition,

the potential function would then increase as well, contradicting the assumption that it

achieved its maximum.

Although potential functions already appeared implicitly in several earlier papers

(Rosenthal, 1973, Slade, 1994), Monderer and Shapley (1996) were the first to formally

define several classes of potential games. The first part of this thesis studies potential

games in detail.

One of its main focuses is on the structure of several types of potential games: what

are necessary and sufficient conditions for a certain type of potential function to exist?

This topic is taken up in chapters 2, 5, 7, and 9. The relation between these chapters is

that in all cases it turns out that a certain condition on cycles in the strategy space is

of key importance.

Having derived the existence of pure-strategy Nash equilibria in finite potential

games, the question arises whether infinite potential games have pure-strategy Nash

equilibria as well. This matter is studied in chapter 8; it turns out that such games are

less well-behaved than hoped for. In infinite games the existence of a potential function

is of little help to establish existence results.

Applications of potential games are given in chapters 2, 3, 4, and 6. In chapters 2 and

3 the focus is on congestion games, games where players choose facilities from a common

set and costs for using these facilities depend only on the number of simultaneous users.

Chapter 4 studies a production process that takes place in different stages; costs of the

production departments depend only on production techniques chosen by earlier depart-

ments and departments operating in the same stage. This chapter extends the notion of

potential games to a specific class of extensive form games with incomplete information.

Chapter 6 deals with the question whether or not players in a noncooperative game in

which they contribute to the financing of a collection of public goods can be motivated

to act in the interest of social welfare — measured through the utilitarian welfare func-

tion — rather than their own payoffs. A building rule is derived which specifies for each

profile of contributions the set of public goods that is built. It is shown that this building

rule makes the noncooperative game strategically equivalent to a potential game where

the utilitarian welfare function is a potential.
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1.4 Preliminaries

This section contains several definitions and matters of notation. Some mathematical

maturity of the reader is assumed. Theorems and definitions that are of central concern

will be stated where necessary in the chapters themselves; the reader is assumed to

be familiar with other (mainly standard game theoretic and topological) notions. The

books by Osborne and Rubinstein (1994) and Myerson (1991) provide a good background

reading in game theory; Aliprantis and Border (1994) provide many of the mathematical

notions that readers with interest in mathematics and economics will need.

A (strategic) game is a tuple G = 〈N, (Xi)i∈N , (ui)i∈N〉, where

• N is a nonempty, finite set of players;

• each player i ∈ N has a nonempty set Xi of pure strategies;

• each player i ∈ N has a payoff function ui :
∏

j∈N Xj → IR specifying for each

strategy profile x = (xj)j∈N ∈ ∏
j∈N Xj player i’s payoff ui(x) ∈ IR.

The player set of a game is assumed to be finite throughout this thesis. A game is finite

if, moreover, each player i ∈ N has a finite set Xi of pure strategies.

Conventional game theoretic notation is used. For instance: X =
∏

j∈N Xj denotes

the set of strategy profiles. Let i ∈ N . X−i =
∏

j∈N\{i} Xj denotes the set of strategy

profiles of i’s opponents. Let S ⊆ N . XS =
∏

j∈S Xj denotes the set of strategy profiles

of players in S. With a slight abuse of notation strategy profiles x = (xj)j∈N ∈ X will

be denoted by (xi, x−i) or (xS, xN\S) if the strategy choice of player i or of the set of

players S needs stressing.

The set of probability distributions over a finite set A is denoted ∆(A):

∆(A) = {σ : A → [0, 1] | ∑

a∈A

σ(a) = 1}.

The mixed extension of a finite game G = 〈N, (Xi)i∈N , (ui)i∈N〉 allows each player i ∈ N

to choose a mixed strategy σi ∈ ∆(Xi); payoffs are extended to mixed strategies as

follows:

ui((σj)j∈N) =
∑

x∈X


 ∏

j∈N

σj(xj)


 ui(x),

i.e., the payoff to a mixed strategy profile is simply the expected payoff. A pure strategy

xi ∈ Xi can be identified with the mixed strategy that assigns probability one to xi.

A pure-strategy profile x ∈ X is a pure Nash equilibrium of the game G if players

cannot benefit from unilateral deviation:

∀i ∈ N, ∀yi ∈ Xi : ui(x) >
= ui(yi, x−i).
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Similarly, a mixed-strategy profile σ = (σj)j∈N ∈ ∏
j∈N ∆(Xj) is a (mixed-strategy) Nash

equilibrium of the game G if

∀i ∈ N, ∀yi ∈ Xi : ui(σ) >
= ui(yi, σ−i).

Notice that attention can be restricted to deviations to pure strategies due to the mul-

tilinearity of the payoff functions. The set of Nash equilibria of a game G is denoted

NE(G).

In Part I of this thesis, mixed strategies are not taken into account. In

that case, NE(G) stands for the set of pure Nash equilibria.

A transferable utility game or TU-game for ease of notation is a tuple (N, v) consisting

of a finite, nonempty set N of players and a characteristic function v : 2N → IR attaching

to each coalition S ⊆ N its value v(S) ∈ IR. By assumption v(∅) = 0.

For a finite set A, the number of elements of A is denoted by |A|. Let A and B be

two sets. A ⊆ B denotes weak set inclusion, A ⊂ B denotes proper set inclusion:

A ⊆ B ⇔ ∀a ∈ A : a ∈ B

A ⊂ B ⇔ (A ⊆ B and A 6= B)

The set of functions from A to B is denoted BA. A binary relation on a set A is a subset

of A× A, i.e., a set of ordered pairs (a, b) with a, b ∈ A. The collection of all subsets of

A is denoted 2A. For instance, if M and N are sets, then (2M)N is the set of functions

that assign a subset of M to each element of N .

Summation over the empty set yields zero. The infimum of the empty set equals

infinity: inf(∅) = ∞.

Some specific sets:

IN = {1, 2, 3, . . .} set of positive integers

IN0 = IN ∪ {0} set of nonnegative integers

Z set of integers

Q set of rationals

IR set of reals

IR+ = [0,∞) set of nonnegative reals

IR++ = (0,∞) set of positive reals

The symbol / indicates the end of definitions, remarks, and examples. The symbol 2

indicates the end of a proof.



Chapter 2

Exact Potential Games

2.1 Introduction

Monderer and Shapley (1996) introduced several classes of potential games. A common

feature of these classes is the existence of a real-valued function on the strategy space that

incorporates information about the strategic possibilities of all players simultaneously.

This chapter reviews results concerning exact potential games. Exact potential games

are defined in Section 2.2. Two characterizations of exact potential games are provided.

The purpose of Section 2.3 is to describe the congestion model of Rosenthal (1973) and

to establish an isomorphism between the class of exact potential games and the class of

Rosenthal’s congestion games.

2.2 Exact potential games

This section defines exact potential games, surveys some simple results, and provides

two characterizations of exact potential games.

Definition 2.1 A strategic game G = 〈N, (Xi)i∈N , (ui)i∈N〉 is an exact potential game

if there exists a function P : X → IR such that for all i ∈ N , for all x−i ∈ X−i, and all

xi, yi ∈ Xi:

ui(xi, x−i)− ui(yi, x−i) = P (xi, x−i)− P (yi, x−i).

The function P is called an (exact) potential (function) for G. /

In other words, a strategic game is an exact potential game if there exists a real-valued

function on the strategy space which exactly measures the difference in the payoff that

accrues to a player if he unilaterally deviates.

Example 2.2 In the Prisoner’s Dilemma game of Figure 2.1, two suspects of a crime

are put into separate cells. If both confess (strategy c), each will be sentenced to 3 years

in prison. If exactly one of them confesses, he will be freed and used as a witness against

9
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c d

c 1,1 4,0

d 0,4 3,3

Figure 2.1: Prisoner’s Dilemma

the other person, who will be sentenced to 4 years in prison. If both do not confess

(strategy d), they will both be punished for a minor offense and spend 1 year in jail.

Payoffs are represented by 4, minus the number of years spent in prison. This is an exact

potential game. An exact potential function is given by P (c, c) = 5, P (c, d) = P (d, c) =

4, P (d, d) = 3. /

The definition of an exact potential game immediately implies

Proposition 2.3 If G = 〈N, (Xi)i∈N , (ui)i∈N〉 has an exact potential P , then the Nash

equilibria of G and 〈N, (Xi)i∈N , (P )i∈N〉, i.e., the game obtained by replacing each payoff

function by the potential P , coincide.

An important implication is the following result.

Proposition 2.4 Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 be a finite exact potential game. Then

G has at least one (pure-strategy) Nash equilibrium.

Proof. Let P be an exact potential for G. Since X is finite, arg maxx∈X P (x) is a

nonempty set. Clearly, all elements in this set are pure-strategy Nash equilibria. 2

Facchini et al. (1997) provide a characterization of exact potential games by splitting

them up into coordination games and dummy games.

Definition 2.5 A game G = 〈N, (Xi)i∈N , (ui)i∈N〉 is a

• coordination game if there exists a function u : X → IR such that ui = u for all

i ∈ N ;

• dummy game if for all i ∈ N and all x−i ∈ X−i there exists a k ∈ IR such that

ui(xi, x−i) = k for all xi ∈ Xi.

/

In a coordination game, players pursue the same goal, reflected by the identical payoff

functions. In a dummy game, a player’s payoff does not depend on his own strategy.

Theorem 2.6 Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 be a strategic game. G is an exact potential

game if and only if there exist functions (ci)i∈N and (di)i∈N such that

• ui = ci + di for all i ∈ N ,
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• 〈N, (Xi)i∈N , (ci)i∈N〉 is a coordination game, and

• 〈N, (Xi)i∈N , (di)i∈N〉 is a dummy game.

Proof. The ‘if’-part is obvious: the payoff function of the coordination game is an exact

potential function of G. To prove the ‘only if’-part, let P be an exact potential for G. For

all i ∈ N , ui = P + (ui − P ). Clearly, 〈N, (Xi)i∈N , (P )i∈N〉 is a coordination game. Let

i ∈ N, x−i ∈ X−i, and xi, yi ∈ Xi. Then ui(xi, x−i)− ui(yi, x−i) = P (xi, x−i)−P (yi, x−i)

implies ui(xi, x−i)−P (xi, x−i) = ui(yi, x−i)−P (yi, x−i). Consequently, 〈N, (Xi)i∈N , (ui−
P )i∈N〉 is a dummy game. 2

Facchini et al. (1997) proceed to derive from this theorem the dimension of the linear

space of finite exact potential games. Let N = {1, . . . , n}, n ∈ IN, be a fixed player set

and X =
∏

i∈N Xi a fixed strategy space. Let mi = |Xi| ∈ IN be the cardinality of player

i’s strategy set. The set of strategic games with player set N and strategy space X is

denoted ΓN,X and is clearly isomorphic to the linear space (IRN)X of functions from X to

IRN . A game in ΓN,X can be identified with an n-dimensional vector of payoff functions

u = (u1, . . . , un). Addition and scalar multiplication on ΓN,X is then defined by using the

standard addition and scalar multiplication for functions. By ΓN,X
C , ΓN,X

D , ΓN,X
P we denote

the subset of coordination, dummy, and exact potential games, respectively. These are all

linear subspaces of ΓN,X . From Theorem 2.6 we know that ΓN,X
P = ΓN,X

C + ΓN,X
D . Hence

dim(ΓN,X
P ) = dim(ΓN,X

C )+dim(ΓN,X
D )−dim(ΓN,X

C ∩ΓN,X
D ). By isomorphism, dim(ΓN,X

C ) =

dim(IRX) =
∏

i∈N mi, since it suffices to specify one real number for every x ∈ X in a

coordination game, and dim(ΓN,X
D ) = dim(IRX−1×· · ·×IRX−n) =

∑
i∈N

∏
j∈N\{i} mj, since

it suffices, in dummy games, to specify for each player i ∈ N a payoff for each element in

X−i. It remains to determine dim(ΓN,X
C ∩ΓN,X

D ). Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 ∈ ΓN,X be

both a dummy game and a coordination game. Then there exists a function u : X → IR

such that ui = u for each player i ∈ N . The dummy property implies that for each x =

(x1, . . . , xn), y = (y1, . . . , yn) ∈ X: u(x) = u(y1, x2, x3, . . . , xn) = u(y1, y2, x3, . . . , xn) =

· · · = u(y). Hence dim(ΓN,X
C ∩ ΓN,X

D ) = dim(IR) = 1. This finishes the proof of

Proposition 2.7 The dimension of the linear space of exact potential games ΓN,X
P equals

∏

i∈N

mi +
∑

i∈N

∏

j∈N\{i}
mj − 1.

The following result shows that the difference between two exact potential functions of

a game is a constant function.

Proposition 2.8 Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 be a game with exact potential functions

P and Q. Then P −Q is a constant function.

Proof. Let i ∈ N . By Theorem 2.6, ui −Q and ui − P do not depend on the strategy

choice of player i. Hence (P −Q) = (ui−Q)− (ui−P ) does not depend on the strategy

choice of player i. This holds for every player i ∈ N : (P −Q) is a constant function. 2
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Proposition 2.8 implies that the set of strategy profiles maximizing a potential function

of an exact potential game does not depend on the particular potential function that

is chosen. Potential-maximizing strategies were used in the proof of Proposition 2.4 to

show that finite exact potential games have pure-strategy Nash equilibria. The potential

maximizer, formally defined for an exact potential game G = 〈N, (Xi)i∈N , (ui)i∈N〉 as

PM(G) = {x ∈ X | x ∈ arg max
y∈X

P (y) for some potential function P of G}

can therefore act as an equilibrium refinement tool. See Monderer and Shapley (1996).

Peleg, Potters, and Tijs (1996) provide an axiomatic approach to potential-maximizing

strategies.

Remark 2.9 In a more general setting, Balder (1997) considers games with additively

coupled payoffs. A game 〈N, (Xi)i∈N , (ui)i∈N〉 has additively coupled payoffs if for each

pair (i, j) ∈ N ×N there exists a function vi,j : Xj → IR such that each player i’s payoff

function decomposes as

ui : x 7→ ∑

j∈N

vi,j(xj).

Define P : X → IR by P : x 7→ ∑
i∈N vi,i(xi). Then (ui − P ) : x 7→ ∑

j∈N\{i}(vi,j(xj) −
vj,j(xj)) does not depend on the strategy choice of player i, proving that a game with

additively coupled payoffs is an exact potential game with potential P . /

Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 be a game. A path in the strategy space X is a sequence

γ = (x1, x2, . . .) of elements xk ∈ X such that for all k = 1, 2, . . . the strategy com-

binations xk and xk+1 differ in exactly one, say the i(k)-th, coordinate. A finite path

γ = (x1, . . . , xk) is called closed or a cycle if x1 = xk. It is a simple closed path if it is

closed and apart from the initial and the terminal point of the path all strategy com-

binations are different: for all l,m ∈ {1, . . . , k − 1}, l 6= m : xl 6= xm. The number of

distinct strategy combinations in a simple closed path is called the length of the path.

Let u = (ui)i∈N be the vector of payoff functions and γ = (x1, . . . , xk) be a finite path.

Define I(γ, u) =
∑k−1

m=1 [ui(m)(x
m+1) − ui(m)(x

m)], where i(m) is the unique deviating

player at step m, i.e., xm+1
i(m) 6= xm

i(m).

These concepts will be illustrated in an example.

Example 2.10 Consider the two-player game given below. An exact potential for this

game is given by P (T, L) = 0, P (T, R) = 1, P (B, L) = 2, P (B, R) = 3. The sequence

L R

T 0,2 2,3

B 2,5 4,6

((T, L), (B,R)) is not a path, since the consecutive elements differ in both coordinates.

γ = ((T, L), (T, R), (B, R), (B,L), (T, L)) is a path, which is also closed and simple. Its

length is 4. Notice that I(γ, u) = (3− 2) + (4− 2) + (5− 6) + (0− 2) = 0. /



Exact potential games 13

The following characterization of exact potential games was given by Monderer and

Shapley (1996). It shows that it is no coincidence that the game in the example above

is an exact potential game and that the payoff differences over the closed path sum to

zero.

Theorem 2.11 Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 be a game. The following claims are

equivalent:

(a) G is an exact potential game;

(b) I(γ, u) = 0 for all closed paths γ;

(c) I(γ, u) = 0 for all simple closed paths γ;

(d) I(γ, u) = 0 for all simple closed paths γ of length 4.

Proof.

(a) ⇒ (b) Let P be an exact potential of G and γ = (x1, . . . , xk) a closed path. Then

I(γ, u) = I(γ, P ) = P (xk)− P (x1) = 0.

(b) ⇒ (a) Fix x ∈ X and take P (x) = 0. Let y ∈ X, y 6= x, and let γ = (x1, . . . , xk) be

a path from x to y: x1 = x, xk = y. Define P (y) = I(γ, u). To show that this yields an

exact potential for G, one needs to show that P is well-defined and that the conditions

of Definition 2.1 hold.

Let γ′ = (y1, . . . , ym) be any other path from x to y. For P to be well-defined, P (y)

should equal I(γ′, u). This follows from the fact that γ′′ = (x1, . . . , xk, ym−1, . . . , y1) is a

closed path (from x to y via γ and back by reversing γ′) and I(γ′′, u) = I(γ, u)−I(γ′, u) =

0.

To check that P is indeed an exact potential, let i ∈ N, x−i ∈ X−i, and yi, zi ∈
Xi, yi 6= zi. Let γ = (y1, . . . , yk) be a path from x to y = (yi, x−i) and γ′ = (z1, . . . , zm)

a path from x to z = (zi, x−i). Remains to show that P (y) − P (z) = ui(y) − ui(z).

Consider the closed path γ′′ = (y1, . . . , yk−1, yk, zm, zm−1, . . . , z1). By assumption, 0 =

I(γ′′, u) = I(γ, u) + ui(z)− ui(y)− I(γ′, u) = P (y) + ui(z)− ui(y)− P (z).

(b) ⇒ (c) ⇒ (d) Trivial.

(d) ⇒ (b) Assume I(γ, u) = 0 for all simple closed paths of length 4. Suppose there

is a closed path γ = (x1, . . . , xk) such that I(γ, u) 6= 0. W.l.o.g. γ has minimal length

( >
= 5) among all closed paths with this property. Since i(1) deviates at the first step

and x1 = xk, there must be another step m with i(m) = i(1). By minimality, i(1)

does not make two consecutive deviations: m ∈ {3, . . . , k − 1}. Define the closed path

µ = (x1, . . . , xm−1, ym, xm+1, . . . , xk) in such a way that the deviations of players i(m−1)

and i(m) = i(1) are reversed, i.e.,

ym
i =





xm+1
i if i = i(m) = i(1),

xm−1
i otherwise.
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The simple closed path ν = (xm−1, xm, xm+1, ym, xm−1) of length 4 satisfies I(ν, u) = 0,

so I(γ, u) = I(µ, u), but in the closed path µ player i(1) deviates one step earlier than

in γ. Continuing in this way one finds a closed path τ of the same length as γ with

I(γ, u) = I(τ, u) 6= 0 in which i(1) deviates in two consecutive steps, contradicting the

minimality assumption on γ. 2

2.3 Rosenthal’s congestion model

In a congestion model, players use several facilities — also called machines or (primary)

factors — from a common pool. The costs or benefits that a player derives from the

use of a facility are, possibly among other factors, determined by the number of users of

a facility. The purpose of this section is to describe the congestion model of Rosenthal

(1973). In his model, each player chooses a subset of facilities. The benefit associated

with each facility is a function only of the number of players using it. The payoff to

a player is the sum of the benefits associated with each facility in his strategy choice,

given the choices of the other players. By constructing an exact potential function for

such congestion games, the existence of pure-strategy Nash equilibria can be established.

Moreover, Monderer and Shapley (1996) showed that every finite exact potential game

is isomorphic to a congestion game. Their proof is rather complex. In this section we

present a different proof which is shorter and in our opinion more intuitive. In fact,

we use the decomposition of exact potential games into dummy games and coordination

games stated in Theorem 2.6 to decompose the problem into two subproblems. It is

shown that each coordination game and each dummy game is isomorphic to a congestion

game.

Rosenthal (1973) defines a congestion model as a tuple 〈N, M, (Xi)i∈N , (cj)j∈M〉,
where

• N = {1, . . . , n} is the set of players;

• M is the finite set of facilities, machines, or factors;

• For each player i ∈ N , his collection of pure strategies Xi is a finite family of

subsets of M ;

• For each facility j ∈ M , cj : {1, . . . , n} → IR is the cost function of facility j, with

cj(r), r ∈ {1, . . . , n}, the costs to each of the users of machine j if there is a total

of r users.

This gives rise to a congestion game G = 〈N, (Xi)i∈N , (ui)i∈N〉 where N and (Xi)i∈N are

as above and for i ∈ N , ui : X → IR is defined thus: for each x = (x1, . . . , xn) ∈ X,

and each j ∈ M , let nj(x) = |{i ∈ N : j ∈ xi}| be the number of users of machine j if

the players choose x. Then ui(x) = −∑
j∈xi

cj(nj(x)). This definition implies that each
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player pays for the facilities he uses, with costs depending only on the number of users

of the facility. It is usually assumed that costs are an increasing function of the number

of users. This, however, is not necessary to prove the existence of an equilibrium. Notice

that cost functions can achieve negative values, representing benefits of using a facility.

The main result from Rosenthal’s paper, formulated in terms of exact potentials, is

given in the next proposition. Its proof is straightforward and therefore omitted.

Proposition 2.12 Let 〈N, M, (Xi)i∈N , (cj)j∈M〉 be a congestion model and G its con-

gestion game. Then G is an exact potential game. A potential function is given by

P : X → IR defined for all x = (xi)i∈N ∈ X as

P (x) = − ∑

j∈∪i∈Nxi

nj(x)∑

l=1

cj(l).

Since the game is finite, it has a Nash equilibrium in pure strategies.

Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 and H = 〈N, (Yi)i∈N , (vi)i∈N〉 be two strategic games with

identical player set N . G and H are isomorphic if for all i ∈ N there exists a bijection

ϕi : Xi → Yi such that

ui(x1, . . . , xn) = vi(ϕ1(x1), . . . , ϕn(xn)) for all (x1, . . . , xn) ∈ X.

A congestion game where the machines have non-zero costs only if all players use it as

part of their strategy choice is clearly a coordination game. Also, each coordination

game can be expressed in this form, as shown in the proof of the next theorem.

Theorem 2.13 Each finite coordination game is isomorphic to a congestion game.

Proof. Let G = 〈N, (Xi)i∈N , (u)i∈N〉 be a finite n-player coordination game in which

each player has payoff function u. Introduce for each x ∈ X a different machine m(x).

Define the congestion model 〈N, M, (Yi)i∈N , (cj)j∈M〉 with M = ∪x∈X {m(x)}, for each

i ∈ N : Yi = {fi(xi) | xi ∈ Xi} where fi(xi) = ∪x−i∈X−i
{m(xi, x−i)}, and for each

m(x) ∈ M :

cm(x)(r) =





−u(x) if r = n

0 otherwise

For each x ∈ X: ∩i∈Nfi(xi) = {m(x)}, so the game corresponding to this congestion

model is isomorphic to G (where the isomorphisms map xi to fi(xi)). 2

The proof is illustrated with a simple example.

Example 2.14 Consider the coordination game in Figure 2.2a. For each strategy profile

we introduce a machine as in Figure 2.2b. These are the machines that we want to be

used by both players if they play the corresponding strategy profile. To do this, give
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0,0 1,1

2,2 3,3

a

A B

C D

b

{A,C} {B, D}
{A,B} 0,0 1,1

{C, D} 2,2 3,3

c

Figure 2.2: A coordination game

each player in a certain row (column) all machines mentioned in this row (column). For

instance, the second strategy of the row player will correspond with choosing machine

set {C,D}. Now indeed, if both players play their second strategy, machine D is used

by both players and all other machines have one or zero users. Defining the costs of D

in case of two simultaneous users to be −3 and in case of less users zero, we obtain the

payoff (3, 3) in the lower righthand corner of Figure 2.2c. Similar reasoning applies to

the other cells. /

Consider a congestion game in which costs for a facility are non-zero only if it is used by

a single player. If for each player, given the strategy choices of the other players, it holds

that his costs arise from using one and the same facility, irrespective of his own strategy

choice, we have a dummy game. Also, as shown in the next theorem, each dummy game

is isomorphic to a congestion game with this property.

Theorem 2.15 Each finite dummy game is isomorphic to a congestion game.

Proof. Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 be a finite n-player dummy game. Introduce for

each i ∈ N and each x−i ∈ X−i a different machine m(x−i). Define the congestion

model 〈N,M, (Yi)i∈N , (cj)j∈M〉 with M = ∪i∈N ∪x−i∈X−i
{m(x−i)}, for each i ∈ N :

Yi = {gi(xi) | xi ∈ Xi} where

gi(xi) = {m(x−i) | x−i ∈ X−i}

∪ {m(y−j) | j ∈ N \ {i} and y−j ∈ X−j is such that yi 6= xi},
and for each m(x−i) ∈ M :

cm(x−i)(r) =





−ui(xi, x−i) if r = 1 (with xi ∈ Xi arbitrary)

0 otherwise

For each i ∈ N , x−i ∈ X−i, and xi ∈ Xi: i is the unique user of m(x−i) in (gj(xj))j∈N

and all other machines in gi(xi) have more than one user. Why? Let i ∈ N , x−i ∈ X−i,

and xi ∈ Xi. Then m(x−i) ∈ gi(xi) and for each j ∈ N \ {i}: m(x−i) /∈ gj(xj), so i is

indeed the unique user of m(x−i) in (gj(xj))j∈N . Let m ∈ gi(xi),m 6= m(x−i).

• If m = m(y−i) for some y−i ∈ X−i, then y−i 6= x−i implies that yj 6= xj for some

j ∈ N \ {i}, so m = m(y−i) ∈ gj(xj).
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• If m = m(y−j) for some j ∈ N \ {i} and y−j ∈ X−j with yi 6= xi, then m =

m(y−j) ∈ gj(xj).

In both cases m has more than one user. So the game corresponding to this congestion

model is isomorphic to G (where the isomorphisms map xi to gi(xi)). 2

Once again, this argumentation is illustrated by an example.

0,2 1,2

0,3 1,3

a

α, γ β, γ

α, δ β, δ

b

{β, γ, δ} {α, γ, δ}
{α, β, δ} 0,2 1,2

{α, β, γ} 0,3 1,3

c

Figure 2.3: A dummy game

Example 2.16 Consider the dummy game in Figure 2.3a. Introduce a different machine

for each profile of opponent strategies as in Figure 2.3b. Include a machine m(x−i) in

each player’s strategy, except for those strategies of players j 6= i playing according

to the profile x−i for which this machine was introduced. For instance, facility α was

introduced for the first column of player 2; then α is part of every strategy, except for

the first column of player 2. This yields the strategies as in Figure 2.3c. Define costs for

multiple users equal to zero. No matter what player 1 does, if his opponent chooses his

second strategy, the costs to player 1 can be attributed to machine β. Assign costs −1 to

a single user of this facility. Similar reasoning for the other payoffs yields the isomorphic

congestion game in Figure 2.3c. /

In the previous two theorems it was shown that coordination and dummy games are

isomorphic to congestion games. Using the decomposition of Theorem 2.6 we obtain

that every exact potential game is isomorphic to a congestion game.

Theorem 2.17 Every finite exact potential game is isomorphic to a congestion game.

Proof. Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 be a finite exact potential game. Split it into

a coordination game and a dummy game as in Theorem 2.6 and take their isomorphic

congestion games as in Theorems 2.13 and 2.15. W.l.o.g., take their machine sets disjoint.

Construct a congestion game isomorphic to G by taking the union of the two machine

sets, cost functions as in Theorems 2.13 and 2.15, and strategy sets Yi = {fi(xi)∪gi(xi) |
xi ∈ Xi}. 2

Example 2.18 The exact potential game in Example 2.10 is the sum of the coordination

game from Example 2.14 and the dummy game from Example 2.16. Combining the two

isomorphic congestion games from these examples yields a congestion game isomorphic

to the exact potential game. See Figure 2.4. /
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0,2 2,3

2,5 4,6

a

{A,C} ∪ {β, γ, δ} {B,D} ∪ {α, γ, δ}
{A,B} ∪ {α, β, δ} 0+0,0+2 1+1,1+2

{C,D} ∪ {α, β, γ} 2+0,2+3 3+1,3+3

b

Figure 2.4: Exact potential game and isomorphic congestion game



Chapter 3

Strong Nash Equilibria and the

Potential Maximizer

3.1 Introduction

In the previous chapter it was shown that the existence of pure Nash equilibria in Rosen-

thal’s congestion games could be established through the construction of a potential

function. Milchtaich (1996) and Quint and Shubik (1994) considered different classes of

congestion games which in general do not admit a potential function, but were still able

to prove the existence of pure Nash equilibria. Konishi, Le Breton, and Weber (1997),

considering the same model as Milchtaich, have even shown the existence of a strong

Nash equilibrium.

Combining features from the congestion models mentioned above, this chapter, which

is based on Borm et al. (1997), introduces a class of congestion games with several

interesting properties. In particular, it will be shown that for each game in this class the

set of strong Nash equilibria is nonempty and coincides with the set of Nash equilibria

and the set of potential-maximizing strategies. Similar results can be found in Holzman

and Law-Yone (1997).

The situation considered in this chapter can be used to model, for example, the

foraging behavior of a population of identical bees in a field of flowers. In deciding which

flower to visit, each insect will take into account the quantity of nectar available and the

number of bees already on the flower, because, as is intuitively clear, the more crowded

the source of nectar, the less food is available per capita. In economics this kind of

problems is studied in the literature on local public goods, where it is common to speak

about “anonymous crowding” (cf. Wooders, 1989) to describe the negative externality

arising from the presence of more than one user of the same facility. Another example is

the problem faced by a set of unemployed workers who have to decide where to emigrate

to get a job. The attraction of different countries depends on the conditions of the

local labor market and, on the other hand, a crowding out effect reduces the appeal of

19



20 Strong Nash Equilibria and the Potential Maximizer

emigrating.

This chapter is structured as follows. In Section 3.2 we investigate the various models

mentioned above, clarifying the similarities and differences among them. After that we

define a class of games which possess a strong Nash equilibrium and at the same time

admit an exact potential function. In Section 3.3 we analyze the geometric properties of

this class of games, showing that it can be represented by a finitely generated cone. In

Section 3.4 we state our main theorems concerning the coincidence of equilibrium sets,

where the representation of each game as an element of a cone is used. Attention is

focused on the computation of the potential. The section is concluded with comments

on strictly strong equilibria. Implications of relaxing some of the assumptions underlying

the congestion effect are discussed in Section 3.5.

3.2 Congestion games

The games introduced by Milchtaich (1996), Konishi, Le Breton, and Weber (1997) and

Quint and Shubik (1994) are rather similar, in the sense that the utility functions of

the players are characterized by a “congestion effect”. The various classes of games we

are going to discuss are identified by means of different sets of properties concerning the

structure of the strategic interaction. In particular, Konishi et al. (1997) impose the

following assumptions (P1)–(P4) on a game G = 〈N, (Xi)i∈N , (ui)i∈N〉.

(P1) There exists a finite set F such that Xi = F for all players i ∈ N .

The set F is called the “facility set” and a strategy for player i is choosing an element

of F .

(P2) For each strategy profile x ∈ X and all players i, j ∈ N : if xi 6= xj and x′j ∈ Xj is

such that xi 6= x′j, then ui(xj, x−j) = ui(x
′
j, x−j).

Konishi et al. (1997) call this assumption independence of irrelevant choices and the

meaning is that for each player i ∈ N and each strategy profile x the utility of i will not

be altered if the set of players that choose the same facility as player i is not modified.

Let x ∈ X, f ∈ F . Denote by nf (x) the number of users of facility f in the strategy

profile x. Then the third property can be stated as follows:

(P3) For each player i ∈ N and all strategy profiles x, y ∈ X with xi = yi: if nf (x) =

nf (y) for all f ∈ F , then ui(x) = ui(y).

This anonymity condition reflects the idea that the payoff of player i depends on the

number of players choosing the facilities, rather than on their identity. The fourth

assumption, called partial rivalry, states that each player i would not regret that other

players, choosing the same facility, would select another one. Formally:
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(P4) For each player i ∈ N , each strategy profile x ∈ X, each player j 6= i such that

xj = xi and each x′j 6= xi: ui(xj, x−j) <
= ui(x

′
j, x−j).

Although Milchtaich (1996) introduces his model in a slightly different way, the resulting

class of games is the same. More specifically Milchtaich (1996) introduces the conditions

(P1), (P4), and the following assumption:

(P2’) For each player i ∈ N and all strategy profiles x, y with xi = yi = f : if nf (x) =

nf (y), then ui(x) = ui(y).

In other words the utility of player i depends only on the number of users of the facility

that i has chosen. Assuming (P1), it is straightforward to prove that (P2’) implies both

(P2) and (P3). The converse implication is also true.

Lemma 3.1 Any game G = 〈N, (Xi)i∈N , (ui)i∈N〉 satisfying (P1), (P2), and (P3) sat-

isfies (P2’).

Proof. Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 satisfy (P1), (P2), and (P3). Let i ∈ N , x, y ∈ X

such that xi = yi = f and assume that nf (x) = nf (y). If |F | = 1, (P2’) follows directly.

Otherwise, from repeated use of (P2), we know that for a fixed g 6= xi, ui(xi, x−i) =

ui(xi, x
′
−i) where for each j ∈ N \ {i}:

x′j =





xi if xj = xi,

g otherwise,

and that ui(xi, y−i) = ui(xi, y
′
−i), where for each j ∈ N \ {i}:

y′j =





xi if yj = xi,

g otherwise.

Notice that for each h ∈ F , nh(xi, x
′
−i) = nh(xi, y

′
−i). So (P3) implies ui(xi, x

′
−i) =

ui(xi, y
′
−i). Therefore, ui(xi, x−i) = ui(xi, x

′
−i) = ui(xi, y

′
−i) = ui(yi, y−i). 2

Konishi et al. (1997) and Milchtaich (1996) independently proved the following

Theorem 3.2 Each game 〈N, (Xi)i∈N , (ui)i∈N〉 satisfying (P1), (P2), (P3) and (P4),

possesses a pure-strategy Nash equilibrium.

Recall that, given a game G = 〈N, (Xi)i∈N , (ui)i∈N〉, a strategy profile x is called a strong

Nash equilibrium if for every S ⊆ N and all strategy profiles yS ∈ Πi∈SXi, there is at

least one player i ∈ S such that ui(yS, x−S) <
= ui(x). The set of strong Nash equilibria of

a game G is denoted by SNE(G). In general, the existence of a strong Nash equilibrium

is not guaranteed, but Konishi et al. (1997) show
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Theorem 3.3 For each game satisfying (P1), (P2) (P3) and (P4), the set of strong

Nash equilibria is nonempty.

Finally, we mention the model introduced by Quint and Shubik (1994), where the as-

sumption that all players have the same set of facilities (as stated by (P1)) is relaxed.

(P1’) There exists a finite set F such that Xi ⊆ F for all players i ∈ N .

Assuming that (P1’) holds, it is still easy to see that (P2’) implies (P2) and (P3). But

the analogon of Lemma 3.1 does not hold.

Example 3.4 Take N = {1, 2, 3}, F = {a, b, c} and strategy sets X1 = {a, b}, X2 =

{a}, X3 = {a, c}. This game satisfies (P1’). Assumption (P3) imposes no additional

requirements and (P2) requires that u1(b, a, a) = u1(b, a, c) and u3(a, a, c) = u3(b, a, c).

This does not imply u2(a, a, c) = u2(b, a, a), which is required by (P2’). /

Quint and Shubik (1994) are able to show

Theorem 3.5 All strategic games satisfying (P1’), (P2’) and (P4) possess a pure Nash

equilibrium.

Games in the classes considered so far not necessarily admit a potential function. Con-

sider now the following cross-symmetry condition, which states that the payoffs on a

certain facility are player-independent, provided that the number of users is the same.

(P5) For all strategy profiles x, y ∈ X and all players i, j ∈ N : if xi = yj = f and

nf (x) = nf (y), then ui(x) = uj(y).

Notice that (P5) together with (P1) implies (P2’), and thus (P2) and (P3). Moreover,

(P1) and (P5) guarantee the existence of a potential.

Theorem 3.6 Each game satisfying (P1) and (P5) is an exact potential game.

Proof. Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 satisfy (P1) and (P5). Let i, j ∈ N, i 6= j, x−{i,j} ∈
X−{i,j}, xi, yi ∈ Xi, xi 6= yi, xj, yj ∈ Xj, xj 6= yj. For notational convenience, define for

k ∈ {i, j} the function vk : Xi × Xj → IR with vk(ai, bj) = uk(ai, bj, x−{i,j}) for all

(ai, bj) ∈ Xi × Xj. According to the cycle characterization of exact potential games in

Theorem 2.11, it suffices to show that

[vi(yi, xj)− vi(xi, xj)] + [vj(yi, yj)− vj(yi, xj)] +

[vi(xi, yj)− vi(yi, yj)] + [vj(xi, xj)− vj(xi, yj)]
(3.1)

equals zero. We consider three cases:
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• If there are two different machines in {xi, yi, xj, yj}, then without loss of generality

xi = xj = f and yi = yj = g. By axiom (P5):

vi(xi, xj) = vi(f, f) = vj(f, f) = vj(xi, xj),

vi(yi, yj) = vi(g, g) = vj(g, g) = vj(yi, yj),

vi(yi, xj) = vi(g, f) = vj(f, g) = vj(xi, yj),

vi(xi, yj) = vi(f, g) = vj(g, f) = vj(yi, xj).

Substituting this in (3.1) indeed yields 0.

• If there are three different machines in {xi, yi, xj, yj}, then without loss of generality

xi = xj = f and yi 6= yj, yi 6= f, yj 6= f . By axiom (P5):

vi(xi, xj) = vi(f, f) = vj(f, f) = vj(xi, xj),

vi(xi, yj) = vi(f, yj) = vj(yi, f) = vj(yi, xj),

vi(yi, xj) = vi(yi, yj),

vj(yi, yj) = vj(xi, yj).

Substituting this in (3.1) indeed yields 0.

• If all elements in {xi, yi, xj, yj} are different, then axiom (P5) implies

vi(xi, xj) = vi(xi, yj),

vi(yi, xj) = vi(yi, yj),

vj(xi, xj) = vj(yi, xj),

vj(xi, yj) = vj(yi, yj).

Substituting this in (3.1) indeed yields 0. 2

The proof does not change if (P1’) is substituted for (P1).

As can be seen in the Prisoner’s Dilemma in Example 2.2, exact potential games

do not in general possess a strong Nash equilibrium. This chapter’s focus is on games

that admit an exact potential and have strong Nash equilibria. Therefore, attention is

restricted to the class C of congestion games satisfying not only (P1) and (P5), but also

(P4). So

C = {G = 〈N, (Xi)i∈N , (ui)i∈N〉 | G satisfies (P1), (P4), and (P5)}.

3.3 On the structure of the class C
In the previous section we have defined the class C. Now we will analyze its structure.

For n ∈ IN, let C(n) denote the class of games G ∈ C with n players. It will be shown

that each game G = 〈N, (Xi)i∈N , (ui)i∈N〉 ∈ C(n) can be identified with a finite set of
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vectors in IRn
+, and that the subclass C(F, n), consisting of all games in C(n) with fixed

facility set F , is a finitely generated cone in (IRn
+)F . The vector notation of the games

simplifies the proofs of the theorems on strong equilibria and the potential maximizer

presented in Sections 3.4 and 3.5.

Fix a number n ∈ IN, a finite facility set F and let G = 〈N, (Xi)i∈N , (ui)i∈N〉 ∈
C(F, n). For any f ∈ F and x, y ∈ X such that nf (x) = nf (y), we have by (P5):

if there are i, j ∈ N such that xi = yj = f , then ui(x) = uj(y).

This shows that for all f ∈ F there exists a function wf : {1, . . . , n} → IR such that for all

x ∈ X, if xi = f , then ui(x) = wf (nf (x)). This function is to be interpreted as the utility

assigned to each player using this facility, given a certain number of users of this same

facility. From (P4), we have for each f ∈ F and t ∈ {1, . . . , n−1} that wf (t) >
= wf (t+1).

For convenience and without loss of generality we assume that wf (t) >
= 0 for all f ∈ F, t ∈

{1, . . . , n}. This means that the game G ∈ C(F, n) is described by |F | vectors of the

form (wf (1), . . . , wf (n)), f ∈ F , each in the set V = {v = (v1, . . . , vn) ∈ IRn
+ | vt

>
= vt+1

for all t ∈ {1, . . . , n− 1}}.

Proposition 3.7 The set V is a finitely generated cone in IRn
+. The extreme directions of

V are the vectors b1,b2, . . . ,bn with bi = (1, 1, 1, 1︸ ︷︷ ︸
i times

, 0, ..., 0). Furthermore, dim(V ) = n.

Proof. The vectors b1 = (1, 0, 0, ..., 0), bi = (1, 1, 1, 1︸ ︷︷ ︸
i times

, 0, ..., 0),..., bn = (1, 1, 1, 1, ..., 1)

are elements of V and each vector v ∈ V can be uniquely written as a nonnegative

combination of b1,b2, ...,bn. To show this, let v ∈ V and define

Bn =




b1

b2

...

bn




So Bn is the n×n matrix whose i-th row is bi. Since det(Bn) = 1, the equation αBn = v

has exactly one solution. Clearly, α is nonnegative because of the decreasingness property

of v. The set V is therefore the cone C(Bn) where C(Bn) := {αBn | α ∈ IRn
+}.

The extreme directions of the cone C(Bn) are the vectors bi, i ∈ {1, ..., n}. This cone

has furthermore the property that its dimension is the number of extreme directions. In

other words we have that dim C(Bn) = rank(Bn) = n. 2

Essentially we proved

Corollary 3.8 The class of games C(F, n) can be identified with a cone in (IRn
+)F and

dim(C(F, n)) = |F | × n.
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In the next example we consider an extreme game of C(F, n), i.e., a game with facility

set F such that wf is an extreme direction in the cone V for each f ∈ F .

Example 3.9 Let G be a game in C({f, g}, 4) such that wf = (1, 0, 0, 0) and wg =

(1, 1, 0, 0). Nash equilibria are either those strategy profiles in which one of the players

chooses f and the other three g, or those in which both facilities are chosen by two

players. These situations will be depicted

( 1 , 0, 0, 0)

(1, 1, 0 , 0)

for the first case and

(1, 0 , 0, 0)

(1, 1 , 0, 0)

for the second one, where the numbers in the square boxes indicate the payoff received by

each player choosing this facility. Notice furthermore that the players are interchangeable

as suggested by the cross-symmetry condition (P5). One easily checks that all Nash

equilibria are strong. /

3.4 Strong Nash equilibria and the potential maxi-

mizer

In this section it is shown that on the class C, the set of Nash equilibria, strong Nash

equilibria, and potential maximizers coincide:

Theorem 3.10 On the class C of games, SNE = NE = PM .

A proof of this result is given in parts. Recall that for any strategic game G, SNE(G) ⊆
NE(G) and that for any exact potential game G, PM(G) ⊆ NE(G). It therefore suffices

to prove the following propositions.

Proposition 3.11 For each game G ∈ C, NE(G) ⊆ SNE(G).

Proposition 3.12 For each game G ∈ C, NE(G) ⊆ PM(G).

The proofs are based on the structure of the class of games described in the previous

section. We assume n ∈ IN and a finite facility set F to be fixed. Each game G ∈ C(F, n)

is given by a collection of vectors

((wf (1), ..., wf (n)))f∈F .
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Proof. [Proposition 3.11]. Let G ∈ C (F, n) be given by ((wf (1), . . . , wf (n)))f∈F and

let x ∈ NE(G). Suppose S ⊆ N can strictly improve the payoff for all its members by

switching to a strategy combination yS ∈ F S. Call the resulting strategy combination

y = (yS, xN\S). If nf (y) > nf (x) for some f ∈ F , a player i ∈ S exists such that

yi = f and xi = g, g 6= f . This implies wf (nf (x) + 1) >
= wf (nf (y)) > wg(ng(x)), which

contradicts the fact that x is a Nash equilibrium. So nf (x) = nf (y) for all f ∈ F .

Therefore every player in S chooses a new facility already chosen by a member of S

and obtains a higher utility. Among the utilities assigned to members of S there is a

maximum, since S is finite. Any player in S rewarded with this maximum cannot get

more in the new configuration. Hence a contradiction arises. Every Nash equilibrium is

strong. 2

Based on a switching argument the next lemma shows the similarities in utilities for

different Nash equilibria.

Lemma 3.13 Let G ∈ C(F, n) be determined by ((wf (1), . . . , wf (n)))f∈F and let x and

y be Nash equilibria of G. For all f, g ∈ F such that nf (x) < nf (y) and ng(y) < ng(x),

and for all l ∈ {nf (x) + 1, . . . , nf (y)} and m ∈ {ng(y) + 1, . . . , ng(x)} it holds that

wf (l) = wf (nf (y)) = wg(ng(x)) = wg(m).

Proof. Let f, g ∈ F and l,m be as described in the lemma. Both x and y are

Nash equilibria, so wf (nf (y)) >
= wg(ng(y) + 1) >

= wg(m) >
= wg(ng(x)) >

= wf (nf (x) +

1) >
= wf (l) >

= wf (nf (y)). 2

Our next proposition specifies a potential function for a game in C(F, n).

Proposition 3.14 Let the game G = 〈N, (Xi)i∈N , (ui)i∈N〉 ∈ C(F, n) be determined by

((wf (1), . . . , wf (n)))f∈F . Define the function P : X → IR for all x ∈ X as

P (x) =
∑

f∈∪i∈Nxi

nf (x)∑

l=1

wf (l).

Then P is an exact potential of G.

Proof. Let i ∈ N, f, g ∈ Xi ⊆ F, f 6= g, x−i ∈ X−i. For notational convenience, write

x = (f, x−i) and y = (g, x−i). Notice that nf (x) = nf (y) + 1, ng(x) = ng(y) − 1, and
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nh(x) = nh(y) for h ∈ F \ {f, g}. By definition:

P (x)− P (y) =
∑

h∈∪i∈Nxi,h6∈{f,g}

nh(x)∑

l=1

wh(l) +
nf (x)∑

l=1

wf (l) +
ng(x)∑

l=1

wg(l)

− ∑

h∈∪i∈Nxi,h6∈{f,g}

nh(y)∑

l=1

wh(l)−
nf (y)∑

l=1

wf (l)−
ng(y)∑

l=1

wg(l)

= wf (nf (x))− wg(ng(y))

= ui(x)− ui(y).

2

Remark 3.15 Let a game G = 〈N, (Xi)i∈N , (ui)i∈N〉 satisfy (P1’) and (P5). Assumption

(P5) again implies that for each f ∈ F there exists a function wf : {1, . . . , n} → IR such

that for all x ∈ X, if xi = f , then ui(x) = wf (nf (x)). An exact potential for G can then

be constructed as in Proposition 3.14. /

To compute the potential of Proposition 3.14 it is necessary to add the utilities of the

used facilities up to the number of users. This means that in each vector wf all the first

nf (x) numbers are added.

As a consequence it is clear that by n times consecutively choosing the facilities with

highest remaining numbers, from left on, in the set of vectors {(wf (1), ..., wf (n))}f∈F a

potential maximizing profile is found. This is illustrated in the following example.

Example 3.16 Let G ∈ C({f, g}, 4) such that

wf = (4, 3, 2, 1)

wg = (5, 2, 1, 0)

In the first step we take the first cell in wg, in the second step the first cell in wf , in the

third step the second cell of wf and, finally, in the fourth step either the third cell of wf

or the second cell of wg. Consequently, the potential maximizing strategy combinations

are those x ∈ FN with nf (x) = 3, ng(x) = 1 and those with nf (x) = 2, ng(x) = 2. Notice

that for these x, P (x) = 14 and that all Nash equilibria are potential maximizing. /

Proof. [Proposition 3.12] Let G ∈ C(F, n) be determined by ((wf (1), . . . , wf (n)))f∈F .

It suffices to show that P (x) = P (y) if x is a Nash equilibrium and y a potential

maximizing strategy combination. Let x ∈ NE(G) and y ∈ PM(G). Facilities f ∈ F

such that nf (x) = nf (y) add as much to P (x) as to P (y). Furthermore, by Lemma

3.13, if nf (x) < nf (y) and ng(y) < ng(x) for certain f, g ∈ F then wf (l) = wf (nf (y)) =
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wg(ng(x)) = wg(m) for all l ∈ {nf (x)+1, . . . , nf (y)} and m ∈ {ng(y)+1, . . . , ng(x)}. The

total contribution of the facilities in the set {f ∈ F | nf (x) 6= nf (y)} to the potentials

P (x) and P (y) is apparently the same. 2

In the last part of this section we consider strictly strong Nash equilibria. Recall that

given a game 〈N, (Xi)i∈N , (ui)i∈N〉, a strategy profile x ∈ X is a strictly strong Nash equi-

librium if for all coalitions S ⊆ N and strategy combinations yS ∈ ∏
i∈S Xi, ui(yS, xN\S) =

ui(x) for all i ∈ S or ui(yS, xN\S) < ui(x) for at least one i ∈ S. The following example

illustrates that the properties of C do not guarantee the existence of strictly strong Nash

equilibria.

Example 3.17 Consider the game G ∈ C({f, g}, 3) with wf , wg given by

wf = (4, 2 , 0),

wg = ( 3 , 2, 1),

where the squared numbers depict a strong Nash equilibrium payoff. If the two players

choosing f agree that one of them switches to g and the other one sticks to f , the utility

will still be 2 for the switching one but increases from 2 to 4 for the remaining player.

A similar argument holds for the other type of strong Nash equilibria given by

wf = ( 4 , 2, 0)

wg = (3, 2 , 1)

Since these are the only two types of strong Nash equilibria, and neither of them is

strictly strong, strictly strong Nash equilibria do not exist. /

3.5 Extensions of the model

The class C is characterized by properties (P1), (P4), and (P5). It is obvious that

relaxation of those properties will have consequences on the result presented in Section

3.4.

First of all, the classes of congestion games of Quint and Shubik (1994), Milchtaich

(1996), and Konishi et al. (1997) without (P5) not necessarily admit an exact potential.

Secondly, consider the class CP of strategic games which satisfy the properties (P1)

and (P5). Each n person game G in CP is a potential game and can be represented by

a collection of arbitrary vectors ((wf (1), . . . , wf (n)))f∈F ∈ (IRn)F . It is obvious that not

every game G ∈ CP has a strong Nash equilibrium. For instance, the Prisoner’s Dilemma

in Example 2.2 is an element of CP with F = {c, d}, wc = (4, 1) and wd = (0, 3), but does

not have a strong Nash equilibrium. But even the existence of a strong Nash equilibrium

for a game G ∈ CP does not guarantee that each Nash equilibrium is strong too, nor that

a strong equilibrium is a potential maximizer. The next example gives a game G ∈ CP
such that ∅ 6= SNE(G) ⊂ NE(G) and SNE(G) ∩ PM(G) = ∅.
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Example 3.18 Let G ∈ CP({f, g}, 3) with

wf = (4, 0, 5 )

wg = (4, 2, 0)

The unique strong Nash equilibrium in which all three players chooses facility f is in-

dicated. By Remark 3.15, the potential can be computed as in Proposition 3.14. The

maximal potential arises at the non strong equilibria which are given by

wf = ( 4 , 0, 5)

wg = (4, 2 , 0)

/

Finally, consider the class of strategic games C ′ satisfying (P1’),(P4), and (P5). Similarly

to Proposition 3.11 one can show

Theorem 3.19 For every game G ∈ C ′, NE(G) = SNE(G).

In this class of games, however, the set of potential maximizing strategy combinations

need not coincide with the set of Nash equilibria, as can be seen in the following example.

Example 3.20 Consider the game G ∈ C ′({f, g, h}, 5) in which three players have strat-

egy set {f, h} and two {g, h}. The payoff vectors are

wf = (4, 2, 1 ,−,−)

wg = ( 3 , 2,−,−,−)

wh = ( 2 , 1, 1, 0, 0)

where the squared numbers depict a Nash equilibrium payoff. It represents strategy

combinations in which the three players with strategy set {f, h} all play f . Consider

now the equilibrium in which two of those three play f and the other plays h.

wf = (4, 2 , 1,−,−)

wg = (3, 2 ,−,−,−)

wh = ( 2 , 1, 1, 0, 0)

The potential can be computed as in Proposition 3.14 (see Remark 3.15). For the first

type of equilibrium in this example, the potential value equals 4 + 2 + 1 + 3 + 2 = 12,

which is less than 4 + 2 + 3 + 2 + 2 = 13, the potential value associated to the second

type of equilibrium. /
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Chapter 4

Sequential Production Situations

and Potentials

4.1 Introduction

In recent years there has been a growing effort in the study of specific, practically rele-

vant classes of noncooperative games possessing pure-strategy Nash equilibria. Several

instances of congestion situations with pure Nash equilibria were considered in previous

chapters.

The purpose of the present chapter, based on Voorneveld, Tijs, and Mallozzi (1998), is

to describe sequential production games, a type of production games that is motivated

by production situations in practice. In a sequential production game, raw materials

are transformed into a product. The value of the product depends on the activities

performed on the raw materials and is divided equally over the production departments.

The production consists of several stages. In each stage, production departments observe

the production techniques chosen in the earlier stages and simultaneously perform some

activities on the intermediate product (or on the raw materials, if we look at the first

stage). The fact that within a stage departments simultaneously and independently

choose a production technique introduces imperfect information into the game. Since

the state of the intermediate product strongly depends on the production techniques

or activities conducted during the preceding stages, the production departments incur

set-up and production costs depending on the previous stages and — of course — on the

production strategies of the departments simultaneously performing their activities.

The model is introduced by means of a practical example, based on the processing

of rough diamonds. The use of diamond essentially falls into two categories. First of

all, properly processed diamond as loose gemstones or part of jewelry has an ornamental

function. Secondly, since diamond is the hardest naturally occurring substance, it has

an important industrial application: it forms part of cutting and sawing tools, as well as

drilling equipment, for instance in mining industry.

31
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In this simplified example, production takes place in two stages and is conducted

by three departments. During the first stage, department 1 decides whether a unit of

diamond is used for ornamental or industrial purposes, strategies O and I, respectively.

In the second stage, two departments simultaneously perform an activity. In case

the unit of diamond was designated for ornamental use, it has to be faceted (cutting

flat facets over the entire surface of the stone, usually in a highly symmetrical pattern)

and polished to a mirror-like finish to aid light reflection from the surface of the stone

or refraction of light through the stone. This is done by department 2, which can use

modern equipment to do this (action M), or do the job mostly by relatively old machinery

(action O). During the faceting and polishing, department 3 takes care of cooling and

lubricating. Department 3 can decide to use high or low quality products to do this,

actions Hi and Lo, respectively.

In case the unit of diamond was designated for industrial use, the second department

pulverizes the diamond to produce diamond grit for saw blades. Using the modern action

(M) produces grit with a higher mesh (i.e., finer grid, more adequate for precision work)

than the old machinery (O). During this process, department 3 takes care of removing

debris, again by choosing either high or low quality measures.

The first department operates at negligible costs. In the second stage, departments

2 and 3 incur set-up costs depending on whether processing takes places for ornamental

or industrial purposes. These set-up costs are given in Figure 4.1. Given the industrial

Purpose Set-up dept.2 Set-up dept.3

I 1 1

O 2 3

Figure 4.1: Set-up costs

or ornamental purpose decided on in the first stage and the technique (either Hi or Lo)

chosen by the third department, the operating costs of department 2 are given in Figure

4.2, with a similar specification of the production costs of department 3. Finally, Figure

Purpose, tech. Prod. costs

of dept. 3 of dept. 2

(I, Hi) 1

(I, Lo) 1

(O, Hi) 2

(O,Lo) 3

Purpose, tech. Prod. costs

of dept. 2 of dept. 3

(I, M) 2

(I, O) 1

(O, M) 1

(O, O) 3

Figure 4.2: Production costs

4.3 specifies the value of the end product as a function of the production techniques.

Assuming that the value of the end product is divided equally over the three production
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Production profile Value

(I, M, Hi) 27

(I, M, Lo) 15

(I, O,Hi) 27

(I, O, Lo) 12

(O,M, Hi) 21

(O,M, Lo) 18

(O, O, Hi) 30

(O, O, Lo) 18

Figure 4.3: Value of end product
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Figure 4.4: The diamond game
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departments and subtracting the costs, one obtains the extensive form game in Figure

4.4, where w.l.o.g. department 2 moves before department 3, but department 3 does

not observe the choice of department 2, thus capturing the fact that these departments

operate in the same stage and hence only observe the action taken in stage 1: histories

(I, M) and (I, O) are in one information set, just like histories (O, M) and (O, O).

For instance, if the production profile is (I,M, Hi), each department receives one

third of 27. Department 1 incurs no costs, so the payoff to this department equals

9. Department 2 incurs set-up costs 1 and production costs 1, so the payoff to this

department equals 9− 1− 1 = 7. Similarly, department 3 has payoff 9− 1− 2 = 6 since

its set-up costs are 1 and its processing costs are 2.

Sequential production situations give rise to a special class of extensive form games

with imperfect information, since players at a certain stage observe the production tech-

niques chosen in previous stages, but not those of the departments in the same and later

stages. Thus, in general, the existence of pure-strategy Nash equilibria is not guaran-

teed. In the diamond game of Figure 4.4, however, there are several. We show that this

is no coincidence and that these games are closely related to exact potential games. A

more formal description of the model is provided in Section 4.2. Section 4.3 contains the

results. Section 4.4 concludes with remarks concerning extensions of the model.

4.2 Model

This section contains a formal description of the model. The games arising from sequen-

tial production situations are hierarchical games.

Definition 4.1 A hierarchical game is an extensive form game described by a tuple

H = 〈N = (N1, . . . , Nm), (Ai)i∈N , (ui)i∈N〉. Adopting a slight abuse of notation, the

finite player set N is an ordered partition (N1, . . . , Nm). The number m ∈ IN denotes

the number of stages of the game. For k ∈ {1, . . . ,m}, Nk denotes the set of players

operating at stage k. Each player i ∈ N has a finite set Ai of actions containing at least

two elements and a payoff function ui :
∏

j∈N Aj → IR. The game is played in such a way

that for each stage k ∈ {1, . . . ,m}, the players in Nk observe only the action choices of

the players in N1 ∪ · · · ∪Nk−1 operating in the previous stages and then simultaneously

and independently choose an action. /

Notice that a hierarchical game is a specific type of extensive form game with imperfect

information. The players in N1, operating in the first stage, make no observations prior

to simultaneously and independently choosing their action. The players in N2, operating

in the second stage, observe the actions of the players in N1 and then simultaneously and

independently choose their actions, thus having no information about the action choices

of the other players in the same stage and the players in later stages. The same reasoning

applies to later stages of the game. Strategic games are a special case, since they can
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be modelled by a hierarchical game with only one stage: all players simultaneously and

independently make a strategy choice.

The players are assumed to be numbered from 1 through |N |; players with a low

number play in early stages, i.e., if i ∈ Nk, j ∈ Nl, and i < j, then k <
= l.

The following notation is used. The predecessors Pr(i) of a player i ∈ N are those

players operating at an earlier stage than i:

∀k ∈ {1, . . . , m},∀i ∈ Nk : Pr(i) := ∪l∈{1,...,m},l<k Nl.

The colleagues C(i) of a player i ∈ N are those players operating at the same stage as

player i:

∀k ∈ {1, . . . , m},∀i ∈ Nk : C(i) := Nk \ {i}.
The followers F (i) of a player i ∈ N are those players operating at a later stage than

player i:

∀k ∈ {1, . . . , m},∀i ∈ Nk : F (i) := ∪l∈{1,...,m},l>k Nl.

For instance, in the diamond game of Figure 4.4, the player set N = {1, 2, 3} is described

by the ordered partition (N1, N2) with N1 = {1} and N2 = {2, 3}. Department 1 has

no predecessors, no colleagues, and followers 2 and 3. Department 2 has predecessor 1,

colleague 3, and no followers.

Definition 4.2 A sequential production situation is a tuple

〈N = (N1, . . . , Nm), (Ai)i∈N , ρ, (ci)i∈N〉,

where the set N of production departments or players is described by an ordered partition

(N1, . . . , Nm). The number m ∈ IN denotes the number of production stages. Each player

i ∈ N has a finite set Ai of production techniques (containing at least two elements).

The function ρ :
∏

i∈N Ai → IR specifies for each production profile a = (ai)i∈N ∈ ∏
i∈N Ai

the value ρ(a) of the end product. Each player i ∈ N has a cost function ci denoting the

set-up and operating costs of this player. This cost function depends on the predecessors

(set-up) and colleagues (operating) (if any), i.e.,

∀i ∈ N : ci :
∏

j∈Pr(i)∪C(i) Aj → IR.

Production takes place in such a way that for each stage k ∈ {1, . . . , m}, the players in

Nk observe only the production techniques of the players in N1 ∪ · · · ∪ Nk−1 operating

in the previous stages and then simultaneously and independently choose a production

technique. /

Remark 4.3 The definition of ci for players i ∈ N1 in the first stage deserves special

attention. In this case, the set of predecessors Pr(i) of i is empty by definition, so ci is a

function only of i’s colleagues. If this set also happens to be empty, i.e., if there is only

one department i in the first stage, we allow ci ∈ IR to be an arbitrary constant. /
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Remark 4.4 Two main assumptions underlie the production process captured by a

sequential production situation. In this remark, some motivation for these assumptions

is provided.

• The first assumption is that the departments within a production stage indepen-

dently and simultaneously choose a production technique. Many modern firms

are decentralized: departments act as autonomous units with their own decision

power. In such environments this assumption seems reasonable.

• The second assumption is that the production costs of a production department do

not depend on its own technique. This is equivalent with stating that a production

department has fixed costs given the state of the intermediate product and the

production techniques of the colleagues.

/

Given a sequential production situation and assuming for now that the value of the

end product is split equally over the departments or players (for a relaxation of this

assumption, see Section 4), one can easily define its associated hierarchical game.

Definition 4.5 Let 〈N = (N1, . . . , Nm), (Ai)i∈N , ρ, (ci)i∈N〉 be a sequential production

situation. The associated sequential production game is the hierarchical game 〈N =

(N1, . . . , Nm), (Ai)i∈N , (ui)i∈N〉 with for all i ∈ N and all a ∈ ∏
i∈N Ai:

ui(a) =





1
|N |ρ(a)− ci if i ∈ N1 and C(i) = ∅

1
|N |ρ(a)− ci((aj)j∈Pr(i)∪C(i)) otherwise

That is, the payoff to a production department is an equal share of the value of the end

product minus the costs it incurs. /

Let H = 〈N = (N1, . . . , Nm), (Ai)i∈N , (ui)i∈N〉 be a hierarchical game. The normal-

ization of H is defined — in the usual way — to be the strategic game N (H) =

〈N, (Si)i∈N , (Ui)i∈N〉, where the strategy space Si of player i ∈ N prescribes an ac-

tion choice in every contingency that a player may be called upon to act and the payoff

function associates to each strategy profile the payoff in the outcome of the hierarchical

game induced by this strategy. Formally,

Si =





Ai if i ∈ N1,

{σi | σi :
∏

j∈Pr(i) Aj → Ai} if i ∈ Nk, k >
= 2.

Inductively, one can define the realized play of the game by means of a function r :∏
i∈N Si → ∏

i∈N Ai as follows.

ri(σ) =





σi ∈ Ai if i ∈ N1,

σi((rj(σ))j∈Pr(i)) if i ∈ Nk, k >
= 2.
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Player i’s payoff function Ui assigns to every strategy profile σ = (σi)i∈N ∈ ∏
i∈N Si the

payoff associated with the outcome realized by σ: Ui(σ) = ui(r(σ)).

For instance, in the strategic game corresponding to the diamond game of Figure

4.4, player 1 has two strategies: S1 = A1 = {I, O}. Player 2 has 4 strategies: S2 =

{(M, M), (M, O), (O,O), (O, M)}, where the first coordinate specifies the action choice

if player 1 chose I and the second coordinate specifies the action choice if player 1 chose O.

Similarly, the strategy space of player 3 equals {(Hi, Hi), (Hi, Lo), (Lo, Lo), (Lo,Hi)}.
The strategic game is given in Figure 4.5.

(Hi,Hi) (Hi, Lo) (Lo,Hi) (Lo, Lo)

(M,M) 9,7,6 9,7,6 5,3,2 5,3,2

(M,O) 9,7,6 9,7,6 5,3,2 5,3,2

(O, M) 9,7,7 9,7,7 4,2,2 4,2,2

(O, O) 9,7,7 9,7,7 4,2,2 4,2,2

Department 1 plays I

(Hi,Hi) (Hi, Lo) (Lo,Hi) (Lo, Lo)

(M,M) 7,3,3 6,1,2 7,3,3 6,1,2

(M,O) 10,6,4 6,1,0 10,6,4 6,1,0

(O, M) 7,3,3 6,1,2 7,3,3 6,1,2

(O, O) 10,6,4 6,1,0 10,6,4 6,1,0

Department 1 plays O

Figure 4.5: The normalization of the diamond game

Some matters of notation. In the normalization of a hierarchical game, the strategy

“always choose ai” is denoted ai. Furthermore, conventional game theoretic notation is

used. For instance, S :=
∏

j∈N Sj denotes the set of strategy profiles for all players in N ,

S−i :=
∏

j∈N\{i} Sj denotes the set of strategy profiles of i’s opponents. Similar notation

is adopted for elements of these sets: σ ∈ S, σ−i ∈ S−i, and for profiles of actions, rather

than strategies.

4.3 Results

In this section the sequential production games are related to exact potential games

introduced by Monderer and Shapley (1996). Hierarchical potential games are defined

and, analogous to the isomorphism between congestion games à la Rosenthal (1973) and

exact potential games (see Theorem 2.17), it is shown that not only every sequential

production game is a hierarchical potential game, but conversely, every hierarchical po-

tential game can be seen as a well-chosen sequential production game. This result has an
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important implication: sequential production games have pure-strategy equilibria. So-

called potential-maximizing strategies, introduced in Monderer and Shapley (1996) and

studied in more detail by Peleg, Potters, and Tijs (1996), form an interesting equilibrium

refinement and are studied for this class of games.

First, recall the definition of exact potential games:

Definition 4.6 A strategic game G = 〈N, (Si)i∈N , (Ui)i∈N〉 is an exact potential game

if there exists a function P :
∏

i∈N Si → IR such that for each player i ∈ N , each profile

σ−i ∈ ∏
j∈N\{i} Sj of strategies of the opponents, and each pair of strategies σi, τi ∈ Si of

player i:

Ui(σi, σ−i)− Ui(τi, σ−i) = P (σi, σ−i)− P (τi, σ−i),

i.e., if the change in the payoff to a unilaterally deviating player is equal to the change

in the value of the function P . P is called an (exact) potential of the game. /

It is easy to see that the set of Nash equilibria of the game G coincides with the set

of Nash equilibria of the game 〈N, (Si)i∈N , (P )i∈N〉 with all payoff functions replaced by

the potential function P . Finite exact potential games consequently have pure-strategy

Nash equilibria: the potential P achieves a maximum over the finite set
∏

i∈N Si, which

is easily seen to be a pure strategy Nash equilibrium (Proposition 2.4).

Theorem 2.6 showed that a game is an exact potential game if and only if there exists

a real-valued function P on the strategy space such that for each player i, the difference

between his payoff and the function P does not depend on the strategy choice of player

i himself. That is, an exact potential game can be seen as the ‘sum’ of a coordination

game, in which the payoff to all players is given by the function P , and a dummy game,

in which the payoff to a player is independent of his own strategy choice. This result is

used later, so we summarize it in a lemma.

Lemma 4.7 A strategic game G = 〈N, (Si)i∈N , (Ui)i∈N〉 is an exact potential game if

and only if there exists a function P :
∏

i∈N Si → IR and for each player i ∈ N a function

Di :
∏

j∈N\{i} Sj → IR such that

∀i ∈ N, ∀σ ∈ ∏

j∈N

Sj : Ui(σ)− P (σ) = Di(σ−i).

The function P in Lemma 4.7 is easily seen to be an exact potential of the game.

If the normalization of a hierarchical game is a potential game, then the potential

depends on the realized outcome, but not on the strategies leading to this outcome:

Lemma 4.8 Let H be a hierarchical game. If its normalization N (H) is an exact poten-

tial game with potential function P , and σ, τ are strategy profiles such that r(σ) = r(τ),

then P (σ) = P (τ).

Proof. If r(σ) = r(τ) = (aj)j∈N , then σi = τi for all i ∈ N1 and for players i ∈ Nk, k >
= 2,

σi and τi differ only in their behavior off the play path (aj)j∈N . Thus, the payoff in
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N (H) to deviating players along the path from σ = (σ1, . . . , σn) to (τ1, σ2, . . . , σn) to ...

to (τ1, . . . , τn−1, σn) to τ = (τ1, . . . , τn) does not change. Hence P (σ) = P (τ). 2

Definition 4.9 A hierarchical game H = 〈N = (N1, . . . , Nm), (Ai)i∈N , (ui)i∈N〉 is called

a hierarchical potential game if there exist functions p :
∏

j∈N Aj → IR and (di)i∈N with

∀i ∈ N : di :
∏

j∈Pr(i)∪C(i)

Aj → IR,

or di ∈ IR if i ∈ N1 and C(i) = ∅ (Analogous to Remark 4.3.), such that for each player

i ∈ N and each action profile a ∈ ∏
i∈N Ai:

ui(a) =





p(a) + di if i ∈ N1 and C(i) = ∅,

p(a) + di((aj)j∈Pr(i)∪C(i)) otherwise.

The function p is called a potential for H. /

The reason for this definition is the following:

Theorem 4.10 A hierarchical game H = 〈N = (N1, . . . , Nm), (Ai)i∈N , (ui)i∈N〉 is a

hierarchical potential game if and only if its normalization N (H) = 〈N, (Si)i∈N , (Ui)i∈N〉
is an exact potential game.

Proof. If H is a hierarchical potential game with p, (di)i∈N as in Definition 4.9, then by

definition of the normalized game one has that for each σ ∈ ∏
i∈N Si:

Ui(σ) = ui(r(σ)) = p(r(σ)) + di((rj(σ))j∈Pr(i)∪C(i)).

Lemma 4.7 implies that N (H) is an exact potential game.

To prove the converse, assume N (H) is an exact potential game with potential P .

We have to show the existence of functions p and (di)i∈N as in Definition 4.9. For each

a ∈ ∏
i∈N Ai, recall that ai ∈ Si is the strategy in which player i always chooses ai.

Denote a = (ai)i∈N . Define p(a) = P (a). The definition of the functions (di)i∈N is split

up into two cases.

Case 1: i ∈ Nm. Lemma 4.7 implies the existence of a function Di :
∏

j∈N\{i} Sj → IR

such that Ui(σ) = P (σ) + Di(σ−i) for each σ ∈ ∏
j∈N Sj. Define for each a−i ∈ A−i:

di(a−i) = Di(a−i). Then, for each a ∈ ∏
j∈N Aj, ui(a) = Ui(a) = P (a) + Di(a−i) =

p(a) + di(a−i) = p(a) + di((aj)j∈Pr(i)∪C(i)).

Case 2: i ∈ Nk, k < m. To prove the existence of di as in Definition 4.9, it suffices

to show that ui − p does not depend on the actions chosen by player i himself and i’s

followers, since we can then take di equal to this difference. Formally, it is shown that

for all a ∈ A and (bj)j∈F (i)∪{i} ∈ ∏
j∈F (i)∪{i} Aj:

ui(a)− p(a) = ui((aj)j∈Pr(i)∪C(i), (bj)j∈F (i)∪{i})− p((aj)j∈Pr(i)∪C(i), (bj)j∈F (i)∪{i}). (4.1)
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Let a ∈ A and (bj)j∈F (i)∪{i} ∈ ∏
j∈F (i)∪{i} Aj.

Case 2A: Suppose ai 6= bi. Define

• σi = ai and τi = bi,

• for each player j ∈ Pr(i) ∪ C(i) : σj = aj,

• for j ∈ F (i), let σj be the strategy that always chooses bj, unless the history is

(ak)k∈Pr(j), in which case j chooses aj.

Notice that r(σi, σ−i) = a, r(τi, σ−i) = ((aj)j∈Pr(i)∪C(i), (bj)j∈F (i)∪{i}). By Lemma 4.7:

Ui(σ) − P (σ) = Ui(τi, σ−i) − P (τi, σ−i). By Lemma 4.8: P (η) = P (τ) if r(η) = r(τ).

Hence

ui(a)− p(a) = ui(r(σi, σ−i))− p(r(σi, σ−i))

= Ui(σi, σ−i)− P (a)

= Ui(σi, σ−i)− P (σi, σ−i)

= Ui(τi, σ−i)− P (τi, σ−i)

= Ui(τi, σ−i)− P ((aj)j∈Pr(i)∪C(i), (bj)j∈F (i)∪{i})

= ui(r(τi, σ−i))− p((aj)j∈Pr(i)∪C(i), (bj)j∈F (i)∪{i})

= ui((aj)j∈Pr(i)∪C(i), (bj)j∈F (i)∪{i})− p((aj)j∈Pr(i)∪C(i), (bj)j∈F (i)∪{i})

which proves that (4.1) holds if bi 6= ai.

Case 2B: Suppose ai = bi. By assumption (cf. Definition 4.1), Ai contains at least two

elements. Let ci ∈ Ai with ci 6= ai. Applying the result of case 2A twice yields:

ui(a)− p(a) = ui((aj)j∈Pr(i)∪C(i), ci, (bj)j∈F (i))− p((aj)j∈Pr(i)∪C(i), ci, (bj)j∈F (i))

= ui((aj)j∈Pr(i)∪C(i), bi, (bj)j∈F (i))− p((aj)j∈Pr(i)∪C(i), bi, (bj)j∈F (i))

= ui((aj)j∈Pr(i)∪C(i), (bj)j∈F (i)∪{i})− p((aj)j∈Pr(i)∪C(i), (bj)j∈F (i)∪{i}),

which proves that (4.1) holds if bi = ai. 2



Results 41

The assumption in Definition 4.1 that each player i ∈ N has an action set Ai containing

at least two elements is relatively innocent: players having to make a choice from a

singleton set of options are not extremely interesting. Notice, however, that in the proof

above we explicitly made use of this assumption. In fact, the following example shows

that the ‘if’-part of Theorem 4.10 breaks down if some of the players have only one action.

Example 4.11 Consider the extensive form game in Figure 4.6 where player 1 has

only one action S and player 2 in the next stage chooses either L or R. Payoffs are

u1(S, L) = 2, u1(S, R) = 1, u2(S, L) = u2(S, R) = 0. Its normalization is clearly an exact

potential game. But p : {S} × {L,R} → IR, d1 ∈ IR, and d2 : {S} → IR as in Definition

4.9 would have to satisfy the following inconsistent system of linear equations:





u1(S, L) = p(S, L) + d1

u1(S, R) = p(S, R) + d1

u2(S, L) = p(S, L) + d2(S)

u2(S, R) = p(S, R) + d2(S)

The last two equations imply that p has to be a constant function. But then u1 − p

depends on the action choice of player 2. In hierarchical potential games, the difference

between the payoff function and a potential was assumed to be independent of the action

choices of followers. /

The following theorem relates hierarchical games and sequential production games.

Theorem 4.12 Every sequential production game is a hierarchical potential game. For

every hierarchical potential game there is a sequential production situation that induces

this game.

Proof. To see that a sequential production game as in Definition 4.5 is a hierarchical

potential game, take

p = 1
|N |ρ,

di = −ci for each i ∈ N.

Conversely, consider a hierarchical potential game 〈N = (N1, . . . , Nm), (Ai)i∈N , (ui)i∈N〉
with p and (di)i∈N as in Definition 4.9. Then the sequential production situation 〈N =

(N1, . . . , Nm), (Ai)i∈N , ρ, (ci)i∈N〉 with

ρ = |N |p,

ci = −di for each i ∈ N
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Figure 4.6: Player 1 has only one action

induces exactly the same game. 2

Notice that a potential of a sequential production game equals the value function ρ

divided by the number of players.

After defining hierarchical games we observed that every finite strategic game can be

seen an a hierarchical game with only one stage. The theorem above establishes that

every exact potential game is essentially a hierarchical potential game or a sequential

production game.

It follows from the remark after the definition of potential games that every hier-

archical potential game and thus every sequential production game has a pure-strategy

Nash equilibrium. One can even extend this result to subgame-perfect equilibria, as is

done below.

Subgames of imperfect information games are defined as usual. In hierarchical games,

this implies that the game itself is a subgame, and that for each number k of stages,

each profile of actions of the players in the first k stages induces a subgame. Formally,

Definition 4.13 Let H = 〈N = (N1, . . . , Nm), (Ai)i∈N , (ui)i∈N〉 be a hierarchical game.

Then H itself is a subgame and, moreover, for each k ∈ {1, . . . ,m− 1} and each profile

or history h = (ai)i∈N1∪...∪Nk
∈ ∏

i∈N1∪...∪Nk
Ai, the subgame H(h) is the hierarchical

game 〈N(h) = (Nk+1, . . . , Nm), (Ai)i∈N(h), (ũi)i∈N(h)〉 with ũi(·) = ui(h, ·) for each player

i ∈ N(h). /

For instance, the subgame H(I) that arises if department 1 chooses action I in the
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diamond game is given in Figure 4.7. Realize that since the remaining departments both

operate at the same stage, the subgame H(I) has no subgame other than itself.
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Figure 4.7: The subgame H(I) of the diamond game

Corollary 4.14 Every subgame of a hierarchical potential game is a hierarchical poten-

tial game.

This corollary can be proven either directly, using Definition 4.9, or indirectly, using

Theorem 4.10. The details are left to the reader. Notice that if p is a potential of the

hierarchical game H, then for each subgame H(h), the function p̃ with p̃(·) = p(h, ·) is

a potential for the subgame H(h).

Recall that a strategy profile σ in the normalized game N (H) is a subgame-perfect

Nash equilibrium if it induces a Nash equilibrium in each subgame, i.e., if behavior outside

the play path is also credible. For instance, (O, (O, O), (Hi,Hi)) is a subgame-perfect

Nash equilibrium of the diamond game, but (O, (M, O), (Lo, Hi)) is not, since in the

subgame H(I) of Figure 4.7 player 3 would rather play Hi than Lo.

Potential-maximizing strategies form a refinement of the Nash equilibrium concept

in strategic games with a potential. This refinement was introduced by Monderer and

Shapley (1996). It was studied axiomatically in Peleg, Potters, and Tijs (1996) and

used in Voorneveld (1997) to derive equilibrium existence results in infinite games. In

hierarchical potential games H the notion of potential maximizing strategies can be
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extended to subgame potential-maximizing strategies, being those strategy profiles σ in

the normalization N (H) that select actions maximizing the potential in every subgame.

Corollary 4.14 guarantees that subgame potential-maximizers are well-defined.

The next theorem establishes one of the main results of this chapter: hierarchical

potential games, and in particular sequential production games, have subgame perfect

Nash equilibria in pure strategies, despite the presence of imperfect information.

Theorem 4.15 Let H be a hierarchical potential game and N (H) its normalization.

• N (H) has a subgame potential maximizing strategy profile in pure strategies;

• each such pure-strategy subgame potential-maximizing profile is a pure-strategy

subgame-perfect Nash equilibrium;

• not every pure-strategy subgame-perfect Nash equilibrium is a pure-strategy subgame

potential maximizer.

Proof. The proof of the first claim proceeds by induction on the number of stages of the

game and closely mimics the existence proof of pure-strategy Nash equilibria in standard

perfect information games. It is therefore left to the reader.

Strategies maximizing the potential of a subgame are easily seen to be Nash equilib-

rium strategies for the subgame by using Definition 4.9: the only difference between ui

and the potential p is a function di not depending on the choices of player i. This proves

the second claim.

The final claim already follows from the insights in potential games in strategic form.

Consider the single stage hierarchical potential game H with player set N = N1 = {1, 2},
action sets A1 = A2 = {α, β}, potential p : A1 × A2 → IR with p(α, α) = 2, p(α, β) =

p(β, α) = 0, p(β, β) = 1 and with d1 : A2 → IR and d2 : A1 → IR equal to the zero

function. This is just the 2× 2 exact potential game in Figure 4.8. Notice that (β, β) is

α β

α 2,2 0,0

β 0,0 1,1

Figure 4.8: (β, β) subgame perfect, not potential maximizing.

a pure-strategy subgame-perfect Nash equilibrium (there is only one subgame, namely

the game itself), but not potential maximizing. 2

In the diamond game of Figure 4.4, the pure strategy subgame potential maximizers

are (O, (M, O), (Hi, Hi)) and (O, (O, O), (Hi,Hi)). The profile (O, (M,O), (Lo,Hi)) is

potential maximizing, but does not select a potential maximizing outcome in the subgame

H(I).
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4.4 Conclusions and extensions of the model

Practical situations can sometimes be studied using game theoretic tools. The topic of

this chapter has been the study of an important type of production problems in which

production takes place in several stages. These problems were modeled as sequential

production games, a specific class of extensive form games with imperfect information.

These games were related to potential games. In fact, it was shown that the class of

sequential production games coincides with the class of hierarchical potential games (cf.

Theorem 4.12).

Firms seeking the help from game theorists want clear-cut recommendations. Exten-

sive form games with incomplete information typically do not have pure-strategy equilib-

ria, which makes it hard to provide such easily adoptable recommendations. A significant

feature of sequential production games is the existence of pure-strategy subgame-perfect

Nash equilibria. Using subgame potential-maximizing profiles, we were able to identify

a subset of these equilibria.

In Definition 4.5, payoffs to departments in a sequential production game were de-

termined by giving each department an equal share of the value of the end product and

then subtracting the costs. A possible extension of the model is to consider unequal divi-

sion of the value over the departments. Introduce a vector (wi)i∈N of weights satisfying

wi
>
= 0 for each department i and such that

∑
i∈N wi = 1. The payoff functions ui in

Definition 4.5 can then be changed to ui = wiρ− ci.

Such unequal splitting of the value of the end product might be reasonable in the

following sequential production situation. Students of a graduate school, the ‘raw mate-

rials’, receive an education in three ‘production stages’: there are preliminary or refresher

courses in the first stage, the core courses in the second stage, and specialized courses

in the third stage. The value of the ‘end product’, the PhD student successfully finish-

ing the three stages, is usually considered to be the result of the specialized, advanced

courses, to a lesser degree of the core courses, and hardly of the preliminary and refresher

courses. In this teaching example, it appears reasonable to measure the contribution to

the end product in such a way that a larger weight is assigned to lecturers teaching more

advanced material.

Making the necessary modifications, the main results of this chapter still hold for

sequential production games with unequal splitting of the value over the production

departments. In particular, pure-strategy subgame-perfect Nash equilibria still exist.

The class of games generated in this way is closely related to weighted potential

games, a class of ordinal potential games introduced in Monderer and Shapley (1996).

Ordinal potential games were characterized in Voorneveld and Norde (1997). For another

practical class of ordinal potential games, refer to Voorneveld, Koster, and Reijnierse

(1998), Chapter 6 in this thesis, who consider schemes to finance public goods in a

voluntary contribution game.
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Chapter 5

Ordinal Potential Games

5.1 Introduction

Monderer and Shapley (1996) introduced several classes of potential games. Exact po-

tential games were studied in the previous three chapters. As an example of an exact

potential game, consider the two-person game with its exact potential function in Figure

5.1. In Theorem 2.11, exact potential games were characterized by the property that the

L R

T 0, 2 −1, 3

B 1, 0 0, 1

L R

T 0 1

B 1 2

Figure 5.1: An exact potential game

changes in payoff to deviating players along a cycle sum to zero, where a cycle in the

strategy space is a closed sequence of strategy combinations in which players unilaterally

deviate from one point to the next. Exact potential games are therefore extremely sen-

sitive to small changes in the payoff functions: the slightest perturbation of payoffs can

make this cycle property break down. In the next chapters we therefore look at more

general classes of potential games in which not the precise change in payoff to a unilat-

erally deviating player matters, but rather the direction of the change in payoff. This

chapter focuses on ordinal potential games. The game in Figure 5.2a is an example of

L R

T 0, 2 0, 3

B 1, 0 0, 1

a

L R

T 0 2

B 1 2

b

Figure 5.2: An ordinal potential game

an ordinal potential game. It is obtained from Figure 5.1 by changing u1(T, R) from −1

47
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to 0. Consider the function in Figure 5.2b and notice that the sign of the change in the

payoff to a unilaterally deviating player exactly matches the sign of the corresponding

change in this function. For instance, if the second player deviates from (T, L) to (T, R),

his payoff increases, just like the function in Figure 5.2b. Since deviating from (T, R)

to (B, R) does not change player 1’s payoff, the value of the function remains the same.

For this reason, the function in Figure 5.2b is called an ordinal potential of the game.

Monderer and Shapley do not give a characterization of ordinal potential games. The

class of finite ordinal potential games was characterized in Voorneveld (1996) through

the absence of weak improvement cycles, i.e., cycles along which a unilaterally deviating

player never incurs a lower payoff and at least one such player increases his payoff. The

necessity of this condition is immediate, since a potential function would never decrease

along a weak improvement cycle, but increases at least once. This gives a contradiction,

because a cycle ends up where it started. Proving sufficiency is harder. In this chapter,

a modified version of Voorneveld and Norde (1997), the general class of ordinal potential

games is characterized. It turns out that countable ordinal potential games are still

characterized by the absence of weak improvement cycles, but that for uncountable

ordinal potential games an additional order condition on the strategy space is required.

The organization of this chapter is as follows: In Section 5.2 ordinal potential games

are defined; some of its properties are studied. In Section 5.3 we provide a full char-

acterization of ordinal potential games. In Section 5.4 we indicate that the absence of

weak improvement cycles characterizes ordinal potential games with a countable strat-

egy space, but not necessarily ordinal potential games in which the strategy space is

uncountable.

5.2 Ordinal potential games

In this section we define ordinal potential games and study some of its properties.

Definition 5.1 A strategic game G = 〈N, (Xi)i∈N , (ui)i∈N〉 is an ordinal potential game

if there exists a function P : X → IR such that

∀i ∈ N, ∀x−i ∈ X−i,∀xi, yi ∈ Xi : ui(xi, x−i) > ui(yi, x−i) ⇔ P (xi, x−i) > P (yi, x−i).

The function P is called an (ordinal) potential of the game G. /

In other words, if P is an ordinal potential function for G, the sign of the change in

payoff to a unilaterally deviating player matches the sign of the change in the value of

P .

Again, it is easy to see that strategy profiles maximizing an ordinal potential function

of the game yield Nash equilibria and that — as a consequence — finite ordinal potential

games have pure Nash equilibria. As opposed to exact potential games, however, the

strategy profiles that maximize an ordinal potential function do depend on the particular
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potential function that is chosen. Consider for instance the two-player game in Figure

5.3. In this game both payoff functions u1 and u2 are ordinal potentials. If u1 is chosen

L R

T 1,2 0,0

B 0,0 3,1

Figure 5.3: Potential maximizers

as a potential, (B, R) is the potential maximizing strategy, if u2 is chosen, it is (T, L).

Notice that every order-preserving transformation of an ordinal potential function is

again an ordinal potential function of the game.

The set of exact potential games, given a fixed set of players and strategy space, was

seen to be a vector space. The set of ordinal potential games is not as well-behaved.

In fact, it is not even closed under addition. The game in Figure 5.4a is an ordinal

L R

T 0,0 1,1

B 2,0 0,1

a

L R

T 1,2 1,0

B 0,0 0,1

b

L R

T 1,2 2,1

B 2,0 0,2

c

Figure 5.4: Set of ordinal potential games: not closed under addition

potential game with potential P (T, L) = 0, P (T,R) = 3, P (B,L) = 1, P (B, R) = 2. The

game in Figure 5.4b is an ordinal potential game with potential Q(T, L) = 3, P (T, R) =

2, P (B, L) = 0, P (B, R) = 1. The sum of these games is the game in Figure 5.4c,

which is not an ordinal potential game. Suppose it had an ordinal potential function U .

Then it would have to satisfy U(T, L) > U(T, R) > U(B, R) > U(B, L) > U(T, L), a

contradiction.

A subset of the set of ordinal potential games is the set of weighted potential games.

Definition 5.2 A strategic game G = 〈N, (Xi)i∈N , (ui)i∈N〉 is a weighted potential game

if there exists a function P : X → IR and a vector (wi)i∈N of positive numbers such that

∀i ∈ N, ∀x−i ∈ X−i, ∀xi, yi ∈ Xi : ui(xi, x−i)− ui(yi, x−i) = wi[P (xi, x−i)− P (yi, x−i)].

The function P is called a (weighted) potential of the game G. /

Without going into details, it is not difficult to see that weighted potential games — like

exact potential games — can be decomposed into a dummy game and a coordination-type

game.

Proposition 5.3 Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 be a strategic game. G is a weighted

potential game if and only if there exist positive numbers (wi)i∈N , functions (ci)i∈N and

(di)i∈N such that
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• ui = wici + di for all i ∈ N ,

• 〈N, (Xi)i∈N , (ci)i∈N〉 is a coordination game, and

• 〈N, (Xi)i∈N , (di)i∈N〉 is a dummy game.

5.3 Characterization of ordinal potential games

This section contains a characterization of ordinal potential games. Similar to Theorem

2.11, it is shown that a particular requirement on cycles in the strategy space plays a

central role.

Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 be a strategic game. Recall that a path in the strategy

space X is a sequence (x1, x2, . . .) of elements xk ∈ X such that for all k = 1, 2, . . . the

strategy combinations xk and xk+1 differ in exactly one, say the i(k)-th, coordinate. A

path is non-deteriorating if ui(k)(x
k) <

= ui(k)(x
k+1) for all k = 1, 2, . . .. Non-deteriorating

paths have restrictions only on consecutive strategy profiles, so by definition the trivial

path (x1) consisting of a single strategy profile x1 ∈ X is non-deteriorating. A finite

path (x1, . . . , xm) is called a weak improvement cycle if it is non-deteriorating, x1 = xm,

and ui(k)(x
k) < ui(k)(x

k+1) for some k ∈ {1, . . . , m− 1}.
Define a binary relation ¢ on the strategy space X as follows: x ¢ y if there exists

a non-deteriorating path from x to y. Notice that x ¢ x for each x ∈ X, since (x) is a

non-deteriorating path from x to x. The binary relation ≈ on X is defined by x ≈ y if

x ¢ y and y ¢ x.

By checking reflexivity, symmetry, and transitivity, one sees that the binary relation

≈ is an equivalence relation. Denote the equivalence class of x ∈ X with respect to ≈
by [x], i.e., [x] = {y ∈ X | y ≈ x}, and define a binary relation ≺ on the set X≈ of

equivalence classes as follows: [x] ≺ [y] if [x] 6= [y] and x ¢ y. To show that this relation

is well-defined, observe that the choice of representatives in the equivalence classes is of

no concern:

∀x, x̃, y, ỹ ∈ X with x ≈ x̃ and y ≈ ỹ : x ¢ y ⇔ x̃ ¢ ỹ.

Notice, moreover, that the relation ≺ on X≈ is irreflexive and transitive. The equivalence

relation ≈ plays an important role in the characterization of ordinal potential games.

A tuple (A,≺) consisting of a set A and an irreflexive and transitive binary relation

≺ is properly ordered if there exists a function F : A → IR that preserves the order ≺:

∀x, y ∈ A : x ≺ y ⇒ F (x) < F (y).

Properly ordered sets are a key topic of study in utility theory. Not every tuple (A,≺)

with ≺ irreflexive and transitive is properly ordered. A familiar example is the lexico-

graphic order on IR2. See, e.g., Fishburn (1979) for more details. However, if the set A

is countable, i.e. if A is finite or if there exists a bijection between A and IN, then (A,≺)

is properly ordered. The proof of this lemma is based on Bridges (1983).
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Lemma 5.4 Let A be a countable set and ≺ a binary relation on A that is irreflexive

and transitive. Then (A,≺) is properly ordered.

Proof. Since A is countable, we can label its elements and write A = {x1, x2, . . .}. Let

¿ denote the transitive closure of ≺, i.e., x ¿ y iff there exist finitely many (at least

two) elements y1, . . . , yn of A such that y1 = x, yn = y and y1 ≺ . . . ≺ yn.

For each x ∈ A, let S(x) = {n ∈ IN | xn ¿ x} and define F (x) =
∑

n∈S(x) 2−n. To

see that F preserves the order ≺, let x, y ∈ A, x ≺ y. Then S(x) ⊆ S(y). Moreover,

x ∈ S(y), but x /∈ S(x) since ≺ is irreflexive and transitive, ruling out the possibility

that x ¿ x. So S(x) ⊂ S(y), which implies F (x) < F (y). 2

Example 5.10 in Section 5.4 provides a game in which (X≈,≺) is not properly ordered. A

sufficient condition for an uncountable set (A,≺) to be properly ordered is the existence

of a countable subset B of A such that if x ≺ z, x 6∈ B, z 6∈ B, there exists a y ∈ B such

that x ≺ y, y ≺ z. Such a set B is ≺-order dense in A.

Lemma 5.5 Let A be a set and ≺ a binary relation on A that is irreflexive and transitive.

If there exists a countable subset of A that is ≺-order dense in A, then (A,≺) is properly

ordered.

Proof. This is a corollary of Theorem 3.2 in Fishburn (1979). 2

The following theorem characterizes ordinal potential games.

Theorem 5.6 A strategic game G = 〈N, (Xi)i∈N , (ui)i∈N〉 is an ordinal potential game

if and only if the following two conditions are satisfied:

1. X contains no weak improvement cycles;

2. (X≈,≺) is properly ordered.

Proof.

(⇒): Assume P is an ordinal potential for G. Suppose that (x1, . . . , xm) is a weak

improvement cycle. By definition, ui(k)(x
k) <

= ui(k)(x
k+1) for all k ∈ {1, . . . , m− 1} with

strict inequality for at least one such k. But then P (xk) <
= P (xk+1) for all and strict

inequality for at least one k ∈ {1, . . . , m − 1}, implying P (x1) < P (xm) = P (x1), a

contradiction. So X contains no weak improvement cycles.

Define F : X≈ → IR by taking for all [x] ∈ X≈ : F ([x]) = P (x). To see that F is

well-defined, let y, z ∈ [x]. Since y ≈ z there is a non-deteriorating path from y to z

and vice versa. But since the game has no weak improvement cycles, all changes in the

payoff to the deviating players along these paths must be zero: P (y) = P (z).

Now take [x], [y] ∈ X≈ with [x] ≺ [y]. Since x ¢ y, there is a non-deteriorating

path from x to y, so P (x) <
= P (y). Moreover, since x and y are in different equivalence

classes, some player must have gained from deviating along this path: P (x) < P (y).

Hence F ([x]) < F ([y]).
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(⇐): Assume that the two conditions hold. Since (X≈,≺) is properly ordered, there

exists a function F : X≈ → IR that preserves the order ≺. Define P : X → IR by

P (x) = F ([x]) for all x ∈ X. Let i ∈ N , x−i ∈ X−i, and xi, yi ∈ Xi.

• If ui(xi, x−i)−ui(yi, x−i) > 0, then (yi, x−i)¢ (xi, x−i), and by the absence of weak

improvement cycles: not (xi, x−i) ¢ (yi, x−i). Hence [(yi, x−i)] ≺ [(xi, x−i)], which

implies P (xi, x−i)− P (yi, x−i) = F ([(xi, x−i)])− F ([(yi, x−i)]) > 0.

• If P (xi, x−i)−P (yi, x−i) > 0, then [(xi, x−i)] 6= [(yi, x−i)], so ui(xi, x−i) 6= ui(yi, x−i).

If ui(xi, x−i) < ui(yi, x−i), then (xi, x−i)¢(yi, x−i), and hence [(xi, x−i)] ≺ [(yi, x−i)].

But then P (xi, x−i) − P (yi, x−i) = F ([(xi, x−i)]) − F ([(yi, x−i)]) < 0, a contradic-

tion. Hence ui(xi, x−i)− ui(yi, x−i) > 0.

Conclude that P is an ordinal potential for the game G. 2

The first condition in Theorem 5.6 involving cycles closely resembles the characterization

of exact potential games in Theorem 2.11: a strategic game is an exact potential game

if and only if the payoff changes to deviating players along a cycle sum to zero. In

fact, in exact potential games it suffices to look at cycles involving only four deviations.

The next example indicates that the absence of weak improvement cycles involving four

deviations only is not sufficient to characterize ordinal potential games.

Example 5.7 Suppose P is an ordinal potential of the game below. Then P has to

satisfy: P (T, L) > P (T, R) = P (M,R) = P (M, M) = P (B,M) = P (B, L) = P (T, L),

which is clearly impossible: this is not an ordinal potential game. Finiteness of the

strategy space and Lemma 5.4 imply that the order condition is satisfied. Moreover,

there exist no weak improvement cycles involving exactly four deviations. /

L M R

T 0,1 1,2 0,0

M 1,1 0,0 0,0

B 0,0 0,0 1,1

5.4 Countable and uncountable games

Lemmas 5.4 and 5.5 give sufficient conditions for (X≈,≺) to be properly ordered. A

consequence of Lemma 5.4 is that a game G with a countable strategy space X is an

ordinal potential game if and only if it contains no weak improvement cycles. The

strategy space X is countable if the set N of players is finite and every player i ∈ N has

a countable set Xi of strategies.

Theorem 5.8 Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 be a strategic game. If X is countable, then

G is an ordinal potential game if and only if X contains no weak improvement cycles.
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Proof. If X is countable, X≈ is countable. According to Lemma 5.4, (X≈,≺) is properly

ordered, so the result now follows from Theorem 5.6. 2

Theorem 5.8 generalizes the analogous result from Voorneveld (1996) for finite games.

A consequence of Lemma 5.5 is that if (X≈,≺) contains a countable ≺-order dense

subset, then the absence of weak improvement cycles is once again enough to characterize

ordinal potential games.

Theorem 5.9 Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 be a strategic game. If (X≈,≺) contains

a countable ≺-order dense subset, then G is an ordinal potential game if and only if X

contains no weak improvement cycles.

Proof. By Lemma 5.5, (X≈,≺) is properly ordered. The result follows from Theorem

5.6. 2

This section is concluded with two examples of games with uncountable strategy spaces.

The first is an example of a game in which no weak improvement cycles exist, but which

is not an ordinal potential game since (X≈,≺) is not properly ordered. The second

example is the only example in this thesis of a game with an infinite number of players;

it shows that a Prisoner’s Dilemma game with countably many players is an ordinal

potential game.

Example 5.10 Consider the two-player game G with X1 = {0, 1}, X2 = IR, and payoff

functions defined by

u1(x, y) =





x if y ∈ Q

−x if y 6∈ Q

and u2(x, y) = y for all (x, y) ∈ {0, 1} × IR.

This game has no weak improvement cycles, since every weak improvement cycle

trivially has to include deviations by at least two players. But if the second player

deviates once and improves his payoff, he has to return to his initial strategy eventually,

thereby reducing his payoff.

This game nevertheless is not an ordinal potential game. Suppose, to the contrary,

that P is an ordinal potential for G. We show that this implies the existence of an injec-

tive function f from the uncountable set IR \Q to the countable set Q, a contradiction.

For each y ∈ IR \ Q, u1(0, y) = 0 > −1 = u1(1, y), so P (0, y) > P (1, y). Fix

f(y) ∈ [P (1, y), P (0, y)] ∩ Q. In order to show that f : IR \ Q → Q is injective, let

x, z ∈ IR \Q, x < z. Then there exists a number y ∈ (x, z) ∩Q. However:




u2(0, x) < u2(0, y)

u1(0, y) < u1(1, y)

u2(1, y) < u2(1, z)

⇒




P (0, x) < P (0, y)

< P (1, y)

< P (1, z)

Since f(x) ∈ [P (1, x), P (0, x)] and f(z) ∈ [P (1, z), P (0, z)], it follows that f(x) < f(z).

So f is injective, a contradiction. /
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Finally, as an example of an ordinal potential game with an uncountable strategy space,

let us extend the Prisoner’s Dilemma of Example 2.2 to a possibly infinite but countable

number of players. Consider a game G = 〈N, (Xi)i∈N , (ui)i∈N〉, where

• N ⊆ IN;

• ∀i ∈ N : Xi = {0, 1};

• 1 is a dominant strategy for every player:

∀i ∈ N, ∀x−i ∈ X−i : ui(1, x−i) > ui(0, x−i);

• Every player is better off in (0, . . . , 0) where all players choose the 0 strategy than

in the Nash equilibrium (1, . . . , 1) where all players choose the 1 strategy:

∀i ∈ N : ui(0, . . . , 0) > ui(1, . . . , 1).

If N ⊆ IN is infinite, {0, 1}N is not countable. Yet, this game is an ordinal potential

game — a result that is implicit in Basu (1994).

Proposition 5.11 The game G = 〈N, (Xi)i∈N , (ui)i∈N〉 as described above is an ordinal

potential game.

Proof. Take for all x ∈ X = {0, 1}N :

P (x) =
∑

{i∈N |xi=1}
2−i.

Let i ∈ N, x−i ∈ X−i. Then ui(1, x−i) > ui(0, x−i) by definition. Also P (1, x−i) −
P (0, x−i) = 2−i > 0. Hence P is an ordinal potential for G. 2



Chapter 6

Voluntary Contribution to Multiple

Facilities; A Class of Ordinal

Potential Games

6.1 Introduction

The object of this chapter, which is based on Voorneveld, Koster, and Reijnierse (1998),

is to study games arising from a class of problems in which players make private con-

tributions for the eventual funding of a collection of facilities, or — as we call them —

machines. The machines are considered public goods: once a machine has been built,

all players can use it. Specifically, in the contribution problem there are finitely many

players. Each of these players is interested in a subset of the finite set of machines.

Realization of these machines is necessary for him to derive a benefit: only if a superset

of them is realized, he receives a reward. Associated with each machine are its costs.

We focus on two decision making processes, differing in the possibilities for cooperation.

In the cooperative situation — in presence of the possibility to enforce general agree-

ment — we focus on the naturally related cooperative TU-game, the realization game.

The game is determined by associating to each coalition of players the aggregate profits

that it is capable of generating itself independent from the others, just by making an

optimal choice between the feasible combinations of machines.

In the noncooperative mode, i.e., in absence of the possibility to make binding agree-

ments, an additional component, the realization scheme, determines the strategic con-

tribution game. The players are assumed to submit a contribution independently of the

other players, and given the profile of contributions the realization scheme determines

which machines are realized, and consequently also the individual payoffs. The strategy

space of each player is his set of possible contributions. This set is taken to be the

interval from zero (inclusive) to a player’s reward (exclusive), meaning that each player

contributes a nonnegative amount, but strictly less than his reward. The payoff function

55
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of a player is a player’s reward if all machines he is interested in are realized, minus his

contribution.

Up to now, not much has been said about the realization function: after all contri-

butions have been made, what machines will be built? In fact, many possible realization

functions come to mind. But considering that the players behave noncooperatively to

subsidize public goods, it is of obvious significance to investigate whether a realization

scheme can be defined that induces the contributors to play the contribution game —

perhaps without them being aware of it — in the interest of the collective player set. In

this chapter, a simple measure of collective welfare is used: the sum of the individual

player’s payoff functions, often referred to as the classical utilitarian collective welfare

function (cf. Moulin, 1988).

It is indeed possible to define a realization scheme in such a way that the contribution

game is best-response equivalent with a coordination game in which each contributor’s

payoff is the utilitarian welfare function. In terms of Monderer and Shapley (1996),

this realization scheme makes the contribution game an ordinal potential game, where

one of the ordinal potential functions is the utilitarian welfare function. The realization

scheme takes into account that each contributor is willing to pay only for machines

he is interested in and that the money allocated to a machine is never more than its

costs. Remaining contributions in excess of the costs of the realized machines go to

waste. Under these restrictions, there may still be several ways to allocate as much of

the contributions as possible to the machines. Our realization scheme builds only those

machines that are completely financed by each such maximal allocation. The realization

scheme uses maximal flows and minimum cuts in certain flow networks.

The existence of Nash equilibria of the contribution game is established and several of

its properties are studied. In a Nash equilibrium, a player makes a positive contribution

only if all machines he is interested in are realized. Moreover, the contributions in a

Nash equilibrium exactly suffice to pay for the machines of the players making a positive

contribution, so no money goes to waste.

Now that it has been established that the players at least implicitly act in the interest

of utilitarian welfare and that the game has a nonempty collection of Nash equilibria,

one can derive that there is a Nash equilibrium maximizing utilitarian welfare. Hence,

single players have no incentive to deviate since the profile is a Nash equilibrium, and

the entire player set has no incentive to deviate since the profile maximizes utilitarian

welfare. But one can show more. Such strategy profiles are in fact strong Nash equilibria

of the contribution game: there is no coalition of players with an incentive to deviate

from a strategy profile maximizing utilitarian welfare.

In particular this means that each strong Nash equilibrium defines a pre-imputation

of the cooperative realization game, and — as will be shown — it determines a core

element. There exists a strong relation between the concept of the core and the concept

of strong Nash equilibrium: there is a 1-1 correspondence between the set of strong Nash

equilibria of the contribution game and the payoffs in the core except those that give
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zero payoff to non-null players.

Summarizing, by choosing a particular realization scheme, one can guarantee that

the players of a noncooperative contribution game act in common interest, in the sense

that maximizing a player’s payoff function given the strategy profile of his opponents is

equivalent with maximizing utilitarian welfare given the strategy profile of his opponents.

Not only do the players act in common interest, but there exist profiles maximizing

utilitarian welfare, which turn out to be strong Nash equilibria of the contribution game

and core elements of the realization game.

6.2 Model

In this section the model is specified and some preliminary results are provided. A

realization problem is represented by a tuple

G = 〈N,M, m ∈ (2M)N , ω ∈ IRN
++, c ∈ IRM

++〉,
where

• N is the nonempty, finite set of players;

• M is the nonempty, finite set of public goods or machines;

• m = (mi)i∈N ∈ (2M)N specifies the set of machines required by each player: player

i ∈ N needs the machines in mi ⊆ M,mi 6= ∅;
• ω = (ωi)i∈N ∈ IRN

++ specifies the reward to each player i ∈ N if (a superset of) all

machines in mi are realized;

• c = (cj)j∈M ∈ IRM
++ specifies for each machine j ∈ M the costs cj to provide this

machine.

The machines are considered to be public goods: once a machine has been built, all

players can make use of it. Each realization problem corresponds to a TU-game in a

natural way. The value of a coalition of players S ⊆ N is the total of net benefits

that it is able to collect by building the right combination of machines. That is, the

cooperative realization game associated with a realization problem G = 〈N, M, m, ω, c〉 is

the TU-game (N, vG) defined through

vG(S) = max
L⊆M





∑

i∈S: mi⊆L

ωi −
∑

j∈L

cj



 for all S ⊆ N.

Example 6.1 Let G = 〈N, M, m, ω, c〉 be the realization problem with N = {1, 2, 3},
M = {p, q, r}, m1 = {p},m2 = {p, q},m3 = {q, r}, ω = (10, 10, 20), and c = (9, 5, 10).

The values of the different coalitions of the corresponding 3-player cooperative realization

game (N, vG) are listed in Figure 6.1 /
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S ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} N

vG(S) 0 1 0 5 6 6 6 16

Figure 6.1: The values for vG.

Some additional notation: for S ⊆ N write ω(S) =
∑

i∈S ωi and mS = ∪i∈S mi.

Theorem 6.2 The cooperative realization game (N, vG) is convex, i.e. for every i ∈
N,S ⊂ T ⊆ N\{i}:

vG(T ∪ {i})− vG(T ) >
= vG(S ∪ {i})− vG(S).

Proof. Let Si ⊆ S ∪ {i} be such that vG(S ∪ {i}) = ω(Si) − c(mSi
) and let T0 ⊆ T be

such that vG(T ) = ω(T0)− c(mT0). Then:

vG(T ∪ {i})− vG(T ) >
= {ω(T0 ∪ Si)− c(mT0∪Si

)} − {ω(T0)− c(mT0)}

= ω(Si)− ω(Si ∩ T0)− c(mSi
) + c(mSi

∩mT0)

= vG(S ∪ {i})− {ω(Si ∩ T0)− c(mSi∩T0)}

>
= vG(S ∪ {i})− vG(S).

2

The convexity of cooperative realization games expresses that there is an incentive for

the players to cooperate. Given the cooperation of the grand coalition the problem of

allocating vG(N) over the individual players remains. A preferable allocation is stable

in the sense that no coalition of players has an incentive to split off. The corresponding

solution concept for TU-games incorporating this collective rationality principle is the

core.

Definition 6.3 The core C(N, v) of a TU-game (N, v) consists of all vectors x ∈ IRN

satisfying the following conditions:

(i)
∑

i∈S xi
>
= v(S) for all S ⊆ N

(ii)
∑

i∈N xi = v(N).

/
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Condition (ii) combines the feasibility requirement
∑

i∈N xi
<
= v(N) with the rationality

constraint for the grand coalition,
∑

i∈N xi
>
= v(N). It is common to refer to (ii) as

efficiency; it assures that all profits of cooperation are allocated. A well-known relation

between the convexity of games and the existence of core elements is the following:

Theorem 6.4 (Shapley, 1971) If (N, v) is convex, then C(N, v) 6= ∅.

This means that C(N, vG) 6= ∅ for each realization problem G.

The values vG(S) can be calculated in polynomial time by determining minimal cuts of

certain flow networks that are defined subsequently. For S ⊆ N construct a flow network

ΓS as follows. ΓS has a node set V consisting of a source, a sink, S, and mS = ∪i∈S mi.

The nodes are called So, Si, node(i) (i ∈ S), and node(j) (j ∈ mS). ΓS has arc set A

consisting of directed arcs. For each player i ∈ S there is an arc arc(i) from the source

So to player i’s node node(i) with capacity cap(i) = ωi. When machine j ∈ mS is an

element of mi, there is an arc arc(ij) from node(i) to node(j) with a capacity strictly

larger than the individual benefits ωi, say for instance cap(ij) = ωi+1. For each machine

j ∈ mS there is an arc arc(j) from node(j) to the sink Si with capacity cap(j) = cj.

Example 6.5 The flow network ΓN corresponding to the realization problem in Exam-

ple 6.1 has the form of Figure 6.2. /
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Figure 6.2: A flow network

Theorem 6.9 shows that the construction of precisely those machines that appear in

some minimum cut of ΓS maximizes the aggregate payoffs for coalition S. Definitions

concerning flows and cuts in a flow network (V,A) with a source and a sink are briefly

reviewed. For a more detailed study, see for instance Rockafellar (1984). A flow is
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a function f : A → IR such that for each directed arc (i, j) from node i to node j,

f(i, j) ∈ [0, cap(i, j)], and flow is conserved at every node, except possibly at the source

and the sink. One can understand a flow as an amount of water transported from the

source, through the network, to the sink, without flooding the arcs. A cut is a set of

arcs such that each positive flow from source to sink uses at least one of these arcs.

Intuitively, it is called a cut because removal of the arcs in a cut would disconnect

all possible channels for a positive flow. The maximal amount of flow in a network

Γ = (V, A) is denoted max flow(Γ). The capacity of a cut is the sum of the capacities

of the arcs in this cut. A cut is minimal if there is no cut in the network with a smaller

capacity. The capacity of a minimum cut of Γ is denoted min cut(Γ). The following

results are often used.

Lemma 6.6 In a network Γ = (V, A),

1. max flow(Γ) = min cut(Γ).

2. an arc is used to full capacity in each maximal flow if and only if it is contained in

some minimum cut.

The first part of the lemma is the famous max flow-min cut theorem of Ford and Fulkerson

(1956). The proof of the second part is straightforward: an arc is used to full capacity

in each maximal flow if and only if reducing its capacity reduces the value of the flow,

if and only if the arc is in some minimum cut. Consider a flow network ΓS arising from

a realization problem G. Notice that the capacity of an arc arc(ij) with i ∈ S, j ∈ mS

is chosen so large, that arcs of this type are never in a minimum cut of ΓS. Thus, for

every minimum cut C in a flow network ΓS there exist S ′ ⊆ S and T ⊆ mS such that

C = (
⋃

i∈S′ arc(i))∪
(⋃

j∈T arc(j)
)
. With a slight abuse of notation, this cut C is denoted

(S ′, T ) with S ′ ⊆ S, T ⊆ mS. The set of minimum cuts of a flow network ΓS is denoted

MC(ΓS).

The following example illustrates these definitions.

Example 6.7 Consider a flow network similar to that in the previous example. Let

ω1 = 10, ω2 = 6, ω3 = 8, and take cp = 9, cq = 5, cr = 10. This gives the flow network

in Figure 6.3. The capacities of intermediary arcs are considered to be high and are

omitted for notational convenience.

There are infinitely many maximal flows by taking convex combinations of the maximal
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Figure 6.3: Illustrating flows and cuts

flows f and g defined as follows:

arc f g

arc(1) 8 9

arc(2) 6 5

arc(3) 8 8

arc(1p) 8 9

arc(2p) 1 0

arc(2q) 5 5

arc(3q) 0 0

arc(3r) 8 8

arc(p) 9 9

arc(q) 5 5

arc(r) 8 8

There is one minimum cut, namely C = (S, T ) with S = {3} and T = {p, q}. Notice

that the maximal amount of flow from source to sink equals 22, which is exactly the

capacity of the cut (S, T ). /

Lemma 6.8 Let G be a realization problem and ΓS the corresponding flow network for

a coalition of players S. If C1 = (S1, T1) and C2 = (S2, T2) are minimum cuts of ΓS,

then so are C3 = (S1 ∩ S2, T1 ∪ T2) and C4 = (S1 ∪ S2, T1 ∩ T2).

Proof. Each directed path from source to sink is uniquely described by a pair (i, j)

with i ∈ S and j ∈ mi. By definition of a cut, for each such path (i, j) either i ∈ Sk or

j ∈ Tk (k = 1, 2). It follows easily that i ∈ S1 ∩ S2 or j ∈ T1 ∪ T2 and that i ∈ S1 ∪ S2
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or j ∈ T1 ∩ T2. As a consequence, C3 and C4 are cuts. Moreover,

∑

`∈C1

cap(`) +
∑

`∈C2

cap(`) =
∑

i∈S1

cap(i) +
∑

j∈T1

cap(j) +
∑

i∈S2

cap(i) +
∑

j∈T2

cap(j)

=
∑

i∈S1∩S2

cap(i) +
∑

j∈T1∪T2

cap(j) +
∑

i∈S1∪S2

cap(i) +
∑

j∈T1∩T2

cap(j)

=
∑

`∈C3

cap(`) +
∑

`∈C4

cap(`).

Since both C1 and C2 are minimum cuts, C3 and C4 are minimum cuts. 2

Theorem 6.9 Let G = 〈N, M, m, ω, c〉 be a realization problem and (N, vG) the corre-

sponding cooperative realization game. Let S ⊆ N and let (S1, Q) ∈ MC(ΓS). Then

vG(S) =
∑

i∈S: mi⊆Q

ωi −
∑

j∈Q

cj.

Proof. Every cut of ΓS that is minimal w.r.t. set inclusion is of the form ({i ∈ S | mi 6⊆
P}, P ) for some P ⊆ M . Hence S1 = {i ∈ S | mi 6⊆ Q} and

∑

i∈S: mi 6⊆Q

cap(i) +
∑

j∈Q

cap(j) = min
P⊆M





∑

i∈S: mi 6⊆P

cap(i) +
∑

j∈P

cap(j)



 .

This gives

∑

i∈S: mi⊆Q

ωi −
∑

j∈Q

cj =
∑

i∈S

cap(i)−




∑

i∈S: mi 6⊆Q

cap(i) +
∑

j∈Q

cap(j)





=
∑

i∈S

ωi − min
P⊆M





∑

i∈S: mi 6⊆P

cap(i) +
∑

j∈P

cap(j)





=
∑

i∈S

ωi + max
P⊆M



−

∑

i∈S: mi 6⊆P

ωi −
∑

j∈P

cj





= max
P⊆M





∑

i∈S: mi⊆P

ωi −
∑

j∈P

cj





= vG(S).

2
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6.3 Contribution games

In the cooperative model for realizing a set of machines, as discussed in the previous

section, a collective of players is able to decide upon the optimal set of machines to be

constructed. This section formulates the realization problem as a contribution problem

where no binding agreements can be made and the different players have to decide

individually how much they want to spend on having their machines realized. After

the individual contributions have been made, an independent arbitrator is supposed to

decide upon the machinery to buy. This task involves a lot of ambiguity, since in general

a profile of contributions can be associated with more than one feasible set of machines.

Therefore the arbitrator makes use of a decision rule, a so-called realization scheme. A

realization scheme maps each profile of contributions to an affordable combination of

machines. A realization problem G = 〈N, M,m ∈ (2M)N , ω ∈ IRN
++, c ∈ IRM

++〉 together

with a realization scheme R is called a contribution problem and is denoted

C = 〈N, M,m ∈ (2M)N , ω ∈ IRN
++, c ∈ IRM

++, R〉.

The arbitration procedure is not a black box: before the players make their bids known

to the arbitrator the realization scheme is publicly announced.

It makes sense to require from the arbitrator that he puts forward a “reasonable”

realization scheme. For instance, it may be perceived as “unfair” if the arbitrator decides

to use the contribution of a player to buy other machines than he is interested in,

especially if these are machines for zero contributors. Also the realization scheme should

give the players the right incentives. Those players who profit a lot by having the

desired set of machines should be pushed to contribute. The realization scheme defined

in this section combines a number of desirable features in this respect. The formal

definition requires some additional work. First we formally define the strategic game

that corresponds to the above noncooperative setting.

The contribution problem C = 〈N, M, m ∈ (2M)N , ω ∈ IRN
++, c ∈ IRM

++, R〉 induces

a contribution game G(C) = 〈N, (Xi)i∈N , (ui)i∈N〉, where the strategy space of player

i ∈ N , the set of possible contributions, is Xi = [0, ωi). The realization scheme R :∏
i∈N Xi → 2M specifies for each profile of contributions of the players which machines are

built. Player i’s payoff function ui : X → IR is defined, for each profile x = (xi)i∈N ∈ X

as

ui(x) =





−xi if mi 6⊆ R(x)

ωi − xi if mi ⊆ R(x).

That is: he gets his reward ωi only if all of his machines are realized and his contribution

xi causes disutility.

By taking Xi = [0, ωi), it is assumed that each player i ∈ N contributes a nonnegative

amount, but strictly less than his reward ωi. This is not a very restrictive assumption: it

makes no sense to contribute more than the benefit you can derive from the realization
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of your machines and contributing ωi is weakly dominated by contributing 0. A different

approach — not influencing the results in the present chapter — would be to endow each

player i ∈ N with an initial amount ei ∈ IR+ of money such that ei < ωi and to take

Xi = [0, ei]. This approach is not taken in this chapter.

The promised realization scheme R is inspired by the techniques that were used to

find the values of the characteristic function of the realization problem. We define in a

similar way a flow network Γ(x) for each profile x ∈ X of contributions. Γ(x) has a node

set V consisting of a source, a sink, N , and M . The nodes are called So, Si, node(i)

(i ∈ N), and node(j) (j ∈ M). Γ(x) has arc set A consisting of directed arcs. For each

player i ∈ N there is an arc arc(i) from the source So to player i’s node node(i) with

capacity cap(i) = xi. When machine j ∈ M is an element of mi, there is an arc arc(ij)

from node(i) to node(j) with a capacity strictly larger than any possible contribution by

player i, for instance cap(ij) = ωi+1. For each machine j ∈ M there is an arc arc(j) from

node(j) to the sink Si with capacity cap(j) = cj. Notice that the underlying network

(V, A) is the same for each Γ(x); only the capacities of the player arcs are different.

Example 6.10 In a contribution problem with player set N = {1, 2, 3}, machine set

M = {p, q, r}, and m1 = {p},m2 = {p, q},m3 = {q, r}, the flow network Γ(x) given

contributions x = (x1, x2, x3) has the form of Figure 6.4. /
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Figure 6.4: The flow network Γ(x)

Recall the definitions concerning flows and cuts in a flow network (V, A) with a source

and a sink. Take a flow network Γ(x) arising from some contribution problem C. The

set of minimum cuts of Γ(x) will be denoted by MC(x). Notice that the capacity of an

arc arc(ij) with i ∈ N, j ∈ M is chosen so large, that arcs of this type are never in a

minimum cut of Γ(x). Thus, for every minimum cut C ∈ MC(x) there exist S ⊆ N and

T ⊆ M such that C = (S, T ).
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What insight does the flow network Γ(x) defined above give us in the problem under

consideration? Given the constraints that each player i ∈ N is willing to contribute only

to the cost of machines in his desired set mi and the money allocated to a machine does

not exceed its costs, a maximal flow f describes exactly

• how much of the total contribution
∑

i∈N xi can be used for the provision of the

machines, namely max flow(Γ(x)),

• which machines can be financed using this particular maximal flow, namely those

with arcs used to maximum capacity, and

• who contributes how much to the costs of these machines in the maximal flow f :

player i contributes to machine j the amount of flow through arc(ij), f(arc(ij)).

Since selecting a particular maximal flow would strongly favor some of the players, the

realization scheme R is defined as follows: in a contribution problem C, for each profile

x ∈ X of contributions the set R(x) of realized machines equals the set of machines used

to maximal capacity by each maximal flow in Γ(x). By Lemma 6.6.2, this is equivalent

with stating that a machine is realized if and only if it is contained in some minimum

cut of Γ(x). Formally,

∀x ∈ ∏

i∈N

Xi : R(x) =
⋃

(S,T )∈MC(x)

T.

Many of the proofs use the fact that for each x ∈ X there exists a minimum cut (S, T )

in Γ(x) such that R(x) = T . This result follows immediately from the next lemma.

Lemma 6.11 Let C be a contribution problem, x ∈ X a profile of contributions, and

Γ(x) the corresponding flow network. If C1 = (S1, T1) and C2 = (S2, T2) are minimum

cuts, then C3 = (S1 ∩ S2, T1 ∪ T2) and C4 = (S1 ∪ S2, T1 ∩ T2) are also minimum cuts.

Proof. See the proof of Lemma 6.8. 2

The realization scheme R uses personalized contributions, i.e., each individual contribu-

tion xi is used for machines in mi. No player is subsidizing others at the cost of the

realization of his own plan. The next sections will also show that in equilibrium the

players together act on behalf of the desires of the society of players by maximizing

utilitarian welfare.

6.4 Contribution games are ordinal potential games

Applications of potential games to economic situations were mentioned in Chapters 2,

3, and 4. In this section, contribution games are shown to be ordinal potential games.

Since every order-preserving transformation of an ordinal potential function is again an

ordinal potential function, it follows that an ordinal potential game has infinitely many
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different potential functions (whereas for exact potential games the potential function

was determined up to an additive constant; see Proposition 2.8). It will be shown that

one of the potential functions of a contribution game is the classical utilitarian collective

welfare function, defined as the sum of the individual players’ utility functions. See

Moulin (1988) for a survey of this and other welfare functions.

Theorem 6.12 Let G(C) = 〈N, (Xi)i∈N , (ui)i∈N〉 be a contribution game. The utilitar-

ian welfare function U : X → IR defined by U =
∑

i∈N ui is an ordinal potential of

G(C).

Proof. Let i ∈ N , x−i ∈ X−i, and xi, yi ∈ Xi. Assume without loss of generality that

xi < yi. For notational convenience, write x = (xi, x−i) and y = (yi, x−i). Discern three

cases:

Case 1: mi 6⊆ R(y).

Since some arcs that correspond with machines in mi are not a member of any minimum

cut of the flow network Γ(y), it must be that arc(i) ∈ C for every C ∈ MC(y). By

decreasing cap(i) from yi to xi the collection of minimum cuts does not change. So

R(y) = R(x). This implies ui(y)− ui(x) = U(y)− U(x) = xi − yi.

Case 2: mi ⊆ R(x).

By Lemma 6.11, there exists a minimum cut (S, T ) in the flow network Γ(x) such that

T = R(x). Since mi ⊆ T , arc(i) /∈ S. By increasing cap(i) from xi to yi, (S, T )

remains a minimum cut; no new minimum cuts appear, although some may disappear.

So R(y) ⊆ R(x). Because T ⊆ R(y) it follows that R(y) = R(x) and that ui(y)−ui(x) =

U(y)− U(x) = xi − yi.

Case 3: mi 6⊆ R(x) and mi ⊆ R(y).

In this case, ui(y) − ui(x) = ωi − yi + xi > 0. When player i spends the amount xi,

arc(i) ∈ C for every C ∈ MC(x). Let zi ∈ (xi, yi] be the smallest contribution of player

i for which arc(i) is no longer in every minimum cut of the flow network Γ(zi, x−i). Case

1 shows that R(x) = R(t, x−i) for every t ∈ (xi, zi). Case 2 shows that R(y) = R(t, x−i)

for every t ∈ [zi, yi]. By increasing cap(i) from xi to zi, no minimum cut disappears,

whereas some minimum cuts will appear, at least one of them not containing arc(i).

Therefore R(x) is a proper subset of R(zi, x−i) = R(y) and as a consequence

U(y)− U(x) =
∑

l: ml⊆R(y)

ωl − yi −
∑

l: ml⊆R(x)

ωl + xi
>
= ωi − yi + xi > 0.

This concludes our proof. 2

Consequently, a contribution game is best-response equivalent with a coordination game

where the payoff functions of the players are replaced by the utilitarian welfare function

U . This is a significant insight: even though the players play a noncooperative game,
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utilitarian social welfare enters their game in the sense that — given the strategy profile

of the opponents — a player maximizes his payoff if and only if he maximizes utilitarian

welfare. Therefore, it is of interest to investigate the relation between equilibria of the

contribution game and strategies that maximize social welfare.

6.5 Equilibria of contribution games

The existence of Nash equilibria of contribution games is established in the first theorem

of this section. This result is not straightforward, taking into account the fact that

payoff functions ui are discontinuous and the strategy set of player i equals [0, ωi), which

is not closed. Two properties of Nash equilibria are derived: no money is wasted in

an equilibrium and if a player is not satisfied since not all of his machines are realized,

then he contributes nothing. These two properties are used to establish the existence

of strategy profiles that maximize utilitarian welfare in a contribution game. Utilitarian

welfare maximizing strategy profiles are proven to be strong Nash equilibria: no coalition

of players has an incentive to deviate from such a profile.

Theorem 6.13 Each contribution game G(C) has a Nash equilibrium.

Proof. The proof is based on an algorithm which is shown to terminate in finitely many

steps with a Nash equilibrium of the game. Initially, set k = 0 and x0 = 0: each player

contributes zero. The general step of the algorithm is as follows. After k iterations, we

are given a strategy profile xk such that

∑

i∈N

xk
i =

∑

j∈R(xk)

cj = max flow(Γ(xk)) = min cut(Γ(xk)), (6.1)

{i ∈ N | xk
i > 0,mi 6⊆ R(xk)} = ∅, (6.2)

{i ∈ N | mi ⊆ R(xk−1)} ⊂ {i ∈ N | mi ⊆ R(xk)} if k >
= 1. (6.3)

The profile x0 = 0 trivially satisfies these conditions. Define

Ck = {i ∈ N | xk
i > 0,mi ⊆ R(xk)},

F k = {i ∈ N | xk
i = 0,mi ⊆ R(xk)},

Nk = {i ∈ N | xk
i = 0,mi 6⊆ R(xk)}.

The algorithm stops after k iterations if Nk = ∅ or if Nk 6= ∅ and xk is a Nash equilibrium

of G(C). If the algorithm does not stop after k iterations, some player i(k + 1) ∈ N can

improve by unilaterally changing his contribution. We claim that i(k + 1) ∈ Nk. To
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prove this claim, notice that by (6.2) N is the union of the pairwise disjoint sets Ck, F k,

and Nk.

Clearly, i(k + 1) /∈ F k, since players i ∈ F k achieve their payoff maximum ωi by

contributing nothing and therefore cannot possibly increase their payoff.

To show that i(k + 1) /∈ Ck, consider h ∈ Ck. By definition xk
h > 0 and mh ⊆ R(xk).

Player h cannot benefit from increasing his contribution: for yh ∈ Xh with yh > xk
h

we have uh(yh, x
k
−h)

<
= ωh − yh < ωh − xk

h = uh(x
k). Player h also cannot benefit from

decreasing his contribution: Property (6.1) implies that each maximal flow f in Γ(xk)

uses every arc arc(i) with i ∈ N to full capacity xk
i and each arc arc(j) with j ∈ R(xk)

to full capacity cj. If player h decreases his contribution, say to λxk
h with λ ∈ [0, 1), a

maximal flow f ′ in the new flow network can be constructed as follows:

For i ∈ N : f ′(arc(i)) =

{
λf(arc(i)) if i = h

f(arc(i)) otherwise.

For i ∈ N, j ∈ mi : f ′(arc(ij)) =

{
λf(arc(ij)) if i = h, j ∈ mh

f(arc(ij)) otherwise.

For j ∈ M : f ′(arc(j)) =
∑

i∈N : j∈mi
f ′(arc(ij)).

If j ∈ mh is such that f(arc(hj)) > 0, then f ′(arc(j)) < f(arc(j)) = cj, so j is not used

to full capacity by the maximal flow f ′ in the new flow network: not all machines in mh

are used to full capacity by every maximal flow, so player h will lose his reward ωh if

he decreases his contribution, thus decreasing his payoff from ωh − xk
h > 0 to something

nonpositive, namely −λxk
h.

Consequently, i(k+1) ∈ Nk, which implies xk
i(k+1) = 0. The fact that he can improve,

means that
∑

j∈mi(k+1)\R(xk) cj < ωi(k+1): he can pay the costs necessary to finance that

part of his machines that is not realized in Γ(xk). Set

xk+1
i =





xk
i if i 6= i(k + 1)

∑
j∈mi\R(xk) cj if i = i(k + 1).

Notice that a maximal flow f in Γ(xk) can easily be extended to a maximal flow in Γ(xk+1)

by adding a flow via player i(k +1) that pays exactly for his machines in mi(k+1) \R(xk).

Since such an extended maximal flow exactly finances the machines in R(xk) ∪mi(k+1)

and no others, it follows that R(xk+1) = R(xk) ∪ mi(k+1). Increasing k by one, this

also means that the input again satisfies (6.1) – (6.3), so that the general step can be

repeated.

Two things remain to be shown: that the algorithm ends and that — if it ends after

k iterations — xk is indeed a Nash equilibrium of the game.

By construction, the algorithm ends after k iterations if Nk 6= ∅ and xk is a Nash

equilibrium, or if Nk = ∅. If Nk = ∅, xk must be a Nash equilibrium, since it was shown
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above that any player that could benefit from unilateral deviation had to be a member

of Nk. By (6.3), |Nk| < |Nk−1| if k >
= 1, so the algorithm terminates. 2

Now that the existence of Nash equilibria in contribution games has been established,

it becomes interesting to study their properties. The next proposition makes clear that

players whose machine sets are not completely realized do not contribute anything in an

equilibrium. Moreover, no money is wasted: in an equilibrium, the contributions of the

players exactly suffice to pay for the realized machines.

Proposition 6.14 Let G(C) be a contribution game and x ∈ NE(G(C)).

1. Let i ∈ N . If mi 6⊆ R(x), then xi = 0.

2.
∑

j∈R(x) cj = min cut(Γ(x)) = max flow(Γ(x)) =
∑

i∈N xi.

Proof.

1. Assume mi 6⊆ R(x) and suppose that xi > 0. By definition of R, mi 6⊆ R(x) implies

that there is no minimum cut (S, T ) in Γ(x) such that mi ⊆ T . Hence, arc(i) is in

each minimum cut of Γ(x). Reducing i’s contribution slightly does not change the

set of minimum cuts and thus increases i’s payoff, contradicting x ∈ NE(G(C)).

Hence mi 6⊆ R(x) implies xi = 0.

2. Obviously
∑

j∈R(x)

cj
<
= min cut(Γ(x)) = max flow(Γ(x)) <

=
∑

i∈N

xi.

By Lemma 6.11, Γ(x) has a minimum cut (S, T ) such that R(x) = T . If mi ⊆ T =

R(x) and xi > 0, then arc(i) /∈ S. If mi 6⊆ T = R(x), then xi = 0 by Proposition

6.14.1. Hence S contains no arcs arc(i) with cap(i) = xi > 0. Thus
∑

j∈R(x)

cj = min cut(Γ(x)) = max flow(Γ(x)).

Suppose ∑

j∈R(x)

cj = min cut(Γ(x)) = max flow(Γ(x)) <
∑

i∈N

xi.

Then there exists an i ∈ N with xi > 0 such that arc(i) is not used to full

capacity in some maximal flow in Γ(x). According to Lemma 6.6.2, arc(i) is in no

minimum cut. Then i can reduce his contribution slightly without affecting the set

of minimum cuts and thus increase his payoff, contradicting x ∈ NE(G(C)). 2

The next proposition shows that a strategy profile maximizing utilitarian welfare U exists

in each contribution game G(C). Notice that the collection arg maxx∈X U(x) is a subset

of NE(G(C)); otherwise, some player could increase his payoff by deviating, but then

the ordinal potential U would increase as well.
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Proposition 6.15 Let G(C) be a contribution game and U =
∑

i∈N ui. Then the utili-

tarian welfare function achieves its maximum: arg maxx∈X U(x) 6= ∅.
Proof. Observe that arg maxx∈X U(x) = arg max{U(x) | x ∈ NE(G(C))}. Let x ∈
NE(G(C)). By Proposition 6.14.2:

U(x) :=
∑

i∈N

ui(x)

=
∑

i∈N : mi⊆R(x)

ωi −
∑

i∈N

xi

=
∑

i∈N : mi⊆R(x)

ωi −
∑

j∈R(x)

cj.

There are finitely many machines, so the collection {R(x) | x ∈ NE(G(C))} ⊆ 2M has

finitely many elements. This implies that {U(x) | x ∈ NE(G(C))} also has finitely many

elements. Consequently, this set has a maximum: arg maxx∈X U(x) 6= ∅. 2

In a potential game, the collection of strategy profiles at which there is a potential

achieving its maximum is called the potential maximizer. The potential maximizer is

suggested as an equilibrium refinement tool by Monderer and Shapley (1996) and Peleg,

Potters, and Tijs (1996). In ordinal potential games, different potentials give rise to

different maximizers (as opposed, for instance, to exact potential games). Hence the

collection of strategies maximizing utilitarian welfare in a contribution game may be a

proper subset of the potential maximizer of the game.

Strong Nash equilibria were defined in Aumann (1959). In a game 〈N, (Xi)i∈N , (ui)i∈N〉,
a strategy combination x ∈ X is a strong Nash equilibrium if for every ∅ 6= S ⊆ N and

every yS ∈ XS there exists an i ∈ S such that ui(x) >
= ui(xN\S, yS). In other words,

x ∈ X is a strong Nash equilibrium if there is no coalition ∅ 6= S ⊆ N of players and no

alternative strategy yi ∈ Xi \ {xi} for the members i ∈ S such that ui(xN\S, yS) > ui(x)

for each player i ∈ S. A slightly weaker definition would be to require that there is no

coalition of players that can deviate and make each of its members not worse off and at

least one of its members better off. In contribution games, however, the two definitions

are equivalent, since each payoff function ui satisfies

∀x, y ∈ X : xi 6= yi ⇒ ui(x) 6= ui(y).

The set of strong Nash equilibria of a game G is denoted SNE(G).

Although the set of Nash equilibria is nonempty in a wide class of noncooperative

games, existence of strong Nash equilibria is much rarer. Existence of strong Nash

equilibria in contribution games is established in the next theorem by showing that a

strategy profile maximizing utilitarian welfare is a strong Nash equilibrium.

Theorem 6.16 Let G(C) = 〈N, (Xi)i∈N , (ui)i∈N〉 be a contribution game, U =
∑

i∈N ui.

Then arg maxx∈X U(x) ⊆ SNE(G(C)). Hence SNE(G(C)) 6= ∅.
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Proof. As soon as the inclusion is established, existence of strong Nash equilibria

follows from Proposition 6.15. Let x ∈ arg maxx∈X U(x). Individual players cannot

profitably deviate from x, since x ∈ NE(G(C)). The entire player set N cannot profitably

deviate from x, since x maximizes
∑

i∈N ui. Suppose that x /∈ SNE(G(C)). Then there

exists a coalition S ⊂ N with 1 < |S| < |N | and strategies yi ∈ Xi \ {xi} for each

i ∈ S such that ui(xN\S, yS) > ui(x) for each i ∈ S. For notational convenience, define

y = (xN\S, yS). Below it is shown that there is a strategy profile z ∈ X such that

U(z) > U(x), contradicting the assumption that x maximizes U .

A player i ∈ N , in general, belongs to one of four types:

(type 1) xi > 0 , mi ⊆ R(x);

(type 2) xi = 0 , mi 6⊆ R(x);

(type 3) xi > 0 , mi 6⊆ R(x);

(type 4) xi = 0 , mi ⊆ R(x).

Since x is a Nash equilibrium, Proposition 6.14.1 implies that there are no players of the

third type in Γ(x). If a player is of the fourth type, he achieves his payoff maximum ωi

without contributing: such players cannot belong to S. Hence, members of S are either

of type 1 or of type 2.

Write S = S1 ∪ S2 with Sk = {i ∈ S | i is of type k}, k = 1, 2. The fact that the

members of S deviate from x and improve their payoff implies

yi < xi and mi ⊆ R(y) if i ∈ S1, (6.4)

yi > 0 and mi ⊆ R(y) if i ∈ S2. (6.5)

It is impossible that S2 = ∅. Suppose, to the contrary, that all members of S are of type

1: S = S1. By (6.4), there exists for each i ∈ S = S1 a λi ∈ [0, 1) such that yi = λixi.

Take any maximal flow f in Γ(x). Then a maximal flow f ′ in Γ(y) is obtained as follows:

For i ∈ N : f ′(arc(i)) =

{
λif(arc(i)) if i ∈ S

f(arc(i)) otherwise.

For i ∈ N, j ∈ mi : f ′(arc(ij)) =

{
λif(arc(ij)) if i ∈ S, j ∈ mi

f(arc(ij)) otherwise.

For j ∈ M : f ′(arc(j)) =
∑

i∈N : j∈mi
f ′(arc(ij)).

According to Proposition 6.14.2, the contributions in Γ(x) are exactly sufficient to pay

for the machines in R(x). By definition of R: f(arc(j)) = cj for all j ∈ R(x). If i ∈ S
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pays part of the costs of j ∈ mi according to f , i.e., f(arc(ij)) > 0, then this flow

decreases by a factor λi in Γ(y), so that f ′(arc(j)) < f(arc(j)) = cj. Hence arc(j) is

not used to full capacity by the maximal flow f ′ in Γ(y), implying that j /∈ R(y). Then

mi 6⊆ R(y), contradicting (6.4). This completes the proof that S2 6= ∅.
Define V = {i ∈ N | xi > 0} and the nonempty machine set M ′ =

⋃
i∈S2

mi \R(x) =⋃
i∈S2

mi \ ⋃
i∈V mi.

Let f be a maximal flow in Γ(x). By definition of R, every arc arc(j) with j ∈ R(x)

is used to full capacity cj by f . By Proposition 6.14.2:
∑

i∈N

f(arc(i)) =
∑

i∈N

xi =
∑

j∈R(x)

cj =
∑

j∈R(x)

f(arc(j)).

Let g be a maximal flow in Γ(y). By (6.5), M ′ ⊆ R(y). By definition of R, every arc

arc(j) with j ∈ M ′ is used to full capacity by g:

for j ∈ M ′ : cj = g(arc(j)).

Since M ′ =
⋃

i∈S2
mi \⋃

i∈V mi, the flow in arcs arc(j) with j ∈ M ′ is generated entirely

by members of S2:

for j ∈ M ′ : cj = g(arc(j)) =
∑

i∈S2: j∈mi

g(arc(ij)).

The total flow through the arcs arc(j) with j ∈ M ′ then equals
∑

j∈M ′
cj =

∑

j∈M ′

∑

i∈S2: j∈mi

g(arc(ij))

and is generated entirely by the members of S2. Given flow g, an arbitrary player i ∈ S2

pays
∑

j∈M ′∩mi
g(arc(ij)) for the machines in M ′ . Summing over the players in S2 yields
∑

j∈M ′
cj =

∑

i∈S2

∑

j∈M ′∩mi

g(arc(ij)) =
∑

j∈M ′

∑

i∈S2: j∈mi

g(arc(ij)).

Define a strategy profile z ∈ X as follows:

zi =





∑
j∈M ′∩mi

g(arc(ij)) if i ∈ S2

xi otherwise.

Combine flows f and g to a feasible flow h in Γ(z) as follows:

For i ∈ N : h(arc(i)) =
{

zi if i ∈ S2

f(arc(i)) = xi = zi otherwise.

For i ∈ N, j ∈ mi : h(arc(ij)) =

{
g(arc(ij)) if i ∈ S2, j ∈ M ′

f(arc(ij)) otherwise.

For j ∈ M : h(arc(j)) =





g(arc(j)) = cj if j ∈ M ′

f(arc(j)) = cj if j ∈ R(x)

f(arc(j)) = 0 otherwise.
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Notice that

∑

i∈N

zi =
∑

i∈S2

zi +
∑

i∈N\S2

zi

=
∑

i∈S2

∑

j∈M ′∩mi

g(arc(ij)) +
∑

i∈N\S2

xi

=
∑

j∈M ′
cj +

∑

j∈R(x)

cj

=
∑

j∈M

h(arc(j)).

Thus, h is a maximal flow in Γ(z) and {arc(j) | j ∈ R(x) ∪ M ′} is a minimum cut

of Γ(z). Hence R(z) = R(x) ∪ M ′. But then ui(z) >
= ui(x) for each i ∈ N \ S2 and

ui(z) = ωi − zi > 0 = ui(x) for each i ∈ S2, implying U(z) > U(x). This contradicts

x ∈ arg maxx∈X U(x). Conclude that x is indeed a strong Nash equilibrium. 2

The converse inclusion of Theorem 6.16 holds as well. The set of realized machines is

the same in each strong Nash equilibrium and — as a consequence — every strong Nash

equilibrium maximizes utilitarian welfare.

Theorem 6.17 Let G(C) be a contribution game and U =
∑

i∈N ui. If x, y ∈ SNE(G(C)),

then R(x) = R(y). Hence SNE(G(C)) ⊆ arg maxz∈X U(z).

Proof. As soon as the implication is established, the inclusion of the set of strong Nash

equilibria in the set of maximizers of utilitarian welfare can be shown as follows: let

x ∈ SNE(G(C)) and y ∈ arg maxz∈X U(z). Then y ∈ SNE(G(C)) by Theorem 6.16 and

R(x) = R(y) by the implication. Then Proposition 6.14.2 implies

U(x) =
∑

i∈N

ui(x) =
∑

i∈N : mi⊆R(x)

ωi −
∑

i∈N

xi

=
∑

i∈N : mi⊆R(x)

ωi −
∑

j∈R(x)

cj =
∑

i∈N : mi⊆R(y)

ωi −
∑

j∈R(y)

cj

=
∑

i∈N : mi⊆R(y)

ωi −
∑

i∈N

yi =
∑

i∈N

ui(y)

= U(y) = max
z∈X

U(z).

So x ∈ arg maxz∈X U(z), as was to be shown.

To show the implication, let x, y ∈ SNE(G(C)) and suppose R(x) 6= R(y). Without

loss of generality, R(y) \R(x) 6= ∅. Below it is shown that the coalition

D = {i ∈ N | yi > 0,mi ∩ [R(y) \R(x)] 6= ∅}
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can profitably deviate from x, contradicting x ∈ SNE(G(C)).

If i ∈ D, then mi 6⊆ R(x), so Proposition 6.14.1 implies that xi = 0 and ui(x) = 0.

Let f be a maximal flow in Γ(y). By definition of R, every arc arc(j) with j ∈
R(y) \ R(x) is used to full capacity cj by f . Since this flow is generated entirely by the

members of D, one finds

∀j ∈ R(y) \R(x) : cj =
∑

i∈D: j∈mi

f(arc(ij)).

Player i ∈ D contributes
∑

j∈mi∩[R(y)\R(x)] f(arc(ij)) to the machines in R(y) \ R(x) in

the maximal flow f . Define z ∈ X by

zi =





xi if i /∈ D

∑
j∈mi∩[R(y)\R(x)] f(arc(ij)) if i ∈ D.

It is shown that this deviation from x by the members of D will guarantee the realization

of R(x) ∪ R(y), which is an improvement for the members of D. Let g be a maximal

flow in Γ(x). A flow h in Γ(z) that extends the flow g in such a way that the machines

in R(y) \R(x) can be financed by the members of D is defined as follows.

For i ∈ N : h(arc(i)) = zi

For i ∈ N, j ∈ mi : h(arc(ij)) =





f(arc(ij)) if i ∈ D, j ∈ R(y) \R(x)

g(arc(ij)) = 0 if i ∈ D, j /∈ R(y) \R(x)

g(arc(ij)) otherwise.

For j ∈ M : h(arc(j)) =





g(arc(j)) = 0 if j ∈ M and
j /∈ R(x) ∪R(y)∑

i∈D: j∈mi
f(arc(ij)) = cj if j ∈ R(y) \R(x)

g(arc(j)) = cj if j ∈ R(x).

Notice that h is a maximal flow in Γ(z) and max flow(Γ(z)) =
∑

i∈N zi =
∑

j∈R(x)∪R(y) cj =

min cut(Γ(z)). Hence R(z) = R(x) ∪ R(y). Then for each i ∈ D: ui(z) = ωi − zi > 0 =

ui(x), contradicting x ∈ SNE(G(C)). 2

6.6 Strong Nash equilibria and the core

Since by Theorem 6.17 each strong Nash equilibrium of the noncooperative contribu-

tion game induces maximal utilitarian welfare, the corresponding profile of individual

net-payoffs defines a pre-imputation of the cooperative realization game. These pre-

imputations are in fact core allocations of the realization game. To be more precise,

there is a one-to-one correspondence between the set of strong Nash equilibria of the

contribution game and the subset of the core of the realization game where players with
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zero payoffs must be null players. In other words, the set of strong Nash equilibria natu-

rally corresponds to the largest subset of the core that maximizes the number of players

with positive rewards. Recall that i ∈ N is a null player for a TU-game (N, v) if for

all S ⊆ N \ {i} it holds v(S ∪ {i}) = v(S). So a null player i is a dummy player with

v({i}) = 0 (see e.g. Shapley, 1953).

Theorem 6.18 Consider a realization problem G = 〈N,M, m, ω, c〉, its associated con-

tribution problem C = 〈N, M, m, ω, c, R〉, and the corresponding cooperative realization

game (N, vG) and contribution game G(C) = 〈N, (Xi)i∈N , (ui)i∈N〉. There exists a one-

to-one correspondence from the set of strong Nash equilibria of G(C) to the following

subset K of C(N, vG):

K := {u ∈ C(N, vG) | for all i ∈ N, ui = 0 implies that i is a null player of vG}.

Proof. Theorem 6.17 states that in each strong Nash equilibrium of G(C) the same

subset of M is realized. Call this subset R. Define N+ = {i ∈ N | mi ⊆ R}. For every

u ∈ K, N+ = {i ∈ N | ui > 0}. To see this, let u ∈ K.

• If i ∈ N+, then mi is realized in every strong Nash equilibrium y, so the reward

ωi of player i contributes to U(y). Hence, vG(N) > vG(N \ {i}). So i is not a null

player of (N, vG), which implies ui > 0 by definition of K.

• If i /∈ N+, then ωi does not contribute to U(y) for any strong Nash equilibrium

y and therefore vG(N) = vG(N \ {i}). Then zi = 0 for every core element z; in

particular ui = 0.

Let u ∈ K. Define x(u) ∈ IRN as follows:

x(u)i =





ωi − ui if i ∈ N+ (so ui > 0)

0 if i 6∈ N+ (so ui = 0).

We prove that x := x(u) is a strong Nash equilibrium. First, we show that xi is a

strategy of player i, i.e., that xi ∈ [0, ωi). This is the case since for all i ∈ N+, ui > 0

and ui
<
= vG(N)− vG(N \ {i}) <

= ωi. Consequently,

∑

i∈N

xi =
∑

i∈N+

ωi −
∑

i∈N

ui =
∑

i∈N+

ωi − vG(N) =
∑

i∈N+

ωi − (
∑

i∈N+

ωi −
∑

j∈R

cj) =
∑

j∈R

cj.

Hence, in order to prove that U(x) is maximal (and thus, by Theorem 6.16, x is a strong

Nash equilibrium), it remains to show that R(x) = R. That is, for every j ∈ R, there

must exist a minimum cut in Γ(x) containing arc(j). There exists a cut with capacity∑
i∈N xi of which arc(j) is a member: take all arcs of the players i ∈ N with xi = 0

and all arcs of elements in R. Hence, it suffices to show that a minimum cut in Γ(x)
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has (at least) capacity
∑

i∈N xi. Let (S, Q) be a minimum cut (with S ⊆ N , Q ⊆ M).

W.l.o.g. i ∈ S if xi = 0. Then mi ⊆ Q for all i ∈ N \ S. The capacity of (S, Q) equals∑
i∈S xi +

∑
j∈Q cj. We have:

∑

i∈S

xi +
∑

j∈Q

cj
>
=

∑

i∈S

xi +
∑

j∈
⋃

i∈N\S
mi

cj

>
=

∑

i∈S

xi +
∑

i∈N\S
ωi − vG(N \ S)

>
=

∑

i∈S

xi +
∑

i∈N\S
(ωi − ui)

>
=

∑

i∈S

xi +
∑

i∈N\S
xi

=
∑

i∈N

xi.

The first inequality holds because (S, Q) is a cut, the second follows from the definition

of vG, the third follows from the assumption that u is a core element, and the fourth

follows from the definition of x.

Now let x ∈ SNE(G(C)). Then u = (ui(x))i∈N can be considered as an allocation of

(N, vG). By Theorems 6.16 and 6.17, U achieves its maximum at x, so the allocation u

is efficient:
∑

i∈N ui = vG(N) (= maxy∈X U(y)).

Let S ⊆ N . To show that u ∈ C(N, vG), we must prove that
∑

i∈S ui
>
= vG(S). Since

u >
= 0, assume that vG(S) > 0.

Let S+ ⊆ S be a smallest subcoalition of S such that vG(S) = vG(S+). Then vG(S) =∑
i∈S+

ωi − ∑
j∈Q cj, where Q =

⋃
i∈S+

mi. We prove that Q ⊆ R. Since vG(S+) > 0,

S+ 6= ∅. Let i ∈ S+. Then vG(S+)− vG(S+ \ {i}) > 0 by the minimality assumption on

S+. By convexity of (N, vG), we get vG(N)− vG(N \{i}) > 0. Hence, the grand coalition

strictly benefits from the fact that i is one of its members, so ωi contributes to the value

of N . Therefore, mi ⊆ R.

In equilibrium no money is wasted and a coalition pays only for machines it needs

(see Proposition 6.14), so it follows that
∑

i∈S+
xi

<
=

∑
j∈Q cj. Hence:

∑

i∈S

ui
>
=

∑

i∈S+

ui =
∑

i∈S+

(ωi − xi) >
=

∑

i∈S+

ωi −
∑

j∈Q

cj = vG(S+) = vG(S).

Conclude that u ∈ C(N, vG). To show that u ∈ K, consider a player i ∈ N with ui = 0.

Then mi 6⊆ R. Hence vG(N) = vG(N \ {i}). This gives that player i is a null player, by

convexity of (N, vG).

To prove the one-to-one correspondence, one has to prove that

1. for each y ∈ K: u(x(y)) = y and
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2. for each y ∈ SNE(G(C)): x(u(y)) = y.

The proof of these claims is straightforward, since for each u ∈ K and y ∈ SNE(G(C)):

{i ∈ N | ui > 0} = {i ∈ N | mi ⊆ R(y)}. 2
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Chapter 7

Best-Response Potential Games

7.1 Introduction

In potential games, introduced by Monderer and Shapley (1996), information concerning

Nash equilibria can be incorporated into a single real-valued function on the strategy

space. All classes of potential games that Monderer and Shapley defined share the finite

improvement property: start with an arbitrary strategy profile. Each time, let a player

that can improve deviate to a better strategy. Under the finite improvement property,

this process eventually ends, obviously in a Nash equilibrium.

The purpose of this chapter, which is based on Voorneveld (1998), is to introduce

and study best-response potential games, a new class of potential games. The main

distinctive feature is that it allows infinite improvement paths, by imposing restrictions

only on paths in which players that can improve actually deviate to a best response. The

definition of best-response potential games is given in Section 7.2. A characterization of

these games is provided in Section 7.3. Relations with the potential games of Monderer

and Shapley (1996) are indicated in Section 7.4. Section 7.5 contains a discussion and

motivation for the concept of best-response potential games.

7.2 Best-response potential games

This section contains the definition of best-response potential games and some prelimi-

nary results.

Definition 7.1 A strategic game G = 〈N, (Xi)i∈N , (ui)i∈N〉 is a best-response potential

game if there exists a function P : X → IR such that

∀i ∈ N, ∀x−i ∈ X−i : arg max
xi∈Xi

ui(xi, x−i) = arg max
xi∈Xi

P (xi, x−i).

The function P is called a (best-response) potential of the game G. /

79
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In other words, a game G = 〈N, (Xi)i∈N , (ui)i∈N〉 is a best-response potential game if

there exists a coordination game 〈N, (Xi)i∈N , (P )i∈N〉 where the payoff to each player is

given by function P such that the best-response correspondence of each player i ∈ N in

G coincides with his best-response correspondence in the coordination game.

Recall that mixed extensions are not considered in Part I of this thesis and that ‘Nash

equilibrium’ should be read as ‘pure-strategy Nash equilibrium’.

Proposition 7.2 Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 be a best-response potential game with

best-response potential P .

1. The Nash equilibria of G = 〈N, (Xi)i∈N , (ui)i∈N〉 and G = 〈N, (Xi)i∈N , (P )i∈N〉, the

coordination game with all payoff functions replaced by the potential P , coincide.

2. If P has a maximum over X (e.g. if X is finite), G has a Nash equilibrium.

7.3 Characterization

This section contains a characterization of best-response potential games, similar to

Theorem 5.6, the main result of Voorneveld and Norde (1997).

Let 〈N, (Xi)i∈N , (ui)i∈N〉 be a strategic game. A path in the strategy space X is

a sequence (x1, x2, . . .) of elements xk ∈ X such that for all k = 1, 2, . . . the strategy

combinations xk and xk+1 differ in exactly one, say the i(k)-th, coordinate. A path is

best-response compatible if the deviating player moves to a best response:

∀k = 1, 2, . . . : ui(k)(x
k+1) = max

yi∈Xi

ui(k)(yi, x
k
−i(k)).

Best-response compatible paths have restrictions only on consecutive strategy profiles,

so by definition the trivial path (x1) consisting of a single strategy profile x1 ∈ X is best-

response compatible. A finite path (x1, . . . , xm) is called a best-response cycle if it is best-

response compatible, x1 = xm, and ui(k)(x
k) < ui(k)(x

k+1) for some k ∈ {1, . . . ,m− 1}.
Define a binary relation < on the strategy space X as follows: x < y if there exists

a best-response compatible path from x to y, i.e., there is a best-response compatible

path (x1, . . . , xm) with x1 = x, xm = y. Notice that x < x for each x ∈ X, since (x) is

a best-response compatible path from x to x. The binary relation ∼ on X is defined by

x ∼ y if x < y and y < x.

By checking reflexivity, symmetry, and transitivity, one sees that the binary relation

∼ is an equivalence relation. Denote the equivalence class of x ∈ X with respect to ∼
by [x], i.e., [x] = {y ∈ X | y ∼ x}, and define a binary relation ≺ on the set X∼ of

equivalence classes as follows: [x] ≺ [y] if [x] 6= [y] and x < y. To show that this relation

is well-defined, observe that the choice of representatives in the equivalence classes is of

no concern:

∀x, x̃, y, ỹ ∈ X with x ∼ x̃ and y ∼ ỹ : x < y ⇔ x̃ < ỹ.
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Notice, moreover, that the relation ≺ on X∼ is irreflexive and transitive.

A tuple (A,≺) consisting of a set A and an irreflexive and transitive binary relation

≺ on A is properly ordered if there exists a function F : A → IR that preserves the order

≺:

∀x, y ∈ A : x ≺ y ⇒ F (x) < F (y).

Theorem 7.3 A strategic game G = 〈N, (Xi)i∈N , (ui)i∈N〉 is a best-response potential

game if and only if the following two conditions are satisfied:

1. X contains no best-response cycles;

2. (X∼,≺) is properly ordered.

Proof.

(⇒): Assume P is a best-response potential for G. Suppose that (x1, . . . , xm) is a

best-response cycle. By best-response compatibility, P (xk) <
= P (xk+1) for each k =

1, . . . , m − 1. Since ui(k)(x
k) < ui(k)(x

k+1) for some k ∈ {1, . . . , m − 1}, it follows that

for such k: P (xk) < P (xk+1). Conclude that P (x1) < P (xm) = P (x1), a contradiction.

This shows that X contains no best-response cycles.

To prove that (X∼,≺) is properly ordered, define F : X∼ → IR by taking for all

[x] ∈ X∼ : F ([x]) = P (x). To see that F is well-defined, let y, z ∈ [x]. Since y ∼ z there

is a best-response compatible path from y to z and vice versa. But since the game has

no best-response cycles, all changes in the payoff to the deviating players along these

paths must be zero: P (y) = P (z).

Now take [x], [y] ∈ X∼ with [x] ≺ [y]. Since x < y, there is a best-response compatible

path from x to y, so P (x) <
= P (y). Moreover, since x and y are in different equivalence

classes, some player must have gained from deviating along this path: P (x) < P (y).

Hence F ([x]) < F ([y]).

(⇐): Assume that the two conditions hold. Since (X∼,≺) is properly ordered, there

exists a function F : X∼ → IR that preserves the order ≺. Define P : X → IR by

P (x) = F ([x]) for all x ∈ X. Let i ∈ N, x−i ∈ X−i.

• Let yi ∈ arg maxxi∈Xi
ui(xi, x−i) and zi ∈ Xi \ {yi}.

– If ui(yi, x−i) = ui(zi, x−i), then (yi, x−i) ∼ (zi, x−i), so P (yi, x−i) = F ([(yi, x−i)])

= F ([(zi, x−i)]) = P (zi, x−i).

– If ui(yi, x−i) > ui(zi, x−i), then (zi, x−i) < (yi, x−i). By the absence of best-

response cycles, not (yi, x−i) < (zi, x−i). Hence [(zi, x−i)] ≺ [(yi, x−i)], which

implies P (zi, x−i) = F ([(zi, x−i)]) < F ([(yi, x−i)]) = P (yi, x−i).

The above observations imply that yi ∈ arg maxxi∈Xi
P (xi, x−i). This concludes

the proof that

∀i ∈ N, ∀x−i ∈ X−i : arg max
xi∈Xi

ui(xi, x−i) ⊆ arg max
xi∈Xi

P (xi, x−i). (7.1)
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• Let yi ∈ arg maxxi∈Xi
P (xi, x−i) and zi ∈ Xi \ {yi}. Suppose ui(zi, x−i) >

ui(yi, x−i). Then (yi, x−i) < (zi, x−i). By the absence of best-response cycles,

not (zi, x−i) < (yi, x−i). Hence [(yi, x−i)] ≺ [(zi, x−i)], which implies P (yi, x−i) =

F ([(yi, x−i)]) < F ([(zi, x−i)]) = P (zi, x−i), contradicting yi ∈ arg maxxi∈Xi
P (xi, x−i).

This finishes the proof that

∀i ∈ N, ∀x−i ∈ X−i : arg max
xi∈Xi

ui(xi, x−i) ⊇ arg max
xi∈Xi

P (xi, x−i). (7.2)

Conclude from (7.1) and (7.2) that P is a best-response potential for the game G. 2

If the strategy space X is countable, i.e., X is finite or there exists a bijection between

IN and X, the proper order condition is redundant.

Theorem 7.4 Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 be a strategic game. If X is countable, then

G is a best-response potential game if and only if X contains no best-response cycles.

Proof. If X is countable, X∼ is countable. It follows from Lemma 5.4 that (X∼,≺) is

properly ordered. The result now follows from Theorem 7.3. 2

This theorem, together with Proposition 7.2 generalizes Theorem 4.2 in Jurg et al.

(1993).

7.4 Relations with other potential games

Monderer and Shapley (1996) introduce exact, weighted, ordinal, and generalized ordinal

potential games. The relations between these classes of games (indicated by E, W, O,

and G, respectively) and best-response potential games (indicated by BR) are indicated

in Figure 7.1. For easy reference, their definitions are as follows. A strategic game

〈N, (Xi)i∈N , (ui)i∈N〉 is

• an exact potential game if there exists a function P : X → IR such that for all

i ∈ N , for all x−i ∈ X−i, and all yi, zi ∈ Xi:

ui(yi, x−i)− ui(zi, x−i) = P (yi, x−i)− P (zi, x−i).

• a weighted potential game if there exists a function P : X → IR and a vector (wi)i∈N

of positive numbers such that for all i ∈ N , for all x−i ∈ X−i, and all yi, zi ∈ Xi:

ui(yi, x−i)− ui(zi, x−i) = wi(P (yi, x−i)− P (zi, x−i)).

• an ordinal potential game if there exists a function P : X → IR such that for all

i ∈ N , for all x−i ∈ X−i, and all yi, zi ∈ Xi:

ui(yi, x−i)− ui(zi, x−i) > 0 ⇔ P (yi, x−i)− P (zi, x−i) > 0.
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• a generalized ordinal potential game if there exists a function P : X → IR such that

for all i ∈ N , for all x−i ∈ X−i, and all yi, zi ∈ Xi:

ui(yi, x−i)− ui(zi, x−i) > 0 ⇒ P (yi, x−i)− P (zi, x−i) > 0.

Since Monderer and Shapley already indicated the relations between their classes of

games, we stress the relation with best-response potential games.

E

W

O

G BR

Figure 7.1: Relations between classes of potential games

That an ordinal potential game is a best-response potential game follows immedi-

ately from their definitions. Example 7.5 indicates that a generalized ordinal potential

game is not necessarily a best-response potential game. Example 7.6 indicates that a

best-response potential game is not necessarily a generalized ordinal potential game. Ex-

ample 7.7 indicates that the intersection of the set of best-response potential games and

generalized ordinal potential games properly includes the set of ordinal potential games,

i.e., there are games which are both a best-response and a generalized ordinal potential

game, but not an ordinal potential game.

Example 7.5 The game in Figure 7.2a has a generalized ordinal potential as given in

Figure 7.2b. However, a best-response potential (and ordinal potential) would have to

satisfy P (T, L) = P (B, L) > P (B, R) > P (T,R) > P (T, L), which is a contradiction. /

Example 7.6 The game in Figure 7.3a has a best-response potential as given in Fig-

ure 7.3b. However, a generalized ordinal (or ordinal) potential would have to satisfy

P (T, M) > P (B, M) > P (B, R) > P (T, R) > P (T, M), a contradiction. /
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L R

T 0,0 0,1

B 0,1 1,0

a

L R

T 0 1

B 3 2

b

Figure 7.2: Not a best-response potential game

L M R

T 2,2 1,0 0,1

B 0,0 0,1 1,0

a

L M R

T 4 3 0

B 0 2 1

b

Figure 7.3: Not a generalized ordinal potential game

Example 7.7 The game in Figure 7.4a has a best-response and generalized ordinal

potential as given in Figure 7.4b. However, an ordinal potential would have to satisfy

P (T, M) > P (B, M) > P (B, R) > P (T, R) = P (T, M), a contradiction. /

L M R

T 0,2 1,0 0,0

B 0,2 0,1 1,0

a

L M R

T 4 3 0

B 4 2 1

b

Figure 7.4: Not an ordinal potential game

7.5 Discussion

There are several reasons for introducing best-response potential games. In the first

place, they are based on a simple insight: to determine Nash equilibria, what matters

are best-responses. It is quite natural, in trying to find out whether a finite game has

a Nash equilibrium, to look at the best situation a player can achieve by changing his

strategy choice. This idea is at the root of fictitious play (Brown, 1951). Moreover, this

is exactly what Milchtaich (1996) does to prove the existence of an equilibrium in his

congestion games.

Best-response potential games differ from the potential games of Monderer and Shap-

ley in an important aspect: they allow the presence of infinite improvement paths even

in finite games. The games of Monderer and Shapley have equilibria because one could

look at an improvement path and notice that it stopped somewhere. Best-response

potential games give sufficient conditions for the existence of equilibria even if infinite

improvement paths exist, as is the case in Example 7.6.
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The obvious next step would be to consider games in which the Nash equilibrium

set corresponds with the Nash equilibrium set of a suitably chosen coordination game.

Formally,

Definition 7.8 A strategic game G = 〈N, (Xi)i∈N , (ui)i∈N〉 is a Nash potential game if

there exists a function P : X → IR such that for all x ∈ X:

x is a Nash equilibrium of G ⇔ x is a Nash equilibrium of 〈N, (Xi)i∈N , (P )i∈N〉.

The function P is called a (Nash) potential of the game G. /

It turns out that in finite games, the set of Nash potential games is exactly the set

of games with pure Nash equilibria. But in the infinite case, this concept makes no

distinction whatsoever: every infinite game is a Nash potential game.

Theorem 7.9 Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 be a game.

• If G is finite, G is a Nash potential game if and only if it has a pure Nash equilib-

rium;

• If G is infinite, G is a Nash potential game.

Proof. Clearly, a finite Nash potential game has a pure Nash equilibrium.

Now assume that G has a pure Nash equilibrium. It is shown that G is a Nash

potential game, irrespective of the cardinality of the strategy space X.

Define the function p : X ×NE(G) → {0, 1, . . . , |N |} for each strategy profile x ∈ X

and each Nash equilibrium y of G as

p(x, y) =| {i ∈ N : xi 6= yi} |,

i.e., p(x, y) is the number of players that need to switch strategies to turn x into the

Nash equilibrium y. Define the function P : X → IR for each x ∈ X as

P (x) = − min
y∈NE(G)

p(x, y),

i.e., P (x) equals minus the minimal number of strategy changes that is required to go

from x to a Nash equilibrium.

To see that P is a Nash potential for the game G, define H = 〈N, (Xi)i∈N , (P )i∈N〉
and notice that

x ∈ NE(H) ⇔ P (x) = 0 ⇔ x ∈ NE(G).

All implications are trivial, except the fact that P (x) = 0 if x ∈ NE(H). To see this, let

x ∈ X be such that P (x) < 0. Take y ∈ NE(G) such that P (x) = −p(x, y) and select

i ∈ N such that xi 6= yi. Then P (x) < P (yi, x−i), so x /∈ NE(H).
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This settles the proof that every game with a Nash equilibrium is a Nash potential

game. Remains to show that an infinite game without Nash equilibria is also a Nash

potential game. In that case, at least one player i ∈ N has an infinite strategy set Xi.

This set has a countable subset with elements indexed xi,s, s ∈ IN. Define the function

P : X → IN0 as

P (x) =





s if xi = xi,s

0 otherwise.

To see that the coordination game with payoff functions P has no Nash equilibria, let

x ∈ X. Now either xi = xi,s for some s ∈ IN in which case P (x) = s, or P (x) = 0. In

both cases, player i ∈ N would do better by deviating to xi,s+1. 2



Chapter 8

Equilibria and Approximate

Equilibria in Infinite Potential

Games

8.1 Introduction

In strategic games where each player has only finitely many pure strategies, the existence

of Nash equilibria is not guaranteed, unless mixed strategies are allowed (Nash, 1950a,

1951). In games where two or more players have infinitely many pure strategies, this

result breaks down: not even mixed strategies yield equilibrium existence. A famous

example is the∞×∞ zero-sum game of Wald (1945) where both players choose a natural

number and the player choosing the smallest number pays one dollar to the other player.

Norde and Potters (1997) prove that approximate equilibria exist in bimatrix games

where one player has a finite number of pure strategies and the other player infinitely

(but countably) many pure strategies.

Since maxima of potential functions coincide with Nash equilibria of the correspond-

ing game and a potential function achieves its maximum over a finite set of strategy

profiles, it follows that finite potential games have Nash equilibria in pure strategies.

This need no longer be the case if infinite games are considered.

If a Nash equilibrium does not exist, there may be strategy profiles in which players

either receive a large payoff that satisfies them or cannot gain too much from deviating.

Such an instance is an approximate equilibrium. Approximate equilibria are defined in

Section 8.2.

The main purpose of this chapter is to provide some results on the existence of Nash

equilibria or approximate equilibria in infinite potential games. Norde and Tijs (1998)

provided results for exact potential games. These results are summarized in Section 8.3.

Voorneveld (1997) looks at more general classes of potential games. In Section 8.4 we

look at approximate equilibria for such general classes of potential games. We show that
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generalized ordinal potential games in which at most one player has an infinite set of

strategies always have approximate equilibria. This generalizes a theorem from Norde

and Tijs (1998) on exact potential games to ordinal and generalized ordinal potential

games.

An open problem from Peleg, Potters, and Tijs (1996) is solved in Section 8.5 by

showing that an ordinal potential game where all players have compact strategy sets and

continuous payoff functions may not have a continuous ordinal potential function.

8.2 Definitions and preliminary results

First, recall the definitions of the several classes of potential games as summarized in

Chapter 7, in particular Section 7.4. If G = 〈N, (Xi)i∈N , (ui)i∈N〉 is a potential game, i.e.

admits any type of potential, the potential maximizer is the set of strategy combinations

x ∈ X for which some potential P achieves a maximum. The following proposition

summarizes the existence result for pure Nash equilibria in finite potential games.

Proposition 8.1 Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 be a potential game and P a potential

for G. If x ∈ X is a Nash equilibrium of 〈N, (Xi)i∈N , (P )i∈N〉, i.e., of the coordination

game with all payoff functions replaced by P , then x is a Nash equilibrium of G. In

particular, every finite potential game has at least one pure Nash equilibrium, since the

potential maximizer is nonempty.

If G is an exact or ordinal potential game and x is a Nash equilibrium of G, then x is also

a Nash equilibrium of 〈N, (Xi)i∈N , (P )i∈N〉. This is not necessarily true for generalized

ordinal potential games.

Example 8.2 Consider a one-player game with strategy space X1 and u1(x) = 0 for

all x ∈ X1. Then any function P : X1 → IR is a generalized ordinal potential function,

since in generalized ordinal potential games there are no requirements on the potential

function if the deviating player’s payoff does not change. So the maxima of P w.r.t.

unilateral deviations not necessarily pick out all pure Nash equilibria of the game. /

Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 be a game. Recall that a path in the strategy space is

a sequence of strategy profiles generated by unilateral deviations and that a cycle is a

nontrivial path that ends where it started. Call a cycle (x1, . . . , xm) in the strategy space

X an improvement cycle if at each step k ∈ {1, . . . , m− 1} the unique deviating player

i(k) ∈ N increases his payoff: ui(k)(x
k) < ui(k)(x

k+1). The proof of the following lemma

is straightforward and therefore omitted.

Lemma 8.3 Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 be a generalized ordinal potential game.

Then G contains no improvement cycles.
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Let ε > 0, k ∈ IR. A strategy xi ∈ Xi of player i ∈ N is called an ε-best response to

x−i ∈ X−i if

ui(xi, x−i) >
= sup

yi∈Xi

ui(yi, x−i)− ε

and a k-guaranteeing response to x−i ∈ X−i if

ui(xi, x−i) >
= k.

By playing an ε-best response, a player makes sure that he cannot gain more than ε by

deviating. Playing a k-guaranteeing response gives him a payoff of at least k. If xi is

either an ε-best or k-guaranteeing response (or both) to x−i, it is called an (ε, k)-best

response to x−i. Notice that an (ε, k)-best response to x−i always exists. A strategy

combination x ∈ X is called an ε-equilibrium of the game G if for each i ∈ N , xi is an

ε-best response to x−i. It is called an (ε, k)-equilibrium if xi is an (ε, k)-best response to

x−i for all i ∈ N . In such an equilibrium, each player can gain at most ε from deviating

or receives at least a utility of k.

A game is called weakly determined if it has an (ε, k)-equilibrium for every ε > 0 and

every k ∈ IR.

This section is concluded with some examples to illustrate these definitions. Notice

that a one-person game is trivially a potential game.

Example 8.4 Consider a one-person game with the player having strategy space Z and

u(x) = x for all x ∈ Z. This game has no Nash equilibria, but is weakly determined,

since for every k ∈ IR, x = dke is a k-guaranteeing response, where for r ∈ IR, dre is the

smallest integer greater than or equal to r. /

Example 8.5 Consider a one-person game with the player having strategy space (0,∞)

and u(x) = − 1
x

for all x ∈ (0,∞). This game has no Nash equilibria, but for every ε > 0,

x > 1
ε

is an ε-equilibrium. /

The following example from Norde and Tijs (1998) shows that infinite potential games

may not be weakly determined.

Example 8.6 Consider the ∞×∞-bimatrix game with payoff functions u1(i, j) = i− j

and u2(i, j) = j − i, where i, j ∈ IN. This is an exact potential game, with a potential

P (i, j) = i+j for all i, j ∈ IN. Clearly, this game does not have (ε, k)-equilibria whenever

k > 0. /

8.3 Infinite exact potential games

The results concerning weak determinateness of exact potential games that were obtained

by Norde and Tijs (1998) rely heavily on the fact that differences in the value of the
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potential coincide with the difference in utility to deviating players or on the decomposi-

tion of exact potential games into coordination games and dummy games. These results

are summarized in this section. In the next section, more general classes of potential

games are considered.

Call a game continuous if the strategy spaces are topological spaces and all payoff

functions are continuous with respect to the product topology. Continuous exact po-

tential games have continuous exact potential functions and continuous functions on a

compact set achieve a maximum. Hence (cf. Monderer and Shapley, 1996, Lemma 4.3):

Proposition 8.7 Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 be a continuous exact potential game

with compact strategy sets. Then G has a pure Nash equilibrium.

Moreover,

Proposition 8.8 Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 be an exact potential game with upper

bounded potential P . Then G is weakly determined.

Proof. Let ε > 0. Choose x ∈ X such that P (x) > supy∈X P (y) − ε. Then x is an

ε-equilibrium of G. 2

Exact potential games where at most one player has a non-compact set of pure strategies

are — under some continuity assumptions — weakly determined. Recall that a real-

valued function f on a topological space T is lower semi-continuous if for each c ∈ IR the

set {x ∈ T | f(x) <
= c} is closed.

Theorem 8.9 Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 be an exact potential game. If

• X1, . . . , Xn−1 are compact topological spaces,

• x−n 7→ ui(xn, x−n) is continuous for all i ∈ N \ {n} and xn ∈ Xn, and

• x−n 7→ un(xn, x−n) is lower semi-continuous for all xn ∈ Xn,

then G is weakly determined.

Proof. According to Proposition 8.8 it suffices to look at exact potentials P which are

not upper bounded. Let xn ∈ Xn and (y1, . . . , yn−1) ∈ X−n. By definition of an exact

potential function it follows that for every (x1, . . . , xn−1) ∈ X−n:

P (x1, . . . , xn) = u1(x1, x2, . . . , xn)− u1(y1, x2, . . . , xn)

+ u2(y1, x2, . . . , xn)− u2(y1, y2, . . . , xn)

...



Infinite potential games 91

+ un−1(y1, y2, . . . , xn−1, xn)− un−1(y1, y2, . . . , yn−1, xn)

+ P (y1, . . . , yn−1, xn),

which shows that x−n 7→ P (xn, x−n) is continuous. Let k ∈ IR and define dn = un − P .

Then x−n 7→ dn(xn, x−n) is lower semi-continuous for every xn ∈ Xn. Moreover, dn does

not depend on xn, so we may define l = minx∈X dn(x). Choose y = (y1, . . . , yn) ∈ X

such that P (y) >
= k − l, which is possible since P is not upper bounded. Since x−n 7→

P (yn, x−n) is continuous and X−n is compact, we may choose z−n ∈ X−n such that

P (yn, z−n) = maxx−n∈X−n P (xn, z−n). Then players i ∈ N \ {n} cannot at all improve

upon (yn, z−n) and un(yn, z−n) = P (yn, z−n) + dn(yn, z−n) >
= P (yn, y−n) + l >

= k, so

(yn, z−n) is an (ε, k)-equilibrium for every ε > 0. 2

Consider an exact potential game G in which all but one player have a finite set of pure

strategies. Endow these finite sets with the discrete topology. An immediate corollary of

Theorem 8.9 is that G is weakly determined. This result is generalized in Theorem 8.11.

But what happens if two players have infinite sets of pure strategies? Then a remarkable

phenomenon occurs: there may be games with the same exact potential function, of

which one game is weakly determined and the other not.

Example 8.10 Consider ∞ ×∞-bimatrix game where X1 = X2 = IN and u1(i, j) =

u2(i, j) = i + j for all i, j ∈ IN. This is an exact potential game with potential P (i, j) =

i + j for all i, j ∈ IN. Let k ∈ IR, ε > 0. Let r = dke ∈ IN be the smallest integer

greater than or equal to k. Then (r, r) is an (ε, k)-equilibrium, so this game is weakly

determined.

Now change the payoff functions to those in Example 8.6. Again P : (i, j) 7→ i + j is

an exact potential of this game, but the game is not weakly determined. /

8.4 Infinite potential games

The results in the previous section concerned exact potential games. In this section we

look at other classes of potential games. If at most one player in a generalized ordinal

potential game has an infinite set of strategies, the game has (ε, k)-equilibria for all

ε > 0, k ∈ IR.

Theorem 8.11 Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 be a generalized ordinal potential game.

If X1, . . . , Xn−1 are finite sets, then G is weakly determined.

Proof. Let P be a potential for G. Fix ϕ(xn) ∈ arg maxx−n∈X−n P (xn, x−n) for each

xn ∈ Xn. Let ε > 0, k ∈ IR. Construct a sequence γ = (x1, x2, . . .) in X as follows: Take

xn ∈ Xn, define x1 = (xn, ϕ(xn)). Let m ∈ IN. Suppose xm is defined. If m is odd, and
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• xm
n is not an (ε, k)-best response to xm

−n, take xm+1 = (xn, xm
−n) with xn an (ε, k)-

best response to xm
−n;

• otherwise, stop.

If m is even, and

• xm
−n /∈ arg maxx−n∈X−n P (xm

n , x−n), take xm+1 = (xm
n , ϕ(xm

n ));

• otherwise, stop.

If the sequence γ is finite, the terminal point is clearly an (ε, k)-equilibrium. So now

assume this sequence is infinite.

Since the sets X1, . . . , Xn−1 are finite, there exist l, m ∈ IN such that l is even,

m is odd, l < m, and xl
−n = xm

−n. By construction, P (xl) < P (xm), which implies

un(xl) <
= un(xm). But xl

n is an (ε, k)-best response to xl
−n = xm

−n, so xm
n is an (ε, k)-best

response to xm
−n. Since xm

−n = ϕ(xm
n ), the other players cannot improve at all. Hence xm

is an (ε, k)-equilibrium. 2

Example 8.6 indicates that this result cannot be extended to include two or more players

with an infinite strategy set.

Under different assumptions one can also establish existence of Nash equilibria, like

in the following theorem. Recall that a real-valued function f on a topological space T

is called upper semi-continuous (u.s.c.) if for each c ∈ IR the set {x ∈ T | f(x) >
= c} is

closed.

Theorem 8.12 Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 be a generalized ordinal potential game or

a best-response potential game. If X1, . . . , Xn−1 are finite, Xn is a compact topological

space and un is u.s.c. in the n-th coordinate, then G has a Nash equilibrium.

Proof. Fix for each x−n ∈ X−n an element ϕ(x−n) ∈ Φ(x−n) = arg maxz∈Xn un(z, x−n),

which is possible by the upper semi-continuity and compactness conditions.

Suppose that G does not have a Nash equilibrium. Let x−n ∈ X−n. Take x1 =

(ϕ(x−n), x−n). Then there exists an infinite path (x1, x2, . . .) such that for each k ∈ IN, if

xk
n /∈ Φ(xk

−n), then xk+1 = (ϕ(xk
−n), xk

−n), and otherwise xk+1 = (yi, x
k
−i) for some player

i ∈ N \ {n} not playing a best response against xk
−i and yi ∈ arg maxxi∈Xi

ui(xi, x
k
−i) a

best response to xk
−i.

Since X−n is finite and player n uses only strategies from {ϕ(x−n) | x−n ∈ X−n},
there exist k, l ∈ IN, k < l, such that xk = xl. Hence (xk, xk+1, . . . , xl) is a best-response

cycle and in particular an improvement cycle. However, Theorem 7.3 and Lemma 8.3

show that the absence of such cycles is necessary for the existence of a best-response or

generalized ordinal potential function, which yields the desired contradiction. 2



Continuity of potential functions 93

8.5 Continuity of potential functions

Peleg, Potters, and Tijs (1996) study properties of the potential maximizer. It was left as

an open problem in their paper whether ordinal potential games on a compact strategy

space with payoff functions ui which are continuous in the i-th coordinate have a non-

empty potential maximizer or, even stronger, whether all such ordinal potential games

possess a continuous potential. The result from this section indicates that this is not the

case, even if payoff functions are continuous in each coordinate.

Theorem 8.13 There exists an ordinal potential game with compact strategy spaces and

continuous payoff functions for which no potential achieves a maximum and which con-

sequently has no continuous ordinal potential function.

Proof. Consider the game with N = {1, 2}, X1 = X2 = [0, 1], and payoff functions

defined as

u1(x, y) =





0 if (x, y) = (0, 0)
xy6

(x2+y2)3
otherwise

and

u2(x, y) =





0 if (x, y) = (0, 0)
x6y

(x2+y2)3
otherwise.

Clearly, these payoff functions are continuous. Moreover,

P (x, y) =





0 if (x, y) = (0, 0)
xy

(x2+y2)3
otherwise

is a non-continuous (consider the image of the sequence {( 1
n
, 1

n
)}∞n=1) ordinal potential

for the game. This follows easily from u1(x, y) = y5P (x, y) and u2(x, y) = x5P (x, y).

Now consider any ordinal potential Q for this game and the path C in the strategy

space from (1, 1) to (1
2
, 1) to (1

2
, 1

2
) . . . ( 1

2n , 1
2n ) to ( 1

2n+1 ,
1
2n ) . . . This path is depicted in

Figure 8.1.

For n ∈ IN0 and y = 1
2n the functions u1(·, y) and (hence) Q(·, y) are strictly decreasing

on [ 1
2n+1 ,

1
2n ]. We will work out this case and leave other similar cases to the reader. The

partial derivative of u1 with respect to x equals

∂u1(x, y)

∂x
= y5∂P (x, y)

∂x
=

y6(y2 − 5x2)

(x2 + y2)4
.

Since 1
2n+1

<
= x <

=
1
2n , we have that 1

22n − 5
22n

<
= y2−5x2 <

=
1

22n − 5
22n+2 , which is equivalent

to −4
22n

<
= y2 − 5x2 <

=
22

22n+2 − 5
22n+2 = −1

22n+2 < 0.

Similarly, for n ∈ IN and x = 1
2n the functions u2(x, ·) and (hence) Q(x, ·) are strictly

decreasing on [ 1
2n , 1

2n−1 ]. This implies that Q must strictly increase along the path C

from (1, 1) to (0, 0).
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Figure 8.1: The strategy space and path C from Theorem 8.13.

Also Q(x, 0) = Q(1, 0) < Q(1, 1) and Q(0, y) = Q(0, 1) < Q(1, 1). Once again using

the above, if (x, y) lies to the right of C, like the point a in Figure 8.1, and (x′, y) is

on C, like the point a′, then Q(x, y) < Q(x′, y), since given y ∈ (0, 1), there exists a

n ∈ IN such that 1
2n

<
= y < 1

2n−1 . Then by definition ( 1
2n , y) is on C and u1(·, y) is strictly

decreasing on [ 1
2n , 1].

Also, if (x, y) lies to the left of C, like the point b, and (x, y′) is on C, like the point

b′, then Q(x, y) < Q(x, y′), since, given x ∈ (0, 1), there exists an n ∈ IN such that
1

2n+1
<
= x < 1

2n . Then by definition (x, 1
2n ) is on C and u2(x, ·) is strictly decreasing on

[ 1
2n , 1].

Therefore, for any (x, y) ∈ [0, 1]2, we have Q(x, y) < Q( 1
2n , 1

2n ) for some n ∈ IN0.

For the points a and b in Figure 8.1, such points are denoted by a′′ and b′′, respectively.

Since the sequence {Q( 1
2n , 1

2n )}∞n=0 is strictly increasing, Q has no maximum, which is

what we had to prove.

The continuity of a potential function for this game together with the compactness

of the strategy space in the product topology would imply the existence of a maximum,

contradicting our proof. Hence this game has no continuous potential. 2
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Notice that continuity, however, is too strong a requirement. Reasonable conditions may

exist under which a potential turns out to be upper semi-continuous, which given the

compactness of the strategy space would still result in a maximum.
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Chapter 9

Ordinal Games and Potentials

9.1 Potential functions and utility functions

In the previous chapters we studied several classes of potential games and gave applica-

tions to economic problems. The present chapter concludes our discussion of potential

games.

We saw that potential functions are a handy tool for establishing results concerning

Nash equilibria; a central result was the existence of pure Nash equilibria in finite games.

But is a potential just a handy tool? Is there no exact meaning we can attach to a

potential function? Several authors (Slade, 1994, Monderer and Shapley, 1996) have

asked themselves this question, but did not come up with an answer. This can be due

to the fact that there are many different types of potential functions, which tends to

blur the overall picture. Norde and Patrone (1999) are motivated by Voorneveld and

Norde (1997) to extend the notion of potentials to ordinal games. Although seemingly

ignoring the question of attaching a meaning to the potential function, they nevertheless

implicitly provide an answer.

Consider a game 〈N, (Xi)i∈N , (ui)i∈N〉. If the aim is to check whether or not a given

strategy profile x ∈ X is a Nash equilibrium and a player i ∈ N unilaterally deviates,

then the only factor of interest is how this affects player i’s payoff; the effect of i’s

deviation on another player j 6= i is of no concern whatsoever. Abstracting from such

irrelevant information, one can say that the preferences of the unilaterally deviating

players define an overall preference relation, a binary relation ≺ on the strategy space X

such that for each pair x, y ∈ X of strategy profiles, x ≺ y if and only if x and y differ

in exactly one — say the i-th — coordinate and ui(x) < ui(y). All types of potential

functions P introduced by Monderer and Shapley (1996) have in common that

∀x, y ∈ X : x ≺ y ⇒ P (x) < P (y).

So P is essentially a utility function representing the relation ≺; summarizing:

97
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A potential function as defined by Monderer and Shapley is an overall utility

function in the sense that it represents the preferences of unilaterally deviat-

ing players.

Notice that the binary relation ≺ is neither complete nor transitive; no comparisons are

made between strategy profiles that differ in more than one coordinate. The reason for

this is illustrated in the following example.

Consider the game in Figure 9.1, a simple example of a potential game. The overall

L R

T 1,1 0,0

B 0,0 2,2

Figure 9.1: A potential game

preference relation ≺ is given by

(T,R) ≺ (T, L), (B, L) ≺ (T, L), (T, R) ≺ (B, R), (B, L) ≺ (B,R).

It is clear that the following two functions P and Q are (ordinal) potentials of this game:

P (T, L) = 1, P (T,R) = P (B, L) = 0, P (B, R) = 1,

Q(T, L) = 2, Q(T,R) = Q(B, L) = 0, Q(B, R) = 1.

P ranks the two pure Nash equilibria of the game equally; but no meaning should be

attached to the difference between the value of the potential at (T, L) and (B, R): even

though both players prefer the equilibrium (B, R) to the equilibrium (T, L), the potential

function Q attaches a lower value to (B,R). This justifies looking at the incomplete and

nontransitive order ≺.

Having established that a potential function is a utility function representing prefer-

ences of unilaterally deviating players, some intuition arises for the specific requirements

that make a game a potential game. In utility theory, it is common that the absence of

certain cycles in a binary relation is necessary and sufficient for the existence of a utility

function representing this relation (Bridges, 1983).

In the remainder of this chapter, we consider ordinal games: games in which a player

is characterized by a general type of preferences on the strategy space. The main question

will be whether we can still find something like a potential function and what type of

cycles must be excluded. We start by taking a step back. Instead of looking at games with

multiple players, the case of a single decision maker is treated first. The decision maker

is endowed with a preference structure specifying his strict preference and indifference

relation over a countable set of outcomes.
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To handle nontransitive indifference relations, Luce (1956) introduced his well-known

threshold model in which a decision maker prefers one outcome over another if and only

if the increase in utility exceeds a certain nonnegative threshold. Formally, denoting

the set of outcomes by X, strict preference by Â and indifference by ∼, each x ∈ X is

assigned a utility u(x) and a threshold t(x) >
= 0 such that for all x, y ∈ X:

x Â y ⇔ u(x) > u(y) + t(y)

x ∼ y ⇔





u(x) <
= u(y) + t(y),

u(y) <
= u(x) + t(x).

In this chapter, most of which is based on Voorneveld (1999b), also incomparability

between outcomes and nontransitivity of strict preferences is allowed. Incomparabilities

arise if the decision maker is not capable to compare outcomes, finds it unethical to do

so, or thinks that outcomes are comparable, but lacks the information to do so. Fishburn

(1991) motivates nontransitive preferences. In this case the double implications above

are replaced by single implications, so that we want for all x, y ∈ X:

x Â y ⇒ u(x) > u(y) + t(y)

x ∼ y ⇒





u(x) <
= u(y) + t(y),

u(y) <
= u(x) + t(x)

Our main theorem gives necessary and sufficient conditions for the existence of functions

u and t as above on a broad class of preference structures over a countable set of alter-

natives. As a corollary, a representation theorem of interval orders (See Bridges, 1983,

and Fishburn, 1970) is obtained.

Section 9.2 provides definitions of preference structures, Section 9.3 formulates the

main representation theorem. The difficulty of extending the theorem to uncountable

sets is illustrated in Section 9.4. In Section 9.5 the representation theorem from Section

9.3 and Lemma 5.4 are used to characterize two types of potential functions for ordinal

games through the absence of certain cycles in the strategy space.

9.2 Preference structures

A preference structure on a set X is a pair (Â,∼) of binary relations on X such that

• For each x, y ∈ X, at most one of the following is true: x Â y, y Â x, x ∼ y;

• The relation ∼ is reflexive and symmetric.
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The first condition implies that Â is anti-symmetric (if x Â y, then not y Â x). With Â
interpreted as strict preference and ∼ as indifference, this leads to a very general type of

preferences in which neither strict preference, nor indifference is assumed to be transitive

and in which a decision maker may have pairs x, y ∈ X which he cannot compare; this

imposes much less rationality restrictions on the decision maker than usual. Let us give

an example of such a preference structure.

Example 9.1 An agent intends to invest in one of four sports teams: X = {a, b, c, d}.
He has to base his decision on a limited amount of information: the number of scored

points of each team in the matches played in the last three weeks; so each of the four

teams can be represented by a vector in IR3. For instance, b = (1, 3, 0) ∈ IR3 indicates

that team b scored one point one week ago, three points two weeks ago, and no points

three weeks ago. His preferences are based on coordinate-wise comparisons. Being

convinced that a one-point difference can be based on pure luck rather than quality, he

finds a difference between two scores noticeable if it exceeds one. He bases his judgment

between to teams x and y in X on the most recent pair of consecutive matches i, i + 1

in which the teams scored a noticeably different number of points.

• if no such pair exists, he is indifferent between x and y;

• if such a pair does exist, then

x Â y ⇔





xi > yi + 1

xi+1 > yi+1 + 1

• otherwise he cannot compare.

To illustrate this, assume

a = (a1, a2, a3) = (4, 4, 0), b = (1, 3, 0), c = (2, 2, 2), d = (3, 0, 0).

By definition, his equivalence relation is reflexive: ∀x ∈ X : x ∼ x. Since a2 = 4 and

b2 = 3 are not noticeably different, there is no pair of consecutive matches in which

teams a and b scored a noticeably different number of points. Therefore a ∼ b and b ∼ a.

Similarly b ∼ c, c ∼ b, a ∼ d, and d ∼ a. But team a scored a noticeably higher number

of points in the most recent two matches than team c: a1 > c1 +1 and a2 > c2 +1. Hence

a Â c. Similarly c Â d: the teams did not score a noticeably different number of points

in the most recent match, but c performed noticeably better than d two and three weeks

ago: c2 > d2 + 1 and c3 > d3 + 1. Finally, notice that b and d are incomparable: the

number of points of both teams in the most recent two matches is noticeably different,

but one week ago d was noticeably better than b (d1 > b1 + 1), whereas two weeks ago b

was noticeably better than d (b2 > d2 + 1).
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This relation satisfies the conditions on a preference structure. However, neither ∼
nor Â is transitive, since

a ∼ b, b ∼ c, a Â c,

and

a Â c, c Â d, a ∼ d.

/

Consider a set X with preference structure (Â,∼). A path in X is a finite sequence

(x1, . . . , xm) of elements of X such that for each k = 1, . . . , m − 1, either xk Â xk+1 or

xk ∼ xk+1. In the first case, we speak of a Â-connection between xk and xk+1, in the

second case of a ∼-connection between xk and xk+1. A cycle in X is a path (x1, . . . , xm)

in X with at least two different elements of X and x1 = xm.

A path (x1, . . . , xm) in X has two consecutive∼-connections if for some k = 1, . . . , m−
2: xk ∼ xk+1 and xk+1 ∼ xk+2 or — in case the path is a cycle — if x1 ∼ x2 and

xm−1 ∼ xm = x1.

Denote by ¤ the composition of Â and ∼, i.e., for each x, y ∈ X:

x ¤ y ⇔ (∃z ∈ X : x Â z, and z ∼ y).

Since ∼ is reflexive, x Â y implies x¤y. The relation ¤ is acyclic if its transitive closure

is irreflexive, i.e., if there is no finite sequence (x1, . . . , xm) of elements of X such that

x1 = xm and for each k = 1, . . . , m− 1: xk ¤ xk+1.

A special case of a preference structure is an interval order (Fishburn, 1970). The

preference structure (Â,∼) is an interval order if for each x, y ∈ X

x ∼ y ⇔ ( not x Â y and not y Â x), (9.1)

and for each x, x′, y, y′ ∈ X

(x Â y and x′ Â y′) ⇒ (x Â y′ or x′ Â y).

In interval orders, exactly one of the claims x Â y, y Â x, x ∼ y is true. Define the

binary relation º on X by taking for each x, y ∈ X:

x º y ⇔ not y Â x.

Then it is easily seen that a preference structure satisfying (9.1) is an interval order if

and only if for each x, x′, y, y′ ∈ X:

x Â x′ º y′ Â y ⇒ x Â y. (9.2)

Hence, interval orders have transitive strict preference Â. The preference structure of an

interval order can be identified with the relation Â, since the relations ∼ and º follow

from Â.
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Lemma 9.2 Let Â be an interval order on a set X. Then the relation ¤ is acyclic.

Proof. Suppose, to the contrary, that X contains a cycle (x1, y1, x2, y2, . . . , xm−1, ym−1, xm)

such that for each k = 1, . . . , m− 1: xk Â yk and yk ∼ xk+1. Then x1 Â y1 by definition.

Moreover, x1 Â y1 ∼ x2 Â y2, so (9.2) implies x1 Â y2. Similarly, one shows that x1 Â yk

for each k = 1, . . . ,m − 1. In particular, x1 Â ym−1. However, by definition of the

cycle, ym−1 ∼ xm = x1, so x1 ∼ ym−1 by symmetry of ∼. But at most one of the two

possibilities x1 Â ym−1 and x1 ∼ ym−1 is true, a contradiction. 2

9.3 The representation theorem

This section contains the main theorem and an application of this theorem to obtain a

well-known characterization of interval orders.

Theorem 9.3 Let X be a countable set and (Â,∼) a preference structure on X. The

following claims are equivalent.

(a) There exist functions u : X → IR and t : X → IR+ such that for all x, y ∈ X:

x Â y ⇒ u(x) > u(y) + t(y)

x ∼ y ⇒





u(x) <
= u(y) + t(y),

u(y) <
= u(x) + t(x)

(b) The relation ¤ is acyclic;

(c) Every cycle in X contains at least two consecutive ∼-connections.

Proof.

(a) ⇒ (b): Assume (a) holds and suppose that ¤ is cyclic. Take a sequence (x1, . . . , xm)

of points in X such that x1 = xm and for each k = 1, . . . , m − 1 : xk ¤ xk+1. Then for

each such k there exists a yk ∈ X such that xk Â yk and yk ∼ xk+1, which implies

u(xk) > u(yk) + t(yk) >
= u(xk+1). Hence u(x1) > u(x2) > . . . > u(xm) = u(x1), a

contradiction.

(b) ⇒ (c): Suppose (x1, . . . , xm) is a cycle in X without two consecutive ∼-connections.

W.l.o.g. x1 Â x2. Let (y1, . . . , yn) with n <
= m be the sequence of points in X obtained by

removing from (x1, . . . , xm) all those points xk (k = 1, . . . , m− 1) satisfying xk ∼ xk+1,

i.e., all those points that are indifferent to the next point in the cycle. Notice that by

construction y1 = x1, yn = xm = x1, and for each k = 1, . . . , n − 1 there exists an

l ∈ {1, . . . , m− 1} such that

• either yk = xl and yk+1 = xl+1, in which case yk Â yk+1, which implies yk ¤ yk+1,
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• or yk = xl and yk+1 = xl+2, in which case yk Â xl+1 and xl+1 ∼ yk+1, which also

implies yk ¤ yk+1.

But then the sequence (y1, . . . , yn) indicates that ¤ is cyclic.

(c) ⇒ (a): Assume (c) holds. Since X is countable, write X = {xk | k ∈ IN}. Call

a path from x to y a good path if it does not contain two consecutive ∼-connections.

Define for each x ≡ xk ∈ X:

S(x) := {n ∈ IN | there is a good path from x to xn starting with a Â -connection},

T (x) := {n ∈ IN | there is a good path from x to xn},

u(x) :=
∑

n∈S(x) 2−n,

v(x) :=
∑

n∈T (x) 2−n,

t(x) := 2−k−1 + v(x)− u(x).

We proceed to prove that u and t defined above give the desired representation.

• Clearly S(x) ⊆ T (x), so v >
= u and t > 0.

• Let x, xk ∈ X, x Â xk. Then T (xk) ⊆ S(x). Moreover, k ∈ S(x), but k /∈ T (xk),

since by assumption every cycle in X has two consecutive ∼-connections. Hence

T (xk) ⊂ S(x) and k ∈ S(x)\T (xk). So u(x) = v(xk)+
∑

n∈S(x)\T (xk) 2−n >
= v(xk)+

2−k > v(xk) + 2−k−1 = u(xk) + t(xk).

• Let x, y ∈ X, x ∼ y. Then S(y) ⊆ T (x). Hence u(x) + t(x) > v(x) >
= u(y) and

similarly u(y) + t(y) >
= u(x).

This completes the proof. 2

Remark 9.4 Luce (1956) considers nonnegative threshold functions, Fishburn (1970)

and Bridges (1983) consider positive threshold functions. Our statement of (c) involves

nonnegative threshold functions t : X → IR+. However, in the proof that (c) implies

(a) we actually construct a positive function. Clearly, the proof that (a) implies (b)

— and hence the theorem — also holds if t were required to be positive rather than

nonnnegative. The theorem was formulated with nonnegative threshold functions for

intuitive reasons: there seems to be no reason to require that sufficiently perceptive

decision makers need to have a positive threshold above which they can perceive changes

in utility. /

An immediate corollary of this theorem is a well-known representation theorem of interval

orders. See Fishburn (1970, Theorem 4) and Bridges (1983, Theorem 2).
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Theorem 9.5 Let X be a countable set and Â a binary relation on X. The following

claims are equivalent.

(a) The relation Â is an interval order;

(b) There exist functions u, v : X → IR, v >
= u, such that for each x, y ∈ X, x Â y if

and only if u(x) > v(y);

(c) There exist functions u, t : X → IR, t > 0, such that for each x, y ∈ X, x Â y if and

only if u(x) > u(y) + t(y).

Proof. Obviously (c) ⇒ (b) ⇒ (a). That (a) ⇒ (c) follows from Lemma 9.2, Remark

9.4, and Theorem 9.3. That u(x) > u(y) + t(y) implies x Â y is clear: y Â x implies

u(y)+ t(y) > u(y) > u(x)+ t(x) > u(x) and x ∼ y implies u(y)+ t(y) >
= u(x). In interval

orders exactly one of the claims x Â y, y Â x, or x ∼ y holds, so one must have that

x Â y. 2

9.4 Uncountable sets

In Theorem 9.3, the proof that (a) ⇒ (b) ⇒ (c) holds for arbitrary, not necessarily

countable, sets X. Moreover, it is easy to see that also (c) implies (b) for arbitrary

sets. However, acyclicity of ¤ does not imply the existence of the desired functions u, t

if the set X is uncountable. This is not surprising: it is usually necessary to require

additional assumptions to guarantee the existence of preference representing functions

on uncountable sets. The purpose of this section is to indicate that such assumptions

are not straightforward. Fishburn (1973) discusses representations of interval orders on

uncountable sets.

The existence of functions u, t as in part (a) of Theorem 9.3 implies that

∀x, y ∈ X : x ¤ y ⇒ u(x) > u(y). (9.3)

Hence, the existence of a function u : X → IR satisfying (9.3) is a necessary condition for

the existence of functions u, t satisfying the conditions in Theorem 9.3a. However, it is

not sufficient. Suppose such a function u exists. Without loss of generality, u is bounded

(take x 7→ arctan(u(x)) if necessary). The function t : X → IR+ has to satisfy for each

x, y ∈ X, if y Â x, then u(y)− u(x) > t(x) and if y ∼ x, then u(y)− u(x) <
= t(x).

Define S(x) := sup{u(y) − u(x) | y ∼ x} and I(x) := inf{u(y) − u(x) | y Â x}. Let

y Â x, z ∼ x. Then u(y) > u(z), so S(x) <
= I(x). Notice also that S(x) >

= u(x)−u(x) = 0.

So if S(x) < I(x), one can take t(x) ∈ [S(x), I(x)). However, if S(x) = I(x), then the

only candidate for t(x) equals S(x). But to make sure that u(y)− u(x) > t(x) for all y

with y Â x, we need the additional property that the infimum I(x) is not achieved.

The next example shows that in some cases there exists a function u : X → IR

satisfying (9.3), but in which the last property is not satisfied.
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Example 9.6 Take X = IR and define for each x, y ∈ IR:

x Â y ⇔ x >
= y + 1,

x ∼ y ⇔ |x− y| < 1.

Then

x ¤ y ⇔ ∃z ∈ IR : (x >
= z + 1, |z − y| < 1) ⇔ ∃z ∈ IR : x >

= z + 1 > y > z − 1 ⇔ x > y.

So ¤ is acyclic and the set of functions preserving the order ¤ is the set of strictly

increasing functions u : IR → IR. For every strictly increasing function u and every

x ∈ X we have that I(x) = inf
y >

= x+1
u(y)−u(x) = u(x+1)−u(x). Hence the infimum

is achieved. This means that a function t as in Theorem 9.3 exists if and only if there is

an increasing function u such that

∀x ∈ IR : S(x) < u(x + 1)− u(x),

i.e., an increasing function u : IR → IR such that for each x ∈ IR: supy<x u(y) < u(x).

Suppose such a function u exists. We derive a contradiction by constructing an injective

function f from the uncountable set IR \Q to the countable set Q. For each x ∈ IR \Q,

take f(x) ∈ Q such that supy<x u(y) < f(x) < u(x). To show that f is injective, let

x, y ∈ IR \Q, x < y. Then f(x) < u(x) < supz<y u(z) < f(y). /

9.5 Ordinal games and potentials

To conclude this chapter, we return to the game theoretic set-up. Consider an ordinal

game G = 〈N, (Xi)i∈N , (Âi,∼i)i∈N〉, where

• N is finite;

• for each player i ∈ N : Xi is countable, and

• for each player i ∈ N : (Âi,∼i) is a preference structure over X.

Examples of games in which players may be easier characterized by means of preference

structures instead of single real-valued payoff functions include multicriteria games, the

topic of the second part of this thesis.

Using the representation theorem 9.3, it follows that in certain ordinal games the

information concerning Nash equilibria can be summarized in a utility/potential function

and a threshold function.

Theorem 9.7 Let G = 〈N, (Xi)i∈N , (Âi,∼i)i∈N〉 be an ordinal game. The following

claims are equivalent:
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(a) There exist functions P : X → IR and T : X → IR+ such that for each i ∈ N , each

x−i ∈ X−i and each xi, yi ∈ Xi:

(xi, x−i) Âi (yi, x−i) ⇒ P (xi, x−i) > P (yi, x−i) + T (yi, x−i).

(b) Every cycle of unilateral deviations contains at least two consecutive deviations to

strategies which the deviating players find equivalent.

One of the main motivations for this chapter was to study preference structures that

could be represented by means of a utility function and a threshold function. With-

out invoking threshold functions, one can sharpen the above theorem. The proof is

completely analogous to that of Lemma 5.4.

Theorem 9.8 Let G = 〈N, (Xi)i∈N , (Âi,∼i)i∈N〉 be an ordinal game. The following

claims are equivalent:

(a) There exist functions P : X → IR such that for each i ∈ N , each x−i ∈ X−i and

each xi, yi ∈ Xi:

(xi, x−i) Âi (yi, x−i) ⇒ P (xi, x−i) > P (yi, x−i).

(b) There are no cycles of unilateral deviations in which each deviating player changes

to an outcome he strictly prefers.
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Chapter 10

Introduction to Part II

10.1 Multicriteria optimization

Multicriteria optimization extends optimization theory by permitting several — possibly

conflicting — objective functions, which are to be ‘optimized’ simultaneously. By now

an important branch of Operations Research (see Steuer et al., 1996), it ranges from

highly verbal approaches like Larichev and Moshkovich (1997) to highly mathematical

approaches like Sawaragi et al. (1985), and is known by various other names, includ-

ing: Pareto optimization, vector optimization, efficient optimization, and multiobjective

optimization.

Formally, a multicriteria optimization problem can be formulated as

Optimize f1(x), . . . , fr(x)

subject to x ∈ F,

(10.1)

where F denotes the feasible set of alternatives and r ∈ IN the number of separate

criterion functions fk : F → IR (k = 1, . . . , r).

The simultaneous optimization of multiple objective functions suggests the question:

what does it mean to optimize, i.e., what is a good outcome? Different answers to this

question lead to different ways of solving multicriteria optimization problems. The exact

distinction between the methods is not always clear. For a detailed description and good

introductions to the area, see White (1982), Yu (1985), and Zeleny (1982). Figure 10.1

lists several approaches. Below, their main ideas are briefly discussed.

Suppose a feasible set of outcomes is evaluated on the basis of two criterion functions,

f1 and f2, each of which is desired to be as large as possible. Let the feasible set S in

the objective space be the polytope in Figure 10.2. That is, for every point s ∈ S there

exists a feasible alternative x such that (f1(x), f2(x)) = s.

In finding Pareto-optimal points , there is a common distinction between strongly and

weakly Pareto-optimal points. A feasible point in IRn is strongly Pareto-optimal if there

109
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• Find the Pareto-optimal outcomes;

• Hierarchical optimization method;

• Trade-off method;

• Scalarization method, including

– Weighted objectives method;

– Distance function method;

– Minmax optimization method;

• Goal programming method;

Figure 10.1: Methods of multicriteria optimization
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Figure 10.2: A 2-criterion problem

is no other feasible point which is larger in at least one coordinate and not smaller in all

other coordinates. A feasible point in IRn is weakly Pareto-optimal if there is no other

feasible point which is larger in each coordinate. In Figure 10.2, for instance, a is neither

weakly nor strongly Pareto-optimal, b is weakly Pareto-optimal, but not strongly, since

b1 < c1 and b2 = c2, and c is strongly Pareto-optimal. The set of weakly Pareto-optimal

points consists of the line-segments (b, c), (c, d), and (d, e), whereas the set of strongly
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Pareto-optimal points consists of the line-segments (c, d) and (d, e).

The hierarchical optimization method allows the decision maker to rank his criteria in

order of importance. Starting with the most important criterion function, each function

is then optimized individually, subject to possible additional constraints that restrict

the feasible domain to points giving rise to values in the previously optimized functions

that are not too far away from their optimal level. For instance, if in Figure 10.2 the

first criterion is most important, the decision maker would start with maximizing f1; the

maximum of f1 is e1. In the next step, he would maximize f2 subject to the feasibility

constraints and the additional constraint that f1 cannot be more than say 5 percent

below e1. If no such slack is allowed, i.e., if the optima of the k-th ranking objective

function has to be determined subject to the constraint that the k−1 previous objective

functions remain at their optimal level, one speaks about lexicographic optimization.

The trade-off method, also known as the constraint method, essentially chooses one

of the objective functions as the function to optimize and imposes additional constraints

on the remaining objective functions, restricting them to lie in a desirable range, for

instance:

Optimize fk(x)

subject to x ∈ F

fm(x) ∈ Dm ∀m ∈ {1, . . . , k − 1, k + 1, . . . , r}
There are several scalarization methods, where the multicriteria problem to be solved

is reduced to a standard optimization problem with a single objective function by, first,

defining a global criterion function g : IRr → IR reflecting a suitable aggregate of the

separate objective functions f1, . . . , fr in the multicriteria problem (10.1) and, second,

solving

Optimize g(f1(x), . . . , fr(x))

subject to x ∈ F

One scalarization method is the weighted objectives method, which assigns nonnega-

tive weights wk
>
= 0 (k = 1, . . . , r) to each of the objective functions fk in the multicriteria

optimization problem (10.1), reflecting the relative importance of the criteria and solves

the scalarized problem

Optimize
∑r

k=1 wkfk(x)

subject to x ∈ F,

thereby reducing the problem to a standard optimization problem with a single objective

function. If the feasible set in the objective space satisfies certain convexity conditions,

it can be shown that all Pareto-optimal points can be found by suitable weightings of

the criteria functions. See Theorem 10.1 in Section 10.3.
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Another scalarization method is the distance function method. Here, the distance

between the feasible set and an ideal solution is minimized. Consider Figure 10.2. In

this problem, the optimal level of the first criterion is e1 and the optimal level of the

second criterion is b2 = c2. Hence a good candidate for the ideal solution would be

the point (e1, c2). So let I = (I1, . . . , Ir) denote the ideal solution in (10.1), where for

k ∈ {1, . . . , r}:
Ik := max

x∈F
fk(x).

The distance function method then solves

Minimize [
∑r

k=1 |fk(x)− Ik|p]1/p

subject to x ∈ F,

where p ∈ [1,∞] is a chosen parameter reflecting the actual norm that is optimized.

Variants include:

1. Different types of distance functions;

2. Considering relative distances, i.e., minimizing
[

r∑

k=1

∣∣∣∣∣
fk(x)− Ik

Ik

∣∣∣∣∣
p]1/p

. (10.2)

Although usually treated separately in the literature, the minmax optimization method

is essentially a distance function method which minimizes the maximal relative deviation

of the individual objective functions from the ideal solution. Formally, it coincides with

choosing the Tchebyshev norm (p = ∞) in (10.2):

Minimize maxk∈{1,...,r}
∣∣∣fk(x)−Ik

Ik

∣∣∣

subject to x ∈ F.

The goal programming method, introduced by Charnes and Cooper (1961), requires

the decision maker to set goals for each of the objective functions. Let f 0
k denote the goal

for the k-th objective function in (10.1). Next, weighting factors wk
>
= 0 (k = 1, . . . , r)

are assigned to rank the goals in order of importance. Finally, a single objective function

is constructed by minimizing the deviations from the stated goals:

Minimize
∑r

k=1 wk(d
+
k + d−k )

subject to x ∈ F

fk(x) + d−k − d+
k = f 0

k ∀k ∈ {1, . . . , r}

d−k >
= 0, d+

k
>
= 0 ∀k ∈ {1, . . . , r}
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10.2 Multicriteria games

In matters of conflict, players frequently evaluate situations on the basis of several cri-

teria. Selten (1994, p.42), for instance, regards any decision procedure as “guided by

multiple goals, which are not easily comparable”. Moreover, “[s]uch procedures seek to

avoid tradeoffs among different goal dimensions”, i.e., should not be modelled on the ba-

sis of a single goal function, but should explicitly take into account the multiple criteria

that are of relevance to the decision.

The second part of this thesis studies multicriteria games, also appearing in the

literature as ‘games with vector payoffs’ or ‘multiobjective games’. The main focus is on

noncooperative games. Multicriteria games were first studied by Blackwell (1956), who

provides an analog of the minimax theorem for repeated zero-sum games with vector

payoffs in terms of approachable and excludable sets. These notions reflect the extent to

which a player can control the trajectory of the average payoffs. A subset of the payoff

space is approachable if a player through repeated play of a zero-sum game can force

the average payoff to approach this set and excludable if the average payoff can be kept

away from this set. Blackwell’s theorem is one of the central results in the theory of

repeated games with incomplete information. See Aumann and Maschler (1995).

Formally, a (noncooperative) multicriteria game is a tuple G = 〈N, (Xi)i∈N , (ui)i∈N〉,
where

• N ⊂ IN is a nonempty, finite set of players;

• each player i ∈ N has a nonempty set Xi of pure strategies, and

• for each player i ∈ N the function ui :
∏

j∈N Xj → IRr(i) maps each strategy

combination to a point in r(i)-dimensional Euclidean space.

The interpretation of the function ui is that player i ∈ N considers not just one, but

r(i) ∈ IN different criteria.

A player i ∈ N can for instance be seen as a set of individuals, as an organization

with r(i) members, each having his own utility function. Under this interpretation of

a multicriteria game we have an interesting aggregate of conflicts: the organizations

i ∈ N are engaged in a noncooperative game in which the members k = 1, . . . , r(i) of an

organization i jointly have to agree on a strategy choice.

In fact, this is a feature that all games in the second part of this thesis have in

common: they are based on an aggregate of conflicts, namely conflicts between the

players, but also between the criteria a specific player takes into account, i.e., the relevant

characteristics by which a decision maker evaluates his strategic possibilities.

Notice that strategic games can be seen as multicriteria games in which each of the

players has exactly one criterion. The Nash equilibrium concept for strategic games

requires that each player plays a best response against the strategy combination of his
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opponents. If a player has a real-valued utility function, best responses are unambigu-

ously defined as those strategies to which there is no alternative strategy yielding a higher

utility. As observed in the previous section, the selection of good outcomes in the pres-

ence of multiple goal/utility functions is less clear. In fact, different solution concepts

can be defined by giving different answers to the question ‘What is a best response?’

This topic is taken up in Chapters 11 and 13.

The Pareto equilibrium concept of Chapter 11 defines best responses as those strate-

gies yielding a Pareto-optimal outcome. Pareto equilibria were first introduced by Shap-

ley (1959) in the context of two-player zero-sum games with vector payoffs. The definition

easily extends to more general classes of multicriteria games. See Borm et al. (1989),

Kruś and Bronisz (1994), Wang (1991, 1993), Zeleny (1975). Chapter 11 studies the

properties of the Pareto equilibrium concept and provides several axiomatic characteri-

zations. Chapter 12 considers the structure of the set of Pareto equilibria in two-person

multicriteria games, a topic that is, among other things, of computational interest.

In Chapter 13 three other solution concepts for noncooperative multicriteria games

are defined:

• compromise equilibria, where players choose those strategies as best responses that

are closest to the ideal outcome. This concept is closely related to the distance

function method described in the previous section.

• Nash bargaining equilibria, where players choose those strategies as best responses

that yield a bargaining solution far away from a disagreement point. This concept

is closely related to the game theoretic literature on bargaining.

• perfect equilibria, a refinement of Pareto equilibria that is motivated by the refine-

ment literature in noncooperative game theory.

Chapter 14 considers Pareto-optimal security strategies in two-person zero-sum games

with multiple criteria. Pareto-optimal security strategies were introduced by Ghose and

Prasad (1989) as ‘cautious’ strategies, in the sense that a player checks, for each of his

strategy choices, what is the worst that can happen to him in each criterion separately.

In this way, a player assigns to each strategy a ‘security vector’ that specifies the worst-

case scenario if this strategy is chosen. A Pareto-optimal security strategy is a strategy

that gives rise to the most agreeable worst-case scenario. Several characterizations of

Pareto-optimal security strategies are provided. In particular, Pareto-optimal security

strategies will be seen to coincide with minimax strategies of a standard matrix game, a

two-person zero-sum game with only one criterion in which each player chooses a mixed

strategy.

Cooperative multicriteria games are studied in Chapter 15. A distinction is made

between indivisible, public criteria that take the same value for all members of a coalition

of players, and divisible, private criteria, that can be freely divided over the coalition
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members. The chapter mainly focuses on a core concept for cooperative multicriteria

games. This core concept is axiomatized and additional motivation for the core concept is

provided by showing that core elements naturally arise as strong equilibria of associated

noncooperative claim games, in which players independently state coalitions they want

to form and the payoff they want to receive.

Chapter 16 proposes and analyzes a model for boundedly rational behavior of players

in interactive situations that can be modelled as an ordinal game. The model focuses on

best replies, the set of actions a player cannot improve upon given the action profile of

his opponents. If a player ends up playing an action that is not a best reply against the

actions taken by his opponents, he may feel regret for not having done the right thing.

The anticipation of regret may influence the decision making and determine the behavior

of players. Chapter 16 suggests matching behavior as an explanation of how this influence

may work. Matching is observed in numerous experimental situations of decision making

under uncertainty and essentially means that an alternative is chosen with a probability

proportional to its value. A common explanation of the matching phenomenon involves

agents who do not believe that the mechanism causing the uncertainty is entirely random

and try to ‘outguess’ the mechanism by trying to decipher the pattern. This explanation

is particularly appealing in interactive situations where players are confronted with other

players, rather than with nature.

Chapter 17 studies aggregate conflicts that arise through the uncertainty of players

about the exact game that is played. The random games that are introduced incorporate

uncertainty about all characteristics of the game: its player set, the action sets, as well

as the preferences of the involved players. Having to decide upon a course of action in

such an environment allows unforeseen contingencies to frustrate the implementation of

action choices. Maximum likelihood equilibria are introduced, a solution concept that

selects those actions that are most likely to end up in a good outcome of the random

game.

The above description of the chapters in the second part of this thesis was purposely

kept short. For more detailed introductions refer to the first sections of the respective

chapters.

10.3 Preliminaries

This section contains definitions and matters of notation, additional to those provided

in Section 1.4.

Three classes of noncooperative games are considered in the following chapters. We

write

• Γfinite for the set of finite multicriteria games, i.e., multicriteria games with finitely

many players, each player having finitely many pure strategies, and in which mixed

strategies are not allowed;
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• Γ for the set of mixed extensions of finite multicriteria games;

• Γstrategic for the set of mixed extensions of finite games in strategic form, where

Γstrategic ⊂ Γ, since strategic games are multicriteria games in which each player

has only one criterion.

In all three cases, one needs to specify the set N of players, sets (Xi)i∈N of pure strategies,

and payoff functions (ui)i∈N , so we adopt the generic notation G = 〈N, (Xi)i∈N , (ui)i∈N〉
for games in all three classes and indicate where necessary with notation like G ∈ Γfinite,

G ∈ Γ, and/or G ∈ Γstrategic whether or not mixed strategies and multidimensional

payoffs are allowed. The number of criteria of player i ∈ N is denoted by r(i) ∈ IN. The

mixed strategy set of player i ∈ N is denoted ∆(Xi) or ∆i if the set of pure strategies is

understood. Mixed extensions are defined as in Section 1.4. Conventional game theoretic

notation is used:

∆−i =
∏

j∈N\{i}
∆j ∆ =

∏

i∈N

∆i

Write Xi = {1, . . . , m(i)}, where m(i) = |Xi| is the number of pure strategies. The

mixed strategy that assigns probability one to pure strategy k ∈ Xi is denoted by

ek ∈ ∆i. Mixed strategies of player i are sometimes denoted by σi and sometimes by

xi ∈ ∆(Xi). In the second case, xik denotes the probability assigned to the k-th strategy

in Xi. The carrier of xi ∈ ∆(Xi) is the set {k ∈ Xi | xik > 0} of pure strategies that are

played with positive probability in xi.

For a real number x ∈ IR,

|x| =
{

x if x >
= 0,

−x if x < 0,

denotes the absolute value of x. For two vectors x, y ∈ IRn, 〈x, y〉 :=
∑n

i=1 xiyi denotes

the inner product of x and y. Let m,n ∈ IN. The set of m×n matrices with real entries

is denoted by IRm×n.

The unit simplex in IRn is denoted by ∆n, its relative interior by ∆0
n:

∆n := {x ∈ IRn
+ |

n∑

k=1

xi = 1} ∆0
n := {x ∈ IRn

++ |
n∑

k=1

xi = 1}

For two subsets A and B of a vector space V we define A + B = {a + b | a ∈ A, b ∈ B}.
Let A ⊆ IRn be a finite set. Its convex hull, consisting of all convex combinations of

elements in A, is denoted conv (A) and is called a polytope. The comprehensive hull of

a set A ⊆ IRn is denoted compr (A):

compr (A) := {b ∈ IRn | b <
= a for some a ∈ A}.

Semi-algebraic sets in IRn are solution sets to systems of polynomial inequalities: a

set A ⊆ IRn is semi-algebraic if it is the finite union of sets of the form

{x ∈ IRn | f1(x) <
= 0, . . . , fm(x) <

= 0},
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where fk : IRn → IR is a polynomial function for each k = 1, . . . , m.

For vectors a, b ∈ IRn, we write

a = b ⇔ ∀k ∈ {1, . . . , n} : ak = bk

a >
= b ⇔ ∀k ∈ {1, . . . , n} : ak

>
= bk

a ≥ b ⇔ a >
= b, and a 6= b

a > b ⇔ ∀k ∈ {1, . . . , n} : ak > bk

Relations <
= ,≤, < are defined analogously.

Let A ⊆ IRn and a, b ∈ A. Then a weakly (Pareto) dominates b if a ≥ b and a strongly

(Pareto) dominates b if a > b. The weak Pareto edge of A is the set

{a ∈ A |6 ∃b ∈ A : b > a}.

The strong Pareto edge of A is the set

{a ∈ A |6 ∃b ∈ A : b ≥ a}.

Be cautious: elements of the weak Pareto edge are those points that are not strongly

dominated; elements of the strong Pareto edge are those points that are not weakly

dominated. Elements of the weak (strong) Pareto edge of A are called weakly (strongly)

Pareto optimal.

Under convexity conditions, Pareto-optimal points can be found by assigning weights

to the separate criteria and maximizing the weighted sum of the coordinates.

Theorem 10.1 Let C ⊆ IRn and c ∈ C.

(i) If C is convex, then c is weakly Pareto-optimal if and only if there exists a λ ∈ ∆n

such that for all d ∈ C: 〈c, λ〉 >
= 〈d, λ〉;

(ii) If C is a polytope, then c is strongly Pareto-optimal if and only if there exists a

λ ∈ ∆0
n such that for all d ∈ C: 〈c, λ〉 >

= 〈d, λ〉.
Proof. The ‘if’ parts of the theorem are straightforward. We start by proving the ‘only

if’ part of (i).

Take B = {x ∈ IRn | ∃y ∈ C : y > x} and A = B ∪ C. Then A is convex, c is weakly

Pareto-optimal in A and c lies on the boundary of A. Hence there exists a hyperplane

with normal λ ∈ IRn \ {0} supporting A at c:

∀d ∈ A : 〈c, λ〉 >
= 〈d, λ〉.

Without loss of generality
∑n

k=1 λk = 1. To see that λ ≥ 0, let d ∈ IRn, d < c, (so d ∈ B),

and k ∈ {1, . . . , n}. Define for all m ∈ IN : dm = d−mek. Then c > d ≥ dm implies that

dm ∈ B ⊆ A, so

〈c, λ〉 >
= 〈dm, λ〉 = 〈d, λ〉 −mλk
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for all m ∈ IN. So λk
>
= 0. Since this holds for all k ∈ {1, . . . , n} and λ ∈ IRn \ {0}, it

follows that λ ∈ ∆n.

Next, the proof of the ‘only if’ part of (ii). Since C is a polytope, there exist finitely

many vectors v1, . . . , vs ∈ IRn and real numbers α1, . . . , αs such that C = ∩s
k=1{x ∈ IRn |

〈vk, x〉 <
= αk}. Let I = {k ∈ {1, . . . , s} | 〈vk, c〉 = αk}. This set is nonempty, otherwise

there would be a sufficiently small ε > 0 such that (c1 + ε, . . . , cn + ε) ∈ C, which would

strongly Pareto-dominate c.

Let M be the n × |I|-matrix with columns {vk | k ∈ I}. Then there is no x ∈ IRn

solving xM <
= 0, x ≥ 0. Otherwise, this would imply that c + εx ∈ C for sufficiently

small ε > 0. But then c + εx ≥ c, contradicting strong Pareto-optimality of c.

By the duality theorem (cf. Gale, 1960, p.49, Theorem 2.10), there is a vector

y ∈ IR|I| such that My > 0 and y >
= 0. Take λ = My ∈ IRn

++ and let d ∈ C. Since

〈vk, d〉 <
= αk = 〈vk, c〉 for all k ∈ I, it follows that dM <

= cM . Consequently, 〈c, λ〉 =

cMy >
= dMy = 〈d, λ〉. It is clear that λ can be normalized to add up to one, finishing

the proof. 2

For two nonempty sets X ⊆ IRk and Y ⊆ IR`, a correspondence F : X→→ Y is a function

that assigns to each element x ∈ X an element of 2Y \ {∅}, i.e., a nonempty subset F (x)

of Y . F is called upper semicontinuous (u.s.c.) in x ∈ X if for every open neighborhood

V of F (x) there exists an open neighborhood U of x with F (x′) ⊆ V for every x′ ∈ U .

F is upper semicontinuous (u.s.c.) on X if F is u.s.c. in each x ∈ X.

Kakutani’s fixed point theorem is a often used to prove the existence of equilibria.

Theorem 10.2 [Kakutani’s fixed point theorem] Let C be a nonempty, compact,

convex subset of IRp and let F : C→→ C be an u.s.c. correspondence such that F (x) is

nonempty, compact, convex for each x ∈ C. Then there exists an element c ∈ C such

that c ∈ F (c).

The maximum theorem shows that the maxima of parametric optimization problems are

well-behaved.

Theorem 10.3 [Maximum theorem] Let X and Y be metric spaces, Y compact,

and f : X × Y → IR continuous. Then m : x 7→ maxy∈Y f(x, y) is continuous and

M : x 7→ {y ∈ Y | f(x, y) = m(x)} is u.s.c.



Chapter 11

Pareto Equilibria in Noncooperative

Multicriteria Games

11.1 Introduction

The Nash equilibrium concept relies on the stability property that single players — given

the strategy profile of their opponents — cannot deviate to a better outcome. In single-

criterion games, this is a clear statement: each player’s incentives are unambiguously

described by his real-valued utility function. An incentive to deviate just means having

an alternative that yields a higher utility. In multicriteria games, the question ‘What is

a good outcome?’ does not have such a clear answer. In fact, several extensions of the

Nash equilibrium concept to multicriteria games can be introduced, depending on the

answer to this question.

This chapter considers two extensions of the Nash equilibrium concept to nonco-

operative multicriteria games. They are based on weak and strong Pareto dominance.

Shapley (1959) was the first to introduce such equilibrium points in two-person zero-sum

games with multiple criteria. Zeleny (1975) addresses the same issue. Borm et al. (1989)

extend the analysis of Shapley to general two-person multicriteria games.

Definitions of weak and strong Pareto equilibria are given in Section 11.2. Pareto

equilibria are characterized as Nash equilibria in suitably weighted single-criterion games,

thus providing a simple existence proof. Other properties are mentioned in the same

section.

In a recent manifesto Bouyssou et al. (1993) observe that within multicriteria decision

making ‘[a] systematic axiomatic analysis of decision procedures and algorithms is yet to

be carried out’. In the second part of this chapter, based on Voorneveld, Vermeulen, and

Borm (1999), several axiomatizations of the Pareto equilibrium concept for multicriteria

games are provided.

Axiomatic properties of the Nash equilibrium concept based on the notion of con-

sistency have been studied in several articles, including Peleg and Tijs (1996), Peleg,

119
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Potters, and Tijs (1996), and Norde et al. (1996). Informally, consistency requires that

if a strategy combination x is a solution of a game with player set N , and players outside

a coalition S of players commit to playing according to xN\S, i.e. the strategy combina-

tion restricted to the players in N \S, then xS is a solution of the reduced game. Several

of these axiomatizations carry over to multicriteria games. The strong result of Norde

et al. (1996), characterizing the Nash equilibrium concept on the set of mixed exten-

sions of finite strategic form games by nonemptiness, the selection of utility maximizing

strategies in one-person games, and consistency, does not have such an analogon in mul-

ticriteria games: we show that nonemptiness, consistency and an immediate extension

of utility maximization are not sufficient to axiomatize the Pareto equilibrium concept.

An additional property is provided to establish an axiomatization.

11.2 Pareto equilibria

Weak and strong Pareto equilibria are relatively straightforward extensions of the Nash

equilibrium concept that rule out unilateral deviations to strategies that are better in

the sense of the orders > and ≥ on a finite dimensional Euclidean space. This section

provides definitions of Pareto equilibria, points out some properties that are different

from the Nash equilibrium concept, and characterizes Pareto equilibria as Nash equilibria

of weighted games.

Definition 11.1 Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 ∈ Γ be a multicriteria game. A strategy

profile x ∈ ∏
i∈N ∆(Xi) is a

• weak Pareto equilibrium if for each player i ∈ N there does not exist a yi ∈ ∆(Xi)

such that ui(yi, x−i) > ui(xi, x−i);

• strong Pareto equilibrium if for each player i ∈ N there does not exist a yi ∈ ∆(Xi)

such that ui(yi, x−i) ≥ ui(xi, x−i).

The set of weak and strong Pareto equilibria of G are denoted by WPE(G) and SPE(G),

respectively. /

It is clear that every strong Pareto equilibrium is a weak Pareto equilibrium, but not the

other way around. For a concrete example, refer to Figure 11.2 in Section 11.5. Weak

and strong Pareto equilibria of multicriteria games in Γfinite, in which mixed strategies

are not allowed, are — of course — defined in a similar way by restricting attention to

pure strategies. A multicriteria game in which each of the players has only one criterion

is simply a strategic game. In the case of strategic games, the sets of weak and strong

Pareto equilibria coincide with the set of Nash equilibria.

Alternatively, Pareto equilibria can be characterized as fixed points of certain best-

response correspondences. Formally, let G = 〈N, (Xi)i∈N , (ui)i∈N〉 be a multicriteria
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game, x ∈ ∏
i∈N ∆(Xi) a strategy profile and i ∈ N a player. Define

WBi(x−i) = {xi ∈ ∆(Xi) |6 ∃yi ∈ ∆(Xi) : ui(yi, x−i) > ui(xi, x−i)},

WB : x 7→ ∏

i∈N

WBi(x−i),

SBi(x−i) = {xi ∈ ∆(Xi) |6 ∃yi ∈ ∆(Xi) : ui(yi, x−i) ≥ ui(xi, x−i)},

SB : x 7→ ∏

i∈N

SBi(x−i),

the natural counterparts of the best-response correspondence for weak and strong Pareto

equilibria. The fixed points of WB and SB are exactly the weak and strong Pareto

equilibria. In some cases, when the game G needs to be stressed to avoid confusion, we

write WBi(G, ·), etc.

The following example is taken from Van Megen et al. (1999).

Example 11.2 Consider a game G with an inspector (player 1) who has to decide

whether or not to inspect a factory (player 2) to check if its production is hygienical.

The inspector has two objectives: to minimize inspection costs and to guarantee an

acceptable level of hygiene in production. The factory also has two objectives: to mini-

mize production costs and to achieve some level of hygienical production. The strategies

the inspector can take are Inspection (I) and No Inspection (NI); the factory chooses

between Hygienical (H) or Non-Hygienical (NH) production. Payoffs are as given be-

low. Here c > 1 denotes the penalty that is imposed if the inspected production fails to

H NH

I (−1, 1) (c− 1, 1
2
)

NI (0, 1) (0, 0)

Payoffs to inspector

H NH

I (−1, 1) (−c− 1, 1)

NI (−1, 1) (0, 0)

Payoffs to factory

be hygienical. The first coordinate of the payoff to player 1 denotes the negative costs

of inspection, the second coordinate specifies satisfaction with the hygienical situation.

The first coordinate for the factory depicts extra negative production costs, the second

represents the hygiene satisfaction level.

Let p ∈ [0, 1] denote the probability of player 1 playing I and let q ∈ [0, 1] denote

the probability of player 2 playing H. Then u1(1, q) = (−qc + c − 1, 1
2

+ 1
2
q) and

u1(0, q) = (0, q). Hence

WB1(q) =





{1} if 0 <
= q < 1− 1

c

[0, 1] if 1− 1
c

<
= q <

= 1
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Further, u2(p, 1) = (−1, 1) and u2(p, 0) = (p(−c− 1), p). Hence

WB2(p) =





[0, 1] if 0 <
= p <

=
1

c+1
or p = 1

{1} if 1
c+1

< p < 1

This implies that WPE(G) = ([0, 1
c+1

]× [1− 1
c
]) ∪ (( 1

c+1
, 1)×{1}) ∪ ({1}× [0, 1]). The
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analysis above shows that weak Pareto equilibria in this model are those in which there is

full inspection, those in which the factory produces in a hygienical way with probability 1,

and those in which the chance upon inspection is small, but the production is nevertheless

hygienical with a relatively high probability. Moreover, it is seen that a higher penalty

c shrinks the equilibrium set to equilibria that favor more hygienical production.

Similar computations show

SB1(q) =





{1} if 0 <
= q <

= 1− 1
c

[0, 1] if 1− 1
c

< q < 1

{0} if q = 1

and

SB2(p) =





[0, 1] if 0 <
= p < 1

c+1

{1} if 1
c+1

<
= p <

= 1

This implies that SPE(G) = ({0} × (1− 1
c
, 1]) ∪ ((0, 1

c+1
)× (1− 1

c
, 1)). /

A first peculiar feature of Pareto equilibria that is worth noting, is the following. In

single-criterion games, every pure Nash equilibrium is also a mixed Nash equilibrium.

This is no longer the case when multiple criteria are taken into account.
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Figure 11.1: Pure, not mixed equilibria

Example 11.3 Consider a one-player game in which the unique player i has two criteria,

three pure strategies a, b, and c and payoffs ui = (ui1, ui2) as in Figure 11.1. All three

pure strategies are both weak and strong Pareto equilibria when only pure strategies are

allowed. But when mixtures are taken into account, strategy a is dominated. /

A second point of interest is that a mixture of two points that are not Pareto domi-

nated may be Pareto dominated. Refer for instance to Figure 10.2 and take a convex

combination of points c and e. This implies that the well-known characterization of

Nash equilibria, according to which a strategy profile is a Nash equilibrium if and only

if each pure strategy that is played with positive probability is a pure best reply against

the strategy profile of the opponents, does not hold for Pareto equilibria. An analogous

characterization exists, however, when carriers are restricted to the faces of the payoff

polytope that are contained in the set of Pareto optimal points.

Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 be a multicriteria game, x ∈ ∏
i∈N ∆(Xi) a strategy

profile and i ∈ N a player. Take C(G, xi) = {k ∈ Xi | xik > 0}, the carrier of xi, as

the set of pure strategies k in Xi that are played with positive probability. A set I ⊆ Xi

of pure strategies is called weakly efficient for player i against x−i if for all xi ∈ ∆(Xi)

with C(G, xi) ⊆ I it holds that xi ∈ WBi(x−i). A set I ⊆ Xi is a weakly efficient pure

best reply set for player i against x−i if it is weakly efficient and there is no K ⊆ Xi

with I ⊂ K such that K is weakly efficient. Let Ei(G, x−i) be the set of weakly efficient

pure best reply sets for player i against x−i. The following result in terms of weak

Pareto equilibria is stated without proof. The analogon for strong Pareto equilibria is

straightforward.
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Proposition 11.4 Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 ∈ Γ be a multicriteria game and x ∈∏
i∈N ∆(Xi). Then for all i ∈ N :

xi ∈ WBi(x−i) ⇔ C(G, xi) ⊆ I for some I ∈ Ei(G, x−i).

The weighted objectives method for solving multicriteria problems involves assigning

weights to each of the criteria, reflecting their relative importance. Consider a multi-

criteria game G = 〈N, (Xi)i∈N , (ui)i∈N〉 in which player i has r(i) ∈ IN criteria. For

each i ∈ N , let λi ∈ ∆r(i) be a vector of weights for the criteria, λ := (λi)i∈N . The

λ-weighted game Gλ is the strategic form game with player set N , mixed strategy spaces

(∆(Xi))i∈N , and payoff functions (vi)i∈N defined for all i ∈ N and x ∈ ∏
i∈N ∆(Xi) by

vi(x) = 〈λi, ui(x)〉 =
∑r(i)

k=1 λikuik(x). If each player assigns equal weight to all his crite-

ria, i.e., λi = 1
r(i)

(1, . . . , 1) ∈ IRr(i) for all i ∈ N , the weighted game is denoted by Ge.

The following theorem, stating that Pareto equilibria are exactly the Nash equilibria of

weighted games for suitable weight vectors, is due to Shapley (1959). Shapley stated the

theorem for two-person zero-sum multicriteria games, but the result extends immediately

to more general games.

Theorem 11.5 Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 ∈ Γ be a multicriteria game and x ∈∏
i∈N ∆(Xi). Then

• x ∈ WPE(G) if and only if there exists for each i ∈ N a vector of weights λi ∈ ∆r(i)

such that x ∈ NE(Gλ);

• x ∈ SPE(G) if and only if there exists for each i ∈ N a vector of weights λi ∈ ∆0
r(i)

such that x ∈ NE(Gλ).

The proof of this theorem follows easily from Theorem 10.1. See also Zeleny (1975),

Borm et al. (1989), and Kruś and Bronisz (1994). As a corollary, Pareto equilibria

always exist in mixed extensions of finite multicriteria games, since for any vector of

weights the game Gλ has Nash equilibria in mixed strategies (Nash, 1950a, 1951). Wang

(1991, 1993) provides existence results for Pareto equilibria in a larger class of games,

mainly based on the Kakutani fixed point theorem.

11.3 The consistency axiom

The next two sections are devoted to axiomatizing the weak Pareto equilibrium concept.

The main axiom is consistency, which requires that if a strategy combination x is a

solution of a game with player set N and each player i that is not a member of a coalition

S ⊆ N commits to playing his strategy xi, then xS, the strategy profile restricted to the

remaining players, is a solution of the reduced game.

To avoid confusion about the players involved in a game, multicriteria games are

sometimes denoted by G = 〈NG, (Xi)i∈NG , (ui)i∈NG〉, where NG is the player set of
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the game G. Another matter of crucial importance in the remainder of this chapter is

whether or not mixed strategies and multiple criteria are allowed. Therefore, special care

is taken to specify whether a game is contained in Γ, Γfinite, or Γstrategic.

Let G = 〈NG, (Xi)i∈NG , (ui)i∈NG〉 ∈ Γ be a multicriteria game, let x ∈ ∏
i∈NG ∆(Xi)

be a strategy profile, and let S ∈ 2NG \ {∅, NG} be a proper subcoalition of the player

set NG. The reduced game GS,x of G with respect to S and x is the multicriteria game

in Γ in which

• the player set is S;

• each player i ∈ S has the same set Xi of pure strategies as in G;

• the payoff functions (u′i)i∈S are defined by u′i(yS) := ui(yS, xNG\S) for all yS ∈∏
i∈S ∆(Xi).

Notice that this is the game that arises if the players in NG\S commit to playing accord-

ing to xNG\S, the strategy combination restricted to the players in NG \ S. Definitions

for reduced games on Γfinite and Γstrategic are completely analogous.

A solution concept on Γ is a function ρ which assigns to each element G ∈ Γ a

subset ρ(G) ⊆ ∏
i∈NG ∆(Xi) of strategy combinations. Analogously one defines a solution

concept on Γstrategic or Γfinite. Clearly, WPE and SPE, the functions that assign to a

multicriteria game its set of weak and strong Pareto equilibria, respectively, are solution

concepts.

For strategic form games, we recall the following axioms. A solution concept ρ on

Γstrategic satisfies:

• Nonemptiness (NEM), if ρ(G) 6= ∅ for all G ∈ Γstrategic;

• Utility Maximization (UM), if for each one-player game G = 〈{i}, Xi, ui〉 ∈
Γstrategic we have that ρ(G) ⊆ {x ∈ ∆(Xi) | ui(x) ≥ ui(y) ∀y ∈ ∆(Xi)};

• Consistency (CONS), if for each game G ∈ Γstrategic, each proper subcoalition

S ∈ 2NG \ {∅, NG}, and each element x ∈ ρ(G), we have that xS ∈ ρ(GS,x).

Norde et al. (1996) prove:

Proposition 11.6 A solution concept ρ on Γstrategic satisfies NEM, UM, and CONS if

and only if ρ = NE, the Nash equilibrium concept.

This yields the conclusion that there is no proper refinement of the Nash equilibrium

concept that satisfies NEM, UM, and CONS.
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11.4 Finite multicriteria games

Peleg and Tijs (1996) and Peleg, Potters, and Tijs (1996) provide several axiomatizations

of the Nash equilibrium concept for finite strategic form games. In this section two of

these axiomatizations are extended to weak Pareto equilibria of finite multicriteria games.

Remark 11.13 at the end of this chapter points out how axiomatizations for weak Pareto

equilibria can be adapted to axiomatizations for strong Pareto equilibria.

We use the following axioms. A solution concept ρ on Γfinite satisfies:

• Restricted Nonemptiness (r-NEM), if for every G ∈ Γfinite with WPE(G) 6= ∅
we have ρ(G) 6= ∅;

• One-Person Efficiency (OPE), if for each one-player game G = 〈{i}, Xi, ui〉 ∈
Γfinite we have that ρ(G) = {x ∈ Xi |6 ∃y ∈ Xi : ui(y) > ui(x)};

• Consistency (CONS), if for each G ∈ Γfinite, each proper subcoalition S ∈
2NG \ {∅, NG}, and each element x ∈ ρ(G), we have that xS ∈ ρ(GS,x);

• Converse Consistency (COCONS), if for each G ∈ Γfinite with at least two

players, we have that ρ̃(G) ⊆ ρ(G), where

ρ̃(G) = {x ∈ ∏

i∈NG

Xi | ∀S ∈ 2NG \ {∅, NG} : xS ∈ ρ(GS,x)}.

According to restricted nonemptiness, the solution concept provides a nonempty set of

strategies whenever weak Pareto equilibria exist. One-person efficiency claims that in

games with only one player, the solution concept picks out all strategies which yield a

maximal payoff with respect to the > - order. Consistency means that a solution x of a

game is also a solution of each reduced game in which the players that leave the game

play according to the strategies in x. Converse consistency prescribes that a strategy

combination which gives rise to a solution in every reduced game is also a solution of

the original game.

Our first result indicates that the axiomatization of the Nash equilibrium concept on

finite strategic games of Peleg, Potters, and Tijs (1996, Thm. 3) in terms of restricted

nonemptiness, one-person efficiency, and consistency can be generalized to multicriteria

games.

Theorem 11.7 A solution concept ρ on Γfinite satisfies r-NEM, OPE, and CONS if and

only if ρ = WPE.

Proof. It is clear that WPE satisfies the axioms. Let ρ be a solution concept on Γfinite

satisfying r-NEM, OPE, and CONS. Let G = 〈NG, (Xi)i∈NG , (ui)i∈NG〉 ∈ Γfinite. We

first show that ρ(G) ⊆ WPE(G). Let x ∈ ρ(G). If |NG| = 1, then x ∈ WPE(G)

by OPE. If |NG| > 1, then CONS implies that for each i ∈ NG: xi ∈ ρ(G{i},x), so
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xi ∈ {yi ∈ Xi | 6 ∃ zi ∈ Xi : ui(zi, x−i) > ui(yi, x−i)} by OPE. Hence x is a weak Pareto

equilibrium: x ∈ WPE(G). Since G ∈ Γfinite was chosen arbitrarily, conclude that

ρ ⊆ WPE.

To prove that WPE ⊆ ρ, again let G = 〈NG, (Xi)i∈NG , (ui)i∈NG〉 ∈ Γfinite and let

x̂ ∈ WPE(G). Construct a multicriteria game H ∈ Γfinite as follows:

• let m ∈ IN \NG; the player set is NG ∪ {m};

• players i ∈ NG have the same strategy set Xi as in G;

• player m has strategy set {0, 1};

• payoff functions vi to players i ∈ NG are defined, for all (xm, x) ∈ {0, 1}×∏
i∈NG Xi,

by:

vi(xm, x) =





ui(x) if xm = 1

−er(i) if xm = 0, xi 6= x̂i

er(i) if xm = 0, xi = x̂i

where er(i) ∈ IRr(i) is the vector with each component equal to one.

• the payoff function vm to player m is defined, for all (xm, x) ∈ {0, 1} ×∏
i∈NG Xi,

by:

vm(xm, x) =





0 if xm = 0

−1 if xm = 1, x 6= x̂

1 if xm = 1, x = x̂

Simple verification indicates that (1, x̂) is the unique weak Pareto equilibrium of H.

Since ρ(H) ⊆ WPE(H) by the previous part of the proof, we conclude by r-NEM

that (1, x̂) ∈ ρ(H). Then by CONS, x̂ ∈ ρ(HNG,(1,x̂)) = ρ(G), since by definition

HNG,(1,x̂) = G. Hence x̂ ∈ ρ(G), finishing our proof. 2

Our second result shows that the axiomatization of the Nash equilibrium concept on finite

strategic games of Peleg and Tijs (1996, Thm. 2.12) in terms of one-person efficiency,

consistency, and converse consistency can also be generalized to multicriteria games.

Theorem 11.8 A solution concept ρ on Γfinite satisfies OPE, CONS, and COCONS if

and only if ρ = WPE.

Proof. WPE satisfies the axioms. Let ρ be a solution concept on Γfinite that also

satisfies them. As in the proof of Theorem 11.7, we have that ρ(G) ⊆ WPE(G) for each

G ∈ Γfinite by OPE and CONS. To prove that WPE(G) ⊆ ρ(G) for each G ∈ Γfinite, we

use induction on the number of players. In one-player games, the claim follows from OPE.

Now assume the claim holds for all finite multicriteria games with at most n players and

let G ∈ Γfinite be an (n + 1)-player game. By CONS of WPE: WPE(G) ⊆ W̃PE(G).
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By induction: W̃PE(G) ⊆ ρ̃(G). By COCONS of ρ: ρ̃(G) ⊆ ρ(G). Combining these

three inclusions: WPE(G) ⊆ ρ(G). 2

These results seem to illustrate that the axiomatizations that exist in the literature for the

Nash equilibrium concept generalize to the Pareto equilibrium concept for multicriteria

games. This analogy, however, breaks down when we consider mixed extensions of finite

multicriteria games, as is done in the next section.

11.5 Mixed extensions of finite multicriteria games

Norde et al. (1996) characterize the Nash equilibrium concept on mixed extensions of

finite strategic form games by nonemptiness, utility maximization, and consistency (cf.

Proposition 11.6). In this section it is shown that analogons of these properties are not

sufficient to characterize the weak Pareto equilibrium concept in mixed extensions of

finite multicriteria games.

First, we list some of the axioms used in this section. A solution concept ρ on Γ

satisfies:

• Nonemptiness (NEM), if ρ(G) 6= ∅ for each G ∈ Γ;

• Weak One-Person Efficiency (WOPE), if for each game G = 〈{i}, Xi, ui〉 ∈ Γ

with one player we have that ρ(G) ⊆ {x ∈ ∆(Xi) |6 ∃y ∈ ∆(Xi) : ui(y) > ui(x)};

• Consistency (CONS), if for each G ∈ Γ, each proper subcoalition S ∈ 2NG \
{∅, NG}, and each element x ∈ ρ(G), we have that xS ∈ ρ(GS,x);

• Converse Consistency (COCONS), if for each G ∈ Γ with at least two players,

we have that ρ̃(G) ⊆ ρ(G), where

ρ̃(G) = {x ∈ ∏

i∈NG

∆(Xi) | ∀S ∈ 2NG \ {∅, NG} : xS ∈ ρ(GS,x)}.

It is easy to see that WPE on Γ satisfies NEM (See Theorem 11.5), WOPE, and CONS.

Moreover,

Lemma 11.9 If a solution concept ρ on Γ satisfies WOPE and CONS, then ρ ⊆ WPE.

Proof. Let ρ be a solution concept on Γ, satisfying WOPE and CONS. Let G ∈ Γ and

x ∈ ρ(G). If |NG| = 1, then x ∈ WPE(G) by WOPE. If |NG| > 1, then for each player

i ∈ NG: xi ∈ ρ(G{i},x) by CONS, so xi ∈ {yi ∈ ∆(Xi) |6∃zi ∈ ∆(Xi) : ui(zi, x−i) >

ui(yi, x−i)} by WOPE. Hence x is a weak Pareto equilibrium: x ∈ WPE(G). 2

Obviously, WPE is the largest solution concept on Γ satisfying NEM, WOPE, and

CONS, but not the only one, as our next result shows.
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Theorem 11.10 There exists a solution concept ρ on Γ which satisfies NEM, WOPE,

and CONS, such that ρ 6= WPE.

Proof. Define ρ as follows. Let G = 〈NG, (Xi)i∈NG , (ui)i∈NG〉 ∈ Γ. Then

ρ(G) =

{
{x ∈ ∆(Xi) |6 ∃y ∈ ∆(Xi) : ui(y) > ui(x)} = WPE(G) if |NG| = 1

SPE(G) if |NG| > 1

The definition of ρ for one-player games guarantees that ρ satisfies WOPE. Theorem

11.5 establishes that ρ satisfies NEM. It is easy to see that ρ is also consistent. To show

that ρ 6= WPE, consider the game G in Figure 11.2, where both players have two pure

strategies and two criteria.

L R

T (1,1),(1,0) (0,0),(0,2)

B (1,0),(0,0) (0,0),(0,0)

Figure 11.2: Consistent refinement of WPE

Obviously (B, L) ∈ WPE(G), but (B,L) 6∈ ρ(G), since u1(T, L) ≥ u1(B, L). 2

A more interesting class of refinements of the Pareto equilibrium concept on Γ that

satisfy NEM, WOPE, and CONS are the compromise equilibria introduced in Chapter

13. In order to arrive at an axiomatization of WPE, we require an additional axiom. A

solution concept ρ on Γ satisfies:

• WEIGHT if for every game G ∈ Γ and each vector λ = (λi)i∈NG ∈ ∏
i∈NG ∆r(i) of

weights: ρ(Gλ) ⊆ ρ(G).

The solution concept ρ satisfies WEIGHT if for every weight vector, the solutions of

the associated weighted strategic form game are solutions of the underlying multicriteria

game.

Our main result, using the strong theorems of Norde et al. (1996) and Shapley

(1959), shows that the weak Pareto equilibrium concept is the unique solution concept

on Γ satisfying NEM, WOPE, CONS, and WEIGHT.

Theorem 11.11 A solution concept ρ on Γ satisfies NEM, WOPE, CONS, and WEIGHT

if and only if ρ = WPE.

Proof. Straightforward verification and application of Theorem 11.5 indicates that

WPE indeed satisfies the four axioms. Now let ρ be a solution concept on Γ satisfying

NEM, WOPE, CONS, and WEIGHT. By Lemma 11.9, ρ ⊆ WPE. Now let G ∈ Γ,

and x ∈ WPE(G). Remains to show that x ∈ ρ(G). By Theorem 11.5, there exists

a vector λ = (λi)i∈NG ∈ ∏
i∈NG ∆r(i) of weights such that x ∈ NE(Gλ). Notice that ρ

restricted to Γstrategic, the set of mixed extensions of strategic form games, satisfies NEM,
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UM, and CONS, and hence by Proposition 11.6, ρ(H) = NE(H) for all H ∈ Γstrategic.

Consequently, ρ(Gλ) = NE(Gλ) 3 x. So by WEIGHT: x ∈ ρ(G). 2

Finally, without proof, we mention that the analogon of Theorem 11.8 also holds when

we consider mixed extensions:

Theorem 11.12 A solution concept ρ on Γ satisfies OPE, CONS, and COCONS if and

only if ρ = WPE.

It is an easy exercise to show that the axioms used in our theorems are logically inde-

pendent.

Remark 11.13 In the proof of Theorem 11.10 we mentioned the strong Pareto equilib-

rium concept. By slight modifications in the axioms (in particular, to (weak) one-person

strong efficiency and a weight axiom concerning strictly positive, rather than nonnega-

tive, weights), all axiomatizations in Sections 11.4 and 11.5 have analogons for the strong

Pareto equilibrium concept. Also, a result analogous to Theorem 11.10 holds. To see

this, define a solution concept ψ on Γ as follows. Let G = 〈NG, (Xi)i∈NG , (ui)i∈NG〉 ∈ Γ.

• If |NG| = 1, take ψ(G) = {x ∈ ∆(Xi) |6 ∃y ∈ ∆(Xi) : ui(y) ≥ ui(x)}. This

guarantees that ψ satisfies (weak) one-person strong efficiency.

• If |NG| > 1, take ψ(G) = NE(Ge), the set of Nash equilibria of the scalarized

game in which the players assign equal weight to their criteria. By the existence

of Nash equilibria in mixed extensions, ψ satisfies NEM.

It is easy to see that ψ is also consistent. To show that ψ is not equal to the strong

Pareto equilibrium concept, refer again to the game G in Figure 11.2. (T, L) is a strong

Pareto equilibrium of G, but the weighted payoff to player 2 increases from 1+0
2

to 0+2
2

if he deviates to R, indicating that (T, L) /∈ ψ(G) = NE(Ge). /



Chapter 12

The Structure of the Set of

Equilibria for Two-Person

Multicriteria Games

12.1 Introduction

Nash introduced the notion of an equilibrium for noncooperative games in strategic form

in his papers in 1950a and 1951. Since then the Nash equilibrium concept and its refine-

ments have been and still are studied extensively. One of the topics in this investigation

concerns the structure of the set of equilibria of bimatrix games, noncooperative two-

player games in strategic form. Over the last decades a fair number of papers has been

published on this topic. It turned out that the set of equilibria of a bimatrix game is a

finite union of polytopes. Proofs of this fact can for example be found in Winkels (1979),

Jansen (1981) and Jansen and Jurg (1990).

These results are of considerable importance from a computational point of view.

One reason for this is that the original proofs by Nash of the existence of equilibria

is not constructive. The 1950 paper uses the Kakutani fixed point theorem, whereas

the 1951 paper applies the Brouwer fixed point theorem to establish existence. These

proofs, therefore, do not tell you how to find an equilibrium for a given game. Also the

basic inequalities in the definition of the equilibrium concept are not of much help. In

general (without further assumptions on the structure of the game) these inequalities are

polynomial and it is not clear how one can actually calculate one single solution given

these inequalities, let alone how to find a parametric representation of the complete set

of equilibria.

In the case of bimatrix games life is much simpler. For such a game it is possible to

show that the set of equilibria is a finite union of polytopes and it is moreover possible to

derive a polyhedral description of each of these polytopes. Hence, by using some theory

of linear inequalities, it is possible to compute all extremal points of such a polytope

131
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and in this way find a parametric description of the set of equilibria. There are also a

number of exact algorithms for the computation of one specific equilibrium, such as the

algorithm of Lemke and Howson (1964), that are based on the special structure of the

set of equilibria for bimatrix games.

This chapter, based on Borm, Vermeulen, and Voorneveld (1998), investigates to

what extent the results on the structure of the set of equilibria of a bimatrix game

carry over to the Pareto equilibrium concept introduced by Shapley (1959) for two-

person multicriteria games. This concept was discussed in more depth in Chapter 11.

Unfortunately, most results are on the negative side of the spectrum. The specific results

are specified below.

• Section 12.4 provides an example to show that the set of weak Pareto equilibria

may have a quadratic component whenever both players have three or more pure

strategies and one of the players has more than one criterion.

• In Section 12.5 we show that the set of equilibria is indeed a finite union of polytopes

if one of the players has two pure strategies.

In order to make the chapter closer to the existing literature on the structure of equi-

librium sets in bimatrix games, notation is used that differs slightly from that in the

previous chapters. Most of this notation is settled in the next section. Section 12.3

contains general results on the structure of the set of weak Pareto equilibria.

12.2 Preliminaries

In a (two-person multicriteria) game the first player has a finite set M of pure strategies

and player two has a finite set N of pure strategies. The players are supposed to choose

their strategies simultaneously. Given their choices m ∈ M and n ∈ N , player one has

a finite set S of criteria to evaluate the pure strategy pair (m, n). For each criterion

s ∈ S the evaluation is a real number (As)mn ∈ IR. Of course we also have an evaluation

(Bt)mn ∈ IR for each criterion t ∈ T of player two. Thus the game is specified by the two

sequences

A := (As)s∈S and B := (Bt)t∈T

of matrices

As := [(As)mn](m,n)∈M×N and Bt := [(Bt)mn](m,n)∈M×N .

Despite the fact that the players may have more than one criterion, we will refer to A

and B as payoff matrices. The game is denoted by (A,B). The players of the game

are also allowed to use mixed strategies. Given such mixed strategies p ∈ ∆(M) and

q ∈ ∆(N) for players one and two respectively, the vectors

pAq := (pAsq)s∈S and pBq := (pBtq)t∈T
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are called payoff vectors (for player one and two, resp.).

A very convenient way to define equilibria, certainly when one wants to analyze their

structure, is by means of best replies. In the notation for bimatrix games, the best-

response correspondence that gives rise to weak Pareto equilibria is defined as follows:

Definition 12.1 Let (A,B) be a game and let q ∈ ∆(N) be a strategy of player two.

A strategy p ∈ ∆(M) of player one is a best reply of player one against q if there is no

other strategy p′ ∈ ∆(M) such that the payoff vector p′Aq strongly dominates the payoff

vector pAq. The set of best replies of player one against q is denoted by WB1(q). /

The best-response correspondence WB2 of player 2 against strategies p ∈ ∆(M) is

defined analogously. In equilibrium, both players play a best response.

Definition 12.2 A strategy pair (p, q) is an equilibrium of (A,B) if p ∈ WB1(q) and

q ∈ WB2(p). /

Notice that we restrict attention to weak Pareto equilibria in this chapter. Since the

more restrictive notion of strong Pareto equilibria does not necessarily yield a closed set

of equilibria (see Example 11.2), we decided to use the weaker version.

12.3 Stability regions and structure

In case of bimatrix games, the proof that the set of Nash equilibria is a finite union of

polytopes is based on the fact that this set of equilibria can be chopped up into a finite

number of sets. Then each of these sets can easily be shown to be a polytope. It turns

out to be worthwhile to execute this procedure for multicriteria games as well.

First of all, recall that according to Theorem 11.5 weak Pareto equilibria coincide

with Nash equilibria of weighted games where nonnegative weight is assigned to each of

the criteria. Recall that for each criterion t ∈ T the real number eiBtej is the payoff of

player two according to his criterion t and Bt is the matrix whose entry on place i, j is

this number eiBtej. Now suppose that player two decides to assign a weight µt
>
= 0 to

each criterion t ∈ T available to him (we assume that
∑

t∈T µt equals one). The vector

µ = (µt)t∈T is called a weight vector. According to the criterion associated with this

weight vector the evaluation of the outcome (ei, ej) is the real number

∑

t∈T

µteiBtej = ei

(∑

t∈T

µtBt

)
ej.

So, given the weight vector (µt)t∈T , player two in effect uses the matrix

B(µ) :=
∑

t∈T

µtBt

to calculate his payoff. With this terminology, the result of Shapley (1959) can be

rephrased as follows.
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Lemma 12.3 Let (A,B) be a two-person multicriteria game. Let p be a strategy of

player one and let q be a strategy of player two. Then the following two statements are

equivalent.

• q is a best reply of player two against p

• There exists a weight vector µ := (µt)t∈T such that q is a best reply of player two

against p in the single-criterion game B(µ).

In words, the lemma states that q is a best reply of player two against p if and only

if player two can assign to each criterion t ∈ T a nonnegative weight µt such that the

resulting weighted payoff is maximal in q, given that player one plays p. For a proof,

refer to Theorem 10.1.

We decompose the set of equilibria of the game (A,B) into a finite number of sets

that are easier to handle. This decomposition is in fact the multicriteria equivalent of

the technique that is used to prove that the set of equilibria of a bimatrix game is a finite

union of polytopes. In order to give the reader some background concerning the line of

reasoning employed here, we will first give an informal discussion of this technique.

Suppose that we have a bimatrix game and a subset I of the set of pure strategies

of player one. Then we can associate two areas with this set, one in the set of mixed

strategies of player one and one in the set of mixed strategies of player two. For player

one, this is the set ∆(I) of mixed strategies that put all weight exclusively on the pure

strategies in I, and for player two this is the set U(I) of mixed strategies of player two

against which (at least) all strategies in ∆(I) are best replies. Such a set U(I) is called a

stability region. Obviously we can do the same for a subset J of the set of pure strategies

of player two.

Now the crucial point is that for a bimatrix game all these sets ∆(I), ∆(J), U(I),

and U(J) are polytopes (and for each of these polytopes it is even possible to find a

describing system of linear inequalities). So, also the set

(∆(I) ∩ U(J))× (∆(J) ∩ U(I))

is a polytope. Moreover there is only a finite number of such sets and it can be shown

that their union equals the set of Nash equilibria of the given bimatrix game.

Although the sets U(I) and U(J) not necessarily need to be polytopes in the mul-

ticriteria case, we can still carry out this procedure for two-person multicriteria games.

To this end, let v be an element of IRn and let P be a polytope in IRn. The vector v is

said to attain its maximum over P in the point x ∈ P if

〈v, x〉 >
= 〈v, y〉 for all y ∈ P.

Then we have the following well-known lemma.
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Lemma 12.4 Let v be a vector in IRn. Further, let P be a polytope in IRn and let F

be a face of P . If v attains its maximum over P in some relative interior point x of F ,

then it also attains its maximum over P in any other point of F .

Now let I be a subset of M . Slightly abusing notation we write ∆(I) for the set of

strategies p ∈ ∆(M) whose carrier is a subset of I. Further, the stability region U(I) (of

player two) is defined as

U(I) := {q ∈ ∆(N) | ∆(I) ⊆ WB1(q)}.

Similarly we can define sets ∆(J) and U(J) for a subset J of N .

Theorem 12.5 Let (A,B) be a two-person multicriteria game. The set of equilibria of

the game (A,B) equals the union over all I ⊆ M and J ⊆ N of the sets

(∆(I) ∩ U(J))× (∆(J) ∩ U(I)) .

Proof.

(a) Assume that a strategy pair (p∗, q∗) is an element of a set (∆(I) ∩ U(J))× (∆(J) ∩
U(I)) for some subset I of M and subset J of N . We will only show that p∗ is a best

reply against q∗.
Since q∗ is an element of U(I), we know that any strategy in ∆(I) is a best reply

against q∗. Now p∗ is an element of ∆(I) by assumption. Hence, p∗ is a best reply

against q∗.

(b) Conversely, let (p∗, q∗) be an equilibrium. Take I = C(p∗) and J = C(q∗). We will

show that p∗ is an element of ∆(I) ∩ U(J).

Obviously p∗ is an element of ∆(I). So it remains to show that p∗ is also an element

of U(J). In other words, we need to show that each strategy q ∈ ∆(J) is a best reply

against p∗. To this end, take a q ∈ ∆(J). Since q∗ is a best reply against p∗ we know

by Lemma 12.3 that there exists a weight vector µ = (µt)t∈T such that q∗ is a best reply

against p∗ in the single-criterion game B(µ). In other words, the vector p∗B(µ) attains

its maximum over ∆(N) in q∗. However, since q∗ is an element of the relative interior

of ∆(J), p∗B(µ) must also attain its maximum in q by Lemma 12.4. Hence, q is a best

reply against p∗ according to B(µ), and, again by Lemma 12.3, q is a best reply against

p∗. 2

Clearly the sets ∆(I) and ∆(J) are polytopes for all subsets I of M and J of N . So,

from the previous theorem it follows that the set of equilibria of the game (A,B) is a

finite union of polytopes as soon as the sets U(I) and U(J) are polytopes. Unfortunately

this need not be the case. In the next section we provide a counterexample.
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12.4 An example

We will give a fairly elaborate analysis of the counterexample. This is done because the

calculations involved in the determination of best replies and stability regions for this

game are exemplary for such calculations in general.

There are two players in the game. Player one is the row player and player two is the

column player. Both players have three pure strategies. The pure strategies of player

one are called T, M , and B, the pure strategies of player two are called L,C, and R.

Further, player one has two criteria and player two has only one criterion. The payoff

for player two according to his criterion is always zero. The payoff matrix A of player

one is given in Figure 12.1.

L C R

T (1, 1) (0, 0) (0, 0)

M (0, 0) (4, 0) (0, 0)

B (0, 0) (0, 0) (0, 4)

Figure 12.1: The payoff matrix A of player one

Since player two is completely indifferent between his strategies, it is immediately

clear that a strategy pair (p∗, q∗) ∈ ∆(M) × ∆(N) is an equilibrium of the game if

and only if p∗ is an element of WB1(q
∗). In other words, the set of equilibria equals

the graph of the best-reply correspondence WB1. In order to calculate this graph we

will first compute the areas in the strategy space of the second player where the best

reply correspondence WB1 is constant. In other words, we need to compute the stability

regions of player two.

First of all note that if player two plays strategy q = (qL, qC , qR) and player one plays

his pure strategy eT , the payoff for player one is eT Aq = (qL, qL). This is a point on the

line x = y when plotted in the xy-plane. Similarly, eMAq = (4qC , 0) is a point on the

line y = 0 and eBAq = (0, 4qR) is a point on the line x = 0. Now there are five possible

situations as is depicted below.
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In situation I both eMAq and eBAq are dominated by eT Aq. In situation II eT Aq

dominates eBAq, but does not dominate eMAq. (Situation III is the symmetric situation

with the roles of the second and third pure strategy of player one interchanged.) In

situation IV eT Aq is itself undominated and dominates neither eMAq nor eBAq, and V

depicts the situation in which eT Aq is dominated by some convex combination of eMAq

and eBAq.

Now if we calculate exactly where in the strategy space of player two these five

situations occur we get Figure 12.2 below. The boldface roman numbers in the various

areas in this picture correspond to the roman numbers assigned to the situations depicted

above. Notice that an area in the strategy space of player two corresponding to one of

the five situations above is necessarily of full dimension by the graphics above. Further,

one cannot jump from situation V to situations I, II or III without crossing the area

where situation IV occurs (except on the boundary of the strategy space).

The boundary line between areas I and II and areas III, IV and V is given by the

equality qL = 4qR. Similarly, qL = 4qC is the boundary between areas I and III and

areas II, IV and V.

Finally, it can be seen in the graphics above that the boundary between area V and

the others is exactly the set of strategies where eT Aq is an element of the line segment

between eMAq and eBAq. This means that it is the set of strategies for which (qL, qL)

satisfies the linear equation qRx + qCy = 4qCqR. Hence it must be the set of strategies

that satisfy the quadratic equation

qLqR + qLqC = 4qCqR

(except the solution (qL, qC , qR) = (1, 0, 0) of this equation). This gives us enough

information to write down the stability regions of player two.

U({T}) = I ∪ II ∪ III ∪ IV

U({M}) = II ∪ IV ∪V

U({B}) = III ∪ IV ∪V
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Figure 12.2: Stability regions of player two

U({T, M}) = II ∪ IV

U({T, B}) = III ∪ IV

U({M, B}) = V

U({T, M,B}) = IV ∩V

Note the essential differences with the structure of stability regions for bimatrix games.

For a bimatrix game we would for example have the equality

U({M,B}) = U({M}) ∩ U({B}).
The example shows that this is no longer true for multicriteria games. In this case the

set

U({M}) ∩ U({B}) = IV ∪V

subdivides into the areas IV, on whose relative interior

∆({T, M}) ∪∆({T,B})
is the set of best replies, and V, on whose relative interior the set of best replies is indeed

∆({T, M,B}). An area like IV simply cannot occur for bimatrix games.

The second essential difference, and the main one in this section, is the fact that

U({T, M, B}) is a quadratic curve. This means that the subset

∆({T, M, B})× U({T, M, B})
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of the set of equilibria cannot be written as a finite union of polytopes. This concludes

the example.

Remark 12.6 The observation that the set of equilibria of a multicriteria game in

general cannot be written as a finite union of polytopes implies that in Theorem 11.5

it will usually be necessary to invoke infinitely many vectors of weights to compute the

Pareto equilibria as Nash equilibria of weighted games. /

12.5 Multicriteria games of size 2× n

The previous example shows that, in case at least one of the players has more than one

criterion, the set of equilibria may have a quadratic component as soon as both players

have at least three pure strategies. The degenerate case in which one of the players

has only one pure strategy immediately yields that the set of equilibria is a finite union

of polytopes. This case is not considered in the remainder of this chapter. So, in the

multicriteria case it is necessary to have (at least) one player who has exactly two pure

strategies to guarantee that the set of equilibria is indeed a finite union of polytopes. In

this section we will show that this assumption is also sufficient.

Without loss of generality, we assume that every two-person multicriteria game (A,B)

considered in this section is a 2× n-game in which player one’s set of pure strategies M

equals {T, B}.
This section is ordered as follows: first we establish that the stability regions of player

two are finite unions of polytopes. Next, the same result is proven for the stability regions

of the first player. The computational aspects are considered in the final part of this

section.

First, the stability regions of player two. In this special case the analysis of the

dominance relation on the possible payoff vectors for player one for a fixed strategy q

of player two is quite straightforward. Since player one has only two pure strategies

eT and eB, the set of possible payoff vectors is a line segment (or a singleton in case

eT Aq = eBAq) in IRS. Given this observation it is easy to check

Lemma 12.7 The following two statements are equivalent.

• eT Aq is dominated by pAq for some p ∈ ∆(M).

• eT Aq is dominated by eBAq.

Given this lemma we can show that each stability region U(I) of player two is a finite

union of polytopes. Two cases are considered.

Case 1. For |I| = 1. Assume w.l.o.g. that I = {T}. Then

U(I) = {q ∈ ∆(N) | ∆(I) ⊆ WB1(q)}
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= {q ∈ ∆(N) | eT ∈ WB1(q)}

= {q ∈ ∆(N) | eT Aq is not dominated by pAq for any p ∈ ∆(M)}

= {q ∈ ∆(N) | eT Aq is not dominated by eBAq}

=
⋃

s∈S

{q ∈ ∆(N) | eT Asq >
= eBAsq}

where the fourth equality follows from the previous lemma. Clearly this last expression

is a finite union of polytopes.

Case 2. For I = {T,B}. Using the previous lemma it is easy to check that U(I) is the

set of strategies q for which eT Aq does not dominate eBAq and eBAq does not dominate

eT Aq. So, U(I) = U({T}) ∩ U({B}). Thus, since both U({T}) and U({B}) are finite

unions of polytopes as we saw in Case 1, U(I) is also a finite union of polytopes.

This finishes the proof of

Theorem 12.8 Let (A,B) be a 2 × n two-person multicriteria game. Then for each

I ⊆ M = {T,B}, the stability region U(I) of player two is a finite union of polytopes.

Now that we have come this far, the only thing left to prove is that the stability region

U(J) = {p ∈ ∆(M) | ∆(J) ⊆ WB2(p)}

is a finite union of polytopes for each set J ⊆ N of pure strategies of player two. In

order to do this we need to do some preliminary work.

Let the subset V (J) of ∆(M)× IRT be defined by

V (J) := {(p, µ) | ∆(J) is included in the set of best replies against p

according to the criterion B(µ)}

= {(p, µ) | ∆(J) is included in the set of strategies where

the vector pB(µ) attains its maximum over ∆(N)}.

Note that we allow pB(µ) to attain its maximum in points outside ∆(J) as well. We

only require that ∆(J) is indeed a subset of the set of points where pB(µ) attains its

maximum over ∆(N).
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Further, let the projection π : IR2 × IRT → IR2 be defined by

π(p, v) := p for all (p, v) ∈ IR2 × IRT .

Now we can prove

Lemma 12.9 The stability region U(J) equals the projection π (V (J)) of the set V (J).

Proof.

(a) Let p be an element of U(J). We will show that p is also an element of π (V (J)).

Let q∗ be an element of the relative interior of ∆(J). Since p is an element of U(J) we

know that q∗ is a best reply to p. Then we know, by Lemma 12.3, that there is a weight

vector µ = (µt)t∈T such that the vector pB(µ) attains its maximum over ∆(N) in q∗. So,

since q∗ is a relative interior point of ∆(J), pB(µ) also attains its maximum over ∆(N)

in any other point of ∆(J) by Lemma 12.4. Therefore (p, µ) is an element of V (J) and

p = π(p, µ) is an element of π (V (J)).

(b) Conversely, let p = π(p, µ) be an element of π (V (J)) and let q be an element of

∆(J). Then we know that the vector pB(µ) attains its maximum over ∆(N) in q. Again

by Lemma 12.3, this means that q is a best reply against p. Hence, since q was chosen

arbitrarily in ∆(J), p is an element of U(J). 2

This enables us to show

Theorem 12.10 Let (A,B) be a 2 × n two-person multicriteria game. Then for each

J ⊆ N , the stability region U(J) of player one is a finite union of polytopes.

Proof. Observe that the set V (J) is the collection of points (p, µ) ∈ IR2 × IRT that

satisfy the system of polynomial (in)equalities

pi
>
= 0 for i = 1, 2

p1 + p2 = 1

µt
>
= 0 for all t ∈ T

∑

t∈T

µt = 1

∑

t∈T

µtpBtej
>
=

∑

t∈T

µtpBtek for all j ∈ J and k ∈ N.

Therefore, V (J) is a semi-algebraic set. Furthermore, by Lemma 12.9, U(J) equals the

set of vectors p ∈ IR2 such that there exists a µ ∈ IRT for which

(p, µ) ∈ V (J).
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Hence, by the Theorem of Tarski (1951) and Seidenberg (1954) (see Blume and Zame,

1994, for a clear discussion of this theorem) U(J) is also a semi-algebraic set. Further,

U(J) is compact, since V (J) is compact and π is continuous. So, U(J) is the union of a

finite collection {Sα}α∈A of sets Sα in ∆(M) and each Sα is described by a finite number

of polynomial inequalities

pα,k(x) >
= 0 (k = 1, . . . , m(α)).

However, ∆(M) is a line segment in IR2. So the set of points in ∆(M) that satisfies one

particular inequality is the finite union of (closed) line segments (singletons also count

as line segments). So, since each Sα is the intersection of such finite unions, Sα is itself

the finite union of closed line segments. Therefore, since U(J) is the finite union over

all sets Sα, it is the finite union of closed line segments. Hence, U(J) is a finite union of

polytopes. 2

Combination of the previous two theorems yields the result we set out to prove:

Theorem 12.11 In two-person multicriteria games of size 2×n, the set of equilibria is

a finite union of polytopes.

Finally, we consider the case where the second player has only one criterion: |T | = 1.

In this case we have a complete polyhedral description of the polytopes involved in the

union. Notice that we already know that the sets ∆(I) and ∆(J) are polytopes, and the

sets U(I) and U(J) are finite unions of polytopes. We will now show that a polyhedral

description of all these polytopes can be found.

For the polytopes ∆(I), ∆(J) this polyhedral description is trivial. For U(I) we saw

in Case 1 below Lemma 12.7 that it is the finite union of polytopes of the form

{q ∈ ∆(N) | eT Asq >
= eBAsq}.

So, in Case 1 the polytopes involved in the union are already given by linear inequalities.

This implies that also in Case 2 we can find the linear inequalities that describe the

polytopes involved. Finally, for J ⊆ N , we get

U(J) = {p ∈ ∆(M) | ∆(J) ⊆ WB2(p)}

= {p ∈ ∆(M) | pBej
>
= pBek for all j ∈ J and k ∈ N}.

The assumption that |T | = 1 is used in the second equality. The last expression in the

display now shows that U(J) is itself a polytope that can be written as the solution set

of a finite number of linear inequalities. This concludes the argumentation.



Chapter 13

Compromise, Nash Bargaining, and

Perfect Equilibria

13.1 Introduction

In Chapter 10 we suggested the following interpretation of a noncooperative multicriteria

game G = 〈N, (Xi)i∈N , (ui)i∈N〉 ∈ Γ: each player i ∈ N represents an organization or

group of players and the function ui into IRr(i) represents the r(i) ∈ IN separate utility

functions of its members. This interpretation induces an aggregate conflict: there is a

noncooperative game being played between the organizations and a cooperative game

within each organization, where its members jointly have to decide on a strategy choice

that is ‘optimal’ given their utility functions.

Different solution concepts can be defined, depending on the answer to the following

central question:

What is a ‘best response’? (Q)

The Pareto equilibrium concept was studied in the previous two chapters. In this chapter,

three other solution concepts are proposed. The first two concepts provide different

answers to question (Q). Compromise equilibria, introduced in Section 13.2, answer

question (Q) by requiring to be as close as possible to an ideal solution. Nash bargaining

equilibria, introduced in Section 13.3, answer question (Q) by suggesting a bargaining

solution far away from an undesirable solution. A more standard approach to equilibrium

refinements is taken in Section 13.4, where the analogon of perfect equilibria à la Selten

(1975) is defined for multicriteria games. Section 13.5 contains some concluding remarks.

13.2 Compromise equilibria

The distance function method described in Chapter 10 as a solution method for multi-

criteria problems was based on the idea of finding the feasible point(s) that are closest

143
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to an ideal outcome. Zeleny (1976) even states this — rather informally — as an axiom

of choice:

‘Alternatives that are closer to the ideal are preferred to those that are farther

away. To be as close as possible to the perceived ideal is the rationale of

human choice.’

The distance function method as a way to find compromises for group conflicts was

popularized by Yu (1973; see also Freimer and Yu, 1976). It suggests two questions:

• What is an ideal point, and

• What is the meaning of ‘close to’?

Suppose that there are two individuals, called i1 and i2, and that their feasible set of

utilities is the polytope U in Figure 13.1. Individual i1 can at most hope for x, whereas

individual i2 can at most hope for y. The ideal point, in which they will both receive

their maximal utility, is therefore the point I = (x, y). Unfortunately, this point is

infeasible. To find a compromise, it is desirable to find a point close to I that is feasible.

Yu (1973) proposes to measure distances using lp-norms. Let p ∈ [1,∞]. The lp-norm

on IRn assigns to each x ∈ IRn the real number

‖x‖p :=

[
n∑

i=1

|xi|p
]1/p

,

where the l∞-norm, also called the Tchebyshev norm, is defined by

‖x‖∞ := max
i=1,...,n

|xi|.

These norms induce distance functions on IRn that map (x, y) ∈ IRn × IRn to ‖x − y‖p.

Using for instance the standard Euclidean distance l2, the compromise solution would

be the feasible outcome yielding the point c in Figure 13.1.

View each player i ∈ N of a noncooperative multicriteria game 〈N, (Xi)i∈N , (ui)i∈N〉 as

an organization consisting of r(i) ∈ IN members, each having his own utility function.

Confronted with a strategy profile x−i ∈ ∏
j∈N\{i} ∆(Xj), the members of organization

i can answer the question ‘what is a best response against x−i?’ or, equivalently ‘what

strategy yields a good outcome in the payoff polytope {ui(xi, x−i) | xi ∈ ∆(Xi)} =

conv {ui(xi, x−i) | xi ∈ Xi}?’ by proposing a compromise solution. Defining a best

response in this way, and imposing the stability condition that each player should play

a best response given the strategy profile of his opponents, one obtains compromise

equilibria.

Formally, let G = 〈N, (Xi)i∈N , (ui)i∈N〉 be a multicriteria game, i ∈ N , and x−i ∈∏
j∈N\{i} ∆(Xj). Player i’s ideal point, given x−i, is the point Ii(x−i) ∈ IRr(i) where for
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Figure 13.1: A compromise solution

each k ∈ {1, . . . , r(i)} the k-th coordinate is the highest feasible utility according to

criterion uik:

Iik(x−i) = max
xi∈∆(Xi)

uik(xi, x−i) = max
xi∈Xi

uik(xi, x−i).

Next, let each player i ∈ N select an lp-norm, i.e, let p = (p(i))i∈N ∈ [1,∞]N . A strategy

profile x ∈ ∏
i∈N ∆(Xi) is a compromise equilibrium of the multicriteria game G, given

p, notation x ∈ CEp(G), if each player i ∈ N chooses a strategy profile that yields a

utility vector closest to the ideal point according to the lp(i)-norm:

∀i ∈ N : xi ∈ arg min
yi∈∆(Xi)

‖ui(yi, x−i)− Ii(x−i)‖p(i).

Theorem 13.1 Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 ∈ Γ and p = (p(i))i∈N ∈ [1,∞]N . Then

CEp(G) 6= ∅.
Proof. The proof is based on Kakutani’s fixed point theorem. Let i ∈ N . ∆−i =∏

j∈N\{i} ∆(Xj) is a metric space. ∆i = ∆(Xi) is a compact metric space. The function

fi : ∆−i ×∆i → IR with fi(x−i, xi) = −‖ui(xi, x−i) − Ii(x−i)‖p(i) is continuous. By the

Maximum theorem

mi : x−i 7→ max
xi∈∆i

fi(x−i, xi)

is continuous and

Mi : x−i 7→ arg max
xi∈∆i

fi(x−i, xi) = arg min
xi∈∆(Xi)

‖ui(xi, x−i)− Ii(x−i)‖p(i)

is u.s.c. Nonemptiness of Mi(x−i) is immediate from the fact that every continuous

function on a compact set achieves its maximum.

Moreover, for each x−i ∈ ∆−i the set Mi(x−i) ⊆ ∆i is bounded and equals the inverse

image of {mi(x−i)} under the continuous function fi(x−i, ·), which implies that Mi(x−i)

is closed. Hence Mi(x−i) is compact for each x−i ∈ ∆−i.
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Also, for each x−i ∈ ∆−i the set Mi(x−i) = arg minxi∈∆(Xi) ‖ui(xi, x−i)− Ii(x−i)‖p(i)

is convex. To see this, let x−i ∈ ∆−i, yi and zi in Mi(x−i), and λ ∈ (0, 1). Then

min
xi∈∆i

‖ui(xi, x−i)− Ii(x−i)‖p(i)

<
= ‖ui(λyi + (1− λ)zi, x−i)− Ii(x−i)‖p(i)

= ‖λ [ui(yi, x−i)− Ii(x−i)] + (1− λ) [ui(zi, x−i)− Ii(x−i)] ‖p(i) (13.1)

<
= λ‖ui(yi, x−i)− Ii(x−i)‖p(i) + (1− λ)‖ui(zi, x−i)− Ii(x−i)‖p(i) (13.2)

= λ min
xi∈∆i

‖ui(xi, x−i)− Ii(x−i)‖p(i) (13.3)

+ (1− λ) min
xi∈∆i

‖ui(xi, x−i)− Ii(x−i)‖p(i)

= min
xi∈∆i

‖ui(xi, x−i)− Ii(x−i)‖p(i),

where equality (13.1) follows from the multilinearity of ui, inequality (13.2) follows from

the triangle inequality, and equality (13.3) follows from the fact that yi, zi ∈ Mi(x−i).

But then all weak inequalities above are in fact equalities, proving that λyi +(1−λ)zi ∈
Mi(x−i) = arg minxi∈∆i

‖ui(xi, x−i)− Ii(x−i)‖p(i).

This completes the preliminary work. Notice that ∆ is nonempty, compact, and con-

vex, that M : ∆→→ ∆ with M(x) =
∏

i∈N Mi(x−i) is u.s.c., and that M(x) is nonempty,

compact, and convex for each x ∈ ∆. Kakutani’s fixed point theorem implies the exis-

tence of a point x ∈ ∆ satisfying x ∈ M(x), which is a compromise equilibrium. 2

Formally, CEp is not a solution concept, since the vector p = (p(i))i∈N depends on the

player set of the game being played. This can be remedied in a trivial way: recall that

the set of potential players is IN and that each multicriteria game G ∈ Γ has a finite

player set NG ⊂ IN. Fix a function p : IN → [1,∞] that specifies for each potential player

i ∈ IN a norm lp(i). Define a solution concept CEp on Γ as follows:

∀G ∈ Γ : CEp(G) = CE(p(i))
i∈NG

(G),

i.e., CEp assigns to each game G ∈ Γ its set of compromise equilibria given that each

player i ∈ NG uses the lp(i)-norm. It is a trivial exercise to show that the lp-norms satisfy

the following monotonicity condition:

∀x, y ∈ IRn
+, ∀p ∈ [1,∞) : x ≥ y ⇒ ‖x‖p > ‖y‖p

∀x, y ∈ IRn
+ : x ≥ y ⇒ ‖x‖∞ >

= ‖y‖∞
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Therefore, if x ∈ CEp(G) is a compromise equilibrium and i ∈ N has p(i) ∈ [1,∞),

strategy xi yields a payoff ui(xi, x−i) on the strong Pareto edge of {ui(yi, x−i) | yi ∈ ∆i},
whereas a player i ∈ N with p(i) = ∞ selects a point on the weak Pareto edge. It is not

difficult to check that CEp is a consistent solution concept. As a consequence, we found

a nontrivial, nonempty, consistent refinement of weak and strong Pareto equilibria.

Theorem 13.2 Let p : IN → [1,∞]. If p(i) 6= ∞ for each player i ∈ IN, then CEp is

a nonempty, consistent refinement of SPE. Otherwise, CEp is a nonempty, consistent

refinement of WPE.

13.3 Nash bargaining equilibria

There is an interesting duality between the multicriteria literature that suggests a com-

promise approach to finding a desirable alternative from a feasible set and the game

theoretic approach on bargaining. The compromise approach entails formulating a de-

sirable, ideal solution solution and then ‘working your way down’ to a feasible solution

as close as possible to the ideal. The bargaining approach entails formulating a typi-

cally undesirable disagreement point and then ‘working your way up’ to a feasible point

dominating this disagreement outcome. Mixtures of the two approaches, like the Kalai-

Smorodinsky (1975) solution, exist as well.

In this section, Nash meets Nash. Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 ∈ Γ. Confronted

with a strategy profile x−i ∈ ∏
j∈N\{i} ∆(Xj), the members of organization i can answer

the question ‘what strategy yields a good outcome in the payoff polytope {ui(xi, x−i) |
xi ∈ ∆(Xi)} = conv {ui(xi, x−i) | xi ∈ Xi}?’ by finding an appropriate disagreement

point in IRr(i) and proposing the bargaining solution proposed by Nash (1950b). Defining

a best response in this way, and imposing the stability condition of the Nash equilibrium

concept (Nash, 1950a) that each player should play a best response given the strategy

profile of his opponents, one obtains Nash bargaining equilibria.

Hence, in Nash bargaining equilibria we have

• for the noncooperative conflict between players/organizations the Nash condition

that each player plays a best response against the strategy profile of the opponents,

and

• the Nash bargaining solution to settle the cooperative conflict within an organiza-

tion.

Formally, let i ∈ N , and x−i ∈ ∏
j∈N\{i} ∆(Xj). Player i’s disagreement point, given

x−i, is the point di(x−i) ∈ IRr(i) where for each k ∈ {1, . . . , r(i)} the k-th coordinate is

the lowest possible utility according to criterion uik:

dik(x−i) = min
xi∈∆(Xi)

uik(xi, x−i) = min
xi∈Xi

uik(xi, x−i).
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A strategy profile x ∈ ∏
i∈N ∆(Xi) is a Nash bargaining equilibrium of the multicriteria

game G, notation x ∈ NBE(G), if each player i ∈ N chooses a strategy profile that

yields a utility vector coinciding with the Nash bargaining solution given feasible set

{ui(yi, x−i) | yi ∈ ∆(Xi)} and disagreement point di(x−i):

∀i ∈ N : xi ∈ arg max
yi∈∆(Xi)

r(i)∏

k=1

(uik(yi, x−i)− dik(x−i)) .

Theorem 13.3 Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 ∈ Γ. Then NBE(G) 6= ∅.
Proof. Define for each i ∈ N the function fi : ∆−i ×∆i → IR as follows:

∀(x−i, xi) ∈ ∆−i ×∆i : fi(x−i, xi) =
r(i)∏

k=1

(uik(xi, x−i)− dik(x−i)) .

Then fi is obviously continuous. By the Maximum theorem we know that

mi : x−i 7→ max
xi∈∆i

fi(x−i, xi)

is continuous and that

Mi : x−i 7→ arg max
xi∈∆i

fi(x−i, xi)

is u.s.c. Moreover, by continuity of fi, the set Mi(x−i) is nonempty and compact for

each x−i ∈ ∆−i.

To prove that Mi(x−i) is convex, discern two cases. Either mi(x−i) = 0, in which case

Mi(x−i) = ∆i is convex, or mi(x−i) > 0, in which case convexity of Mi(x−i) follows from

the fact that maximizing fi is then equivalent with maximizing log fi, which is easily

seen to be a strictly concave function of xi.

Since ∆ is nonempty, convex, compact, the function M : ∆→→ ∆ with

M : x 7→ M1(x−1)× · · · ×Mn(x−n)

is u.s.c., and M(x) is nonempty, convex, and compact for each x ∈ ∆, the Kakutani fixed

point theorem implies the existence of a strategy profile x ∈ ∆ satisfying x ∈ M(x). Such

a profile x is a Nash bargaining equilibrium of the game G. 2

Some caution should be applied here. In a Nash bargaining equilibrium x ∈ NBE(G)

it holds for each player i ∈ N that

∏r(i)
k=1 (uik(xi, x−i)− dik(x−i)) > 0 ⇔

∃yi ∈ ∆(Xi) :
∏r(i)

k=1 (uik(yi, x−i)− dik(x−i)) > 0 ⇔

∀k ∈ {1, . . . , r(i)} ∃yi ∈ ∆(Xi) : uik(yi, x−i)− dik(x−i) > 0 ⇔

∀k ∈ {1, . . . , r(i)} : uik(·, x−i) is not a constant function.
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The second equivalence follows from multilinearity of ui. The nonnegative function∏r(i)
k=1 (uik(·, x−i)− dik(x−i)) therefore equals the zero function if and only if for some

criterion k ∈ {1, . . . , r(i)} the function uik(·, x−i) is a constant function. In this case,

the strategy xi of player i in the Nash bargaining equilibrium x may yield a point on

the weak Pareto edge of the payoff polytope {ui(yi, x−i) | yi ∈ ∆i}, rather than on the

strong Pareto edge. In the literature on bargaining situations this problem is usually

avoided by making nonlevelness assumptions. Consequently:

Theorem 13.4 Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 ∈ Γ. Then NBE(G) ⊆ WPE(G). More-

over, if x ∈ NBE(G) and for each player i ∈ N and each criterion k ∈ {1, . . . , r(i)} the

function uik(·, x−i) is not constant, then x ∈ SPE(G).

13.4 Perfect equilibria

This section, based on Van Megen et al. (1999), takes a more conventional game theoretic

approach to equilibrium refinements by defining the analogon of perfect equilibria (Selten,

1975) for multicriteria games. A perfect equilibrium point is defined as a limit point of

a sequence of weak Pareto equilibria of perturbed multicriteria games. Perturbed games

are derived from the original game by demanding that every pure strategy is played with

positive probability.

Formally, let G = 〈N, (Xi)i∈N , (ui)i∈N〉 ∈ Γ be a multicriteria game. Denote the finite

set Xi of pure strategies of player i ∈ N by Xi = {xi1, . . . , xim(i)}, where m(i) = |Xi|.
A vector ε = (εi)i∈N ∈ ∏

i∈N IRm(i) is a mistake vector if
∑m(i)

k=1 εi
k < 1 and ε > 0. The

ε-perturbed game associated with G is the game G(ε) = 〈N, (Xi(ε))i∈N , (ui)i∈N〉 ∈ Γ,

where the pure strategy set of player i ∈ N is Xi(ε) = {xi1(ε), . . . , xim(i)(ε)}, where

xik(ε) denotes the mixed strategy in ∆(Xi) which gives probability εi
t to xit if t 6= k and

probability 1 − ∑
t 6=k εi

t to xik. With a slight abuse of notation, the payoff functions in

the game G(ε) are just the functions ui restricted to the new domain.

Since G(ε) is itself an element of Γ, carriers, payoff polytopes, and weakly efficient

pure best reply sets (see Section 11.2), are well-defined. Carriers and weakly efficient

sets are defined in terms of strategy indices. For instance, the set of pure strategies

of player i ∈ N is indexed with labels 1, . . . , m(i) in both G and G(ε). In G, strategy

k ∈ {1, . . . , m(i)} of player i refers to xik ∈ Xi, whereas in G(ε) it refers to xik(ε) ∈ Xi(ε).

Each mixed strategy in the perturbed game can be identified with a mixed strategy in

the original game, so that — with a minor abuse of notation — one obtains ∆(Xi(ε)) ⊂
∆(Xi).

In Proposition 13.5 it is shown that the weakly efficient pure best reply sets of a

player i w.r.t. a mixed strategy σ−i ∈ ∏
j∈N\{i} ∆j(Xj(ε)) in G and G(ε) coincide. In

the proof we use (for each i ∈ N) the function fi : ∆(Xi) → ∆(Xi(ε)) defined for each

σi ∈ ∆(Xi) and each pure strategy k ∈ {1, . . . , m(i)} as

fi(σi)(xik(ε)) := σi(xik). (13.4)
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Alternatively, fi(σi) can be expressed for each σi ∈ ∆(Xi) and each pure strategy k ∈
{1, . . . , m(i)} as

fi(σi)(xik) = εi
k +


1−

m(i)∑

t=1

εi
t


 σi(xik).

Clearly, fi is continuous, dominance preserving and bijective where f−1
i : ∆(Xi(ε)) →

∆(Xi) is given by

f−1
i (σ̃i)(xik) =

σ̃i(xik)− εi
k

(1−∑m(i)
t=1 εi

t)
for all σ̃i ∈ ∆(Xi(ε)) and k ∈ {1, . . . , m(i)}.

Furthermore, (13.4) immediately implies that σi assigns a positive probability to pure

strategy xik in G if and only if fi(σi) assigns positive probability to pure strategy xik(ε)

in G(ε): C(G, σi) = C(G(ε), fi(σi)) for all σi ∈ ∆(Xi).

Proposition 13.5 Let G ∈ Γ, ε a mistake vector in
∏

i∈N IRm(i), and σ ∈ ∏
i∈N ∆(Xi(ε)).

Then Ei(G, σ−i) = Ei(G(ε), σ−i) for all i ∈ N .

Proof. Let i ∈ N . It suffices to show that any weakly efficient set I w.r.t. σ−i in G is also

weakly efficient w.r.t. σ−i in G(ε) and conversely. Take I ∈ Ei(G, σ−i) (refer to Section

11.2 for the definition of Ei(G, σ−i)) and suppose that I is not weakly efficient w.r.t. σ−i

in G(ε). Hence, there exists a σ̃i ∈ ∆(Xi(ε)) with C(G(ε), σ̃i) ⊆ I which is dominated

by another strategy, i.e., a strategy σ̂i ∈ ∆(Xi(ε)) such that ui(σ̂i, σ−i)−ui(σ̃i, σ−i) > 0.

Consequently also

ui(f
−1
i (σ̂i), σ−i)− ui(f

−1
i (σ̃i), σ−i) =

1

1−∑m(i)
t=1 εi

t

(ui(σ̂i, σ−i)− ui(σ̃i, σ−i)) > 0.

This contradicts the fact that I is weakly efficient w.r.t. σ−i in G since C(G, f−1
i (σ̃i)) =

C(G(ε), σ̃i) ⊆ I. The proof of the converse is similar and therefore omitted. 2

Definition 13.6 Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 ∈ Γ. A strategy profile σ = (σi)i∈N ∈∏
i∈N ∆(Xi) is a perfect equilibrium of G if there exists a sequence (ε(k))∞k=1 of mistake

vectors converging to 0 and a sequence (σ(k))∞k=1 of strategy profiles such that σ(k) ∈
WPE(G(ε(k))) for each k ∈ IN and limk→∞ σ(k) = σ. The set of perfect equilibria of G

is denoted by PERF (G). /

The following observations can be made.

Theorem 13.7 Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 ∈ Γ. Then

(1) if r(i) = 1 for all i ∈ N , then perfect equilibrium points correspond to perfect Nash

equilibria;

(2) PERF (G) 6= ∅;
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(3) PERF (G) ⊆ WPE(G).

Proof. Claim (1) is obvious and claim (2) follows easily from the compactness of the

strategy space
∏

i∈N ∆(Xi). To prove claim (3), let σ ∈ PERF (G), (ε(k))∞k=1 a sequence

of mistake vectors and (σ(k))∞k=1 a sequence of strategy profiles such that ε(k) → 0,

σ(k) ∈ WPE(G(ε(k))) for all k ∈ IN, and σ(k) → σ. By Proposition 11.4 it suffices to

show that for every i ∈ N it holds that C(G, σi) ⊆ I for some I ∈ Ei(G, σ−i).

Let i ∈ N . For every t ∈ C(G, σi) and sufficiently large k ∈ IN it holds that σi(xit) >

εi
t(k) and hence for sufficiently large k, σ(k)i(xit) > εi

t(k). This implies C(G, σi) ⊆
C(G(ε(k)), σ(k)i) for large k. Since σ(k) ∈ WPE(G(ε(k))), Proposition 11.4 implies

the existence of I(k) ∈ Ei(G(ε(k)), σ(k)−i) such that C(G(ε(k)), σ(k)i) ⊆ I(k). By

Proposition 13.5 it holds that Ei(G(ε(k)), σ(k)−i) = Ei(G, σ(k)−i). Therefore C(G, σi) ⊆
C(G(ε(k)), σ(k)i) ⊆ I(k) for large k and for some I(k) ∈ Ei(G, σ(k)−i).

Draw a subsequence (σ(`))∞`=1 of (σ(k))∞k=1 such that I(`) = J for all `. Since

lim`→∞ σ(`)−i = σ−i and J is weakly efficient for all σ(`)−i in G, J is weakly efficient

w.r.t. σ−i in G. So we can find a set I ∈ Ei(G, σ−i) with J ⊆ I. Conclude that there is

an I ∈ Ei(G, σ−i) such that C(G, σi) ⊆ J ⊆ I. 2

It is not difficult to show that the set PERF (G) of perfect equilibria of G is closed in∏
i∈N ∆(Xi).

Example 13.8 In the inspection game of Example 11.2 we found {1}×[0, 1] ⊆ WPE(G).

But for q ∈ [0, 1) the strategy combination (1, q) is not perfect. Any probability distribu-

tion p̃ in ∆(X1(ε)) close to p = 1 has the property that WB2(G(ε), p̃) = {1}. This implies

that for any sequence of mistake vectors ((ε(k)))∞k=1 and any sequence ((pk, qk))∞k=1 such

that (pk, qk) ∈ WPE(G(ε(k))), limk→∞ ε(k) = 0, it holds that qk → 1. Notice that all

other equilibrium points are perfect. /

Perfect equilibria can be characterized in several ways. First, ε-perfectness for completely

mixed strategy combinations is defined.

Definition 13.9 Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 ∈ Γ and ε ∈ IR++. A strategy profile

σ ∈ ∏
i∈N ∆(Xi) with C(G, σi) = {1, . . . ,m(i)} for all i ∈ N is called ε-perfect if for each

i ∈ N there exists an Ii ∈ Ei(G, σ−i) such that σi(xit) <
= ε for all t /∈ Ii. /

An ε-perfect strategy of player i is a completely mixed strategy such that all pure strate-

gies that are not in a certain weakly efficient pure best reply set are played with proba-

bility at most ε.

Theorem 13.10 Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 ∈ Γ and σ̂ ∈ ∏
i∈N ∆(Xi). The following

three claims are equivalent.

(1) σ̂ ∈ PERF (G);
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(2) There is a sequence (ε(k))∞k=1 of positive real numbers converging to 0 and a se-

quence of completely mixed strategy combinations (σ(k))∞k=1 in
∏

i∈N ∆(Xi) con-

verging to σ̂ such that σ(k) is ε(k)-perfect for all k ∈ IN.

(3) There is a sequence (σ(k))∞k=1 of completely mixed strategies such that for all k ∈ IN

and all i ∈ N : σ̂i ∈ WBi(σ(k)−i) and limk→∞ σ(k) = σ̂.

Proof. We show that (1) implies (2), (2) implies (3), and (3) implies (1).

(1) ⇒ (2): Assume σ̂ ∈ PERF (G). Take a sequence (δ(k))∞k=1 of mistake vectors con-

verging to 0 and a sequence (σ(k))∞k=1 of weak Pareto equilibria in the perturbed games

G(δ(k)) with limk→∞ σ(k) = σ̂. Take ε(k) = max{(δ(k))i
t|i ∈ N, t ∈ {1, . . . , m(i)}} for

each k ∈ IN. Then limk→∞ ε(k) = 0 and σ(k) is a ε(k)-perfect for each k.

(2) ⇒ (3): Suppose (2) holds. Take a sequence (ε(k))∞k=1 of positive real numbers

converging to 0 and a sequence (σ(k))∞k=1 of ε(k)-perfect strategy profiles tending to σ̂.

Let i ∈ N . For each k ∈ IN, there is an I(k) ∈ Ei(G, σ(k)−i) with σ(k)i(xit) <
= ε(k) for all

t /∈ I(k). If ` ∈ C(G, σ̂i), there exists a sufficiently large N` ∈ IN such that σ̂i(xi`) > ε(k)

and σ(k)i(xi`) > ε(k) for all k >
= N`.

Take M = max{N`|` ∈ C(G, σ̂i)}. For all k >
= M and all ` ∈ C(G, σ̂i) we have

σ̂i(xi`) > ε(k), σ(k)i(xi`) > ε(k) and so C(G, σ̂i) ⊆ I(k). Using Proposition 11.4, it

follows that σ̂i ∈ WBi(G, σ(k)−i).

(3) ⇒ (1): Let (σ(k))∞k=1 be a sequence of completely mixed strategies converging to σ̂

such that σ̂i ∈ WBi(G, σ(k)−i) for all k ∈ IN and all i ∈ N . Define for all k ∈ IN, all

i ∈ N , and all t ∈ {1, . . . , m(i)}:

(ε(k))i
t =

{
1
k

if t ∈ C(G, σ̂i)

σ(k)i(sit) if t /∈ C(G, σ̂i)

Clearly, limk→∞(ε(k))i
t = 0 and ε(k) = (ε(k)i)i∈N ∈ ∏

i∈N IRm(i) is a mistake vector if k

is large enough. It suffices to show that σ(k) ∈ WPE(G(ε(k))) for large k.

Let i ∈ N . For large k, σ(k)i(xit) > 1
k

= (ε(k))i
t if t ∈ C(G, σ̂i) and σ(k)i(xit) =

(ε(k))i
t if t /∈ C(G, σ̂i). This implies that C(G(ε(k)), σ(k)i) = C(G, σ̂i) for large k. Since

σ̂i ∈ WBi(G, σ(k)−i) we can find I(k) ∈ Ei(G, σ(k)−i) with C(G, σ̂i) ⊆ I(k). Conse-

quently, C(G(ε(k)), σ(k)i) ⊆ I(k) for large k. This implies that σ(k) ∈ WPE(G(ε(k)))

for large k. 2

Weak Pareto equilibria of finite multicriteria games coincided with Nash equilibria of

weighted games, where nonnegative weight is assigned to each of the criteria; see Theorem

11.5. For perfect equilibria this equivalence does not hold: a perfect equilibrium of a

multicriteria game need not be a perfect Nash equilibrium of a weighted game.

Example 13.11 Strategy profile (p∗, q∗) with p∗ = 1
1+c

, q∗ = 1 is a perfect equilibrium

of the inspection game in Example 11.2. Let λ = (λ1, λ2) be a vector of weights. If
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(p∗, q∗) ∈ NE(Gλ), then λ1 = e2 = (0, 1) in order to make the first player indifferent

between his pure strategies. Hence, the payoff matrix to player 1 in Gλ is

H NH

I 1 1/2

NI 1 0

Since I weakly dominates NI in this payoff matrix, the completely mixed strategy p∗

cannot yield a perfect Nash equilibrium of Gλ. /

The reverse statement does hold: every perfect Nash equilibrium of a weighted game is

a perfect equilibrium of the corresponding multicriteria game. Denote the set of perfect

Nash equilibria of a strategic game G by PN(G).

Proposition 13.12 Let G = 〈N, (Xi)i∈N , (ui)i∈N〉 ∈ Γ and λ = (λi)i∈N ∈ ∏
i∈N ∆r(i).

Then PN(Gλ) ⊆ PERF (G).

Proof. Let σ ∈ PN(Gλ). Take a sequence of mistake vectors (ε(k))∞k=1 converging

to 0 and a sequence of completely mixed strategy combinations (σ(k))∞k=1 such that

limk→∞ σ(k) = σ and σ(k) ∈ NE(Gλ(ε(k)). Then σ(k) ∈ WPE(Gλ(ε(k)) by Theorem

11.5 and hence σ ∈ PERF (G). 2

Observe that perfect equilibria were based on weak Pareto equilibria, rather than strong

Pareto equilibria. This was done for a technical reason: the set of strong Pareto equilibria

need not be closed. In Example 11.2, for instance, the strategy profile (p, q) with p = 1
c+1

and q = 1 is the limit of totally mixed strong Pareto equilibria, but is not a strong Pareto

equilibrium itself.

13.5 Concluding remarks

In this chapter, three refinements of the Pareto equilibrium concept were presented. The

roots of these concepts were fundamentally different:

• Compromise equilibria were based on the compromise solutions of Yu (1973) that

enjoy great popularity in the literature on multicriteria optimization;

• Nash bargaining equilibria were based on the bargaining solution of Nash (1950b),

part of the literature on cooperative game theory;

• Perfect equilibria were based on the perfect equilibria of Selten (1975), part of

the literature on refinements of the Nash equilibrium concept for noncooperative

games.
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Norde et al. (1996) showed that there is no proper refinement of the Nash equilibrium

concept for strategic games that yields utility maximizing strategies in one-person games,

is consistent, and yields a nonempty set of outcomes. Theorem 11.10 in Chapter 11

indicates that the Pareto equilibrium concept does not suffer from this drawback. In

fact, compromise equilibria give rise to such nontrivial refinements. Also Nash bargaining

equilibria are consistent refinements of the weak Pareto equilibrium concept.

These two concepts, compromise equilibria and Nash bargaining equilibria, differ

from the standard game theoretic approach to equilibrium refinements, which usually

requires robustness against certain perturbations or trembles in the structure of the

game. It is the multicriteria character of the games under consideration that yield new

opportunities for refinements, simply by realizing that there is not only a conflict between

players/organizations, but also within an organization to decide what exactly constitutes

a ‘best response’ against a strategy profile of the other players.

It would be interesting to approach equilibrium refinements in multicriteria games

from an axiomatic point of view. To axiomatize compromise equilibria, for instance,

one should first try to obtain an axiomatization for this concept in the case of a sin-

gle organization, rather than the case where several organizations interact. Combining

this with axioms like consistency and converse consistency would then quickly yield an

axiomatization.

Similarly, to axiomatize Nash bargaining equilibria, one would typically require a

combination of axioms that characterize the Nash bargaining solution in standard bar-

gaining problems (Nash, 1950b) and combine this with axioms used in noncooperative

game theory. The bargaining literature usually imposes the following nondegeneracy

condition: if S ⊂ IRn is the feasible set of alternatives and d ∈ IRn the disagreement

point, then there is a feasible alternative s ∈ S, s > d, that is better for all concerned

individuals; cf. Nash (1950b), Roth (1979, 1985), Peters (1992). In the present context,

the feasible set that the members of an organization bargain over changes as a function

of the strategy profile of the opponents. There will typically be strategy profiles for

which this gives rise to a feasible set not satisfying the nondegeneracy condition, thereby

placing the problem outside the range of those covered in most of the existing literature

on bargaining.

A next step in refining equilibria for multicriteria games that is more in the spirit

of the traditional refinement literature is to define the notion of proper equilibria as in

Myerson (1978). Intuitively, as in the perfect equilibrium concept, proper equilibria still

admit the possibility of making mistakes, but costly mistakes have lower probability. In

multicriteria games ‘costly mistakes’ could be defined by explicitly using the possibility

to define levels of best reply sets. For G = 〈N, (Xi)i∈N , (ui)i∈N〉 ∈ Γ and σ ∈ ∏
i∈N ∆(Xi)

the first level of best replies of player i ∈ N w.r.t. σ−i in G is the set of all pure strategies

contained in the efficient pure best reply sets w.r.t. σ−i. The second level is constructed

by considering the best replies if pure strategies in the first level are not taken into
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account, and so on. Formally:

{
M1(i) := {1, . . . , m(i)}
E1

i (G, σ−i) := Ei(G, σ−i)

and for every k ∈ IN, k > 1: Mk(i) := {t ∈ Mk−1(i)|t /∈ I for all I ∈ Ek−1
i (G, σ−i)}. A set

I ⊆ Mk(i) is k-th level weakly efficient if for all strategies σi ∈ ∆(Xi) with C(G, σi) ⊆ I it

holds that ui(σ) is not dominated by any ui(σ̂i, σ−i) with C(G, σ̂i) ⊆ Mk(i). I ⊆ Mk(i)

is an k-th level weakly efficient pure best reply set if I is k-th level weakly efficient and

there is no k-th level efficient set K ⊆ Mk(i) with I ⊆ K and I 6= K. Ek
i (G, σ−i) is the

set of k-th level efficient pure best reply sets for player i w.r.t. σ−i in Γ.

In every perturbed game, strategies included in lower levels should be played with

probabilities of lower order than those in higher levels. A proper equilibrium would be

defined as a limit of such equilibria of perturbed games getting ever closer to the original

game. The main problem with this approach is that the the continuity properties of

these level sets are not as well-behaved as one would hope, making an existence proof a

difficult matter.
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Chapter 14

Pareto-Optimal Security Strategies

14.1 Introduction

Multicriteria matrix games are generalizations of the standard matrix games introduced

and solved by von Neumann (1928), in the sense that in a multicriteria matrix game each

of the two players has a vector-valued payoff function. By a standard matrix game we

mean a two-person zero-sum game with only one criterion in which each player chooses

a mixed strategy, being a probability distribution over a finite set of pure strategies.

Ghose and Prasad (1989) introduce Pareto-optimal security strategies in multicriteria

matrix games. The interpretation behind this concept is that a player, given his strategy

choice, considers the worst payoff he may incur in each criterion separately. A Pareto-

optimal security strategy is then a strategy for which there is no alternative that yields

a weakly more agreeable worst-case scenario.

Ghose (1991) characterized the first player’s Pareto-optimal security strategies as

minimax strategies in a weighted zero-sum game with only one criterion. His proof is

complex, but was simplified by Fernandez and Puerto (1996), who also provide several

other characterizations.

The weighted zero-sum game with one criterion introduced by Ghose (1991) is not

a standard matrix game: the second player does not choose a probability distribution

over a finite set of pure strategies, but selects a tuple of mixed strategies, one strategy

for each of the separate criteria.

The purpose of this chapter, based on Voorneveld (1999a), is to make the final addi-

tional step to standard matrix games, reducing the problem of finding a Pareto-optimal

security strategy to finding a minimax strategy in a matrix game, a problem that lies at

the foundation of game theory.

157
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14.2 Definitions and preliminary results

Consider a payoff matrix A with m rows and n columns. Each entry Aij of A is a k-

dimensional vector of real numbers. Equivalently, such a payoff matrix is described by

a k-tuple A = (A(1), . . . , A(k)) of m × n matrices with entries in IR. In a multicriteria

matrix game based on a payoff matrix A = (A(1), . . . , A(k)), the first player chooses

rows and the second player chooses columns. The pure strategies or rows for the first

player are denoted by S1 = {1, . . . , m}, the pure strategies or columns for the second

player are denoted by S2 = {1, . . . , n}. Consequently, the mixed strategies of player 1

and 2 are ∆(S1) and ∆(S2), respectively. The payoff from player 1 to player 2, if player

1 chooses x ∈ ∆(S1) and his opponent chooses y ∈ ∆(S2), is

xAy = (xA(1)y, . . . , xA(k)y).

The first player tries to minimize this vector, the second player to maximize it.

Remark 14.1 It is common in game theory when studying zero-sum games, to assume

that payoffs are from the column player to the row player and that the row player

maximizes his payoff, whereas the column player tries to minimize the payoff to the row

player. In this chapter we take the opposite view: the matrix A specifies the payoffs to

the column player rather than the row player. This is done to make the chapter in line

with the existing literature on Pareto-optimal security strategies, where this assumption

is made throughout. /

In the special case that k = 1, we have a matrix game, the topic of von Neumann’s paper

(1928) and one of the starting points of game theory.

Given a strategy x ∈ ∆(S1), the security level v(x) of player 1 is given by

v(x) = ( max
y∈∆(S2)

xA(1)y, . . . , max
y∈∆(S2)

xA(k)y).

That is, given a strategy x ∈ ∆(S1), player 1 considers the worst payoff he may incur

in each criterion separately. Ghose and Prasad (1989) define Pareto-optimal security

strategies as follows:

Definition 14.2 A strategy x∗ ∈ ∆(S1) is a Pareto-optimal security strategy (POSS) for

player 1 in the multicriteria matrix game A = (A(1), . . . , A(k)) if there is no x ∈ ∆(S1)

such that v(x∗) ≥ v(x). /

Consider a multicriteria matrix game B = (B(1), . . . , B(k)) with k criteria. This in-

duces a serial (zero-sum) game S(B) with two players, where player 1 chooses a mixed

strategy x ∈ ∆(S1) and player 2 chooses a vector y = (y1, . . . , yk) ∈ ∏k
l=1 ∆(S2) of mixed

strategies, one strategy for each criterion. The payoff to player 1 if he chooses x and

his opponent chooses y = (y1, . . . , yk) equals
∑k

l=1 xB(l)yl, which player 1 tries to min-

imize and his opponent tries to maximize. Borm et al. (1996) refer to serial games as

amalgations of games.

The main result of Ghose (1991, Theorem 3.3) is:
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Proposition 14.3 A strategy x∗ ∈ ∆(S1) is a POSS for player 1 in the multicriteria

matrix game A = (A(1), . . . , A(k)) if and only if there exists a vector α ∈ ∆0
k such that

max
(y1,...,yk)∈

∏k

l=1
∆(S2)

k∑

l=1

x∗αlA(l)yl = min
x∈∆(S1)

max
(y1,...,yk)∈

∏k

l=1
∆(S2)

k∑

l=1

xαlA(l)yl,

i.e., x∗ is a minimax strategy in the serial game S(α1A(1), . . . , αkA(k)).

Ghose’s proof takes about eight pages. Following Fernandez and Puerto (1996), who use

methods from multicriteria linear programming, a much clearer and shorter proof can

be given. See Section 14.3.

Observe that a serial game has only one criterion, but is not a standard matrix game,

since the second player does not choose a probability distribution over his pure strategies,

but rather a k-tuple of mixed strategies.

We define a function p :
∏k

l=1 ∆(S2) → ∆(
∏k

l=1 S2) from the k-fold Cartesian product

of probability distributions on player 2’s set of pure strategies S2 to the set of probability

distributions on the k-fold Cartesian product of his pure strategies S2 as follows:

∀ (y1, . . . , yk) ∈ ∏k
l=1 ∆(S2) : p(y1, . . . , yk) = p ∈ ∆(

∏k
l=1 S2),

where

∀ c = (c(1), . . . , c(k)) ∈ ∏k
l=1 S2 : pc =

∏k
l=1 yl,c(l),

where yl,c(l) is the probability that mixed strategy yl assigns to the pure strategy c(l) ∈
S2. Notice that this function is one-to-one and assigns to each k-tuple of probability

distributions over S2 the probability distribution it induces on the Cartesian product of

pure strategies. Using p, we can consider
∏k

l=1 ∆(S2) as a subset of ∆(
∏k

l=1 S2). It is

clear that this last set includes more probability distributions than those induced by p.

Example 14.4 Take k = 2, S2 = {1, 2}, y1 = (1/4, 3/4), and y2 = (1/3, 2/3). Then

p(y1, y2) assigns probability 1/12 to (1,1), 2/12 to (1,2), 3/12 to (2,1), and 6/12 to (2,2).

The element q ∈ ∆(S2 × S2) which assigns probability 1/3 to (1,1), (1,2), and (2,1) and

probability 0 to (2,2) is not the image p(y) of any y = (y1, y2) ∈ ∆(S2)×∆(S2). /

Consider a multicriteria matrix game B = (B(1), . . . , B(k)) where each matrix B(l) has

m rows and n columns. This induces a matrix game M(B), where M(B) is a matrix

with m rows, labeled i = 1, . . . , m, and nk columns, labeled c = (c(1), . . . , c(k)) with

c(l) ∈ {1, . . . , n} for each l = 1, . . . , k. The entry in row i and column c = (c(1), . . . , c(k))

of M(B) equals
∑k

l=1 B(l)i,c(l). Notice that the order of the columns is not important.

Clearly, the set of mixed strategies of player 1 in M(B) is ∆(S1) and the set of mixed

strategies of player 2 in M(B) is ∆(
∏k

l=1 S2). If the first player, the minimizer, plays

strategy x ∈ ∆(S1) and the second player, the maximizer, plays strategy q ∈ ∆(
∏k

l=1 S2),

the payoff to the first player equals, with a minor abuse of notation assuming a given

order of the columns, xM(B)q.
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Example 14.5 Consider a two-criterion matrix game B = (B(1), B(2)) in which both

players have two pure strategies. Let the matrices B(1) and B(2) be as in Figure 14.1.

The associated matrix game is given in Figure 14.2.

B(1) =

1 2

1 0 2/3

2 1/3 0
B(2) =

1 2

1 0 −2/3

2 −4/3 0

Figure 14.1: A two-criterion matrix game

M(B) =

(1, 1) (1, 2) (2, 1) (2, 2)

1 0 −2/3 2/3 0

2 −1 1/3 −4/3 0

Figure 14.2: The associated matrix game

If the first player plays each row with equal probability, i.e. x = (1/2, 1/2) and the

second player chooses column (1,1) with probability 1/12, column (1,2) with probability

2/12, column (2,1) with probability 3/12, and column (2,2) with probability 6/12, i.e.,

q = (1/12, 2/12, 3/12, 6/12), the payoff to player 1 equals xM(B)q = −11/72. /

Proposition 14.6 Given a multicriteria matrix game B = (B(1), . . . , B(k)) and a stra-

tegy combination (x, y1, . . . , yk) ∈ ∆(S1) × ∏k
l=1 ∆(S2), the following two claims are

equivalent:

(i) (x, y1, . . . , yk) ∈ ∆(S1)×∏k
l=1 ∆(S2) is a Nash equilibrium in the serial game S(B),

i.e.,

∀ x ∈ ∆(S1) :
∑k

l=1 xB(l)yl
<
=

∑k
l=1 xB(l)yl,

∀ (y1, . . . , yk) ∈
∏k

l=1 ∆(S2) :
∑k

l=1 xB(l)yl
>
=

∑k
l=1 xB(l)yl.

(ii) (x, p(y1, . . . , yk)) ∈ ∆(S1) × ∆(
∏k

l=1 S2) is a Nash equilibrium in the matrix game

M(B), i.e.,

∀ x ∈ ∆(S1) : xM(B)p(y1, . . . , yk) <
= xM(B)p(y1, . . . , yk),

∀ q ∈ ∆(
∏k

l=1 S2) : xM(B)p(y1, . . . , yk) >
= xM(B)q.

Proof. See Borm et al. (1996), Proposition 1. 2
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14.3 Characterizations of POSS

This section provides several characterizations of Pareto-optimal security strategies. The

main result is Theorem 14.9, in which by combining the results from the previous section,

we obtain a characterization of Pareto-optimal security strategies in terms of minimax

strategies of suitably weighted matrix games.

Let us start with some remarks on multicriteria linear programming. A general

multicriteria linear programming problem is formulated as follows:

Minimize Cx

subject to Ax <
= b

x >
= 0,

(14.1)

where C ∈ IRp×q, A ∈ IRr×q, b ∈ IRr, x ∈ IRq. A feasible solution x∗ of (14.1) is an efficient

solution if there is no feasible x such that Cx ≤ Cx∗.

Proposition 14.7 A feasible point x∗ is an efficient solution to (14.1) if and only if there

exists a vector α ∈ ∆0
p of weights such that x∗ solves the following linear programming

problem:

Minimize αCx = 〈α, Cx〉

subject to Ax <
= b

x >
= 0

(14.2)

The proof of this proposition is analogous to the proof of Theorem 10.1.

Theorem 14.8 Consider a multicriteria matrix game A = (A(1), . . . , A(k)). Let x∗ ∈
∆(S1), v

∗ = v(x∗). Then x∗ is a POSS for player 1 if and only if (v∗, x∗) is an efficient

solution to the following multicriteria linear programming problem:

Minimize v1, . . . , vk

subject to xA(l) <
= (vl, . . . , vl) l = 1, . . . , k

x >
= 0,

∑m
i=1 xi = 1, v ∈ IRk.

(14.3)

Proof. Strategy x∗ is POSS if and only if (v∗, x∗) is an efficient solution of

Minimize v1, . . . , vk

subject to vl = maxy∈∆(S2) xA(l)y l = 1, . . . , k

x >
= 0,

∑m
i=1 xi = 1, v ∈ IRk.

(14.4)
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It is easy to see that:

• if (v, x) is feasible in (14.4), then (v, x) is feasible in (14.3).

• if (v, x) is an efficient solution to (14.3), then for each criterion l ∈ {1, . . . , k} there

is a pure strategy s ∈ S2 such that xA(l)es = vl (otherwise vl could be decreased),

so v = v(x). But then (v, x) is feasible in (14.4).

Hence (v∗, x∗) is efficient in (14.3) if and only if it is efficient in (14.4). 2

The following claims are equivalent:

(a) A strategy x∗ ∈ ∆(S1) is a POSS for player 1 in the multicriteria matrix game

A = (A(1), . . . , A(k)).

(b) (v(x∗), x∗) solves (14.4).

(c) (v(x∗), x∗) solves

Minimize
∑k

l=1 αlvl

subject to vl = maxy∈∆(S2) xA(l)y l = 1, . . . , k

x >
= 0,

∑m
i=1 xi = 1, v ∈ IRk

(14.5)

for some α ∈ ∆0
k.

(d) x∗ solves

min
x∈∆(S1)

k∑

l=1

αl max
yl∈∆(S2)

xA(l)yl

for some α ∈ ∆0
k.

(e) x∗ solves

min
x∈∆(S1)

max
(y1,...,yk)∈

∏k

l=1
∆(S2)

k∑

l=1

xαlA(l)yl

for some α ∈ ∆0
k.

Here (a) ⇔ (b) follows from Definition 14.2, (b) ⇔ (c) follows from Proposition 14.7,

and (c) ⇔ (d) ⇔ (e) is a matter of rewriting. This proves Proposition 14.3.

The next theorem is the main result of this chapter. It characterizes Pareto-optimal

security strategies as minimax strategies of a standard matrix game.

Theorem 14.9 A strategy x∗ ∈ ∆(S1) is a POSS for player 1 in the multicriteria matrix

game A = (A(1), . . . , A(k)) if and only if there exists a vector α ∈ ∆0
k such that x∗ is a

minimax strategy in the matrix game M(α1A(1), . . . , αkA(k)).
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Proof. By Proposition 14.3, a strategy x∗ ∈ ∆(S1) is a POSS for player 1 in the

multicriteria matrix game A = (A(1), . . . , A(k)) if and only if there exists a vector α ∈ ∆0
k

such that x∗ ∈ ∆(S1) is a minimax strategy in the serial game S(α1A(1), . . . , αkA(k)).

By the compactness of the strategy spaces ∆(S1) and
∏k

l=1 ∆(S2) and the structure of

the payoff function (x, y1, . . . , yk) 7→ ∑k
l=1 xαlA(l)yl, the serial game S(α1A(1), . . . , αkA(k))

has a value

v = min
x∈∆(S1)

max
(y1,...,yk)∈

∏k

l=1
∆(S2)

k∑

l=1

xαlA(l)yl

= max
(y1,...,yk)∈

∏k

l=1
∆(S2)

min
x∈∆(S1)

k∑

l=1

xαlA(l)yl

and the sets of minimax strategies of player 1 and maximin strategies of player 2 are

nonempty (cf. Blackwell and Girshick, 1954, Chapter 2).

Let (y1, . . . , yk) ∈ ∏k
l=1 ∆(S2) be a maximin strategy of player 2 in the serial game.

Then x∗ ∈ ∆(S1) is a minimax strategy if and only if (x∗, y1, . . . , yk) is a Nash equilibrium

of S(α1A(1), . . . , αkA(k)). Equivalently, by Proposition 14.6: (x∗, p(y1, . . . , yk)) is a Nash

equilibrium of the matrix game M(α1A(1), . . . , αkA(k)). Since this is a matrix game,

this is equivalent to stating that p(y1, . . . , yk) is a maximin strategy of player 2 and

x∗ ∈ ∆(S1) is a minimax strategy of player 1 in M(α1A(1), . . . , αkA(k)). 2

As a corollary, we obtain the Pareto-optimal security strategies as solutions to a para-

metric linear programming problem.

Corollary 14.10 A strategy x∗ ∈ ∆(S1) is a POSS for player 1 in the multicriteria

matrix game A = (A(1), . . . , A(k)) if and only if there exists a vector α ∈ ∆0
k such that

(v∗, x∗) solves the linear program LP(α) given below:

Minimize v

subject to xM(α1A(1), . . . , αkA(k)) <
= (v, . . . , v)

x ∈ ∆(S1)

v ∈ IR,

where

v∗ = minx∈∆(S1) max
q∈∆(

∏k

l=1
S2)

xM(α1A(1), . . . , αkA(k))q

= max
q∈∆(

∏k

l=1
S2)

minx∈∆(S1) xM(α1A(1), . . . , αkA(k))q

is the (minimax or maximin) value of M(α1A(1), . . . , αkA(k)).
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Proof. For multicriteria matrix games with only one criterion, the notion of POSS and

minimax are equivalent for player 1. Hence, the result follows from Theorems 14.8 and

14.9. 2

Moreover, Ghose (1991, p. 476) observes that in his type of games only finitely many

scalarizations suffice to find all Pareto-optimal security strategies. According to the

proof of Theorem 14.9, this result carries over to our type of scalarized games, since we

use exactly the same vectors of weights.

Example 14.11 Consider the multicriteria matrix game with

A(1) =

1 2

1 0 2

2 1 0
A(2) =

1 2

1 0 −1

2 −2 0

In Ghose and Prasad (1989), the set of POSS for player 1 was computed to be the

set {(p, 1 − p) | p ∈ [1/3, 2/3]}. Consider the vector α = (1/3, 2/3) of weights. Then

(1/3)A(1) equals the matrix B(1) and (2/3)A(2) equals the matrix B(2) in Example

14.5. Hence M((1/3)A(1), (2/3)A(2)) is the matrix M(B). The minimax strategies of

player 1 in M(B) are the strategies {(p, 1 − p) | p ∈ [1/3, 2/3]}, which is the set of

Pareto-optimal security strategies of player 1: in this example a single vector of weights

suffices. /

14.4 Conclusions

Previous papers have introduced the notion of Pareto-optimal security strategies in mul-

ticriteria matrix games and obtained a characterization in terms of minimax strategies of

weighted games with a single criterion, in which one of the players chooses a mixed strat-

egy for each of the criteria separately. The purpose of the current chapter has been to

characterize Pareto-optimal security strategies as minimax strategies of standard matrix

games, one of the cornerstones of game theory, where each player is allowed to choose

only one mixed strategy.

The aim was not to facilitate computation. In fact, the definition of the matrix

game of Theorem 14.9 points out that the strategy space of the second player grows

exponentially with the data input: if this player has n pure strategies in the multicriteria

game and there are k criteria, he has nk pure strategies in the weighted matrix game of

Theorem 14.9.



Chapter 15

Cooperative Multicriteria Games

with Public and Private Criteria

15.1 Introduction

In matters of conflict, players frequently evaluate situations on the basis of several crite-

ria. Still, games with multiple criteria and in particular cooperative games with multiple

criteria have received relatively little attention in game theoretic literature. Some ex-

ceptions are Bergstresser and Yu (1977), Zhao (1991), and Lind (1996).

In the current chapter, based on Voorneveld and van den Nouweland (1998a, 1998b,

1999), we introduce a new class of cooperative multicriteria games. Two fundamentally

different types of criteria are considered: private criteria and public criteria. Private

or divisible criteria share the characteristics of the criterion one usually works with

when studying games with transferable utility, the characteristics of money: the amount

obtained can be divided over coalition members so that one member consumes a different

quantity than another member, and that which is consumed by one member cannot be

consumed by another. In economic terms, these criteria are rival and excludable. Public

or indivisible criteria have the same value for all members of a coalition; they are non-

rival and non-excludable. Examples of such criteria are global warming, investment in

medical research, or, on a different scale, the national rate of unemployment and its

effect on the economy, political stability, and the safety in your country.

The introduction of public criteria is new to cooperative game theory, presumably

because it is assumed that some central authority takes a (socially optimal) decision on

such criteria. However, the value of a public criterion is often influenced by decisions

made on private criteria by individual agents (think of pollution levels, for example).

Hence, it seems that decisions on private and public criteria should not be treated sep-

arately. An integrated view on private and public criteria might expose the trade-offs

faced by individuals not only between criteria in the same category, but also between

criteria in different categories.

165
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The ‘value’ of a coalition is usually interpreted as that which its members can guar-

antee themselves by joining forces. If multiple criteria are involved, then improvement

in one criterion (number of fish caught) may well have detrimental effects on other cri-

teria (environmental issues like biodiversity). So, the relative importance of different

criteria plays a significant role. But the relative importance of two criteria may dif-

fer with their values. For example, rich countries attach relatively more importance to

controlling pollution levels than to increasing production since production levels and

pollution levels are already high. For developing countries with low production levels,

however, increasing production is more important than controlling pollution levels. We

believe that ‘collapsing’ the different criteria to one number by means of a utility func-

tion ignores some of the most interesting issues associated with multicriteria decision

situations. By leaving the different criteria in their own right, one can investigate what

kind of trade-offs players face between the criteria. Moreover, such an approach respects

the incommensurability of some attributes: in many cases agents may be incapable of or

morally opposed against aggregating the value of money and the value of — for instance

— a human life to a common scale. In cooperative multicriteria games we therefore

consider it natural to assign a set of vector values to each coalition, i.e., we consider

characteristic correspondences instead of single valued characteristic functions and an

obtainable ‘value’ is a vector that specifies the value of all the criteria for a particular

alternative that is feasible to a coalition.

Cooperative multicriteria games with public and private criteria as defined and stud-

ied in the current chapter generalize the games used in Bergstresser and Yu (1977) and

Lind (1996). These authors do not discriminate between several types of criteria; they

only use what we call private criteria. Moreover, the characteristic functions in their

games are single-valued instead of set-valued.

After defining multicriteria cooperative games with public and private criteria, the

obvious next step is the search for reasonable solutions to such games. This chapter con-

centrates on core concepts, which rule out those outcomes which are in a sense unstable

because subcoalitions of agents are able to reach agreements that are better for all their

members. Taking into account the features of the model, the distinction between private

and public criteria and the introduction of set-valued characteristic functions, we define

two concepts: the dominance outcome core and the core.

The current chapter differs fundamentally from other papers that study the core con-

cept of cooperative games with externalities such as Shapley and Shubik (1969), Starrett

(1973), and Chander and Tulkens (1997). These papers all start with a game in strate-

gic form or an economy and then discuss how to appropriately define a corresponding

cooperative game. Because of the externalities, the behavior of the players or agents

in complementary coalitions has to be taken into account when deciding on the value

of a coalition of players. Different assumptions about the behavior of the other players

lead to different formulations of an associated cooperative game and, correspondingly,

to different core concepts, such as the α-core and the β-core. The quest for the “right”
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core concept is the main issue in these papers. In the current chapter, we abstract from

this issue and start with a cooperative game. Our contribution is that we provide a

framework to explicitly deal with multiple criteria in cooperative games. We do not

use a utility function to reduce a decision with many dimensions to a one-dimensional

decision but expose the trade-offs between different dimensions faced by the players.

Well-known axiomatizations of core concepts for single-criterion cooperative games

(see Peleg, 1985, 1986, 1987) use a consistency or reduced game property. The consis-

tency principle for cooperative games — which is very similar to the consistency principle

for noncooperative games discussed in Chapter 11 — essentially means that if the grand

coalition of players reaches an agreement, then no subcoalition of players has an incen-

tive to renegotiate within the coalition after giving the players outside the coalition their

part of the solution, because the proposed agreement is also a part of the solution of the

reduced game played within the subcoalition.

The current chapter investigates consistency properties of the proposed core for co-

operative multicriteria games. We provide three axiomatic characterizations of the core

that are based on the notion of consistency. One of these characterizations uses converse

consistency, a property that postulates that a proposed agreement must be in the solu-

tion of a game if for every subcoalition it holds that the restriction of this agreement to

the subcoalition is in the solution of the reduced game. A second axiomatization of the

core uses a converse consistency requirement that restricts attention to subcoalitions of

two players. The two axiomatizations of the core of cooperative multicriteria games that

use converse consistency properties are similar to the axiomatizations of core concepts

for cooperative games with or without transferable utility by Peleg (1985, 1986, 1987).

The third axiomatization of the core provided in this chapter differs significantly

from the previous two. It uses a new definition of reduced games, one that stresses the

fact that there are players outside each subcoalition that cannot be ignored altogether

by requiring players in a subcoalition to cooperate with at least one outside player.

Consistency with respect to this new definition of reduced games is used to give an

axiomatic characterization of the core for multicriteria games with an enlightenment

property (see Section 15.5) instead of converse consistency. It is shown by means of a

counterexample that this characterization does not hold if the old definition of reduced

games is used.

The set-up of the chapter is as follows. Cooperative multicriteria games with public

and private criteria are defined in Section 15.2, along with the core and the dominance

outcome core. In Section 15.3 we prove that the dominance outcome core always con-

tains the core and that both concepts coincide for games satisfying some additional

assumptions. In the next two sections, Sections 15.4 and 15.5, we provide several ax-

iomatizations of the core based on the notion of consistency. In Section 15.4 converse

consistency is used to characterize the core and in Section 15.5 we give the new defini-

tion of reduced games that was mentioned before and use this to characterize the core

without requiring converse consistency. The new definition of reduced games is applied
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to standard transferable utility games in Section 15.6, which is based on Voorneveld and

van den Nouweland (1998b).

The final section of this chapter, Section 15.7, based on Voorneveld and van den

Nouweland (1999), provides additional motivation for the core concept. This is done by

showing that core elements naturally arise as strong equilibria of associated noncooper-

ative claim games in which players independently state coalitions they want to form and

a payoff they want to receive. Related work can be found in von Neumann and Mor-

genstern (1947) who introduce claim games for TU-games, in which players only claim

coalitions and the value of a fitting coalition is split equally over its members. Borm and

Tijs (1992) introduce claim games for NTU-games.

15.2 Definitions

For a set A ⊆ IRm, we define its Pareto edge by Par(A) := {x ∈ A | there is no y ∈
A with y > x}. Recall that for an arbitrary set A we denote by IRA the vector space of

all real-valued functions on A.

Let U be an infinite set of players. A cooperative multicriteria game with public and

private criteria, or a game for ease of notation, is described by

• A finite set D of divisible or private criteria;

• A finite set P of indivisible or public criteria;

• A finite, nonempty set N ⊂ U of players;

• A correspondence v : 2N \ {∅}→→ IRD∪P ;

such that D ∩ P = ∅, D ∪ P 6= ∅ and v(S) 6= ∅ for each coalition S ∈ 2N \ {∅}. The

sets D and P that define a certain game will not be mentioned explicitly and a game is

simply denoted (N, v). For one-person coalitions we write v(i) instead of v({i}). Let Υ

denote the set of games as defined above.

Example 15.1 Two neighboring countries, A and B, negotiate to reduce CO2 levels

in the air. The marginal costs of reducing CO2 levels increase as abatements increase:

there are relatively cheap methods that can be used to reduce CO2 levels at first, but to

effect higher reductions, more expensive methods have to be employed as well. Suppose

country A on its own can abate in a low-cost way by spending 100 to reduce the level of

CO2 in the air by 1, and it can abate more, a reduction of 3, at a cost of 600. Country

B on its own can reduce the CO2 level by 2 at a cost of 150 and by 7 at a cost of 900.

If the countries cooperate, they can realize all the above mentioned possibilities but also

profit from each other’s expertise and abate relatively cheaper. They can reduce CO2

levels by 3 at a cost of 200 and by 10 at a cost of 1200.
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The cooperative multicriteria game describing this situation has one private criterion,

minus the cost of the abatements, and one public criterion, the decrease in the CO2 level

in the air. The player set is N = {A,B}, the characteristic function is given by

v(A) = {(0, 0), (−100, 1), (−600, 3)},

v(B) = {(0, 0), (−150, 2), (−900, 7)},

v({A,B}) = v(A) ∪ v(B) ∪ {(−200, 3), (−1200, 10)}.

/

Several subsets of Υ correspond to well-known classes of games.

Example 15.2 A game (N, v) with P = ∅, |D| = 1, and |v(S)| = 1 for each coalition

S ∈ 2N \ {∅} is essentially a TU-game. /

Example 15.3 A game (N, v) with P = ∅ and v(S) a compact and comprehensive (in

the sense that b ∈ v(S) and 0 <
= a <

= b implies a ∈ v(S)) subset of IRD
+ is a multi-

commodity game as studied by van den Nouweland et al. (1989). /

The characteristic function of NTU-games is also set-valued and vector-valued, but de-

scribes for a coalition the payoff for each separate member, so that the value of a coalition

S is a subset of IRS. This differs from our cooperative multicriteria games, where the

correspondence v maps the coalitions to a fixed vector space IRD∪P .

Cooperative multicriteria games with public and private criteria generalize the co-

operative multicriteria games used by Bergstresser and Yu (1977) and Lind (1996) in

the sense that these authors do not use set-valued characteristic functions and do not

discriminate between different types of criteria.

In what follows, we need a definition of an allocation. In a game (N, v) ∈ Υ, an

allocation takes an element of the set of values attainable by the grand coalition N and

divides it among the players in accordance with the characteristics of the criteria: when

restricted to divisible criteria everything is divided, whereas for indivisible criteria every

player gets the same fixed amount. Before formally defining allocations, some more

notation is needed.

Consider a game (N, v) ∈ Υ and a vector x = (xi)i∈N with xi ∈ IRD∪P for each

i ∈ N . Let S ∈ 2N \ {∅}. Then xS denotes the vector (xi)i∈S, i.e., x restricted to the

components of the members of coalition S and x(S) denotes the sum of the elements

(xi)i∈S, x(S) :=
∑

i∈S xi. For a vector (or function) y ∈ IRD∪P the restriction of y to P

is denoted y|P and the restriction of y to D is denoted y|D.
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Definition 15.4 Given a game (N, v) an allocation is a vector x = (xi)i∈N with xi ∈
IRD∪P for each player i ∈ N that satisfies the requirement that there exists a y ∈ v(N)

for which ∑
i∈N xi

|D = y|D and

xi
|P = y|P for each i ∈ N.

The set of allocations of (N, v) is denoted A(N, v). /

A coalition can improve upon an allocation if there is an outcome it can guarantee itself

which — when distributed over its members in a feasible way — is at least as good for

each member and better in some criterion for at least one coalition member. Formally, a

coalition S ⊆ N can improve upon an allocation x if there exists a vector y ∈ v(S) such

that ∑
i∈S xi

|D <
= y|D and

xi
|P <

= y|P for each i ∈ S,

where at least one of the inequalities is strict (≤). Such a vector y is said to dominate

x via S. An allocation in a game (N, v) is individually rational if one-player coalitions,

i.e. individual players, cannot improve upon it and it is an imputation if neither N nor

individual players can improve upon it. The set of individually rational allocations and

the set of imputations of a game (N, v) are denoted by IR(N, v) and I(N, v), respectively.

A solution concept σ on the class Υ is a map that assigns to each game (N, v) ∈ Υ a

(possibly empty) set of allocations σ(N, v). Hence, σ(N, v) ⊆ A(N, v) for all (N, v) ∈ Υ.

This chapter concentrates on core concepts, i.e. concepts that rule out allocations

that are in some sense unstable. We define two different core concepts.

Definition 15.5 The core C(N, v) of a game (N, v) is the set of allocations upon which

no coalition can improve:

C(N, v) = {x ∈ A(N, v) | there exist no S ∈ 2N \ {∅} and y ∈ v(S) s.t.
∑

i∈S xi
|D <

= y|D and

xi
|P <

= y|P for each i ∈ S

with at least one of the inequalities being strict (≤)}
/

Definition 15.6 The dominance outcome core DOC(N, v) of a game (N, v) is the set

of imputations for which there is no coalition S and another imputation y such that yi is

better than xi for each player i ∈ S and such that the players in S can jointly guarantee
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themselves at least what they get according to the allocation y:

DOC(N, v) = {x ∈ I(N, v) | there exist no S ∈ 2N \ {∅}, y ∈ I(N, v),

and z ∈ v(S) s.t.

yi ≥ xi for each i ∈ S,
∑

i∈S yi
|D <

= z|D and

yi
|P <

= z|P for each i ∈ S }

/

15.3 The core and dominance outcome core

In this section we prove that the core of a game is always included in the dominance

outcome core. Moreover, we prove that the core equals the dominance outcome core

under some mild conditions.

Proposition 15.7 For each game (N, v) ∈ Υ it holds that C(N, v) ⊆ DOC(N, v).

Proof. Let (N, v) ∈ Υ. If C(N, v) = ∅ we are done. So, assume C(N, v) 6= ∅ and let

x = (xi)i∈N ∈ C(N, v). Then x is an allocation upon which neither N nor individual

players can improve, so x ∈ I(N, v). Now suppose x /∈ DOC(N, v). Then let S ∈
2N \ {∅}, y ∈ I(N, v), and z ∈ v(S) be such that

yi ≥ xi for each i ∈ S;

∑
i∈S yi

|D <
= z|D;

yi
|P <

= z|P for each i ∈ S.

Hence, there exist an S ∈ 2N \ {∅}, z ∈ v(S) such that

∑
i∈S xi

|D <
=

∑
i∈S yi

|D <
= z|D

xi
|P <

= yi
|P <

= z|P for each i ∈ S

with at least one strict inequality since yi ≥ xi for all i ∈ S, i.e., S can improve upon x,

contradicting x ∈ C(N, v). 2

In general, the core is not equal to the dominance outcome core. In the following example

both cores do not coincide.
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Example 15.8 Consider a three-player, bicriteria game (N, v) where the first criterion

is divisible and the second public. Define v(i) = {(1, 10)} for all i ∈ N and v({1, 2}) =

v({1, 3}) = v({2, 3}) = v({1, 2, 3}) = {(3, 10)}. Then

I(N, v) = DOC(N, v) = {(x1, x2, x3) | x1 = x2 = x3 = (1, 10)}.

However, C(N, v) = ∅, since every two-player coalition can improve upon the unique

imputation. For instance, for S = {1, 2} and y = (3, 10) ∈ v(S): x1
1 + x2

1 < 3 = y1 and

x1
2 = x2

2 = 10 = y2. /

Under some restrictions, however, the two cores coincide.

Proposition 15.9 Let (N, v) ∈ Υ be a game for which the following four properties

hold:

1. Comprehensiveness of v(i) for each i ∈ N and of v(N):





for all i ∈ N and all a ∈ v(i) : {x ∈ IRD∪P | x <
= a} ⊆ v(i)

for all a ∈ v(N) : {x ∈ IRD∪P | x <
= a} ⊆ v(N)

2. Compactness conditions:




for all i ∈ N and all a ∈ v(i) : ({a}+ IRD∪P
+ ) ∩ v(i) is compact

for all a ∈ v(N) : ({a}+ IRD∪P
+ ) ∩ v(N) is compact

3. Nonlevelness of v(i) for each i ∈ N and of v(N):





for all i ∈ N and all a, b ∈ Par(v(i)) : if a >
= b, then a = b

for all a, b ∈ Par(v(N)) : if a >
= b, then a = b

4. A superadditivity condition:

For each S ∈ 2N \{∅}, y ∈ v(S), and zi ∈ v(i) for each i ∈ N \S it holds

that if y|P >
= zi

|P for all i ∈ N \ S, then a ∈ v(N), where a ∈ IRD∪P is

defined as follows:

a|D = y|D +
∑

i∈N\S zi
|D

a|P = y|P

Then C(N, v) = DOC(N, v).
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Remark 15.10 The definition of nonlevel sets given above is a standard definition. In

the proof of the proposition it is convenient to use the following equivalent formulation:





for all i ∈ N, all b ∈ Par(v(i)), and all a ∈ IRD∪P : if a ≥ b, then a /∈ v(i)

for all b ∈ Par(v(N)) and all a ∈ IRD∪P : if a ≥ b, then a /∈ v(N)

/

Proof (Prop. 15.9). By Proposition 15.7: C(N, v) ⊆ DOC(N, v). To prove that

DOC(N, v) ⊆ C(N, v), let x = (xi)i∈N ∈ I(N, v) and assume that x /∈ C(N, v). Then

there exist S ∈ 2N \ {∅, N} and y ∈ v(S) such that





∑
i∈S xi

|D <
= y|D

xi
|P <

= y|P for each i ∈ S

(15.1)

where at least one inequality is strict (≤). For each i ∈ N \ S, let zi ∈ v(i) be such

that zi
|P <

= y|P and zi ∈ Par(v(i)), the Pareto edge of v(i). Such zi exist: let i ∈ N \ S

and a ∈ v(i), which is possible by nonemptiness of v(i). Either a|P <
= y|P or, using

comprehensiveness of v(i), one can lower the coordinates in {k ∈ P | ak > yk} without

leaving v(i). So let b ∈ v(i) be such that b|P <
= y|P . By assumption the set {c ∈ v(i) |

c >
= b} is compact and hence the set {c ∈ v(i) | c >

= b, c|P = b|P} is compact. Define

u ∈ IRD∪P such that uk = 1 for k ∈ D and uk = 0 for k ∈ P . By nonemptiness and

compactness of {c ∈ v(i) | c >
= b, c|P = b|P}, we know that

α∗ := max{α ∈ IR+ | b + αu ∈ {c ∈ v(i) | c >
= b, c|P = b|P}} (15.2)

exists. We claim that b + α∗u ∈ Par(v(i)). Suppose to the contrary, that b + α∗u is

not on the Pareto edge of v(i). Then d > b + α∗u for some d ∈ v(i). In particular,

dk > bk + α∗uk = bk + α∗ for each k ∈ D. Take β = min{dk − bk | k ∈ D}. Then

β > α∗ and b + βu <
= d. By comprehensiveness of v(i) it follows that b + βu ∈ v(i). Also

b + βu ∈ {c ∈ v(i) | c >
= b, c|P = b|P}. Hence by (15.2), β ≤ α∗ must hold. This yields a

contradiction. So b + α∗u ∈ {c ∈ v(i) | c >
= b, c|P = b|P} ∩ Par(v(i)). Since b|P <

= y|P , we

can now define the desired zi by zi := b + α∗u.

By the superadditivity condition the vector a ∈ IRD∪P with a|D = y|D +
∑

i∈N\S zi
|D

and a|P = y|P is an element of v(N). Using the comprehensiveness of v(N) and the

compactness assumption on v(N), it follows in a similar manner as demonstrated above,

that the set {c ∈ v(N) | c >
= a, c|P = a|P} contains an element b on the Pareto edge of

v(N). Take such a b ∈ v(N). This b is used to construct an imputation x̂ that dominates
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imputation x via coalition S. Define x̂ = (x̂i)i∈N ∈ (IRD∪P )N as follows:

x̂i
|P = b|P for each i ∈ N

x̂i
|D = zi

|D + 1
|N\S|(b− y −∑

i∈N\S zi)|D for each i ∈ N \ S

x̂i
|D = xi

|D + 1
|S|(y −

∑
i∈S xi)|D for each i ∈ S

Notice that

• ∑
i∈N x̂i

|D = b|D and x̂i
P = b|P for all i ∈ N . Since b ∈ v(N), it follows that x̂ is an

allocation;

• Since b is on the Pareto edge of v(N), using the nonlevelness of v(N) yields that

the allocation x̂ cannot be improved upon by the grand coalition N ;

• Since y|D >
=

∑
i∈S xi

|D and b|P = a|P = y|P >
= xi

|P for all i ∈ S, we have that x̂i >
= xi

for each player i ∈ S. Also, x ∈ I(N, v) by assumption. Hence, singleton coalitions

{i} with i ∈ S cannot improve upon x̂;

• Since b >
= a, a|D = y|D +

∑
i∈N\S zi

|D, and b|P = a|P = y|P >
= zi

|P for each i ∈ N \ S,

we have that x̂i >
= zi for each i ∈ N \ S. Using the nonlevelness of v(i) and the

fact that zi lies on the Pareto edge of v(i), we derive that singleton coalitions {i}
with i ∈ N \ S cannot improve upon x̂.

From the four points above we deduce that x̂ ∈ I(N, v). Moreover, y ∈ v(S),
∑

i∈S x̂i
|D =

y|D, and x̂i
|P = b|P = y|P for each i ∈ S. Thus, by (15.1) and the construction of

x̂: x̂i ≥ xi for each i ∈ S (recall that x̂i
|P = x̂j

|P for all players i, j). Conclude that

x /∈ DOC(N, v). Hence, DOC(N, v) ⊆ C(N, v), which completes the proof. 2

15.4 Core axiomatizations with converse consistency

In this section we study some properties of the core and provide several axiomatizations,

all based on the notions of consistency and converse consistency. The consistency prin-

ciple essentially means that if the grand coalition of players reaches an agreement, then

no subcoalition of players has an incentive to renegotiate within the subcoalition after

giving the players outside it their part of the solution, because the proposed agreement

is also in the solution of the reduced game played within the subcoalition. The converse

consistency axiom requires that a proposed agreement must be in the solution of a game

if for every subcoalition it holds that the restriction of this agreement to that subcoali-

tion is in the solution of the reduced game. Hence, it provides information about the

solution of a game, given information about the solution of its reduced games, justifying

the name ‘converse’ consistency. The axiomatizations are similar to those of Peleg (1985,

1986, 1987).
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Definition 15.11 Let (N, v) ∈ Υ, x ∈ A(N, v), and S ∈ 2N \ {∅, N}. The reduced game

(S, vx
S) of (N, v) with respect to allocation x and coalition S is the game defined by

vx
S(S) = v(N)− x̃(N \ S)

vx
S(T ) = ∪Q⊆N\S (v(T ∪Q)− x̃(Q)) for all T ∈ 2S \ {∅, S},

where x̃ = (x̃i)i∈N ∈ (IRD∪P )N is defined for all i ∈ N by

x̃i
k =

{
xi

k if k ∈ D

0 if k ∈ P.

/

The interpretation of the reduced game is as follows. Suppose the group of all players

initially agrees on an allocation x, and the players in N \ S withdraw from the decision-

making process taking their agreed-upon share of the private goods with them. Then,

if the agents in S reconsider, they are facing the game vx
S, because in their negotiations

they take into account that they can cooperate with some of the players in N \ S as

long as those are given their shares of the private goods. Note that the players who

leave the decision-making process are not guaranteed anything about the public criteria.

Since these criteria are public, their level will ultimately be determined by the players

who still take part in the decision-making process. Hence, players who leave this process

take a risk, but if the solution concept is consistent, then the remaining players will not

change their minds about the initially agreed-upon levels of the public criteria. This is

similar to the treatment of public goods in van den Nouweland et al. (1998).

Let us consider some axioms that are used in the remainder of this section. A solution

concept σ on Υ satisfies:

• One-Person Efficiency (OPE) if for each game (N, v) ∈ Υ with |N | = 1 it holds

that σ(N, v) = IR(N, v);

• Individual Rationality (IR) if for each game (N, v) ∈ Υ it holds that σ(N, v) ⊆
IR(N, v);

• Inclusion of Imputation Set for two-player Games (II2) if for every two-

player game (N, v) ∈ Υ it holds that σ(N, v) ⊇ I(N, v);

• Restricted Nonemptiness (r-NEM) if for each game (N, v) ∈ Υ it holds that

if C(N, v) 6= ∅, then σ(N, v) 6= ∅;

• Consistency (CONS) if for each game (N, v) ∈ Υ it holds that x ∈ σ(N, v)

implies xS ∈ σ(S, vx
S) for each coalition S ∈ 2N \ {∅, N};
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• Converse Consistency (COCONS) if for each game (N, v) ∈ Υ with |N | >
= 2

and each allocation x ∈ A(N, v) it holds that if xS ∈ σ(S, vx
S) for each S ∈

2N \ {∅, N}, then x ∈ σ(N, v);

• Converse Consistency for Two-Player Reductions (COCONS2) if for each

game (N, v) ∈ Υ with |N | >
= 3 and each allocation x ∈ A(N, v) it holds that if

xS ∈ σ(S, vx
S) for each S ∈ 2N \ {∅, N} with |S| = 2, then x ∈ σ(N, v).

The next proposition states that the core satisfies all these axioms.

Proposition 15.12 The core satisfies OPE, IR, II2, r-NEM, CONS, COCONS, and

COCONS2.

Proof. It is obvious that the core satisfies OPE, IR, II2 and r-NEM.

To prove that the core satisfies CONS, let (N, v) ∈ Υ, x ∈ C(N, v), and S ∈ 2N \
{∅, N}. Suppose that xS /∈ C(S, vx

S). Then there exist a coalition T ∈ 2S \ {∅} and a

vector z ∈ vx
S(T ) such that

∑
i∈T xi

|D <
= z|D

xi
|P <

= z|P for all i ∈ T

with at least one strict inequality (≤). Since z ∈ vx
S(T ), there exist a Q ⊆ N \ S and

y ∈ v(T ∪Q) such that z = y − x̃(Q). Observe that by definition of the reduced game,

Q = N \ S if T = S. Now we have
∑

i∈T∪Q xi
|D =

∑
i∈T xi

|D +
∑

i∈Q x̃i
|D <

= (z + x̃(Q))|D = y|D

xi
|P <

= z|P = (y − x̃(Q))|P = y|P for all i ∈ T ∪Q

where at least one of the inequalities is strict (≤). But then x cannot be in the core

of (N, v), since T ∪ Q can improve upon it. Hence xS ∈ C(S, vx
S) and the core satisfies

CONS.

To prove that the core satisfies COCONS2, Let (N, v) ∈ Υ with |N | >
= 3 and x ∈

A(N, v) such that xS ∈ C(S, vx
S) for every two-player coalition S ∈ 2N \ {∅, N}. We will

prove that no coalition of players can improve upon x, and hence x ∈ C(N, v).

Suppose that N can improve upon x. Then, for some y ∈ v(N):
∑

i∈N xi
|D <

= y|D

xi
|P <

= y|P for all i ∈ N

where at least one of the inequalities is strict (≤). Let S ∈ 2N \{∅, N} have two players.

Then, for a y as mentioned above it holds that
∑

i∈S xi
|D <

= y|D −∑
i∈N\S xi

|D = (y − x̃(N \ S))|D

xi
|P <

= y|P = (y − x̃(N \ S))|P for all i ∈ S
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where at least one of the inequalities is strict (≤). Since y − x̃(N \ S) ∈ vx
S(S), we find

that S can improve upon xS in (S, vx
S). This contradicts xS ∈ C(S, vx

S). We conclude

that N cannot improve upon x in (N, v).

Now, let T ∈ 2N \ {∅, N}. To prove that T cannot improve upon x in (N, v),

let i ∈ T, j ∈ N \ T , and S := {i, j}. Then xS ∈ C(S, vx
S), so in particular {i}

cannot improve upon xS in (S, vx
S). Consequently, for T \ {i} ⊆ N \ S, there is no

z ∈ v((T \ {i}) ∪ {i})− x̃(T \ {i}) ⊆ vx
S(i) such that xi

|D <
= z|D and xi

|P <
= z|P , where at

least one of the inequalities is strict (≤). So there is no y ∈ v(T ) such that
∑

k∈T xk
|D = xi

|D +
∑

k∈T\{i} xk
|D <

= y|D

xk
|P <

= y|P for all k ∈ T

where at least one of the inequalities is strict (≤). Consequently, T cannot improve upon

x on (N, v). We conclude that x ∈ C(N, v) and that the core satisfies COCONS2.

Notice that COCONS is not implied by COCONS2, since COCONS2 is not applicable

to games (N, v) ∈ Υ with |N | = 2. The proof that the core satisfies COCONS, however,

is similar to the proof that it satisfies COCONS2 and is therefore omitted. 2

Our next proposition lays the basis for the first axiomatization of the core.

Proposition 15.13 Let φ and ψ be two solution concepts on Υ. If φ satisfies OPE

and CONS and ψ satisfies OPE and COCONS, then φ(N, v) ⊆ ψ(N, v) for each game

(N, v) ∈ Υ.

Proof. The proof is by induction on the number of players. First, let (N, v) ∈ Υ have

only one player. Then φ(N, v) = ψ(N, v) by OPE. Next, assume that the claim holds

for each game with at most n ∈ IN players and let (N, v) ∈ Υ have n + 1 players.

Let x ∈ φ(N, v). By CONS of φ: xS ∈ φ(S, vx
S) for every S ∈ 2N \ {∅, N}. By

induction φ(S, vx
S) ⊆ ψ(S, vx

S) for every S ∈ 2N \{∅, N}. Using COCONS of ψ we obtain

x ∈ ψ(N, v). 2

Applying this proposition twice gives us the following axiomatization of the core.

Theorem 15.14 A solution concept σ on Υ satisfies OPE, CONS, and COCONS, if

and only if σ is the core.

Proof. The core satisfies the three axioms according to Proposition 15.12. Let σ be

a solution concept on Υ that also satisfies the axioms. Now apply Proposition 15.13.

Since σ satisfies OPE and CONS and the core satisfies OPE and COCONS, we find that

σ(N, v) ⊆ C(N, v) for each (N, v) ∈ Υ. Since the core satisfies OPE and CONS and

σ satisfies OPE and COCONS, we find that C(N, v) ⊆ σ(N, v) for each (N, v) ∈ Υ.

Hence, σ(N, v) = C(N, v) for all (N, v) ∈ Υ. 2

According to our next result, if a solution concept σ on Υ satisfies individual rationality

and consistency, then it is included in the core.
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Proposition 15.15 Let σ be a solution concept on Υ that satisfies IR and CONS. Then

σ(N, v) ⊆ C(N, v) for each game (N, v) ∈ Υ.

Proof. Let (N, v) ∈ Υ. We discern three cases.

• If |N | = 1, then σ(N, v) ⊆ IR(N, v) = C(N, v) by IR of σ;

• If |N | = 2, let x ∈ σ(N, v). Individual players cannot improve upon x by IR of σ.

It remains to show that N cannot improve upon x. Suppose to the contrary that

N can improve upon x. Then there exists a vector y ∈ v(N) such that

∑
i∈N xi

|D <
= y|D

xi
|P <

= y|P for all i ∈ N

where at least one of the inequalities is strict (≤). Let i ∈ N . Then

xi
|D <

= y|D −∑
j∈N\{i} xj

|D = (y − x̃(N \ {i}))|D

xi
|P <

= y|P = (y − x̃(N \ {i}))|P
where at least one of the inequalities is strict (≤). Since y − x̃(N \ {i}) ∈ v(N)−
x̃(N \{i}) = vx

{i}(i), it follows that xi /∈ IR({i}, vx
{i}). By IR of σ, xi /∈ σ({i}, vx

{i}).
But x ∈ σ(N, v) and CONS of σ imply that xi ∈ σ({i}, vx

{i}), a contradiction.

Hence, one has to conclude that N cannot improve upon x in (N, v).

This leads to the conclusion that σ(N, v) ⊆ C(N, v) for two-player games (N, v) ∈
Υ;

• If |N | >= 3, let x ∈ σ(N, v). By CONS of σ, xS ∈ σ(S, vx
S) for each S ∈ 2N \{∅} with

|S| = 2. By the previous step, σ(S, vx
S) ⊆ C(S, vx

S) for such two-player coalitions

S. Using COCONS2 of the core, it follows that x ∈ C(N, v). 2

In the part of the proof of Proposition 15.15 where we indicate that the grand coalition

N in a two-player game (N, v) cannot improve upon an allocation x ∈ σ(N, v) the use of

summation signs and notations like N \{i} seems unnecessarily complicated, since N \{i}
consists of only one player. We adopt the more general notation, however, because with

this notation it is easily seen that it also proves that the grand coalition cannot improve

upon an allocation x ∈ σ(N, v) in games with an arbitrary number of players.

Our next axiomatization applies the converse consistency axiom for two-player re-

ductions.

Theorem 15.16 A solution concept σ on Υ satisfies IR, II2, CONS, and COCONS2 if

and only if σ is the core.
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Proof. The core satisfies the four axioms by Proposition 15.12. Let σ be a solution

concept on Υ that also satisfies the axioms. Proposition 15.15 shows that σ(N, v) ⊆
C(N, v) for every (N, v) ∈ Υ.

It remains to show that C(N, v) ⊆ σ(N, v) for each (N, v) ∈ Υ. We consider three

separate cases in which the game has one, two, or more than two players. First we

consider two-player games, since this result is required for the argumentation in one-

player games.

• If |N | = 2, we know that σ(N, v) ⊆ C(N, v) from Proposition 15.15 and C(N, v) =

I(N, v) ⊆ σ(N, v) by II2 of σ. So C(N, v) = σ(N, v);

• Consider a one player game ({i}, v) and let xi ∈ C({i}, v). Consider j ∈ U \ {i}
and the game ({i, j}, w) ∈ Υ defined by w(i) = w({i, j}) = v(i) and w(j) = {a}
with a|D = 0 and a|P = xi

|P . Denote the allocation in ({i, j}, w) ∈ Υ which gives xi

to player i and a to player j by (xi, a). Then (xi, a) ∈ C({i, j}, w) = σ({i, j}, w).

Also, ({i}, w(xi,a)
{i} ) = ({i}, v), since w

(xi,a)
{i} (i) = w({i, j}) − ã = v(i). By CONS of

σ, xi ∈ σ({i}, w(xi,a)
{i} ) = σ({i}, v). Hence, C(N, v) ⊆ σ(N, v) if |N | = 1;

• If |N | >
= 3, let x ∈ C(N, v). By CONS of the core: xS ∈ C(S, vx

S) = σ(S, vx
S)

whenever |S| = 2, hence x ∈ σ(N, v) by COCONS2 of σ.

We conclude that σ(N, v) = C(N, v) for all games (N, v) ∈ Υ. 2

15.5 A core axiomatization with enlightening

In the proofs of Theorem 15.14 and Proposition 15.15, we showed that a solution concept

σ on Υ satisfies σ(N, v) ⊆ C(N, v) for each game (N, v) ∈ Υ by assuming that σ

satisfies consistency and some form of individual rationality or one-person efficiency, i.e,

an assumption that focuses on individual players. The other inclusion, C(N, v) ⊆ σ(N, v)

was harder to prove. In the previous section two notions of converse consistency were

used to establish this part. In the article of Peleg (1985) on an axiomatization of the

core of NTU games, it was shown that — given an infinite set of potential agents from

which the finite player sets are drawn — the converse consistency axiom can be replaced

by a (restricted) nonemptiness axiom to establish inclusion of the core in σ. The same

is observed in axiomatizations of equilibria in noncooperative games (cf. Peleg and Tijs,

1996, and Norde et al., 1996), where properties like restricted nonemptiness, individual

rationality, consistency and converse consistency are studied in a different set-up (see

also Chapter 11). Peleg and Tijs (1996) prove that if a solution concept on a set of

noncooperative games satisfies consistency and a requirement on single player games, it

is a subset of the Nash equilibrium set. If, in addition, a converse consistency property

is imposed, the solution concept coincides with the set of Nash equilibria. Norde et al.
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(1996) show that in mixed extensions of finite noncooperative games converse consistency

can be replaced by nonemptiness.

In the current section we slightly modify the definition of reduced games of the

previous section and show that the core can be axiomatized by means of restricted

nonemptiness, consistency with respect to the new type of reduced games, and indi-

vidual rationality. A similar definition of reduced games can be used to provide a new

axiomatization of the core for games with transferable utility. This is done in Section

15.6.

The section concludes with an example showing that converse consistency cannot be

replaced with restricted nonemptiness if the definition of reduced games from Section

15.4 is used.

Definition 15.17 Let (N, v) ∈ Υ, x ∈ A(N, v), and S ∈ 2N \ {∅, N}. The reduced game

(S, vx
S) of (N, v) with respect to allocation x and coalition S is the game defined by:

vx
S(S) = v(N)− x̃(N \ S)

vx
S(T ) = ∪Q⊆N\S,Q6=∅ (v(T ∪Q)− x̃(Q)) for all T ∈ 2S \ {∅, S}.

/

The difference between this definition of a reduced game and the one in Definition 15.11

is that we require the set Q in the specification of vx
S(T ) to be nonempty. This reflects

the intuition that, although attention is restricted to the players in S, the players in

N \ S do not leave the game, but strongly influence the game from behind the scenes.

The remaining players don’t ignore those in N \ S, but always cooperate with at least

some of them.

With the reduction as given in Definition 15.17, we obtain a new consistency axiom

CONS. A solution concept σ on Υ satisfies:

• CONS if for each game (N, v) ∈ Υ it holds that x ∈ σ(N, v) implies xS ∈ σ(S, vx
S)

for each coalition S ∈ 2N \ {∅, N}.

The core satisfies CONS. This is shown in the following proposition, along with other

statements concerning the core and CONS.

Proposition 15.18 The following claims are true:

1. The core satisfies CONS;

2. Consider a game (N, v) ∈ Υ with |N | >
= 3. If x ∈ IR(N, v) and xS ∈ C(S, vx

S) for

each S ∈ 2N \ {∅, N} with |S| = 2, then x ∈ C(N, v);

3. Let σ be a solution concept on Υ that satisfies IR and CONS. Then σ(N, v) ⊆
C(N, v) for each (N, v) ∈ Υ.
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Proof.

1. The proof that the core satisfies CONS is similar to the proof that the core satisfies

consistency in Proposition 15.12;

2. Suppose x ∈ IR(N, v) and xS ∈ C(S, vx
S) for each S ∈ 2N \ {∅, N} with |S| = 2.

Then individual players cannot improve upon x because x ∈ IR(N, v). To show

that N and other coalitions T ∈ 2N with |T | >
= 2 cannot improve upon x, apply

the arguments used in the proof that the core satisfies COCONS2 in Proposition

15.12;

3. Let (N, v) ∈ Υ. The proof that σ(N, v) ⊆ C(N, v) if |N | ∈ {1, 2} is completely

analogous to the corresponding part of the proof of Proposition 15.15. If |N | >
= 3,

let x ∈ σ(N, v). By CONS of σ, xS ∈ σ(S, vx
S) for each S ∈ 2N \ {∅, N} with

|S| = 2. Hence, using the previous step of this proof, we find that xS ∈ C(S, vx
S)

for each S ∈ 2N \{∅, N} with |N | = 2. By IR of σ, x ∈ σ(N, v) ⊆ IR(N, v). Then,

by part 2 of the current proposition, it follows that x ∈ C(N, v). 2

The main result of this section is the following axiomatization of the core.

Theorem 15.19 A solution concept σ on Υ satisfies IR, CONS, and r-NEM if and only

if σ is the core.

Proof. We have already seen that the core satisfies the three axioms. Let σ be a

solution concept on Υ that also satisfies the three axioms. From Proposition 15.18,

part 3, we know that σ(N, v) ⊆ C(N, v) for each (N, v) ∈ Υ. It remains to show that

C(N, v) ⊆ σ(N, v) for each (N, v) ∈ Υ.

Let (N, v) ∈ Υ. If C(N, v) = ∅ we are done, so assume C(N, v) 6= ∅, and let

x = (xi)i∈N ∈ C(N, v). Also, let n ∈ U \ N and define a game (N ∪ {n}, w) ∈ Υ as

follows:

w(n) = {y ∈ IRD∪P | there exists a k ∈ D s.t. yk < 0}

∪ {y ∈ IRD∪P | there exists a k ∈ P s.t. yk < xi
k}

w(i) = {y ∈ IRD∪P | there exists a k ∈ D ∪ P s.t. yk < xi
k} for i ∈ N

w(S ∪ {n}) = v(S) for S ⊆ N,S 6= ∅

w(S) = v(S) for S ⊆ N, |S| >
= 2.

(Recall that for public criteria k ∈ P one has that xi
k = xj

k for all players i, j ∈ N .

Consequently, it does not matter which player i ∈ N is chosen in the definition of w(n)

above.)
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We show that C(N ∪ {n}, w) = {(x, d)}, where (x, d) is the allocation that gives

xi ∈ IRD∪P to each player i ∈ N and d ∈ IRD∪P to player n, with d|D = 0 and d|P =

xi
|P (for arbitrary i ∈ N , as above). Obviously, (x, d) ∈ C(N ∪ {n}, w). Now, let

(bi)i∈N × {bn} ∈ C(N ∪ {n}, w). Using the definitions of (w(j))j∈N∪{n}, we see that it

must hold that bi >
= xi for each player i ∈ N and bn >

= d, to make sure that individual

players in N∪{n} cannot improve upon (bi)i∈N×{bn}. If one or more of these inequalities

are strict, then

∑
i∈N∪{n} bi

|D >
=

∑
i∈N xi

|D + d|D =
∑

i∈N xi
|D

bi
|P >

= xi
|P for each player i ∈ N ∪ {n},

with at least one strict inequality. This would contradict (x, d) ∈ C(N ∪{n}, w). Hence,

(bi)i∈N = (xi)i∈N and bn = d and this proves that (x, d) is the unique core element of

(N ∪ {n}, w).

Also, we claim that (N, w
(x,d)
N ) = (N, v). Namely,

w
(x,d)
N (N) = w(N ∪ {n})− d̃ = w(N ∪ {n})− 0 = v(N)

w
(x,d)
N (S) = w(S ∪ {n})− d̃ = w(S ∪ {n})− 0 = v(S) for S /∈ {∅, N}.

By r-NEM of σ we know that σ(N ∪{n}, w) 6= ∅ and we already saw that σ(N ∪{n}) ⊆
C(N ∪ {n}, w) = {(x, d)}. So, σ(N ∪ {n}, w) = {(x, d)}. Hence, by CONS of σ:

x = (x, d)N ∈ σ(N, w
(x,d)
N ) = σ(N, v). This proves that C(N, v) ⊆ σ(N, v). 2

The main step in the proof, showing that C(N, v) ⊆ σ(N, v) for each game (N, v) ∈ Υ,

proceeds by ‘enlightening’ core elements. In this procedure, one considers a game with

a nonempty core and an arbitrary allocation in this core. Then, a game is constructed

with a player set that strictly includes the players of the original game in such a way

that this larger game has a unique core element and such that this new, enlarged, game

and its unique core element reduced to the original player set are the original game and

core element. Restricted nonemptiness is then used to derive the desired inclusion.

We conclude this section by showing that the analogon of Theorem 15.19 does not

hold if we replace CONS by consistency with respect to the old definition of reduced

games. In particular, we construct a solution concept σ on Υ that satisfies IR, CONS,

and r-NEM, which is not equal to the core.

Let T ⊂ Υ be the class of games with a nonempty core, one divisible criterion, and

zero public criteria:

T := {(N, v) ∈ Υ | C(N, v) 6= ∅, |D| = 1, P = ∅}.

Since for each game (N, v) ∈ T the core is nonempty, there is only one criterion, and v

takes nonempty values (see Section 15.2), we conclude that the function v is bounded
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from above. Hence, the function sup v, where sup v(S) is the supremum of v(S) for each

S ∈ 2N \ {∅}, is well-defined. Define a solution concept σ on Υ as follows:

σ(N, v) =





C(N, v) if (N, v) /∈ T

{Nu(N, sup v)}, the nucleolus of (N, sup v) if (N, v) ∈ T
If (N, v) ∈ T , then C(N, v) = C(N, sup v). The game (N, sup v) is a TU-game. Recall

(cf. Schmeidler, 1969) that the nucleolus of a TU-game with a nonempty core is always

included in the core. The solution concept σ satisfies r-NEM because the nucleolus exists

for TU-games.

To prove IR of σ, we distinguish between (N, v) ∈ T and (N, v) /∈ T . If (N, v) /∈ T ,

it is clear that σ(N, v) = C(N, v) ⊆ IR(N, v) by IR of the core. If (N, v) ∈ T , then

C(N, v) = C(N, sup v). Consequently,

σ(N, v) = {Nu(N, sup v)} ⊆ C(N, sup v) = C(N, v) ⊆ IR(N, v)

by IR of the core and inclusion of the nucleolus in the core if the core of a TU-game is

nonempty.

The solution concept σ also satisfies CONS. If (N, v) /∈ T , then (S, vx
S) /∈ T for each

x ∈ A(N, v) and S ∈ 2N \ {∅, N} and hence it follows from consistency of the core that

xS ∈ σ(S, vx
S) for each x ∈ σ(N, v) and S ∈ 2N \ {∅, N}. So, suppose (N, v) ∈ T , so that

σ(N, v) = {Nu(N, sup v)}. Let S ∈ 2N \ {∅, N} and x ∈ σ(N, v), i.e., x = Nu(N, sup v).

Notice, first of all, that the reduced game (S, vx
S) is again an element of T . It is

clear that the reduced game has no public and exactly one private criterion. Also,

x ∈ σ(N, v) = {Nu(N, sup v)} ⊆ C(N, sup v) = C(N, v) and the core satisfies CONS.

This shows that xS ∈ C(S, vx
S) and, hence, C(S, vx

S) 6= ∅.
We know by consistency of the nucleolus for TU-games (cf. Peleg, 1986) that xS is

the nucleolus of (S, w), where the reduced game w is defined by

w(S) = (sup v)(N)− x(N \ S)

w(T ) = maxQ⊆N\S{(sup v)(T ∪Q)− x(Q)} for T ∈ 2S \ {∅, S}.
Notice that

w(S) = (sup v)(N)− x(N \ S)

= sup(v(N)− x(N \ S))

= sup vx
S(S),

and for T ∈ 2S \ {∅, S}:
w(T ) = max

Q⊆N\S
{(sup v)(T ∪Q)− x(Q)}
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= max
Q⊆N\S

{sup(v(T ∪Q)− x(Q))}

= sup∪Q⊆N\S{v(T ∪Q)− x(Q)}

= sup vx
S(T ).

So xS = Nu(S,w) = Nu(S, sup vx
S) ∈ σ(S, vx

S), completing our proof that σ satisfies

CONS.

To show that σ 6= C, consider the two-player game ({1, 2}, v) ∈ T with v(1) =

v(2) = {0} and v({1, 2}) = {1}. Then σ({1, 2}, v) = {Nu({1, 2}, v)} = {(1
2
, 1

2
)} 6=

C({1, 2}, v) = {(x1, x2) ∈ IR2 | x1 >
= 0, x2 >

= 0, x1 + x2 = 1}.
As an aside, notice that the solution concept σ also satisfies OPE. This follows from

OPE of the core and σ(N, v) = C(N, v) if |N | = 1. This implies that in Theorem

15.14 the converse consistency axiom cannot be replaced by restricted nonemptiness and

individual rationality.

15.6 Application to TU-games

Applying the reduced games as defined in Section 15.5 to single-criterion games with

transferable utility, one obtains an axiomatization of the core which differs from Peleg’s

(1986) axiomatization in the sense that it does not require Peleg’s superadditivity axiom.

Again, let U be an infinite set. A game with transferable utility, or a (TU) game for

ease of notation, is a tuple (N, v) with N ⊂ U a finite set of players and v : 2N → IR

a map which assigns to each coalition S ⊆ N of players a value v(S) ∈ IR. We assume

that v(∅) = 0. The set of all TU games is denoted by ΥTU .

For a vector x ∈ IRN and a coalition S ∈ 2N , we denote x(S) :=
∑

i∈S xi. The empty

sum x(∅) is zero by definition. The vector xS is the vector x restricted to the components

in S.

A payoff vector in a game (N, v) ∈ ΥTU is a vector x ∈ IRN such that x(N) <
= v(N).

The set of all payoff vectors of (N, v) is denoted P (N, v). A payoff vector is individually

rational if xi
>
= v(i) for each player i ∈ N . The set of all individually rational payoff

vectors is denoted IR(N, v).

A solution σ on ΥTU is a map that assigns to each game (N, v) ∈ ΥTU a subset

σ(N, v) ⊆ P (N, v) of payoff vectors.

We study a particular solution. The core of a game (N, v) is the set of payoff vectors

upon which no coalition can improve:

C(N, v) = {x ∈ P (N, v) | x(S) >
= v(S) ∀S ∈ 2N}.

Notice that x(N) = v(N) for each x ∈ C(N, v).
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We provide a new axiomatization of the core of TU games based on consistency with

respect to reduced games analogous to Definition 15.17, which differ slightly from those

defined by Peleg (1986). This modification allows us to omit the superadditivity axiom

and characterize the core with one axiom less than Peleg (1986).

We start by introducing the properties we use to characterize the core. A solution σ

on ΥTU satisfies

• Restricted Nonemptiness (r-NEM) if for each (N, v) ∈ ΥTU with C(N, v) 6= ∅
we have that σ(N, v) 6= ∅;

• Individual Rationality (IR) if for each (N, v) ∈ ΥTU we have that σ(N, v) ⊆
IR(N, v).

In order to introduce consistency we need to define reduced games.

Definition 15.20 Let (N, v) ∈ ΥTU , x ∈ P (N, v), and S ∈ 2N \ {∅, N}. The reduced

game (S, vx
S) of (N, v) with respect to payoff vector x and coalition S is the game in ΥTU

defined by:

vx
S(∅) = 0

vx
S(S) = v(N)− x(N \ S)

vx
S(T ) = maxQ⊆N\S,Q6=∅ {v(T ∪Q)− x(Q)} ∀T ∈ 2S \ {∅, S}

/

Consequently, in the reduced game (S, vx
S), the players in N \ S do not leave the game,

they only leave the decision making process. They are paid according to xN\S and

no longer play against the players in S. But considering that they are still needed to

distribute the remainder v(N)−x(N\S) of the value of the grand coalition, the remaining

players are required to cooperate with at least some of them. A solution concept σ on

ΥTU satisfies

• Consistency (CONS) if for each game (N, v) ∈ ΥTU and each coalition S ∈
2N \ {∅, N} we have that x ∈ σ(N, v) implies xS ∈ σ(S, vx

S).

Proposition 15.21 The core satisfies r-NEM, IR, and CONS.

Proof. It is obvious that the core satisfies r-NEM and IR. It remains to show that the

core satisfies CONS. Let (N, v) ∈ ΥTU , x ∈ C(N, v), S ∈ 2N \ {∅, N}, and T ∈ 2S \ {∅}.
If T = S, then vx

S(T ) = v(N)− x(N \ T ) = x(N)− x(N \ T ) = x(T ). If T 6= S, then

vx
S(T ) = max

Q⊆N\S,Q6=∅
{v(T ∪Q)− x(Q)}
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<
= max

Q⊆N\S,Q6=∅
{x(T ∪Q)− x(Q)}

= max
Q⊆N\S,Q6=∅

x(T )

= x(T ),

where the inequality follows from x ∈ C(N, v). Thus, xS ∈ C(S, vx
S). 2

Proposition 15.22 Let (N, v) ∈ ΥTU with |N | >= 3. If x ∈ IR(N, v) and xS ∈ C(S, vx
S)

for each S ∈ 2N with |S| = 2, then x ∈ C(N, v).

Proof.

• Since x ∈ IR(N, v) we have that xi
>
= v(i) for each i ∈ N ;

• Let S ⊂ N have two players. Since xS ∈ C(S, vx
S) we know that x(S) = vx

S(S) =

v(N)− x(N \ S), so x(N) = v(N);

• Now let T ∈ 2N \ {N} with |T | > 1. Take i ∈ T, j ∈ N \ T, S = {i, j}. Since

xS ∈ C(S, vx
S):

xi
>
= vx

S(i)

= max
Q⊆N\S,Q6=∅

{v({i} ∪Q)− x(Q)}

>
= v({i} ∪ T \ {i})− x(T \ {i})

= v(T )− x(T \ {i}),

where the second inequality follows from the observation that T \{i} ⊆ N \S, and

T \ {i} 6= ∅. So x(T ) >
= v(T ).

Consequently, x(S) >
= v(S) for each coalition S ∈ 2N , so x ∈ C(N, v). 2

Proposition 15.23 Let σ be a solution on ΥTU that satisfies IR and CONS. Then

x(N) = v(N) for each x ∈ σ(N, v).

Proof. If |N | = 1, then x(N) <
= v(N) since x is a payoff vector and x(N) >

= v(N) by

IR. So assume |N | >
= 2. Let x ∈ σ(N, v), i ∈ N . By CONS: xi ∈ σ({i}, vx

{i}). By our

previous step: xi = vx
{i}(i) = v(N)− x(N \ {i}), so x(N) = v(N). 2

Proposition 15.24 Let σ be a solution on ΥTU that satisfies IR and CONS. Then

σ(N, v) ⊆ C(N, v) for each (N, v) ∈ ΥTU .
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Proof. Let (N, v) ∈ ΥTU .

• If |N | = 1, then σ(N, v) ⊆ IR(N, v) = C(N, v) by IR;

• If |N | = 2, then σ(N, v) ⊆ C(N, v) by IR and Proposition 15.23;

• If |N | >
= 3, let x ∈ σ(N, v). By CONS, xS ∈ σ(S, vx

S) for each two-player coalition

S ⊂ N . By the previous step, σ(S, vx
S) ⊆ C(S, vx

S) for each two-player coalition S.

By IR we know that x ∈ IR(N, v). So by Proposition 15.22: x ∈ C(N, v). 2

Theorem 15.25 A solution σ on ΥTU satisfies IR, r-NEM, and CONS if and only if σ

is the core.

Proof. We showed in Proposition 15.21 that the core indeed satisfies the three axioms.

Now let σ be a solution on ΥTU that also satisfies the three axioms. By Proposition

15.24 we have that σ(N, v) ⊆ C(N, v) for each (N, v) ∈ ΥTU . Remains to show that

C(N, v) ⊆ σ(N, v) for each (N, v) ∈ ΥTU . Let (N, v) ∈ ΥTU . If C(N, v) = ∅ we are

done, so assume that this is not the case and let x ∈ C(N, v). Take n ∈ U \N and define

a game (N ∪ {n}, w) ∈ ΥTU as follows:

w(i) = xi ∀i ∈ N

w(n) = 0

w(S) = v(S) if |S| >
= 2 and n 6∈ S

w(S) = v(S \ {n}) if |S| >
= 2 and n ∈ S.

Obviously C(N ∪ {n}, w) = {(x, 0)}, where (x, 0) ∈ IRN∪{n} is the payoff vector that

gives xi to each player i ∈ N and 0 to player n. By r-NEM and Proposition 15.24:

(x, 0) ∈ σ(N ∪ {n}, w).

The reduced game (N,w
(x,0)
N ) equals (N, v). Namely: w

(x,0)
N (N) = w(N ∪ {n}) −

xn = v(N) − 0 = v(N) and for an arbitrary coalition S ∈ 2N \ {∅, N} we find that

w
(x,0)
N (S) = maxQ⊆(N∪{n}\N),Q6=∅ w(S ∪Q)−x(Q) = w(S ∪{n})−xn = v(S)− 0 = v(S).

Hence, by CONS: x = (x, 0)N ∈ σ(N, w
(x,0)
N ) = σ(N, v), which finishes our proof. 2

Like the proof of Theorem 15.19, the main step of the proof above, showing that σ

includes the core, proceeds by ‘enlightening’ core elements. Peleg (1985, 1986) also

applies this procedure. It is easy to show that the three axioms are independent.

Example 15.26 Define σ1 on ΥTU by σ1(N, v) = IR(N, v) for each (N, v) ∈ ΥTU .

Then σ1 satisfies r-NEM and IR, but not CONS. Define σ2 on ΥTU by σ2(N, v) = {x ∈
IRN | x(N) = v(N)} for each (N, v) ∈ ΥTU . Then σ2 satisfies r-NEM and CONS, but

not IR. Define σ3 on ΥTU by σ3(N, v) = ∅ for each (N, v) ∈ ΥTU . Then σ3 satisfies IR

and CONS, but not r-NEM. /
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The only respect in which our definition of a reduced game differs from that of Peleg

(1986) is that we require the players in the reduced game (S, vx
S) to cooperate with at

least one of the players in N \ S. This seems a plausible assumption if we take into

account that the players in N \ S do not leave the game. They are paid according to

some payoff vector and no longer take part in the decision making process. However,

considering that they are still needed to distribute the remainder of the value v(N) of

the grand coalition, the players in S are required to take account of the players in N \S

and to cooperate with at least some of them.

For antimonotonic solutions our notion of consistency is implied by Peleg’s notion of

consistency. A solution σ on ΥTU is called antimonotonic if for two games (N, v) and

(N,w) ∈ ΥTU with v(N) = w(N) and v(S) >
= w(S) for each coalition S we have that

σ(N, v) ⊆ σ(N,w). This property is intuitive if a solution is based on objections: the

more powerful the coalitions are, the more they can reject, so the smaller the solution of

the game will be. Thus, the core satisfies consistency with respect to our definition of a

reduced game because of its consistency with respect to Peleg’s definition of a reduced

game and its antimonotonicity: in our definition of reduced games, the maximum is

taken over a smaller collection of coalitions.

Moreover, our axiomatization differs from Peleg’s result by the absence of the super-

additivity axiom.

Using a reduced game for NTU-games similar to the reduced game defined in this

paper, we can also provide an axiomatization of the core of games with non-transferable

utility in terms of individual rationality, restricted nonemptiness, and consistency. This

result is similar to the result of Peleg (1985).

15.7 Claim games

In this section, based on Voorneveld and van den Nouweland (1999), the core allocations

of a cooperative multicriteria game with public and private criteria are related with the

equilibria of a noncooperative multicriteria game. For our analysis, a slightly extended

definition of noncooperative or strategic form multicriteria games is required.

A generalized noncooperative multicriteria game is a tuple

G = 〈N, (Xi)i∈N , (ui)i∈N , (ºi)i∈N〉,

where

• N is a finite set of players,

• Xi is the set of strategies of player i ∈ N ,

• ui :
∏

i∈N Xi→→ IRr(i) is a payoff correspondence that maps each strategy profile

x = (xi)i∈N ∈ ∏
i∈N Xi to a nonempty subset ui(x) of r(i)-dimensional Euclidean
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space, where r(i) ∈ IN denotes the number of criteria taken into account by player

i ∈ N ,

• ºi is a binary relation on (a superset of) {ui(x) ⊆ IRr(i) | x ∈ ∏
i∈N Xi}, denoting

the preferences of player i ∈ N over his outcome sets.

This generalizes the noncooperative multicriteria games defined in Chapter 10 in two

ways. First of all, set-valued payoff functions are admitted. Secondly, in the usual

definition one omits the ºi. Definitions of several solution concepts are as follows.

Definition 15.27 Let G = 〈N, (Xi)i∈N , (ui)i∈N , (ºi)i∈N〉 be a generalized noncoopera-

tive multicriteria game. A strategy profile x ∈ ∏
i∈N Xi is

• an equilibrium if there does not exist a player i ∈ N and a strategy yi ∈ Xi such

that ui(yi, x−i) Âi ui(x);

• an undominated equilibrium if it is an equilibrium and, moreover, there does not

exists a strategy profile y ∈ ∏
i∈N Xi such that

∀j ∈ N : uj(y) ºj uj(x),

∃i ∈ N : ui(y) Âi ui(x).

• a strong equilibrium if there does not exist a coalition S ∈ 2N \ {∅} and profile

yS ∈ ∏
i∈S Xi such that

∀j ∈ S : uj(yS, xN\S) ºj uj(x),

∃i ∈ S : ui(yS, xN\S) Âi ui(x).

The set of equilibria, undominated equilibria, and strong equilibria of the game G are

denoted by E(G), UE(G), and SE(G), respectively. /

Let (N, v) ∈ Υ be a cooperative multicriteria game with public and private criteria.

Define the claim game G(N, v) = 〈N, (Xi)i∈N , (ui)i∈N , (ºi)i∈N〉 as follows:

• The player set, as specified, equals N ,

• Player i ∈ N has strategy space Xi := {S ∈ 2N | i ∈ S} × IRD∪P ,

• Player i’s payoff correspondence ui :
∏

j∈N Xj→→ IRD∪P is defined, for each x =
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(Si, ti)i∈N ∈ ∏
i∈N Xi as follows:

ui(x) =





{ti} if ∀j ∈ Si : Sj = Si and

∀j ∈ Si : tj|P = ti|P and

∃y ∈ v(Si) s.t.
∑

j∈Si tj|D
<
= y|D, tj|P

<
= y|P

v(i) otherwise

• For each player i ∈ N the dominance relation ºi is the partial order on the subsets

of IRD∪P defined as follows. Let A,B ⊆ IRD∪P . Then

A Âi B :⇔ ∀b ∈ B ∃a ∈ A : a ≥ b, and

A ºi B :⇔ [A Âi B or A = B].

In a claim game, each player i ∈ N states a coalition Si of which he wants to be a

member of and claims a payoff ti ∈ IRD∪P he wants to receive for joining. He receives

his claim if this is feasible, i.e., if all other players in Si also want to form this coalition,

they agree on the public criteria, and there is a feasible payoff y ∈ v(Si) that can be

used to finance the claims. In this case, the claimed coalition Si is called fitting.

Formally, let G(N, v) be a claim game and x = (Si, ti)i∈N ∈ ∏
i∈N Xi a strategy

profile. The fitting Fx is the partition of the player set N defined as follows. For S ∈ 2N

with |S| >
= 2 we have that S ∈ Fx if

Si = S for each i ∈ S

ti|P = tj|P for all i, j ∈ S

∃z ∈ v(S) s.t.
∑

j∈S tj|D
<
= z|D and

ti|P <
= z|P for each i ∈ S

Further, for i ∈ N , we have that {i} ∈ Fx if and only if

{i} /∈ ⋃{S ∈ Fx : |S| >
= 2}.

Coalitions in the fitting are called fitting coalitions.

The first proposition shows that each imputation in a game (N, v) coincides with an

equilibrium payoff in the claim game.

Proposition 15.28 Let (N, v) ∈ Υ and a ∈ I(N, v). There exists an x ∈ E(G(N, v))

such that ui(x) = {ai} for all i ∈ N .
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Proof. Define x = (N, ai)i∈N . Obviously ui(x) = {ai} for all i ∈ N . Suppose x /∈
E(G(N, v)). Then some player i ∈ N can profitably deviate to yi = (Si, ti). Since i

had an individually rational payoff ai, {i} cannot be fitting in (yi, x−i). If it was, it

would mean that ui(yi, x−i) either equals v(i) or {ti} if ti <
= z for some z ∈ v(i). This is

clearly not a profitable deviation. So it must be the case that Si = N and there exists

a z ∈ v(N) such that

∑
j∈N aj

|D ≤ ∑
j∈N\{i} aj

|D + ti|D <
= z|D

∀j ∈ N : ti|P = aj
|P

<
= z|P ,

where the inequality ≤ follows from the fact that ti ≥ ai in order for i to be better off

after deviating. But then N can improve upon a, contradicting a ∈ I(N, v). 2

The next proposition shows that each core element of a game (N, v) coincides with a

strong equilibrium payoff in its claim game.

Proposition 15.29 Let (N, v) ∈ Υ and a ∈ C(N, v). There exists an x ∈ SE(G(N, v))

such that ui(x) = {ai} for all i ∈ N .

Proof. Define x = (N, ai)i∈N . Obviously ui(x) = {ai} for all i ∈ N . Suppose x /∈
SE(G(N, v)). Then there exist a coalition S ∈ 2N \ {∅}, a player i ∈ S, and a profile

yS = (Sj, tj)j∈S such that





∀j ∈ S : uj(yS, xN\S) ºj uj(x) = {aj},

∃i ∈ S : ui(yS, xN\S) Âi ui(x) = {ai}.
(15.3)

As in Proposition 15.28, {i} cannot be fitting in (yS, xN\S) by individual rationality of

a. Hence Si ∈ F(yS ,xN\S) and |Si| >
= 2. The fact that Si is fitting implies that all its

members receive their claimed payoff. Discern two cases.

Case I: Si ⊆ S.

Since the claims (tj)j∈Si are feasible, there exists a z ∈ v(Si) such that

∑
j∈Si tj|D

<
= z|D

tj|P
<
= z|P for each j ∈ Si

And by (15.3)
∑

j∈Si aj
|D

<
=

∑
j∈Si tj|D

aj
|P

<
= tj|P for each j ∈ Si
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with at least one strict inequality (≤). But then z dominates allocation a via coalition

Si, contradicting a ∈ C(N, v).

Case II: Not Si ⊆ S.

Let j ∈ (N \ S) ∩ Si. Since Si ∈ F(yS ,xN\S): Sj = Si. Since j ∈ N \ S: Sj = N . So

Si = N . By feasibility of the claims, there exists a z ∈ v(N) such that

∑
j∈S tj|D +

∑
j∈N\S aj

|D
<
= z|D

tj|P
<
= z|P for each j ∈ S

aj
|P

<
= z|P for each j ∈ N \ S

tj|P = ak
|P for each j ∈ S, k ∈ N \ S

And by (15.3)

∑
j∈N aj

|D
<
=

∑
j∈S tj|D +

∑
j∈N\S aj

|D

aj
|P

<
= tj|P for each j ∈ S

with at least one strict inequality (≤). But then z dominates allocation a via coalition

N , contradicting a ∈ C(N, v).

Conclude that (N, ai)i∈N is indeed a strong equilibrium of the claim game (N, v). 2

Proposition 15.30 Let (N, v) ∈ Υ and a ∈ A(N, v). Allocation a is an element of

C(N, v) if and only if there exists an x ∈ SE(G(N, v)) such that ui(x) = {ai} for all

i ∈ N .

Proof. The ‘only if’ part was shown in Proposition 15.29. To prove the converse, let

x ∈ SE(G(N, v)) be such that ui(x) = {ai} for all i ∈ N and suppose that a /∈ C(N, v).

Then there exists a coalition S ∈ 2N \ {∅} and a y ∈ v(S) such that

∑
i∈S ai

|D <
= y|D and

ai
|P <

= y|P for each i ∈ S

with at least one of the inequalities being strict (≤). Define yS = (S, tj)j∈S with for all

j ∈ S:

tj|D = aj
|D + 1

|S|(y|D −
∑

i∈S ai
|D),

tj|P = y|P .
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Then uj(yS, xN\S) = {tj} Âj {aj} = uj(x) for all j ∈ S, contradicting the assumption

that x ∈ SE(G(N, v)). 2

What is it we showed in the previous proposition? We already knew that core elements

induce strong equilibrium payoffs. The basic content of the proposition is that no coali-

tion can profitably deviate from payoff vectors induced by strong equilibria in the claim

game. Combining this with the assumption that these payoff vectors constitute an al-

location in the game (N, v) gives rise to the conclusion that this allocation is in the

core.

The assumption that the payoffs a constitute an allocation becomes obsolete if the

game (N, v) is assumed to be superadditive, as is done in the following result. A game

(N, v) ∈ Υ is superadditive if ∀S, T ∈ 2N \ {∅} with S ∩ T = ∅:

∀s ∈ v(S) ∀t ∈ v(T ) ∃u ∈ v(S ∪ T ) :





s|D + t|D <
= u|D

max{sk, tk} <
= uk for each k ∈ P.

Proposition 15.31 Let (N, v) ∈ Υ be a superadditive game and a = (ai)i∈N ∈ ∏
i∈N IRD∪P .

Then a ∈ C(N, v) if and only if there exists an x ∈ SE(G(N, v)) such that ui(x) = {ai}
for all i ∈ N .

Proof. The ‘only if’ part follows from Proposition 15.29. Conversely, assume there exists

an x ∈ SE(G(N, v)) such that ui(x) = {ai} for all i ∈ N . Proposition 15.30 implies

that no coalition can improve upon a = (ai)i∈N . Remains to show that a ∈ A(N, v).

Consider the fitting Fx = (N(1), . . . , N(k)) and N(m) ∈ Fx. Discern two cases.

Case I: |N(m)| = 1, say N(m) = {i}.
There are two possibilities. Either ui(x) = {ai} = v(i), or ai <

= z(m) for some z(m) ∈
v(N(m)). In either case, there exists a z(m) ∈ v(N(m)) such that ai <

= z(m).

Case II: |N(m)| >
= 2.

By definition there exists a z(m) ∈ v(N(m)) such that

∑
j∈N(m) aj

|D
<
= z(m)|D and

aj
|P

<
= z(m)|P for each j ∈ N(m)

By superadditivity and the existence of the z(m) as above, it follows that there is a

z ∈ v(N) such that

∑

i∈N

ai
|D =

k∑

m=1

∑

i∈N(m)

ai
|D <

=

k∑

m=1

z(m)|D <
= z|D
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and for each i ∈ N and each l ∈ P :

ai
l
<
= max

m=1,...,k
{z(m)l} <

= zl.

So we have that ∑
i∈N ai

|D <
= z|D and

ai
|P <

= z|P for each i ∈ N.

If any of these inequalities is strict, N can profitably deviate from a, contradicting the

result that no coalition can profitably deviate. Hence the inequalities are all equalities,

finishing the proof that a ∈ A(N, v) and hence a ∈ C(N, v). 2

Similar to Proposition 15.31 one can prove:

Proposition 15.32 Let (N, v) ∈ Υ be a superadditive game and a = (ai)i∈N ∈ ∏
i∈N IRD∪P .

Then a ∈ I(N, v) if and only if there exists an x ∈ UE(G(N, v)) such that ui(x) = {ai}
for all i ∈ N .

This chapter is concluded with two simple examples. Example 15.33 indicates that even

if the game is superadditive and has a nonempty core, there may be strong equilibria

of the claim game in which the payoff to each player i is set-valued, i.e., equals v(i).

Example 15.34 indicates that in cooperative games with an empty core, the set of strong

equilibria of its claim game need not be empty.

Example 15.33 Take |D| = 1, P = ∅, N = {1, 2}, and v({1}) = v({2}) = v({1, 2}) =

(−∞, 0]. This is a superadditive game with a nonempty core: (0, 0) ∈ C(N, v). The

strategy combination (x1, x2) with xi = ({i}, 1) in which each player wants to be on

his own and claims payoff 1 yields ui(x) = v(i) for all i ∈ N and is clearly a strong

equilibrium of the claim game. /

Example 15.34 Take |D| = 1, P = ∅, N = {1, 2}, and v({1}) = v({2}) = v({1, 2}) =

{1}. Then C(N, v) = ∅. The strategy combination (x1, x2) with xi = ({i}, 1) yields

ui(x) = {1} and is clearly a strong equilibrium of the claim game. /



Chapter 16

Best-Reply Matching in Ordinal

Games

16.1 Introduction

In multicriteria games it is common that a good outcome in one criterion coincides

with a bad outcome in another criterion. This can cause outcomes to be incomparable.

Moreover, in Example 9.1 we saw that plausible decision making procedures may lead to

nontransitive order relations. In both cases it is natural to consider ordinal games, games

where the preferences of the players are not represented by real-valued utility functions,

but by binary relations over the strategy space. This chapter, based on Droste, Kosfeld,

and Voorneveld (1998a), considers such ordinal games in which — in addition — the

common rationality assumptions are abandoned.

How rational should agents be? Or at least how rational should they be modelled?

This question plays a substantial role in decision theory and game theory. Pioneering

work in this field goes back to Simon in the mid 50’s (Simon, 1957). Since then many

different views and conceptions have been floating around, partly competing or contra-

dicting each other. See Selten (1991) for a good description of the discussion upto the

late 80’s. The debate is still far from being settled. Recently, the topic of ‘bounded

rationality’ has attracted a lot of interest again. Important research includes the work

on psychology and economics, focusing on behavioral assumptions which can be based

on psychological evidence (Camerer, 1997; Rabin, 1998). A related project is on evolu-

tion (Weibull, 1995; Vega-Redondo, 1996; Samuelson, 1997; Young, 1998) and learning

(Fudenberg and Levine, 1998), where concepts from biological and social evolution are

explored together with ideas on individual learning and adaptation.

Further research contains the work of Rubinstein (1998), who similar to the psy-

chological literature argues that bounded rationality can not simply mean to assume

players make mistakes but requires a new understanding of how players actually behave

in decision making situations.

195
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The present chapter follows these lines in proposing a new model for boundedly ra-

tional behavior of players in interactive situations that are captured by a noncooperative

game. Our main idea focuses on the role of best replies, forming the set of actions a player

can not improve upon given an action profile of his opponents. Roughly said, if players

end up playing an action that was not a best reply to the actions of their opponents,

they may feel regret of not having done the right thing. Consequently, the anticipation of

regret may influence their decision making and determine their own behavior, i.e. their

own mixed strategy. Our model studies a possible way of how this influence can work.

The assumptions are as follows. Firstly, players focus on best replies only. This leads

to an ordinal equilibrium concept, ignoring any cardinal issues as, e.g., actual payoff

differences. Secondly, the anticipation of regret induces a player to compose his mixed

strategy by matching the probability of playing an action to the (subjective) probability

that this action is a best reply. The resulting behavior is called best-reply matching.

That regret may play an important role in situations of decision making is hardly a

new point. Articles of Loomes and Sudgen (1982, 1987) and Bell (1982) have explored

the possibility to incorporate regret considerations into the rational choice framework of

standard decision theory under uncertainty. However, as far as interactive situations are

concerned, upto now no analysis of behavior that is influenced by regret has been given.

This chapter fills the gap. Yet, in contrast to the suggestions of Loomes and Sudgen

(1982) or Bell (1982), where decision makers maximize a modified utility function, we

do not propose a model of utility maximizing behavior. As explained above our model

takes a bounded rationality approach, studying alternative procedures of how players

actually behave. The main deviation we pursue is to assume ‘matching’.

Over the past 25 to 30 years a mass of empirical evidence has been accumulated

supporting the observation that individuals, both human beings and animals, produce

behavior which obeys a pattern of so-called ‘probability matching’ or simply ‘matching’.

See, e.g., Davison and McCarthy (1988), Williams (1988), and Herrnstein (1997) for

recent collections of these findings. In a general way matching says that an individual

chooses an alternative from a given set of alternatives with a probability proportional

to the value derived from that alternative. That is, if S is the set of alternatives and

v(s) denotes the ‘value’ of alternative s ∈ S, the probability of choosing s is equal to

v(s)/
∑

s∈S v(s). When we consider best-reply matching behavior, the individuals are the

players of the game, the set of alternatives is given by the set of pure strategies of each

player, and the value of each alternative is determined by the fact whether, ex post, the

action is a best reply to the choice profile of the opponents or not.

Best-reply matching explicitly studies players that are clever enough to understand

the strategic issues involved in a noncooperative game. That is, we do not consider

players to ignore the fact that their payoff depends on the decisions of other players, as

it is done, for example, in Osborne and Rubinstein (1998) and Rustichini (1998), where

players simplify their situation by regarding it as a game against nature.

With respect to matching behavior in games, it should be noted that a prominent



Introduction 197

explanation of the matching phenomenon says that decision makers do not believe that

the mechanism that causes the uncertainty is genuinely random and may therefore try to

decipher the pattern (Cross, 1983, p.10). This explanation is particularly convincing in

interactive situations, where players are confronted with other players making strategy

choices rather than nature.

In order to prepare our general model we start with a simple example, which is in

fact a game theoretic modification of a lottery given in Loomes and Sudgen (1982, p.

822). Consider the following situation. Player 1 faces a one-shot game against player 2

that is described by the payoff matrix in Figure 16.1. Payoffs given are in dollars and are

to player 1, who chooses between A and B. In this example we ignore all strategic issues

with respect to player 2, therefore payoffs to this player are neglected. Suppose that

player 1 believes that player 2 first rolls a die and then chooses the respective column

indicated by the roll of the die. Thus, beliefs of player 1 are such that all actions of his

opponent have the same probability equal to 1
6
. Which row will player 1 choose, A or

B?

1 2 3 4 5 6

A 1 2 3 4 5 6

B 6 1 2 3 4 5

Figure 16.1: A First Example

Suppose first that player 1 is a neo-classical expected utility maximizer. Then, ob-

viously, he is indifferent between A and B since both give the same expected payoff

3.5.

Suppose now that player 1 follows a different procedure. Comparing payoffs of actions

A and B for each individual choice of player 2, he realizes that although both actions

give indeed the same expected payoff, action A is a best reply for every action from 2 to

6, while action B is a best reply only in case player 2 chooses 1. Thus, in terms of player

1’s beliefs the probability to play a best reply is five times higher when choosing action

A than when choosing action B. Following this reasoning player 1 may choose action

A with a higher probability than action B. Now suppose that the precise probability is

determined as follows. For each of the individual choices of player 2, if the choice was

known beforehand, player 1 would easily be able to decide between A and B. If player 2

was known to choose 1 he takes B, in all other cases he takes A. Now, of course player 1

does not know beforehand which action player 2 is going to choose. But using his beliefs

he can calculate that the probability for being called to play B is 1
6

and the probability

for being called to play A is 5
6
. So this is what he does: he matches the probability of

playing an action to the probability that this action is a best reply. With probability 1
6

he plays B, with probability 5
6

he plays A.

The example outlines the main essence of the behavioral approach we are going to
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study in this chapter. The remainder of this chapter is organized as follows. The next

section specifies the class of games under consideration. Section 16.3 formally defines the

notion of best-reply matching and best-reply matching equilibrium. We give a deeper

motivation of the concept in Section 16.4. Section 16.5 proves existence of equilibria and

analyzes the concept in more detail. Section 16.6 looks at the size and structure of the

set of best-reply matching equilibria. Section 16.7 illustrates its properties by means of

well-known examples. Finally, Section 16.8 concludes.

16.2 Preliminaries

We give the definition of some standard game theoretic notions which are used hereafter.

An (ordinal noncooperative) game is a tuple G = 〈N, (Xi)i∈N , (ºi)i∈N〉, where N =

{1, . . . , n} is a finite set of players; each player i ∈ N has a finite set Xi of pure strategies,

henceforth called actions, and a binary relationºi over
∏

i∈N Xi, reflecting his preferences

over the outcomes. The binary relation ºi is assumed to be reflexive and its asymmetric

part Âi, defined for all s, t ∈ ∏
i∈N Xi by

s Âi t ⇔ [s ºi t and not t ºi s],

is assumed to be acyclic. In the following we also consider cases in which the preference

relations ºi induce von Neumann-Morgenstern utility functions ui :
∏

i∈N Xi → IR and

denote the corresponding game by G = 〈N, (Xi)i∈N , (ui)i∈N〉.
Standard notation is used: X =

∏
i∈N Xi, X−i =

∏
j∈N\{i} Xj, etc. We denote by

∆i := {σi : Xi → IR | ∀xi ∈ Xi : σi(xi) ≥ 0,
∑

xi∈Xi

σi(xi) = 1}

the set of mixed strategies, henceforth called strategies, for player i. Analogously to the

action case, we use notations ∆ =
∏

i∈N ∆i, ∆−i =
∏

j∈N\{i} ∆j, σ = (σi, σ−i). For a

strategy profile σ−i ∈ ∆−i, we write σ−i(x−i) :=
∏

j∈N\{i} σj(xj), the probability that the

opponents of player i play the action profile x−i ∈ X−i. Thus, in particular we restrict

attention to independent strategy profiles.

Consider a game 〈N, (Xi)i∈N , (ºi)i∈N〉. Denote for each player i ∈ N and each profile

x−i ∈ X−i of actions of his opponents the set of pure best replies, i.e., the actions that

player i cannot improve upon, by Bi(x−i):

Bi(x−i) := {xi ∈ Xi |6 ∃x̃i ∈ Xi : (x̃i, x−i) Âi (xi, x−i)}.
Of course, for games 〈N, (Xi)i∈N , (ui)i∈N〉 with utility functions we have:

Bi(x−i) := {xi ∈ Xi | ∀x̃i ∈ Xi : ui(xi, x−i) >
= ui(x̃i, x−i)}.

Since Xi is finite and Âi is acyclic, Bi(x−i) is nonempty. An action xi ∈ Xi in a game

G = 〈N, (Xi)i∈N , (ºi)i∈N〉 is a never-best reply if

{x−i ∈ X−i | xi ∈ Bi(x−i)} = ∅.
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For a game 〈N, (Xi)i∈N , (ui)i∈N〉 we have that xi ∈ Xi is a never-best reply if

ui(xi, x−i) < max
x̃i∈Xi

ui(x̃i, x−i)

for each x−i ∈ X−i. An action xi ∈ Xi is weakly dominated by a strategy σi ∈ ∆i if

∀x−i ∈ X−i : ui(σi, x−i) >
= ui(xi, x−i)

with strict inequality for at least one x−i, and strictly dominated if all inequalities are

strict. A strictly dominated action is clearly a never-best reply. We next define best-reply

matching behavior and best-reply matching equilibrium.

16.3 Definition

As the title of this chapter suggests, our approach focuses on two things: ‘best reply’

and ‘matching’. Let us start with the first. Consider a game G and some player i ∈ N .

Then, we assume that to every action xi ∈ Xi player i associates the set

{x−i ∈ X−i | xi ∈ Bi(x−i)},

which gives all opponents’ action profiles to which xi is a best reply. The collection of

these sets is obtained directly from the game G. It contains all relevant information

concerning player i’s best-reply structure. Note that in games with utility functions a

lot of information may be ignored by focusing simply on the best-reply structure of the

game. In particular, all cardinal issues do not enter a player’s consideration. Best-reply

matching is an ordinal concept.

The second expression, ‘matching’, captures how players use the information on their

best-reply structure in order to determine their own behavior, i.e. the strategy being

played. We assume that additional to the information on the game a player has beliefs

about the opponents’ behavior. The belief of player i is given by a strategy σ̂−i ∈ ∆−i

determining for each action profile x−i ∈ X−i the probability σ̂−i(x−i) with which player

i believes that particular profile to occur. Now, our assumption says that a player

builds his own strategy by matching his individual probabilities to play an action to the

probabilities that these actions are a best reply. We obtain the following definition.

Definition 16.1 Let G = 〈N, (Xi)i∈N , (ºi)i∈N〉 be a game. Consider a player i ∈ N .

Denote by σ̂−i ∈ ∆−i the strategy profile player i believes his opponents to play. Player

i matches best replies if for every xi ∈ Xi:

σi(xi) =
∑

{x−i∈X−i|xi∈Bi(x−i)}

1

|Bi(x−i)| σ̂−i(x−i). (16.1)

/
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As we have to take care of multiple best replies, dividing by |Bi(x−i)| in (16.1) ensures

that σi is well-defined, i.e. that probabilities sum up to one. Thereby we implicitly as-

sume that all multiple best replies are weighted equally. However, it should be clear that

any other weighting rule would be fine, too, though changing, of course, the probabilities

that are assigned to actions. If best replies are unique the weighting rule is obviously

irrelevant.

In a best-reply matching equilibrium every player matches best replies and beliefs

are correct, i.e. for all i ∈ N, σ̂−i = σ−i.

Definition 16.2 Let G = 〈N, (Xi)i∈N , (ºi)i∈N〉 be a game. A mixed strategy profile

σ ∈ ∆ is a best-reply matching (BRM) equilibrium if for every player i ∈ N and for every

xi ∈ Xi:

σi(xi) =
∑

{x−i∈X−i|xi∈Bi(x−i)}

1

|Bi(x−i)|σ−i(x−i). (16.2)

The set of BRM equilibria of a game G is denoted by BRM(G). /

Having defined the notion of best-reply matching and the equilibrium concept based on

this notion, we now provide two interpretations of the new concept.

16.4 Motivation and interpretation

We give two different interpretations of best-reply matching behavior and BRM equilib-

rium. One interpretation of best-reply matching is based on the idea that a player wants

to feel content after having played the game. That is, after the game is over a player

would like to be able to say that ‘he has done the right thing’ in the sense that he has

chosen ‘the right action’. In a game the only reasonable ex post criterion for ‘a right

action’ is the criterion of a best reply. Once the game is over and strategies are realized,

the action profile of the opponents is fixed and can no longer be changed. Yet given a

fixed action profile of the other players the best a player can do is indeed to play a best

reply. They form the reference value to which any action has to be compared after the

game is over.

Therefore intuitively our approach can be seen as saying that, in order to feel no

regret after the game is over, players have an ex ante aspiration level of playing a best

reply. Note that this assumption does not necessarily disagree with the basic idea of

rational utility maximizing behavior. In fact, on the action level, i.e. whenever a player

has deterministic beliefs, best-reply matching behavior is rational.

So suppose that beliefs of a player i are mixed, i.e., that several of his opponents’

action profiles x−i (possibly all) are believed to be played with positive probability. In this

situation our behavioral assumption differs from rationality. The idea is the following.

Since a player knows what to do in each of the single cases x−i that can occur, namely

play a best reply to the profile x−i, he refers to these situations as the basis for his
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behavior. Firstly, he determines his mixed strategy by restricting its support to actions

xi that would be played in any of these single cases. Secondly, he weighs these individual

actions by the probability with which they would be played if only the realized profile

of the opponents would be known beforehand. The result is matching. Each action xi

is played with exactly the probability that this action would be played, i.e. that it is a

best reply, given the beliefs of player i.

The reason why we assume the behavior of a player to be non-rational in case of

uncertainty is that we presume it to be too complicated for a player to maximize over the

set of mixed strategies, which is a continuum of alternatives. Although, or even because

he is able to maximize over the set of actions, he fails to do so in case he must determine

a mixed strategy. Similarly, best-reply matching is not based on expected payoffs, since

these can never be observed in a one-shot setting. In particular, we assume that players

do not aggregate an uncertain situation by summing up products of probabilities and

payoffs. Instead, we propose that a player views an uncertain situation as a combination

of several possible situations, in each of which he would know precisely what to do. He

then weighs the reactions to each separate situation with the probability he assigns to

the occurrence of this situation.

The notion of equilibrium in this setting is based on the usual static approach. Every

player behaves according to the best-reply matching assumption and individual beliefs

are correct. In other words, the interaction between players forms a fixed point.

An alternative motivation for the equilibrium concept is based on a repeated situation

of play, where each single player myopically adapts his strategy from one period to the

other. The description of this second motivation is brief; the reader is referred to Droste,

Kosfeld, and Voorneveld (1998b) for details.

Suppose the game G is repeated infinitely often in discrete time. At any time t a

player is assumed to play an action drawn from the distribution given by his mixed

strategy σt
i at that time. Players behave myopically and update their strategy each

period based only on the realization of play in that period. As in the one-shot setting

the updating is based on best replies. However, contrary to above the updating procedure

does not involve any matching but, as we will see, will imply matching behavior in every

steady state, i.e. in equilibrium.

Consider a given period t and suppose that in this period action profile x ∈ X was

realized. Let players i ∈ N adjust their strategy as follows. For each xi ∈ Xi,

σt+1
i (xi) =

{
(1− θ) σt

i (xi) + θ
|Bi(x−i)| if xi ∈ Bi(x−i),

(1− θ) σt
i (xi) otherwise,

(16.3)

where 0 < θ < 1 is a parameter that is exogenously fixed.

Intuitively, the adjustment procedure specified in (16.3) says that a player i ∈ N after

the t-th repetition of the game adjusts his strategy by first proportionally decreasing all

probabilities by a fraction θ. This then leaves the player with a probability θ that is

reallocated to the actions that are best replies to the action profile of his opponents in
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the t-th repetition of the game. Hence, similar to the one-shot setting a player focuses on

optimal behavior in terms of best replies. After each round he shifts his behavior towards

strategies that are best replies to the last observation, where the degree of adjustment

is determined by 0 < θ < 1. Note that, while the action currently played by player

i does not directly influence how he adjusts his strategy, the action does influence the

updating process of all of his opponents. Consequently, the action currently played does

influence the future strategy profiles of his opponents and therefore it will influence his

own adjustment process indirectly.

Alternatively, the adjustment process (16.3) can be motivated by a multipopulation

model (cf. Weibull, 1995, Chapter 5). Suppose there exist n = |N | large (technically

infinite) populations of agents. Each agent in population i ∈ N is programmed to an

action in Xi. The share of agents in population i ∈ N programmed to action xi ∈ Xi

at time t is given by σt
i(xi). In each period t a fraction θ ∈ (0, 1) of the agents in each

population is randomly drawn to play the game. The agents who are called to play the

game are randomly matched in n-tuples such that each agent is matched with exactly one

agent from every other population. After all n-tuples of agents have played the game,

the participating agents leave the system and are replaced by new agents who learn

something about the prevailing states of the n populations. Suppose, in particular, that

a randomly selected outcome x ∈ X of one of the games played in period t is publicly

announced. In other words, the probability of sampling a profile x ∈ X equals its share

in the current populations.

Now consider a new agent, replacing an agent that leaves population i ∈ N . This

agent once and for all commits to an action xi ∈ Xi, which he does by adopting a

best reply against the publicly announced action profile x−i. In case of multiple best

replies, the new agent is assumed to adopt each of the best replies with equal probability.

Obviously, the fraction σt+1
i (xi) of agents in population i programmed to action xi ∈ Xi

in period t + 1 then equals (1 − θ)σt
i(xi) + θ

|Bi(x−i)| if xi ∈ Bi(x−i) and (1 − θ)σt
i(xi)

otherwise, which is exactly the adjustment rule (16.3).

For a given initial random variable σ0 ∈ ∆ and a given parameter θ, the adjust-

ment rule in (16.3) defines a discrete time Markov process (σt)
∞
t=0 on the state space

∆. Without going into details, some key results from Droste, Kosfeld, and Voorneveld

(1998b) are mentioned. If the Markov process is approximated by a dynamical system in

continuous time, which follows the expected movement of the original stochastic process,

then its steady states are exactly the best-reply matching equilibria of the underlying

game G. Every pure-strategy best-reply matching equilibrium is an absorbing state of

the stochastic process (σt)
∞
t=0; every absorbing state of (σt)

∞
t=0 is a best-reply matching

equilibrium, possibly in mixed strategies. Thus, with repeated play matching turns out

to be a stationarity property of the adjustment process of the players. For every game

it holds that whenever the adjustment process settles down, players must match best

replies.
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16.5 Analysis

A fundamental question with respect to any equilibrium concept concerns its existence.

The first proposition shows that BRM equilibria exist for every game.

Proposition 16.3 Let G = 〈N, (Xi)i∈N , (ºi)i∈N〉 be a game. Then BRM(G) 6= ∅.

Proof. Let i ∈ N, σ ∈ ∆, xi ∈ Xi. Define

ri(xi, σ−i) :=
∑

{x−i∈X−i|xi∈Bi(x−i)}

1

|Bi(x−i)|σ−i(x−i).

Then

∑

xi∈Xi

ri(xi, σ−i) =
∑

xi∈Xi

∑

{x−i∈X−i|xi∈Bi(x−i)}

1

|Bi(x−i)|σ−i(x−i)

=
∑

x−i∈X−i

∑

xi∈Bi(x−i)

1

|Bi(x−i)|σ−i(x−i)

=
∑

x−i∈X−i

σ−i(x−i)

= 1.

Hence the mapping

r : ∆ → ∆

σ 7→ r(σ)

with r(σ)i(xi) = ri(xi, σ−i) is well-defined. In the definition of the function ri neither the

index set in the summation sign nor the number |Bi(x−i)| of pure best replies depends on

the strategy combination σ. Hence, this mapping is obviously continuous. Application

of the Brouwer fixed-point theorem yields the existence of a strategy profile σ ∈ ∆ such

that σ = r(σ), which is a BRM equilibrium. 2

Remark 16.4 It follows from the proof of Proposition 16.3 that
∑

xi∈Xi
σi(xi) = 1 =∑

xi∈Xi
ri(xi, σ−i) for each σ ∈ ∆, i ∈ N . As a consequence, when computing BRM

equilibria, one of the conditions σi(xi) = ri(xi, σ−i) of player i is redundant. /

A game H is said to be obtained by iterated elimination of never-best replies from a game

G = 〈N, (Xi)i∈N , (ºi)i∈N〉 if there exists a number k ∈ IN of elimination rounds and for

each player i ∈ N a collection of sets X0
i , X1

i , . . . , Xk
i and a sequence º0

i ,º1
i , . . . ,ºk

i of

relations such that:

1. For each player i ∈ N : Xi = X0
i ⊇ X1

i ⊇ · · · ⊇ Xk
i ;
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2. For each player i ∈ N and each l = 0, 1, . . . , k: ºl
i is the preference relation ºi of

the game G restricted to
∏

j∈N X l
j;

3. For each l = 0, 1, . . . , k − 1 and each player i ∈ N the set X l
i \X l+1

i contains only

never-best replies of player i in the game 〈N, (X l
i)i∈N , (ºl

i)i∈N〉 and there exists at

least one player i ∈ N for which X l
i \X l+1

i is nonempty;

4. H is the game 〈N, (Xk
i )i∈N , (ºk

i )i∈N〉;

5. In the game H, no player i ∈ N has never-best replies.

The behavior of the BRM equilibrium concept with respect to dominated actions and

elimination thereof is summarized in the next result.

Proposition 16.5 The following results hold:

(i) In a BRM equilibrium σ∗ of a game 〈N, (Xi)i∈N , (ºi)i∈N〉 never-best replies are played

with zero probability.

Moreover,

(ii) the set of BRM equilibria of a game G = 〈N, (Xi)i∈N , (ºi)i∈N〉 equals — up to zero

probability assigned to eliminated actions — the set of BRM equilibria of a game

that is obtained by iterated elimination of never-best replies.

Finally,

(iii) let G = 〈N, (Xi)i∈N , (ui)i∈N〉 be a game with von Neumann-Morgenstern utility

functions and let σ∗ be a BRM equilibrium of G. If player i’s action xi is weakly

dominated by the strategy σi, then:

for all xi ∈ Xi : if σi(xi) > 0, then σ∗i (xi) ≥ σ∗i (xi).

Proof. The proof of (i) is easy: if xi ∈ Xi is a never-best reply, then the set {x−i ∈
X−i | xi ∈ Bi(x−i)} is empty and hence according to (16.2): σ∗i (xi) = ri(xi, σ

∗
−i) = 0.

To prove (ii), it suffices to prove that the first round of eliminations does not change

the equilibrium set, since the proof can then be repeated for the additional rounds.

Assume for simplicity that in the first elimination round we eliminate all the never-best

replies

NBi := {xi ∈ Xi | xi is a never-best reply of player i in G}
of each player i ∈ N , thus obtaining a smaller game G′. The equilibrium conditions in

the game G are that for each i ∈ N and each xi ∈ Xi:

σi(xi) = ri(xi, σ−i)
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=
∑

{x−i∈X−i|xi∈Bi(x−i)}

1

|Bi(x−i)|σ−i(x−i)

=
∑

{x−i∈X−i|xi∈Bi(x−i) and ∀j∈N\{i}: xj /∈NBj}

1

|Bi(x−i)|σ−i(x−i)

+
∑

{x−i∈X−i|xi∈Bi(x−i) and ∃j∈N\{i}: xj∈NBj}

1

|Bi(x−i)|σ−i(x−i)

=
∑

{x−i∈
∏

j∈N\{i}Xj\NBj |xi∈Bi(x−i)}

1

|Bi(x−i)|σ−i(x−i)

+
∑

{x−i∈X−i|xi∈Bi(x−i) and ∃j∈N\{i}: xj∈NBj}

1

|Bi(x−i)|σ−i(x−i)

By (i), actions xj ∈ NBj are played with zero probability in a BRM equilibrium. Hence

the second sum in the last equality above equals zero. What remains, for each player

i ∈ N and each action xi ∈ Xi \ NBi, are exactly the equilibrium conditions for the

game G′.
To prove (iii), let x−i ∈ X−i and assume that xi ∈ Bi(x−i). Since σi weakly dominates

xi and xi ∈ Bi(x−i), for every xi ∈ Xi such that σi(xi) > 0 we must have that xi ∈
Bi(x−i). Hence for every xi ∈ Xi with σi(xi) > 0:

{x−i ∈ X−i | xi ∈ Bi(x−i)} ⊆ {x−i ∈ X−i | xi ∈ Bi(x−i)},
which together with the definition of ri(·, σ∗−i) implies the result:

σi(xi) > 0 ⇒ σ∗i (xi) = ri(xi, σ
∗
−i)

=
∑
{x−i∈X−i|xi∈Bi(x−i)}

1
|Bi(x−i)|σ

∗
−i(x−i)

≥ ∑
{x−i∈X−i|xi∈Bi(x−i)}

1
|Bi(x−i)|σ

∗
−i(x−i)

= ri(xi, σ
∗
−i)

= σ∗i (xi).

2

Notice that the result above does not rule out that weakly dominated actions are played

with positive, even quite large probability.

Example 16.6 Consider the game in Figure 16.2. T weakly dominates B and L strictly

dominates R. Both T and B are a best reply against L, and T is a unique best reply

against R. Hence in equilibrium we have the condition that

σ1(T ) =
1

2
σ2(L) + σ2(R).
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L R

T 1, 1 1, 0

B 1, 1 0, 0

Figure 16.2: The game from Example 16.6

The condition for σ1(B) is redundant, since the probabilities have to add up to one.

Similarly, for player 2 we see that L is a unique best reply to both T and B, so that his

equilibrium condition becomes

σ2(L) = σ1(T ) + σ1(B) = 1.

Solving these equations and taking into account that (σ1, σ2) ∈ ∆ we find that the unique

BRM equilibrium equals ((1
2
, 1

2
), (1, 0)). Observe that the weakly dominated action is not

only played with positive probability, but that there is not even an alternative action

with a higher probability. /

Despite the relatively prudent behavior with respect to (weakly) dominated actions as

expressed in Proposition 16.5, the set of BRM equilibria and Nash equilibria have no

obvious relation. In the game of Figure 16.3, for instance, the unique Nash equilibrium

equals ((1
3
, 2

3
), (2

3
, 1

3
)) while the unique BRM equals ((1

2
, 1

2
), (1

2
, 1

2
)).

L R

T 0, 2 2, 0

B 1, 0 0, 1

Figure 16.3: The Nash and BRM equilibrium concept differ

We can, however, indicate a relation with the notion of strict equilibria introduced

by Harsanyi (1973) as those strategy profiles σ satisfying the condition that each player

plays his unique best reply to the strategies of the opponent:

∀i ∈ N : {σi} = {τi ∈ ∆i |6 ∃τ̃i : ui(τ̃i, σ−i) > ui(τi, σ−i)}.

It is clear that a strict Nash equilibrium is always a pure-strategy Nash equilibrium and

(consequently) that strict Nash equilibria do not always exist. However, if they exist,

they are exactly the pure-strategy BRM equilibria of the game.

Proposition 16.7 The set of strict Nash equilibria of a game 〈N, (Xi)i∈N , (ui)i∈N〉 co-

incides with the set of pure strategy BRM equilibria.

The proof is straightforward and left to the reader.

The results with respect to the iterated elimination of never-best replies in Proposi-

tion 16.5 call to mind the notion of rationalizability introduced in Bernheim (1984) and
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Pearce (1984). Without going into the formal definitions, it follows immediately from

Proposition 16.5 and Bernheim (1984, pp. 1015-1016) that every action that is played

with positive probability in a BRM equilibrium is rationalizable. However, in a BRM

equilibrium σ, the mixed strategies σi themselves need not be rationalizable. This shows

again that the bounded rationality concept of best-reply matching agrees with standard

rationality on the action level but disagrees with respect to mixed strategies.

16.6 Size and structure

The size of an equilibrium set can be seen as a measure of the cutting power of an

equilibrium concept: if an equilibrium set contains many candidates, it can be seen as a

weak concept, not ruling out many strategy profiles. With respect to the size of the set

of BRM equilibria of a game 〈N, (Xi)i∈N , (ºi)i∈N〉, remark that it is always a relatively

small subset of ∆. A strategy tuple σ−i ∈ ∆−i completely determines ri(·, σ−i) and hence

in an n-player game it suffices to know only n − 1 components of a BRM equilibrium

to compute the equilibrium strategy for the remaining n-th player. This implies that

BRM(G) is always of lower dimension than ∆. In particular, it is impossible that

BRM(G) = ∆.

The structure of the set of Nash equilibria has been studied by several authors,

including Winkels (1979) and Jansen (1981), who show that in two-person games the set

of Nash equilibria has a nice decomposition into a finite number of polytopes. Concerning

the structure of the set of best-reply matching equilibria, we see that if the game G has

only two players, then BRM(G) is a polytope, since the set of BRM equilibria is then

determined by finitely many linear equations and linear weak inequalities in the variables

(σi(xi))i∈N,xi∈Xi
. If the game has at least three players, its set of BRM equilibria is

determined by a set of polynomial equations over a Cartesian product of simplices. This

leads to the observations that — analogous to the set of Nash equilibria — the set of

BRM equilibria may be curved or disconnected. The following two examples indicate

that both possibilities may indeed occur.

Example 16.8 Consider the three-player game in Figure 16.4. Here we denote by

p, q, r ∈ [0, 1] the probability with which player 1 chooses his first row, player 2 chooses

his first column, and player 3 chooses his first matrix, respectively. Considering Remark

q 1− q

p 1, 1, 1 1, 0, 0

1− p 0, 1, 1 0, 0, 0

r

q 1− q

p 1, 0, 0 0, 1, 1

1− p 0, 0, 0 1, 1, 1

1− r

Figure 16.4: A game with a curved set of BRM equilibria

16.4, it suffices to determine an equilibrium constraint only for p, q, and r, since those for
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1−p, 1− q, 1− r will follow immediately. The first strategy (the top row) of player 1 is a

unique best response to three combinations of pure strategies of his opponents, namely

to those in which player 2 chooses either his first or his second column and player 3

chooses the first matrix, which occurs with probability qr +(1− q)r, and to the strategy

in which player 2 chooses his first column and player 3 chooses the second matrix, which

occurs with probability q(1−r). Together with the constraints for the other two players,

we find that the conditions for a BRM equilibrium are




p = qr + (1− q)r + q(1− r) = q + (1− q)r

q = pr + (1− p)r = r

r = pq + (1− p)q = q

p, q, r ∈ [0, 1]

Consequently, the set of BRM equilibria equals

{((p, 1− p), (q, 1− q), (r, 1− r)) | p = q(2− q), r = q, q ∈ [0, 1]},
which is a curved equilibrium set. /

Example 16.9 Consider the three-player game in Figure 16.5. The conditions for a

q 1− q

p 1, 1, 1 0, 0, 0

1− p 0, 0, 1 1, 1, 0

r

q 1− q

p 0, 0, 0 1, 1, 1

1− p 1, 1, 0 0, 0, 1

1− r

Figure 16.5: A game with a disconnected set of BRM equilibria

BRM equilibrium are




p = qr + (1− q)(1− r) = 2qr − q − r + 1

q = pr + (1− p)(1− r) = 2pr − p− r + 1

r = pq + (1− p)q = q

p, q, r ∈ [0, 1]

This is equivalent with (after substitution of r = q):




p = 2q2 − 2q + 1

q = 2pq − p− q + 1

r = q

p, q, r ∈ [0, 1]

Subtracting the first equality from the second, we find:




p = 2q2 − 2q + 1

pq = q2

r = q

p, q, r ∈ [0, 1]
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Hence




p = 2q2 − 2q + 1

q = 0

r = q

p, q, r ∈ [0, 1]

or





p = 2q2 − 2q + 1

p = q

r = q

p, q, r ∈ [0, 1]

Consequently, the set of BRM equilibria equals

{((1, 0), (0, 1), (0, 1))} ∪ {((1
2
,
1

2
), (

1

2
,
1

2
), (

1

2
,
1

2
))} ∪ {((1, 0), (1, 0), (1, 0))},

consisting of three components. /

16.7 Examples

In this section we apply the concept of a BRM equilibrium to several classes of games,

including two-person coordination games and a class of Hawk-Dove games. Moreover, one

can apply the concept of a BRM equilibrium to the reduced strategic form of extensive

form games. We present one brief example and one more elaborate case, in which we

solve a T -choice centipede game.

Example 16.10 Consider the Rock, Scissors, Paper game in Figure 16.6, where R, S, P,

have the obvious meaning and the corresponding probabilities with which these strategies

are played are denoted by pi, qi.

R, q1 S, q2 P, 1− q1 − q2

R, p1 0, 0 1,−1 −1, 1

S, p2 −1, 1 0, 0 1,−1

P, 1− p1 − p2 1,−1 −1, 1 0, 0

Figure 16.6: Rock, Scissors, Paper

The conditions for a BRM equilibrium are




p1 = q2

p2 = 1− q1 − q2

q1 = p2

q2 = 1− p1 − p2

p1, p2, q1, q2 ∈ [0, 1]

p1 + p2
<
= 1

q1 + q2
<
= 1

Simple calculus leads to the conclusion that the unique BRM equilibrium equals the

unique Nash equilibrium in which both players choose each of their pure strategies with

probability 1
3
. /
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Example 16.11 A two-player game is a coordination game if both players have the

same set of actions and the unique best reply to an action of the opponent is to play the

same action. An example of a coordination game is the Battle of the Sexes game given

in Figure 16.7.

boxing ballet

boxing 3, 2 0, 0

ballet 0, 0 2, 3

Figure 16.7: Battle of the Sexes; a coordination game

From the definition of a coordination game it is clear that a profile of strategies is a BRM

equilibrium if and only if both players play the same mixed strategy. This illustrates

an important difference from the Nash equilibrium concept: The pure Nash equilibria

of a coordination game are the combinations of pure strategies in which the players

indeed coordinate (choose the same pure strategy). Since these Nash equilibria are strict,

they are also BRM equilibria. However, there is a mixed strategy Nash equilibrium in

which players do not coordinate exactly. In the example above, the mixed strategy

Nash equilibrium is ((3
5
, 2

5
), (2

5
, 3

5
)). This equilibrium is not a BRM equilibrium, since

it is not symmetric. For example, player 1 puts more probability on ‘boxing’ than he

believes player 2 does, which is not in accordance with matching. Intuitively, in a BRM

equilibrium in order to avoid miscoordination players want to do exactly the same as

their opponent. If the opponent goes ‘boxing’ with probability p they will go ‘boxing’

with the same probability p, too. /

Example 16.12 In this example we consider a class of Hawk-Dove games with the

structure of the payoff matrix given in Figure 16.8. Here V and W are real numbers

satisfying the condition W < V . We consider several cases.

q 1− q

p V, V 0, 2V

1− p 2V, 0 W,W

Figure 16.8: A class of Hawk-Dove games

1. If W > 0, we have a Prisoner’s dilemma; the second action of both players strictly

dominates the first, so the unique BRM equilibrium equals ((0, 1), (0, 1)).

2. If W = 0, the conditions for a BRM equilibrium are




p = 1
2
(1− q)

q = 1
2
(1− p)

p, q ∈ [0, 1]

The BRM equilibrium is ((1
3
, 2

3
), (1

3
, 2

3
)).
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3. If W < 0 < V , we have a Chicken game. The conditions for a BRM equilibrium

are 



p = 1− q

q = 1− p

p, q ∈ [0, 1]

The set of BRM equilibria is {((p, 1− p), (1− p, p)) | p ∈ [0, 1]}.

4. If V = 0, the conditions for a BRM equilibrium are





p = 1
2
q + (1− q)

q = 1
2
p + (1− p)

p, q ∈ [0, 1]

The BRM equilibrium is ((2
3
, 1

3
), (2

3
, 1

3
)).

5. If V < 0, the first action of both players strictly dominates the second, so the

unique BRM equilibrium is ((1, 0), (1, 0)).

/

Example 16.13 Consider the extensive form game in Figure 16.9. In this game, player

1 is given the choice to stop (S) or continue (C). If he continues, player 2 is given the

same choice. The game ends if either player decides to stop or both decide to continue.

Assume that c Â1 a and c Â2 b. Consequently, we have that the outcome c is the unique

r1

S

C

r
a

rr2

S

C

r
b

r c

Figure 16.9: An extensive form game

subgame perfect equilibrium of the game. Denote by p the probability that player 1

chooses to stop and by q the probability that player 2 chooses to stop. By Remark 16.4,

it suffices to determine the equilibrium conditions for p and q. Player 2’s choice to stop

is not a best reply to player 1’s strategy to continue. If player 1 stops, it is of no concern

what player 2 chooses: either strategy is a best reply. Hence the equilibrium condition

for player 2 is:

q =
1

2
p, q ∈ [0, 1].

The equilibrium condition for player 1 is either p = q or p = 1
2
q or p = 0, depending

on whether he finds a better than, equivalent to, or worse than outcome b. In the first
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two cases, i.e., if a º1 b, there is a Nash equilibrium yielding outcome a which is never

played in a BRM equilibrium. No matter what preferences player 1 has over a and b,

the unique BRM equilibrium is that both players continue with probability one. /

Example 16.14 In the T -choice centipede game, introduced by Rosenthal (1981), play-

ers 1 and 2 alternately move. In any of the 2T periods, the player whose turn it is to

move can decide to stop the game (S) or to continue (C). Consequently, both players

have T + 1 actions: stopping at any one of the T opportunities, or continue all the time.

The game ends if one of the players decides to stop or if neither player has decided to

do so after each of them has had T opportunities. For each player, the outcome when

he stops the game in period t is better than that in which the other player stops the

game in period t + 1 (or the game ends), but worse than any outcome that is reached if

in period t + 1 the other player passes the move to him. Therefore:

Player 2’s action to stop at his k-th opportunity is a best reply to the following actions

of player 1:

• player 1 stops immediately; then all of player 2’s T + 1 actions are a best reply;

• if k = T the unique best reply to player 1’s choice to continue always is to stop at

the final stage;

• player 1 decides to stop at opportunity k + 1.

Player 1’s action to stop at his k-th opportunity is a best reply to exactly one action of

player 2:

• player 2 decides to stop in the next period, at his k-th opportunity.

An example of a 3-choice centipede game is given in Figure 16.10. Denote by pi[qi]

r1

S

C

r
1, 0

rr2

S

C

r
0, 2

rr1

S

C

r
3, 1

rr2

S

C

r
2, 4

rr1

S

C

r
5, 3

rr2

S

C

r
4, 6

r 6, 5

Figure 16.10: A 3-choice centipede game

the probability of player 1[2] to stop at his i-th opportunity, once this opportunity is

reached (i = 1, . . . , T ). Thus, our computations are in behavioral, rather than in mixed

strategies. We show that the unique BRM equilibrium satisfies for each number T ∈ IN

of choices and each k ∈ {0, . . . , T − 1}:

pT−k = qT−k =
2

k + 3
. (16.4)
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In particular, if the number of choices T approaches infinity, the probability for each

player to stop at the first (and by the same argument at any finite) opportunity, converges

to zero. Osborne and Rubinstein (1998), who obtain a similar result, conclude that their

equilibrium notion makes sense only if both players fail to understand the structure of the

game. In our equilibrium notion, the equilibrium conditions form an almost immediate

translation of the structure of the game, where it is a unique best reply to stop exactly

one period ahead of your opponent’s intent to do so. Still, we find a potential resolution of

the paradox posed by the centipede game: The players play the unique Nash equilibrium

of stopping immediately with positive probability, but the solution in (16.4) indicates

that there is a strong urge to continue playing, thus providing the possibility to achieve

more preferable outcomes.

The solution in (16.4) also indicates that players continue with positive probability

at every node, but the probability to stop increases as players reach further nodes in

the game. This feature is mentioned as the most obvious and consistent pattern in the

experimental study of McKelvey and Palfrey (1992), who remark that ‘any model to

explain the data should capture this basic feature’ (McKelvey and Palfrey, 1992, p.809).

Thus, while no standard game theoretic solution concept can predict this outcome, the

best-reply matching equilibrium concept does a good job. Moreover, the surprising result

that a player continues with positive probability at his final node, even though this action

is strictly dominated by stopping at that node, is observed in the experimental sessions

of McKelvey and Palfrey as well.

We now show that (16.4) holds. The description of the T -choice centipede game in

terms of best replies (emphasized above) immediately gives rise to the following equilib-

rium conditions for player 1:

p1 = q1 (I.1)

(1− p1)p2 = (1− q1)q2 (I.2)

· · ·
(1− p1)(1− p2) · · · (1− pT−1)pT = (1− q1)(1− q2) · · · (1− qT−1)qT , (I.T)

and for player 2:

q1 =
p1

T + 1
+ (1− p1)p2 (II.1)

(1− q1)q2 =
p1

T + 1
+ (1− p1)(1− p2)p3 (II.2)

· · ·
(1− q1)(1− q2) · · · (1− qT−2)qT−1 =

p1

T + 1
+(1− p1)(1− p2) · · · (1− pT−1)pT (II.T− 1)

(1− q1)(1− q2) · · · (1− qT−1)qT =
p1

T + 1
+ (1− p1)(1− p2) · · · (1− pT ). (II.T)

The conditions that arise from always continuing are redundant (see Remark 16.4).
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We prove first of all, that in the T -choice centipede game we have for each i =

1, . . . , T − 1:

pi = qi, pi /∈ {0, 1}. (16.5)

We know from condition (I.1) that p1 = q1. Suppose p1 = 1. Substitution in (II.1)

yields 1 = 1
T+1

, a contradiction. Suppose p1 = 0. Then p2 = q2 by (I.2) and p2 = 0 by

(II.1). Hence p3 = q3 by (I.3) and p3 = 0 by (II.2). Proceeding in this fashion yields that

pk = qk = 0 for all k = 1, . . . , T , which contradicts (II.T). Hence p1 = q1, p1 /∈ {0, 1}.
Now assume that we have shown for some k ∈ {1, . . . , T − 2}:

∀n <
= k : pn = qn, pn /∈ {0, 1}.

We proceed to show that the same holds for k + 1. First of all, we have from (I.k+1)

that pk+1 = qk+1. Consider condition (II.k+1):

(1− q1)(1− q2) · · · (1− qk)qk+1 =
p1

T + 1
+ (1− p1)(1− p2) · · · (1− pk+1)pk+2︸ ︷︷ ︸

≥0

.

If qk+1 = 0, then its left hand side equals zero, which would imply that p1
<
= 0, whereas

we know from the above that p1 > 0. If pk+1 = qk+1 = 1, condition (II.k+2) reduces to

0 =
p1

T + 1
,

a contradiction. This finishes the proof of (16.5). This part was necessary to avoid

division by zero in the following solution of the game.

Substitute the left-hand side of player 1’s conditions in the left-hand side of player

2’s conditions. This yields

p1 =
p1

T + 1
+ (1− p1)p2

(1− p1)p2 =
p1

T + 1
+ (1− p1)(1− p2)p3

· · ·
(1− p1)(1− p2) · · · (1− pT−2)pT−1 =

p1

T + 1
+ (1− p1)(1− p2) · · · (1− pT−1)pT

(1− p1)(1− p2) · · · (1− pT−1)pT =
p1

T + 1
+ (1− p1)(1− p2) · · · (1− pT )

The first equation is equivalent to

T

T + 1
p1 = (1− p1)p2.

Using this equality to replace the left-hand side of the second equation leads to

T

T + 1
p1 =

p1

T + 1
+ (1− p1)(1− p2)p3,
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which is equivalent to
T − 1

T + 1
p1 = (1− p1)(1− p2)p3.

Use this equation, again, to replace the left-hand side of the third equation. This leads

to
T − 2

T + 1
p1 = (1− p1)(1− p2)(1− p3)p4.

Continuing in this way, we get the following equivalent system of T equations:

T

T + 1
p1 = (1− p1)p2

T − 1

T + 1
p1 = (1− p1)(1− p2)p3

· · ·
2

T + 1
p1 = (1− p1)(1− p2) · · · (1− pT−1)pT

1

T + 1
p1 = (1− p1)(1− p2) · · · (1− pT−1)(1− pT ).

The final step is to roll it up backwards again. Add the last and the second to last

equation to get
3

T + 1
p1 = (1− p1)(1− p2) · · · (1− pT−1). (16.6)

In combination with the second to last equation and (16.5), which assures that we do

not divide by zero, this immediately leads to

pT =
2

3
.

Now start with equation (16.6) and first, add the third to last equation, and second,

divide in a similar way. This yields first,

6

T + 1
p1 = (1− p1)(1− p2) · · · (1− pT−2), (16.7)

and second,

pT−1 =
3

6
=

1

2
.

Now do this again with equation (16.7) in combination with the fourth to last equation

and get
10

T + 1
p1 = (1− p1)(1− p2) · · · (1− pT−3),

and so

pT−2 =
4

10
=

2

5
.

This procedure stops when reaching the first equation, thereby generating the following

sequence of probabilities:
2

3
,
1

2
,
2

5
,
1

3
,
2

7
,
1

4
, · · ·
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It is easy to see that

∀T ∈ IN, ∀k ∈ {0, . . . , T − 1} : pT−k = qT−k =
2

k + 3
.

/

16.8 Conclusion

Empirical evidence shows that matching behavior occurs in many decision theoretic

situations with uncertainty. See, e.g., Davison and McCarthy (1988), Williams (1988),

and Herrnstein (1997). In decision theoretic situations the uncertainty is caused by

‘nature’. In a game theoretic framework players face uncertainty from a different source:

the strategic behavior of their opponents.

A common explanation of matching behavior says that people do not believe that

the mechanism, which produces the uncertainty, is genuinely random and therefore they

may try to decipher the pattern. This explanation is particularly convincing in an

interactive situation, where players are confronted with other players rather than nature.

Consequently, matching behavior may play an even more important role in games. In

this chapter we have analyzed an equilibrium concept for boundedly rational players

which deals with matching behavior in interactive situations.

A main issue for future work would be to gather empirical evidence to determine the

extent to which matching behavior actually occurs in strategic games. Another direction

for future research is to make the concept applicable directly to games in extensive form,

without seeking recourse to the reduced normal-form game, as was done in Section 16.7.

Finally, in a slightly different set-up, assuming the existence of payoff functions, it is

of interest to investigate if best-reply matching equilibria can be extended to a cardinal

equilibrium concept that takes payoff differences into account.



Chapter 17

Random Games

17.1 Introduction

A common feature of interactive decisions with multiple criteria is that they are based

on an aggregate of conflicts: conflicts between the players, but also between the criteria

a specific player takes into account, i.e., the relevant characteristics by which a decision

maker evaluates his strategic possibilities. This final chapter looks at an aggregate of

games that arises through the uncertainty of players about the game being played.

Noncooperative games in which players have incomplete information about the char-

acteristics of the participating players are commonly modelled using the Bayesian games

of Harsanyi (1967-1968). The private information players have about the uncertainties

is captured by possible different types of each player. A prior random move by nature is

assumed to select each player’s type. Underlying assumptions are that at least the num-

ber of players is commonly known — even though there may be uncertainty about their

characteristics (types) — and that the action space of a player is the same, irrespective

of the state of nature.

Although useful for modelling many practical conflict situations with incomplete

information, there are interactive real-life situations in which players have to decide on

their course of action before the exact number of players and/or their action spaces are

known. Consider the following examples:

1. Suppose several animal species share a common area like a forrest. On a given day,

it is not clear which animals and how many of them will be out in the field and for

what purpose (moving to a different shelter, foraging/hunting, mating).

2. Each commuter going from home to work in the morning is uncertain about the

number of other people participating in traffic and about their opportunities to

travel to work, due to possible unannounced strikes in public transportation, sud-

denly defective cars, and road blocks caused by accidents.

3. The (partial) deregulation of markets causes uncertainty among incumbent firms
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about the identity and number of potential market entrants. Moreover, although

the market has been opened for other firms, there will typically still be some

government interference. Firms will not be certain about the specific form this

interference will take.

4. A generation of students has to choose an education, thus selecting certain career

opportunities and ruling out others. None of the students knows in advance what

the labor market at the moment of their graduation will look like: which type of

jobs will be available and with whom they will compete for jobs.

5. A coach has to prepare a sports team for its next match. He has to decide on

matters like training for defensive and offensive tactics, surprise maneuvers, and

which players to employ in the match. Moreover, he has to do this before knowing

the line-up of the opposing team and whether or not players in his team with

special skills that are of crucial importance to specific types of play will be without

injury at the time of the match.

This chapter introduces a model of ‘random games’ in which the actual game being played

— its player set, the action sets of the involved players, as well as their preferences — is

determined by a stochastic state of nature. It is assumed that all potential players have

beliefs about these states of nature.

After introducing some notation and preliminary results in Section 17.2, the formal

definition of random games is given in Section 17.3. Play of a random game proceeds as

follows: a state of nature is realized and all potential players, unaware of this state of

nature and consequently of the exact strategic game that corresponds with this state of

nature, simultaneously and independently choose an action. The actual players that are

selected to play the game that corresponds with the realized state of nature implement

their action choices. In case of infeasible action choices, the game ends in an outcome that

is not explicitly modelled. The random game and all these rules are common knowledge

among the potential players.

Many problems in economics and operations research involve a planning stage, where

decision makers have to plan their behavior under the uncertainty whether unforeseen

contingencies will make their choices impossible to implement. This is the main feature

that random games are meant to capture: players know they may be involved in the game

corresponding to the stochastic state of nature and will have to take a single action in

this randomly selected game. What, then, is the appeal at the planning stage of such

profiles of single actions?

The potential players have no additional information on which to condition their

action choice. Still, a certain profile of actions x may be better than another profile

y in the sense that the probability that a state of nature arises in which x (restricted

to the appropriate set of selected players) yields a Nash equilibrium is larger than the

probability that a state of nature arises in which y yields equilibrium play. This leads
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us in Section 17.4 to define maximum likelihood equilibria, action profiles x which are

such that the probability of ending up in a state where x restricted to the set of selected

players yields a Nash equilibrium, is maximal. For this equilibrium concept an existence

result is provided.

Borm, Cao, and Garćıa-Jurado (1995) consider a special class of Bayesian games,

where the private information of the players is always the same, irrespective of the state

of nature; equivalently, this can be seen as an incomplete information game in which

the players have no private information. Instead of searching for its Bayesian equilibria,

they introduce maximum likelihood equilibria in a similar vein to this chapter. Two

significant differences are, firstly, that in the paper of Borm et al. (1995) there was

no apparent need to introduce a new equilibrium concept, since they study a class of

Bayesian games, whereas in the random games introduced in the present chapter it was

motivated by players seeking to avoid possibly infeasible action choices, and, secondly,

that the games of Borm et al. (1995) form only a small subclass of the random games

in this chapter: they keep both the set of selected players and their action sets fixed.

17.2 Preliminaries

For clarity and easy reference, this section contains definitions of some standard notions

which are used in the remainder of the chapter and lists some preliminary results.

Let A be a nonempty set. A preference relation on A is a complete, reflexive, and

transitive binary relation º on A. If a º b and not b º a, write a Â b. We write a ¹ b

if b º a. Assuming a given topology on A, a preference relation º is continuous if the

existence of two sequences (ak)∞k=1 and (bk)∞k=1 in A with limk→∞ ak = a, limk→∞ bk = b,

and ak º bk for all k ∈ IN implies a º b.

A strategic game is a tuple 〈N, (Ai)i∈N , (ºi)i∈N〉, where

• N is a finite set of players;

• each player i ∈ N has a set Ai of actions;

• each player i ∈ N has a preference relation ºi over the set ×j∈NAj of action

profiles.

Let a = (aj)j∈N ∈ ×j∈NAj be a profile of actions, i ∈ N , bi ∈ Ai, and S ⊆ N . We

sometimes write:

• a−i = (aj)j∈N\{i} to indicate the action profile of i’s opponents;

• (bi, a−i) to indicate the strategy profile in which player i chooses action bi and his

opponents j ∈ N \ {i} action aj;

• a|S = (aj)j∈S to indicate the action profile a restricted to the players in S.
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An action profile a = (aj)j∈N ∈ ×j∈NAj is a Nash equilibrium of the strategic game

〈N, (Ai)i∈N , (ºi)i∈N〉 if

∀i ∈ N, ∀bi ∈ Ai : a ºi (bi, a−i),

i.e., if no player can achieve a better outcome by unilateral deviation.

Recall that IN = {1, 2, 3, . . .} denotes the set of positive integers, IN0 = IN ∪ {0}
denotes the set of nonnegative integers. For a set A, 2A = {B | B ⊆ A} denotes the

collection of all subsets of A, A denotes the closure of A, and Ac denotes the complement

of A.

A set A contained in a finite dimensional Euclidean space, say A ⊆ IRn, is separable

if it contains a countable subset C such that C = A. In this case, it is said that A is

separable through C. Notice that a separable set is closed. For instance, IR is separable

through Q, but IR \Q is not separable.

Lemma 17.1 Let 〈N, (Ai)i∈N , (ºi)i∈N〉 be a strategic game. Assume that for each i ∈
N : ºi is continuous and Ai ⊆ IRn(i) is separable through Ci. Then:

(a) The set of Nash equilibria is closed.

(b) For each i ∈ N, a−i ∈ ×j∈N\{i}Aj, and ai ∈ Ai:

∀bi ∈ Ai : (bi, a−i) ¹i (ai, a−i) ⇔ ∀bi ∈ Ci : (bi, a−i) ¹i (ai, a−i)

Proof.

(a) If the set of Nash equilibria is empty, it is closed by definition. If Nash equilibria

exist, let (ak)∞k=1 be a sequence of Nash equilibria converging to a strategy combination

a ∈ ×i∈NAi. Then a has to be a Nash equilibrium: Let i ∈ N and bi ∈ Ai. For each

k ∈ IN, ak is a Nash equilibrium, so ak ºi (bi, a
k
−i). By continuity of ºi: a ºi (bi, a−i).

(b) (⇒) Trivial, since Ci ⊆ Ai.

(b) (⇐) Assume (bi, a−i) ¹i (ai, a−i) for all bi ∈ Ci. Let bi ∈ Ai. Since Ci = Ai, there

is a sequence (bk
i )
∞
k=1 in Ci converging to bi. This is a sequence in the set {ci ∈ Ai |

(ci, a−i) ¹i (ai, a−i)}, which is closed by continuity of ¹i. Hence its limit bi is in this set:

(bi, a−i) ¹i (ai, a−i). 2

17.3 Random games

In this section, random games are formally introduced. In a random game, the actual

strategic game that is played — its player set, the action sets of the involved players, as

well as their preferences — is determined by a stochastic state of nature; the potential

players are assumed to have common beliefs about these states of nature.
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Formally, in a random game a stochastic variable taking values in a nonempty set

Ω of ‘states of nature’ determines the actual game that is played. In a given play of

the random game, a certain state of nature ω ∈ Ω is realized. This state determines a

strategic game, i.e., a set of players, a set of actions available to each of the players, and

the preferences of the players over the action profiles. Let us discuss each of these in

turn.

A finite, nonempty set U specifies the potential players. The players in U have

common beliefs over the states of nature, described by a probability space (Ω, Σ, p),

where Σ is a σ-algebra on Ω and p is a probability measure w.r.t. this σ-algebra. A

function N : Ω → 2U determines the set of players. If ω ∈ Ω is the state of nature, the

set of players that is selected to play the game is N(ω) ⊆ U .

A nonempty set A specifies the potential actions. If ω ∈ Ω is the state of nature,

each selected player i ∈ N(ω) has a set Ai(ω) ⊆ A of actions.

Given state ω, each player i ∈ N(ω) has preferences over the set of action profiles

×j∈N(ω)Aj(ω). But player i ∈ N(ω) has no precise information about the exact state

of the world. To incorporate preferences over such uncertain situations, it is assumed

that each player i ∈ U has preferences over lotteries (probability distributions) on the

outcomes and states in which he is selected to play. Formally, let i ∈ U and let Ω(i) ⊆ Ω

denote the set of states in which player i participates in the game:

∀i ∈ U : Ω(i) := {ω ∈ Ω | i ∈ N(ω)}.

Then each player i ∈ U is characterized by a continuous preference relation ºi over

lotteries on
⋃

ω∈Ω(i)

((
×j∈N(ω)Aj(ω)

)
× {ω}

)
. If ω ∈ Ω is the state of nature, then the

preference relation ºi,ω of player i ∈ N(ω) over the action space ×j∈N(ω)Aj(ω) is just

his preference relation ºi restricted to the set (×j∈N(ω)Aj(ω))× {ω}:

∀ω ∈ Ω,∀a, b ∈ ×j∈N(ω)Aj(ω) : a ºi,ω b ⇔ (a, ω) ºi (b, ω).

The function that maps each state of nature ω ∈ Ω to its associated strategic game, is

called G:

G : ω 7→ 〈N(ω), (Ai(ω))i∈N(ω), (ºi,ω)i∈N(ω)〉.

The above is summarized in the following definition.

Definition 17.2 A random game consists of

• a nonempty set Ω of states;

• a probability space (Ω, Σ, p), where Σ is a σ-algebra on Ω and p a probability

measure w.r.t. this σ-algebra, specifying the beliefs of the players over the states

of nature;

• a nonempty, finite set U of potential players;
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• a nonempty set A of potential actions;

• for each player i ∈ U a continuous preference relation ºi over lotteries on

⋃

ω∈Ω(i)

((
×j∈N(ω)Aj(ω)

)
× {ω}

)

• a function G on Ω which maps each state ω ∈ Ω to a game

〈N(ω), (Aj(ω))j∈N(ω), (ºj,ω)j∈N(ω)〉,

where N(ω) ⊆ U is nonempty, and for each i ∈ N(ω) the set Ai(ω) ⊆ A is

nonempty and ºi,ω equals ºi restricted to (×j∈N(ω)Aj(ω))× {ω}:

∀a, b ∈ ×j∈N(ω)Aj(ω) : a ºi,ω b ⇔ (a, ω) ºi (b, ω).

A random game is denoted Γ = 〈Ω, Σ, p, U,A, (ºj)j∈U , G〉. /

Play of a random game Γ = 〈Ω, Σ, p, U,A, (ºj)j∈U , G〉 proceeds as follows: a state of

nature ω ∈ Ω is realized and all players i ∈ U , unaware of this state of nature, simul-

taneously and independently choose an action from A. The players in N(ω) implement

their action choices in the game G(ω). In case of infeasible action choices, the game ends

in an outcome that is not explicitly modelled. The random game and all these rules are

common knowledge.

We make the additional assumption that the set U of potential players contains no

superfluous players. This is an innocent assumption: players that are not involved in

any of the games (G(ω))ω∈Ω are not taken into account. Formally this means that

∀i ∈ U : Ω(i) = {ω ∈ Ω | i ∈ N(ω)} 6= ∅,

or equivalently:

Assumption 1 U = ∪ω∈ΩN(ω).

Secondly, we assume that there are only finitely many action sets that a potential player

can be offered. Formally, let i ∈ U and let

A(i) := {Ai(ω) | ω ∈ Ω}

denote the collection of action sets player i can be offered.

Assumption 2 For each i ∈ U the set A(i) is finite.
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17.4 Maximum likelihood equilibria

Although the random game and its rules of play are assumed to be common knowledge,

no additional information is provided to the potential players. In particular, they are not

informed about their action sets. This captures a common problem in decision making,

namely the situation in which players or decision makers have to plan their course of

action while still uncertain about contingencies that may make their choices impossible

to implement.

Without being informed about actual action sets, potential players cannot condition

their strategic choices on such information. Therefore, a strategy simply selects an action.

Definition 17.3 Let Γ = 〈Ω, Σ, p, U,A, (ºj)j∈U , G〉 be a random game. A strategy of

player i ∈ U is an element ai ∈ A. /

This definition of a strategy is in line with the intuition: players know they may be

involved in the game corresponding to the stochastic state of nature and in that case

will have to take a single action in this randomly selected game. In their planning stage,

players will ask themselves how to evaluate profiles of such single actions. Not every

action of a given player is feasible in each of the games in which he is selected to play.

It is therefore natural to consider strategy profiles which are more likely than others to

yield equilibrium play in the random game. Maximum likelihood equilibria are the topic

of this section.

Informally, a maximum likelihood equilibrium of a random game is a strategy profile

a = (aj)j∈U ∈ ×j∈UA that maximizes the probability that a state of nature occurs in

which profile a, restricted to the set of players selected to play the game, is a Nash

equilibrium: it is a strategy profile that is most likely to yield equilibrium play.

Definition 17.4 Let Γ = 〈Ω, Σ, p, U,A, (ºj)j∈U , G〉 be a random game and a = (aj)j∈U ∈
×j∈UA a strategy profile. The Nash equilibrium indicator of a is the function NIa : Ω →
{0, 1} with

NIa(ω) =

{
1 if a|N(ω) is a Nash equilibrium of G(ω),

0 otherwise.

(Recall that a|N(ω) is the strategy profile a restricted to the players in N(ω).) /

Notice that a strategy profile a ∈ ×j∈UA may fail to be a Nash equilibrium of G(ω) for

two reasons:

1. a|N(ω) is feasible in G(ω), but there is a player i ∈ N(ω) with a profitable deviation,

2. one of the players i ∈ N(ω) plays an infeasible strategy: ai /∈ Ai(ω).

Let a ∈ ×j∈UA be a strategy profile. An event of interest is {ω ∈ Ω | NIa(ω) = 1},
the set of states in which the strategy profile a yields a Nash equilibrium. To make sure
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that this is a measurable set, i.e., an element of the σ-algebra Σ, we make some further

assumptions.

We assume that A contains no redundant elements. Just like Assumption 1, this

entails no loss of generality.

Assumption 3 A = ∪j∈U ∪Aj∈A(j) Aj.

Each possible action set is required to be separable. This is formulated in a slightly

different, yet equivalent way.

Assumption 4 A ⊆ IRn is separable through C ⊆ A and for each i ∈ U and each

Ai ∈ A(i): Ai is separable through Ai ∩ C.

Proposition 17.5 Under Assumptions 2 and 3, Assumption 4 is equivalent with the

following statement:

For each i ∈ U and each Ai ∈ A(i) : Ai is separable. (17.1)

Proof. Assumption 4 implies (17.1). To see that (17.1) implies assumption 4, recall

that each A(i) is finite by Assumption 2. Write A(i) = {Ai1, Ai2, . . . , Aim(i)}, where

m(i) ∈ IN is the number of elements of A(i). Assume that Aik is separable through

Cik ⊆ Aik. Then ∪i∈U ∪m(i)
k=1 Cik is a finite union of countable sets, so countable, a subset

of A, and

∪i∈U ∪m(i)
k=1 Cik = ∪i∈U ∪m(i)

k=1 Cik = ∪i∈U ∪m(i)
k=1 Aik = A,

finishing the proof. 2

The fifth assumption concerns the measurability of the functions N , (Ai)i∈U , and (ºi)i∈U .

Assumption 5 The following measurability conditions hold:

(a; on N) ∀S ⊆ U : {ω ∈ Ω | N(ω) = S} ∈ Σ.

(b; on Ai) ∀i ∈ U,∀bi ∈ A : {ω ∈ Ω | i ∈ N(ω), bi ∈ Ai(ω)} ∈ Σ.

(c; on ºi) ∀i ∈ U,∀bi ∈ A,∀a ∈ ×j∈UA :

{ω ∈ Ω | a|N(ω) ∈ ×j∈N(ω)Aj(ω), i ∈ N(ω), bi ∈ Ai(ω), a|N(ω) ºi,ω (bi, a−i)|N(ω)} ∈ Σ.

Lemma 17.6 Let i ∈ U, bi ∈ A, a ∈ ×j∈UA. Define three sets:

X(i) = {ω ∈ Ω | i /∈ N(ω)}
Y (i, bi) = {ω ∈ Ω | i ∈ N(ω), bi /∈ Ai(ω)}

Z(i, bi, a) =

{ω ∈ Ω | a|N(ω) ∈ ×j∈N(ω)Aj(ω), i ∈ N(ω), bi ∈ Ai(ω), a|N(ω) ºi,ω (bi, a−i)|N(ω)}
The following claims hold:



Maximum likelihood equilibria 225

(a) Assumption 5a is equivalent with the assumption that ∀i ∈ U : {ω ∈ Ω | i ∈ N(ω)} ∈
Σ. Therefore X(i) ∈ Σ.

(b) Y (i, bi) ∈ Σ.

(c) Z(i, bi, a) ∈ Σ.

Proof.

(a) Let i ∈ U . To see that assumption 5a implies {ω ∈ Ω | i ∈ N(ω)} ∈ Σ, rewrite

{ω ∈ Ω | i ∈ N(ω)} = ∪S⊆U :i∈S{ω ∈ Ω | N(ω) = S}.

This is a finite union of measurable sets, hence measurable. To see the converse,

let S ⊆ U and write

{ω ∈ Ω | N(ω) = S} = [∩i∈S{ω ∈ Ω | i ∈ N(ω)}] ⋂
[∩i∈U\S{ω ∈ Ω | i /∈ N(ω)}].

This is a finite intersection of measurable sets, hence measurable.

That X(i) ∈ Σ follows from the first part of the proof.

(b) Write

Y (i, bi) = [{ω ∈ Ω | i /∈ N(ω)} ∪ {ω ∈ Ω | i ∈ N(ω), bi ∈ Ai(ω)}]c.

As the complement of the finite union of measurable sets, this is a measurable set.

(c) This is simply Assumption 5c. 2

Proposition 17.7 Let Γ = 〈Ω, Σ, p, U,A, (ºj)j∈U , G〉 be a random game that satisfies

Assumptions 1, 2, 3, 4, and 5. Let a ∈ ×j∈UA be a strategy profile. Then the set

{ω ∈ Ω | NIa(ω) = 1} is an element of the σ-algebra Σ.

Proof. Define the sets X(i), Y (i, bi), and Z(i, bi, a) as in Lemma 17.6 and let C be as

in Assumption 4. Then

{ω ∈ Ω | NIa(ω) = 1} =

{ω ∈ Ω | a|N(ω) ∈ ×j∈N(ω)Aj(ω) and

∀i ∈ N(ω),∀bi ∈ Ai(ω) : a|N(ω) ºi,ω (bi, a−i)|N(ω)} =

{ω ∈ Ω | a|N(ω) ∈ ×j∈N(ω)Aj(ω) and

∀i ∈ N(ω),∀bi ∈ Ai(ω) ∩ C : a|N(ω) ºi,ω (bi, a−i)|N(ω)} = (17.2)

∩i∈U ∩bi∈C [X(i) ∪ Y (i, bi) ∪ Z(i, bi, a)] . (17.3)
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The first equality follows from the definition of a Nash equilibrium, the second equality

follows from Assumption 4 and Lemma 17.1. Remains to show the third equality.

Let ω be in the set in (17.2), i ∈ U , and bi ∈ C. There are three possibilities:

1. If i /∈ N(ω), then ω ∈ X(i);

2. If i ∈ N(ω) and bi /∈ Ai(ω), then ω ∈ Y (i, bi);

3. If i ∈ N(ω) and bi ∈ Ai(ω), then a|N(ω) ∈ ×j∈N(ω)Aj(ω) and a|N(ω) ºi,ω (bi, a−i)|N(ω)

by assumption, so ω ∈ Z(i, bi, a).

Hence ω ∈ X(i) ∪ Y (i, bi) ∪ Z(i, bi, a). Since i ∈ U and bi ∈ C were taken arbitrarily,

this proves that the set in (17.2) is contained in the set in (17.3).

Now let ω ∈ ∩i∈U ∩bi∈C [X(i) ∪ Y (i, bi) ∪ Z(i, bi, a)], i ∈ N(ω), and bi ∈ Ai(ω) ∩ C.

Since ω ∈ X(i)∪Y (i, bi)∪Z(i, bi, a) and ω /∈ X(i)∪Y (i, bi), it follows that ω ∈ Z(i, bi, a),

which implies that a|N(ω) ∈ ×j∈N(ω)Aj(ω) and a|N(ω) ºi,ω (bi, a−i)|N(ω). Since i ∈ N(ω),

and bi ∈ Ai(ω) ∩C were taken arbitrarily, this proves that the set in (17.3) is contained

in the set in (17.2). This establishes the third equality.

Since each of the three sets X(i), Y (i, bi), and Z(i, bi, a) is measurable by Lemma

17.6, their union is measurable. Since U is finite and C is countable, the set in (17.3) is

a countable intersection of measurable sets and hence measurable. 2

Definition 17.8 Let Γ = 〈Ω, Σ, p, U,A, (ºj)j∈U , G〉 be a random game that satisfies

assumptions 1, 2, 3, 4, and 5. Define the likelihood function L : ×j∈UA → [0, 1] by

L(a) = p({ω ∈ Ω | NIa(ω) = 1}). A strategy profile a ∈ ×j∈UA is a maximum likelihood

equilibrium of the random game if it maximizes L:

∀b ∈ ×j∈UA : L(a) >
= L(b).

The set of maximum likelihood equilibria of Γ is denoted MLE(Γ). /

Proposition 17.7 shows that the function L is well-defined.

Proposition 17.9 Let Γ = 〈Ω, Σ, p, U,A, (ºj)j∈U , G〉 be a random game that satisfies

assumptions 1, 2, 3, 4, and 5. Let (an)∞n=1 be a sequence in ×j∈UA with limit a0 ∈ ×j∈UA.

If the sequence (L(an))∞n=1 converges, then L(a0) >
= limn→∞ L(an).

Proof. Define for each n ∈ IN0:

Bn := {ω ∈ Ω | NIan(ω) = 0}.

The complement of Bn is {ω ∈ Ω | NIan(ω) = 1} and was shown to be measurable in

Proposition 17.7, so Bn is measurable.

If B0 = ∅, the statement in the proposition is trivial, since then L(a0) = p(Ω) =

1 >
= limn→∞ L(an). So take ω ∈ B0. By definition, a0 is not a Nash equilibrium of
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G(ω). The set of Nash equilibria of G(ω) is closed by Lemma 17.1. Hence, there exists

a neighborhood O of a0 such that

∀a ∈ O : NIa(ω) = 0. (17.4)

Convergence of (an)∞n=1 to a0 implies

∃k ∈ IN such that ∀n >
= k : an ∈ O. (17.5)

Combining (17.4) and (17.5):

∃k ∈ IN such that ∀n >
= k : NIan(ω) = 0.

Since ω ∈ B0 was arbitrary, it follows that

∀ω ∈ B0 ∃k(ω) ∈ IN such that ∀n >
= k(ω) : ω ∈ Bn.

This implies that

B0 ⊆ ∪∞k=1 ∩∞n=k Bn = lim inf
n→∞ Bn.

Hence

1− L(a0) = p(B0) <
= p(lim inf

n→∞ Bn) = lim inf
n→∞ p(Bn) = 1− lim

n→∞L(an),

so L(a0) >
= limn→∞ L(an). 2

This completes the preliminary work for the existence theorem of maximum likelihood

equilibria. One additional assumption is made.

Assumption 6 A is a compact set.

Theorem 17.10 Let Γ = 〈Ω, Σ, p, U,A, (ºj)j∈U , G〉 be a random game that satisfies

assumptions 1, 2, 3, 4, 5, and 6. Then Γ has a maximum likelihood equilibrium:

MLE(Γ) 6= ∅.

Proof. The strategy space ×j∈UA is compact in the product topology. The set {L(a) |
a ∈ ×j∈UA} is nonempty and bounded above by one, so it has a supremum M . Hence,

there is a sequence (an)∞n=1 in ×j∈UA with limn→∞ L(an) = M . By compactness of

×j∈UA, the sequence has a convergent subsequence (ank) with limit a0. From Proposition

17.9 it follows that

L(a0) >
= lim

k→∞
L(ank) = M

Then a0 is a maximum likelihood equilibrium of Γ. 2

A random game as in Theorem 17.10 satisfies assumptions 1 through 6. Let us have a

closer look at the assumptions and the role they play in the existence result for maximum

likelihood equilibria.
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As observed before, assumptions 1 and 3 are made without loss of generality: they

just get rid of unnecessary ingredients.

Assumptions 4 and 6, concerning separability and compactness of A are topological

conditions on the set of potential actions. Compactness is a standard assumption. Sep-

arability is only a weak condition. Typical examples of action sets that come to mind

are strategy simplices (probability distributions over finitely many pure strategies), an

interval [0,∞) of prices, or a subset of IN denoting possible quantities (for instance of

production). All these sets are separable, so Proposition 17.5 would imply separability

of A.

Assumption 2, concerning the finiteness of the sets A(i) was used in the proof of

Proposition 17.5.

Assumption 5 concerns the measurability of certain sets and was needed to guarantee

the measurability of the set of states on which a certain strategy profile yielded a Nash

equilibrium.

Remark 17.11 Random games were defined such that its players have a common prior

p. This prior was used to define a likelihood function L that measures for all players

simultaneously how likely it is, according to this prior, that a selected strategy profile

yields equilibrium play in the random game. Without imposing the restriction that the

players have a common prior, each player would have his own likelihood function, not

necessarily coinciding with that of the others. In such a case, there will typically not be

a strategy profile that simultaneously maximizes the likelihood function of all players,

thereby making it difficult to single out a desirable strategy profile. /

Borm et al. (1995) consider random games Γ = 〈Ω, Σ, p, U,A, (ºj)j∈U , G〉 that satisfy

the following structural assumptions:

• The player set is fixed: ∀ω ∈ Ω : N(ω) = U .

• The action sets are fixed: ∀i ∈ U ∃Ai ⊆ A ∀ω ∈ Ω : Ai(ω) = Ai.

This clearly implies that assumptions 1 and 2 are satisfied. Moreover, they require each

Ai to be separable and ×i∈UAi to be compact. Notice that this coincides with our

assumptions 3, 4, and 6. Assumptions 5a and 5b are automatically fulfilled. Borm et al.

(1995) also capture assumption 5c by requiring that for each i ∈ U , each a ∈ ×j∈UAj,

and each bi ∈ Ai the set {ω ∈ Ω | a ºi,ω (bi, a−i)} is measurable.
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Samenvatting

Speltheorie is een wiskundige theorie die methodes ontwikkelt en gebruikt voor het

bestuderen van de interactie tussen beslissers. Dit proefschrift behandelt een tweetal

onderwerpen uit de speltheorie. In het eerste deel wordt gekeken naar potentiaalspelen;

het tweede deel van het proefschrift handelt over multicriteriaspelen.

Potentiaalspelen zijn niet-coöperatieve spelen — spelen waarin de spelers onderling

geen bindende afspraken kunnen maken — waar de informatie over de strategische mo-

gelijkheden van alle betrokken spelers tegelijk kan worden samengevat in een enkele

reëelwaardige functie op de strategieënruimte van het spel. Deze strategische informatie

bestaat eruit hoe de uitbetaling van een speler verandert wanneer deze afwijkt van zijn

huidige strategie, hierbij de keuzes van de overige spelers constant veronderstellend. Een

hogere uitbetaling gaat gepaard met een hogere waarde van de potentiaalfunctie. Strate-

gieëncombinaties waar de potentiaalfunctie een maximum aanneemt, zijn evenwichten

van het spel: geen enkele speler kan door afwijken een hogere uitbetaling realiseren,

omdat dit gepaard zou gaan met een toename in de potentiaal, die echter bij aanname

maximaal is. Een belangrijke eigenschap van potentiaalspelen is dus, dat potentiaalspe-

len waarin er maar eindig veel zuivere strategieëncombinaties zijn, zuivere evenwichten

hebben: evenwichten waarin elke speler een eenvoudige zuivere strategie kan spelen en

niet zijn toevlucht hoeft te zoeken tot het gebruik van gerandomizeerde strategieën.

Er zijn diverse typen potentiaalspelen. Een belangrijke vraag is naar de structuur

van deze spelen: wat zijn noodzakelijke en voldoende voorwaarden voor het bestaan van

een bepaald type potentiaalfunctie? Dit onderwerp komt aan bod in hoofdstukken 2, 5,

7 en 9. De relatie tussen deze hoofdstukken is dat in alle gevallen een conditie op cykels

in de strategieënruimte van het spel van centraal belang is. De vorm van deze conditie

is misschien het best te begrijpen aan de hand van de litho Klimmen en dalen uit 1960

van Maurits C. Escher. In deze litho kunnen we een groep monniken op een trap volgen,

die bij iedere stap een traptrede omhoog gaan, maar desondanks na verloop van tijd

terugkeren naar een punt waar ze al eerder zijn geweest. Het uitsluiten van soortgelijke

‘stijgende cykels’ is nodig om het bestaan van een potentiaal in een niet-coöperatief spel

te garanderen.

In eindige potentiaalspelen leveren maxima van een potentiaalfunctie evenwichten

in zuivere strategieën. Zuivere evenwichten hoeven niet te bestaan in potentiaalspelen

waarin spelers oneindig veel strategieën hebben. Er kunnen evenwel situaties zijn waarin
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spelers een hoge uitbetaling krijgen, waarmee ze tevreden zijn, of door af te wijken van

hun keuze er maar in geringe mate op vooruit kunnen gaan. Het bestaan van zulke

bijna-evenwichten wordt bestudeerd in hoofdstuk 8, waar blijkt dat de aanwezigheid van

hooguit één speler met een oneindige verzameling zuivere strategieën voldoende is om

het bestaan van bijna-evenwichten te garanderen.

Toepassingen van potentiaalspelen komen aan bod in hoofdstukken 2, 3, 4 en 6. In

hoofdstukken 2 en 3 worden congestiemodellen bestudeerd, waar spelers gebruik maken

van verschillende faciliteiten en het nut dat ze aan dit gebruik ontlenen afhangt van

het aantal andere gebruikers. Hoofdstuk 4 bestudeert processen waarin produktie van

goederen in verschillende stappen plaatsvindt en de kosten van een produktie-afdeling

uitsluitend afhangen van de gekozen produktietechnieken van afdelingen die bij het pro-

duktieproces in voorgaande stappen of dezelfde stap betrokken zijn. Hoofdstuk 6 behan-

delt een methode voor het financieren van publieke goederen met de eigenschap dat spe-

lers, die individuele bijdragen leveren aan de financiering van de publieke goederen, door

het nastreven van hun eigen belang tegelijkertijd handelen in het belang van de sociale

welvaart, de welvaart van de gehele groep betrokkenen. Bovendien legt dit hoofdstuk

relaties tussen het niet-coöperatieve probleem en een coöperatief probleem, waar spelers

in samenwerking een bijdrage leveren aan door hen te financieren en te kiezen publieke

goederen.

Bij het nemen van beslissingen evalueert een beslisser situaties over het algemeen aan

de hand van verschillende criteria. Deze criteria kunnen moeilijk met elkaar te vergelij-

ken zijn en het kan voorkomen dat een situatie die aantrekkelijk is volgens één criterium

onaantrekkelijk is volgens een ander criterium. Het tweede deel van het proefschrift

handelt over de hiermee samenhangende multicriteriaspelen, waarin spelers meerdere

criteria tegelijkertijd hanteren. Een speler in een multicriteriaspel kan bijvoorbeeld wor-

den gezien als een organisatie met verschillende leden, ieder met een eigen doelfunctie.

Gegeven deze interpretatie van een speler als een organisatie ontstaat er een aggregatie

van conflicten, enerzijds tussen de verschillende organisaties, anderzijds binnen een or-

ganisatie, waar de leden gezamenlijk moeten beslissen over een strategieënkeuze. Dit is

een gemeenschappelijk kenmerk van alle spelen in het tweede deel van het proefschrift:

ze zijn gebaseerd op een opeenstapeling van conflicten.

Het evenwichtsconcept voor niet-coöperatieve spelen vereist dat spelers een beste

antwoord spelen op de strategieën van de tegenstanders. Als een speler één reëelwaardige

criteriumfunctie heeft, is een beste antwoord ondubbelzinnig gedefinieerd als een stra-

tegie die zodanig is dat een afwijking daarvan geen hoger nut kan opleveren. Maar

als een speler meerdere criteria tegelijkertijd hanteert, is het niet zo duidelijk wat een

beste antwoord is. Verschillende antwoorden op deze vraag leveren verschillende even-

wichtsconcepten op voor multicriteriaspelen. Dit onderwerp komt aan bod in hoofd-

stukken 11 en 13. In de Pareto-evenwichten in hoofdstuk 11 zijn beste antwoorden

gedefinieerd als strategieën die een Pareto-optimale uitbetaling leveren. In dit hoofd-

stuk worden eigenschappen van het Pareto-evenwicht beschreven en axiomatiseringen
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van het Pareto-evenwichtsconcept gegeven. Hoofdstuk 12 bestudeert de structuur van

de verzameling Pareto-evenwichten in twee-persoons multicriteriaspelen. Hoofdstuk 13

introduceert een drietal evenwichtsconcepten, waarbij aspecten aan bod komen uit de

multicriteria optimalisering, de niet-coöperatieve en de coöperatieve speltheorie. In een

compromis-evenwicht probeert elke speler een uitkomst te realiseren die zo dicht mogelijk

ligt bij een ideale uitkomst. Dit concept is nauw gerelateerd aan de compromiswaarden

uit de literatuur over multicriteria optimalisering. In Nash bargaining evenwichten, gere-

lateerd aan de speltheoretische literatuur over bargaining, proberen spelers juist een on-

derhandelingsoplossing te genereren die ver van een onaangename oplossing verwijderd

is. Perfecte evenwichten, gëınspireerd door de literatuur over evenwichtsverfijningen,

tenslotte, vormen een verfijning van het Pareto-evenwichtsconcept en houden rekening

met het feit dat spelers fouten kunnen maken bij het uitvoeren van hun keuzes.

Hoofdstuk 14 bekijkt Pareto-optimal security strategies in twee-persoons nulsomspe-

len met meerdere criteria. Pareto-optimal security strategies zijn ‘veilige’ strategieën in

de zin dat een speler voor elk van zijn strategieën nagaat wat het ergste is wat hem kan

overkomen in ieder van zijn criteria afzonderlijk. Zo kent een speler aan elke strategie

een ‘security vector’ toe die het worst-case scenario beschrijft als deze strategie wordt

gekozen. Een Pareto-optimal security strategy is een strategie waarvoor dit worst-case

scenario het minst onaangenaam is. Verschillende karakteriseringen van Pareto-optimal

security strategies worden gegeven. In het bijzonder wordt aangetoond dat ze samen-

vallen met minimax strategieën in een standaard twee-persoons matrixspel, waar elk van

de spelers maar één criterium heeft.

Coöperatieve multicriteriaspelen worden bestudeerd in hoofdstuk 15. Er wordt on-

derscheid gemaakt tussen ondeelbare, publieke criteria, die voor elke speler binnen een

coalitie dezelfde waarde aannemen, en deelbare, private criteria, waarvan de waarde over

de leden van een coalitie verdeeld kan worden. De nadruk wordt gelegd op een core con-

cept voor coöperatieve multicriteriaspelen, bestaande uit allocaties voor de afzonderlijke

spelers met de eigenschap dat geen enkele coalitie van spelers een incentive heeft om

de voorgestelde allocatie naast zich neer te leggen, omdat ze zelf geen betere uitkomst

kunnen garanderen. Dit concept wordt geaxiomatiseerd en additionele motivatie voor

het concept wordt gegeven door aan te tonen dat core elementen op natuurlijke wijze

samenvallen met sterke evenwichten in gerelateerde niet-coöperatieve claim spelen, waar

de spelers onafhankelijk een coalitie noemen die ze willen vormen en een uitbetaling die

ze willen.

Het feit dat een speler meerdere criteria hanteert bij het evalueren van uitkomsten,

impliceert dat hij vaak alleen een partiële ordening op de uitkomsten kan aanbrengen.

Een niet-coöperatief spel waarin elke speler een partiële ordening heeft over de strate-

gieënruimte wordt een ordinaal spel genoemd. Hoofdstuk 16 introduceert een nieuw

model voor beperkt rationeel gedrag in ordinale spelen. Het model benadrukt de rol

van beste antwoorden. Als een speler na afloop van het spel vaststelt dat hij geen

beste antwoord speelde op de keuzes van de tegenstanders, kan hij spijt hebben van het
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maken van een onjuiste keuze. De anticipatie van spijt kan het beslissingsproces en de

daaruit voortvloeiende keuze van een speler bëınvloeden. Hoofdstuk 16 stelt matching

voor als een mogelijke manier waarop deze invloed gestalte kan krijgen. Matching wordt

waargenomen in talloze experimenten over beslissen onder onzekerheid en komt er in

essentie op neer dat een alternatief wordt gekozen met een kans die proportioneel is aan

de waarde van dat alternatief. In ordinale spelen is best-reply matching gebaseerd op

twee elementen. Ten eerste, elke speler is uitsluitend gëınteresseerd in de beste-antwoord

structuur van het spel. Ten tweede, elke speler speelt een zuivere strategie met de kans

dat deze strategie een beste antwoord zal zijn. De kansen komen voort uit de beliefs van

een speler met betrekking tot het gedrag van zijn tegenstanders. Een evenwichtsconcept

op basis van best-reply matching wordt gedefinieerd en er wordt aangetoond dat elk

eindig ordinaal spel een best-reply matching evenwicht heeft. Enige eigenschappen van

het nieuwe evenwichtsconcept worden onderzocht en het concept wordt toegelicht aan

de hand van bekende voorbeelden. Een opvallend resultaat wordt gevonden in het Cen-

tipede spel. In het unieke best-reply matching evenwicht van dit spel zetten de spelers

het spel voort met positieve kans, waarbij deze kans groter is naarmate het spel langer

is.

In veel problemen in de economie en operations research moeten individuen hun

gedrag plannen onder de onzekerheid of bepaalde omstandigheden het implementeren

van hun keuze onmogelijk maken. Hoofdstuk 17 introduceert dit probleem in een spelthe-

oretische context door het formuleren van random games. Random games laten onze-

kerheid toe over alle ingrediënten van het spel: de verzameling spelers, de acties en de

voorkeuren van de betrokken spelers. Het voorgestelde evenwichtsconcept voor random

games, maximum likelihood evenwichten, selecteert die acties, die het meest waarschijn-

lijk zijn om in het uiteindelijk gespeelde spel een goede uitkomst op te leveren.


