
Configurable Adapters: The Substrate of Self-adaptive
Web Services

Willem-Jan van den Heuvel
Infolab, Tilburg University

P.O.Box 90153
5000 LE Tilburg, The Netherlands

+31 31 4663020

W.J.A.M.vandenHeuvel@uvt.nl

Hans Weigand
Infolab, Tilburg University

P.O.Box 90153
5000 LE Tilburg, The Netherlands

+31 31 4663020

H.Weigand@uvt.nl

Marcel Hiel
Infolab, Tilburg University

P.O.Box 90153
5000 LE Tilburg, The Netherlands

+31 31 4663020

M.Hiel@uvt.nl

ABSTRACT
With business processes changing constantly, it becomes of
crucial importance to equip web services with a series of
mechanisms so that they are progressively capable of adapting
themselves without any or with very limited human interference.
These changes in web service will often lead to interoperability
conflicts. To deal with these conflicts, this paper focuses on the
use of generic adapters. We show how a generic adapter can
solve a number of protocol mismatches, and how adapter
configuration can be turned into a feasible task.. For this
(re)configuration we look at the field of self-adaptive software.

Categories and Subject Descriptors
D.2.12 [Software Engineering]: Interoperability – Data
mapping, distributed objects.

General Terms
Design

Keywords
Web services, autonomic computing, adapters, process
mediation

1. INTRODUCTION
Web-services are rapidly becoming the de facto building blocks
of highly distributed business applications operating in widely
heterogeneous and possibly short-lived transaction contexts,
e.g., in the context of cross-organization business collaborations
[16].

By now, several (competing) specifications, standards and
technologies have been developed and marketed in academia
and industry, most notably, WSDL to define the interface of
web-services, BPEL that allows for orchestration and WS-CDL
that enables choreography (conversations between web-
services). In fact, these standards are part of a stack of
interrelated standards and specifications, which constitute the
elementary foundation on top of which individual services ad
service applications may be developed and evolved. Actually,
many companies are already engaged in SOA project(s),
however, mostly at the level of software development projects
realizing some local (e.g., departmental or project-related)
business processes, but not (yet) at the level large-scale,
enterprise-wide business processes [3].
Unfortunately, the enterprise applications that are developed
using existing standards and development processes are likely to
suffer from several serious shortcomings. Firstly, enterprise
applications that are developed by simply placing a simple
SOAP layer on top of legacy systems, or selecting and buying a
web-service from a (UDDI) repository, and then weaving (hence
composing or choreographing) them into a new application are
likely to have a fragile architecture and will presumably be hard
to adapt and modify to accommodate new or changed business
process requirements. Secondly, and related to the previous
point, human interaction is needed each time that a change
occurs. Since web-services are highly autonomous and loosely
coupled web-enabled components, it is very likely that many
changes will occur without any prior notification. It is implicitly
assumed in many approaches and commercially available tools
that human designers/programmers need to be involved each
time a change is required.
With the business processes changing constantly, it becomes of
crucial importance to equip web-services with a series of
mechanisms so that they are progressively capable of adapting
themselves, without any or with very limited human
interference. Unfortunately, existing techniques for software
maintenance cannot be directly used for this purpose because of
the following three reasons. Firstly, there exists a lack of control
from the perspective of the service consumer over the services
that are part of an aggregated web service, as the service
realizations remain under control of the service provider.
Secondly, as services are highly autonomous and loosely
coupled they may evolve independently from each other,
resulting in an increased level of complexity and volatility with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ICEC’07, August 19–22, 2007, Minneapolis, Minnesota, USA.
Copyright 2007 ACM 978-1-59593-700-1/07/0008...$5.00.

127

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6416483?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

which a maintainer has to deal. Thirdly, and lastly, while web-
services allow for an isomorphic realization of business
services, the evolution of business processes and enterprise
applications that are combined with web services can no longer
be studied in splendid isolation. Clearly, the evolution of
business process and web-services needs to be aligned so that
changes at the level of business processes perpetuate to the level
of web services, and vise versa.
This greatly increases the level of complexity of (evolving)
service-enabled enterprise applications, reinforcing the need for
automated support so system programmers can be freed from
plumbing and fixing of elementary system-level errors, and
focus on “business-level” change management: dynamic
reconfiguration on the basis of business concerns.
To ensure that programmers and maintainers can move focus on
the business level, issues such interoperability between web
services should be solved, so that web services can be easily
replaced by others. This idea of service discovery is one of the
main ideas behind SOA. However, in searching for a web
service the right service might not always be found and if an
adequate service is found it could present the output in the
wrong format or use a different interaction protocol. To solve
these interoperability issues, adapters are used.
In this paper, we work out the concept of the configurable
adapter. Although adapters have grown to an established
technology [18], the idea of configurable adapters is largely
unexplored. The research that we base our work on for
configurable adapters is that of self-adaptive software, or in our
case self-adaptive web services. Self-adaptive web-services are
able to reconfigure and re-plan themselves, relying on reflection
mechanisms that enable self-evaluation of structure, behavior
and goals.
The research questions addressed in this paper are:

- What is a self-adaptive architecture in the context of
web services?

- Is it possible to design an adapter that performs process
mediation in a generic way?

This paper is structured as follows. In section 2, we will outline
self-adaptive systems in a technology-independent way. Section
3 translates this framework to self-adaptive services. A
configurable adapter architecture for process mediation is
proposed in section 4. We conclude in section 5 with a short
discussion of related work, and directions for future research.

2. SELF-ADAPTIVE SYSTEMS
Self-adaptive systems evaluate their behavior using reflection
mechanisms, and modify themselves in case that their behavior
does not conform to predefined goals, or, when the system can
be optimized in terms of non-functional properties such as
performance, security and stability. We call that part of the
system that is modifiable the adaptable system. Following
standard control theory [14], the adapting part is called the
controller that changes the adaptable system by means of
effectors based on information it collects from sensors. We
assume that the information can come from the adaptable
system itself (monitoring) or from the environment, which may
include peer systems.

In the autonomic computing architecture [6;9] the decision
process carried out by the controller is represented by a control
loop, which consists of four functions: monitor, analyze, plan
and execute. In our conceptualization (Fig. 2), the monitoring is
based on performance indicators, such as response time or an
error raised. Analysis implies that the performance indicator is
compared to a given norm or threshold. The norms are related to
the goals of the system, which we assume to be fixed from the
perspective of the controller. The relationship between goal and
norm may be indirect. For example, the goal may be to adhere
to norms specified in service level agreements (SLA’s) with
peer systems. Then the SLA’s, together with their performance
norms, may evolve over time, while the goal of the system
remains the same.

Fig. 1. General architecture of a self-adaptive system

For reasons explained partly below, it is essential that the
controller is knowledge-based (cf. [7,4]). There are several ways
to realize that, but in our conceptualization, it means that the
controller maintains a list of scripts, where a script indicates
what to do (change plan) given a certain state, where a state is
measured using a performance indicator against some norm.
The task of the planner is to find the best matching script.
Finally, the change plan in the script is executed, which may be
done partly by means of the effectors on the adaptable system,
but also by influencing the environment directly, such as a
conversation with peers.
The performance of the system is monitored under a perpetual
testing strategy [13]. In case the configuration of the adaptable
system is not a one-shot event but rather a continuous effort to
find the optimal configuration for realizing the goals, we talk
about (first-order) self-adaptation. Determination of the
configuration can be a random explorative process in the
beginning, while gradually becoming more stable. To support
such an explorative process – that is, the behavior of the
controller is not fixed, but is able to learn – we extend the
control loop as defined above with a second loop [19]. This
second loop configures the controller on the basis of the fixed
goals: it monitors how well the controller is doing in realizing
the goals, and has the possibility to modify the controller
configuration: since the configuration of the controller is
exhaustively represented in the scripts, the task of the learning
process is to find the most successful scripts. This learning

128

process may be supported by imitation, which basically means
exchange of successful scripts between peers [8].

Fig. 2. Architecture of the controller

First-order self-adaptation, even when it includes a learning
loop, is bound to limitations, as the goals may become
infeasible. Hence it may become necessary to adapt the goals.
This requires a second-order adaptive system (double-loop
learning, [1]). Although this kind of adaptation is often
projected inside the adaptive system, thereby raising its
complexity, we model it as a combination of two systems, where
the higher system (manager) monitors the behavior of the lower
system (agent) and subsequently may adapt the goals of the
agent. The manager also has its own goals that it cannot change,
and is itself an agent of a higher-level system, ultimately the
human user.

Fig. 3 Architecture of self-adaptive society

The self-adaptive system perspective described so far is very
general and provides a good basis for developing self-adaptive
web services. However, web services, like agents and many
other information systems, are distributed in nature. Therefore
the system perspective should be supplemented with a global
system, or society view. For a society (Fig. 3) consisting of
multiple adaptive subsystems there are a few essential basic
rules:

(1) adaptation of the society is done typically by
rearrangement of the subsystems, or the replacement
of one subsystem by another one. In other words, the
most important object of adaptation is made up by the
subsystem interconnections;

(2) for the society it is not only important to
accommodate necessary adaptations, but also to avoid
unnecessary adaptations. Since subsystems may
change autonomously, it is important to have some
kind of buffers between subsystems to reduce the
effects of a certain change as much as possible. The
function of buffers is filled in by adapters in service-
oriented computing.

(3) For the society it is important to support the
dissemination of successful adaptations. Subsystems
can imitate one another. The society should
incorporate mechanisms to support this, such as a
shared language and shared repositories.

3. SELF-ADAPTIVE WEB SERVICES
Translating the general self-adaptation model to the area of web
services [16] leads to a distinction between a managed service
and a service manager. The managed service can be atomic or
composite and is controlled by the service manager through
standard management interfaces called touch points [9],
corresponding to the sensors and effectors above. Several
standards have been suggested to standardize the
communication between managed web services and controllers,
through management interfaces [15]. Notably, the Web Services
Distributed Management (WSDM) specification aims at
interoperability between managed services (defined using WS-
Resource and WS-ResourceSpecification) and service manager
focusing at two distinct, but related, aspects: Management of
Web Services (MOWS) and Management Using Web Services
(MUWS) [12]. While web-service management standards such
as WSDM do offer a vendor-neutral standard for management of
service resources, they are not specifically designed for
supporting self-adaptive web-services.

3.1 Interoperability Conflicts
The self-adaptive web service is able to deal with changes. Here
we specifically study changes that have impact on the
interoperability of the services. As services are usually
integrated to form an application is of importance that these
services remain compliant. Severe interoperability conflicts may
arise in case the interface of a web-service in the provided or
required environment is (unilaterally) altered. We have
distinguished three levels of conflicts, namely signature,
protocol and quality-related conflicts.

3.1.1.1 Signature-Level Conflicts
The following interoperability problems between provided and
required signatures may occur:

1. Input message mismatches
2. Output message mismatches
3. Operation mismatches
4. Network protocol mismatches

129

The first three types of interoperability conflicts pertain to the
logical part of a WSDL definition, the latter type to the physical
definition. These interoperability problems may occur regardless
of the granularity of a web-services: both in case of an atomic
and composite web-service these conflicts may arise, at least, if
only the provided context in which a web-service operates is
taken into consideration.

3.1.2 Protocol-Level Conflicts
Protocol-level interoperability conflicts occur in case at least
one invocation sequence of a required protocol of a web-service,
A, is not accommodated by the provided interface of another
(supplier) web-service, B, or vise versa [17].

This category of interoperability conflicts may happen in
various situations:

• Missing signatures: this situation occurs if the web-
service A tries to invoke a signature (port type), e.g.,
in the context of a business process, which is not
realized by web-service B.

• Superfluous port type invocations: the web-service A
in fact invokes port types of web-service B in the right
sequence, however, web-service B expected web-
service A to invoke more of its port types.

• Sequencing interoperability conflicts: at least in one
specific situation, the order in which web-service A
invokes the port types of web-service B is not correct.

• Synchronization interoperability conflicts: even in
case the required protocol of web-service, A, and the
provided protocol are equivalent, interoperability
conflicts may occur due to differences in timing
(joining and forking).

3.1.3 Quality-related Conflicts
Quality-related conflicts may arise in case that specific quality
of service related characteristics, which were advertised in the
interface of a web-service, A, are not realized, while these
characteristics were actually expected and required by a
consuming web-service, B.
In the context of component-based development, quality
conflicts have been studied at runtime or design-time (inspection
time). Availability, performance, reliability and usability are
well-known examples of runtime quality attributes, while
design-time quality is often captured concentrating on issues
like, conceptual integrity, portability, security and testability
[10]. For the purpose of web-services, we may extend and refine
this categorization to cater for key requirements stemming from
the SOA, including, payment models, billing models,
transaction models, and coordination models.
Taking into consideration the above quality-related aspects, we
have identified the following two quality related conflicts:

• Non-compatible quality dimensions: this may happen
in case a web-service expects a quality attribute to be
specified in a certain measurement, while a supplier
web-service has actually declared a quality attribute
using a non-compatible measurement.

• Dissimilar quality values: when assuming that A and
B adopt equivalent quality dimensions,

incompatibilities can arise if B's service
implementation simply does not deliver the quality A
necessitates.

Apart from interoperability conflicts, there is of course the
inherent tension between interests of the service provider and
the service client. The tension is usually resolved in an SLA or
WS-Policy agreement. The service provider should be able to
adjust the service level when the client requires so, and to
maintain an agreed upon service level by means of continuous
monitoring.

3.2 Adaptation strategies
If faced with a conflict then the web service needs to respond to
this. We distinguish two strategies of self-adaptation that could
be used in web services:
Internal adaptation. By definition, a web service is designed for
multiple usage contexts, and will consequently support internal
adaptation to some extent. When only the interface of the
managed service is changed, we talk about black box adaptation.
Black-box adaptation does not demand complete insight into
source-code of web-services. That does not mean that a black-
box adaptation mechanism does not touch or change the code of
a web-service; on the contrary, some black-box adaptation
techniques require some service code to be modified, e.g., to add
some gluing scripts. Changes to the internal workings of the
managed service are called white box adaptations, necessitating
a deep understanding of the code, its architecture and working.
Mediation. This strategy involves a mediator or adapter between
the service and the related service and is particularly effective in
case the service requester and provider are not equipped with
dynamic communicational capabilities, or service policies and
contracts cannot be renegotiated, e.g., since this would incur
high transaction costs. In this strategy, interoperability conflicts
are resolved using a service adapter, which allows mapping the
interfaces (signatures, protocols and QoS interfaces) of a service
requester to that of a service provider. Introducing an adapter
typically has a performance penalty, but an advantage is that the
autonomy of the services increases. If the adapter is under the
direct control of the service manager, the mediation strategy
could be regarded as a special case of internal adaptation, but as
this is not necessarily the case, we treat it separately.
Mediation as an adaptation strategy can be needed when setting
up a new collaboration with some service, or at run-time, when
a service in an existing configuration unilaterally changes its
interface. In the first case, the following tasks need to be
performed:

1. Discover a service that offers the functionality
required and whose provided interface matches
above some threshold value

2. Assess the nature of the mismatch between the
required service and the provided service

3. Select a generic adapter from the service
repository

4. Configure the generic adapter(s)
5. Deploy

In the second case, the first step can be omitted; the rest
of the process is the same.

130

4. GENERIC PROTOCOL ADAPTER
Services in the SOA framework are designed to be open and
possibly without knowledge at design time about the type and
number of clients that will access them. The possible
interactions that a web service can support are likewise specified
at design time, using what is called a business protocol or
conversation protocol [2]. In the following, we assume that not
only the service in question specifies a provided protocol, but
that also the clients specify a required protocol. The role of the
adapter is to align the two, so that neither the client nor the
service needs to be adapted.

A protocol consists two parts: M, a set of message
definitions (in-going and out-going), and C, a context
specification. For the message definitions, we simply use the
input and output definitions from the WSDL interface. The
context specification contains several parts:

• meta-information about the protocol such as a
reference to a standard on which the protocol is based;

• ordering constraints on the messages (m1 < m2) and

• context variables whose values can be used as
defaults. The meta-information may embed the
context in another published context, implying that the
variable settings are inherited (default inheritance) to
the present context.

The information space of a protocol is the set of information
units, where the information units are the message fields (from
the messages in M) prefixed with the name of the message and
the role (P for provided, R for required). For example, if the
message “quote_request” contains a field
 customer.address.zipcode
then
 R.quote_request.customer.address.zipcode
may be an element of the information space.
A protocol mapping defines a translation from one protocol to
another. Central to the protocol mapping is a mapping between
the provided and required information spaces. We propose to
define this mapping as a generalization of an XSLT/XQuery
mapping between messages, as this would allow the incorporate
the full current power of these techniques. As far as the mapping
between information units is concerned, we may use an
ontology-based approach, such as the WSMX Runtime Data
Mediator described in [5], but for the process mediation
described below any other mapping approach could be used
instead.
If the two protocols are the same, then the mapping is the
Identity function. The mapping specification consists of XQuery
statements between information units. If no mapping
specification is given for a certain information unit, the Identity
function is assumed. If an information unit in the required
message does not have a corresponding information unit in the
provided message, and no mapping specification is given, the
default value given in the context of the sender is taken as a
constant. If there is none, the default value given in the context
of the receiver is taken.

Example. Protocol P assumes an XML-based order_request
defined concisely as on the left below, whereas Protocol R
assumes a flat message given on the right.

P.Order_request
 R.Order_request

[Customer
 [Name

 Name
 Address

 Id
 Zipcode

Address
 Product_name

 Street
 Product_quantity]

 Number

 Zipcode

 Citycode

 Country

Product

 Id

 Number

Order_date]

The following mapping rules are supposed to map the data from
the information items required by client R to the ones provided
by service P. To keep the example concise, we omit the
prefixes.

Customer.Name Name

Customer.Id

XQuery_Transform(Name,Registry)

Address.street XQuery_Transform(Address)

Address.number XQuery_Transform(Address)

Address.zipcode Zipcode

Address.citycode

XQuery_Transform(Zipcode, Registry)

Address.country $COUNTRY

Product.id Product_name

Product.number Product_quantity

Order.date current_date()

The intended meaning is supposed to be straightforward in most
cases, but some lines need more attention. The order_date is
not provided by P2, but by standard function
current_date(). The address field must be split up in a
street field and a number field; this is done by means of two
transformations (basically, tail and head). Another
transformation is used to convert a zipcode into a city code. The
customer_id is not found in the order_request of R, but we
assume that customers register first and then get a unique

131

customer id, and the mapping calls upon the register service to
look up the customer and get the id.

4.1 Flexible Protocol Adapter
The Flexible Protocol Adapter FPA implements an adapter
between two services on the basis of a requested and provided
protocol and a mapping specification. The FPA is a combination
of a mapper and a spooler. It contains basically two processes:
fetch and forward, and utilizes a mapper function that works on
the basis of mapping rules per information item. The following
pseudo-code should convey the essence.

fetch = while () {

 m= get.inputmessage();

 S = information_units(m);

 store (S,Buffer);

 }

forward = while () {

 forall P in (Service,Client) {

 E = expected_messages(P);

 forall m in E

 if check_input(m)

 {x = create_instance (m);

 mapper(x);

 put_outputmessage(x, P);

 }

 }

 }

mapper(message m) = {

 forall ToInfItem.name in m {

 r = get_rule(ToInfItem.name);

 m.ToInfItem.value = apply(r,Buffer)};

}

Next to the mapping and spooling the FPA is able to solve the
protocol level conflicts discussed in Section 3.1. In [2] and [5],
these conflicts are called mismatches and consist of:

• Message order mismatch

• Extra message mismatch

• Missing message mismatch

• Message split mismatch

• Message merge mismatch
In some cases, the mismatches are irresolvable because of
ordering constraints. However, if there is a solution, the
mismatch is solved by the FPA, as can be validated. For the
mismatches at the operation level, such as signature mismatch or
constraint mismatch, FPA uses essentially the same approach as
[2], that is, the specification of XQuery transformations.

Fig. 4. Message split and merge mismatch

Example. Assume a product order protocol and suppose that the
provided interface specifies one message “order” that includes a
product id and the creditcard data of the customer, whereas the
required interface includes two messages, “product_order” and
“payment_data”. The “payment data” message is sent after a
“request_payment” is received. When the client sends the
product order message, the adapter extracts the information
items from it, but it cannot create an order message, as the
creditcard data are missing. However, it can create a
“request_payment” message for the client that triggers the client
to send the payment data. Now the adapter can create the order
message and send it to the service (Fig 4a). The reverse case is
that the required interface contains one message and the
provided interface two. Upon receiving the single order
message, the adapter creates a product order message first, sends
it to the service, and then creates and sends the payment
message (Fig 4b).

4.2 Adapter configuration
The FPA is a flexible generic adapter, but its effectiveness
depends critically on the availability of a mapping between the
two protocols that need to be aligned. To prevent that the
adapter will become the next bottleneck in adaptability of a
integrated network or service, the adapter itself should also be
adaptable. We can therefore make the separation between the
service manager (controller) and the managed service (adaptable
system). The managed service contains the mappings between
protocols and the service manager task is to maintain (adapt)
these mappings.
The service manager itself cannot construe this mapping.
However, what it could do is configure a mapping on the basis
of one or more available mappings (Fig.5). Assume that both
the required and the provided protocol are both set up as
instantiations of standard protocols, e.g. Rosettanet, SAP, or
HL7 (health domain). And assume that in both cases, the
instantiation itself is documented in the form of a mapping
between the protocol as used and the standard from which it is
derived. In that case, it is possible for the service manager to
search for a mapping between the two standards involved. It is
reasonable to expect that mappings between the most common
protocols will be provided by standardization organizations or
on a commercial basis. Then the service manager can configure
an adapter as a composition of mappings.

132

Fig. 5. Adapter configuration

In general, a mapping between two protocols is not a
monolithic, but draws itself on smaller specialized adapters, for
example, a currency converter, or a bank account/IBAN
converter. Typically, these smaller adapters do not provide
process mediation but data mediation only. Supposedly, these
adapters will be made available as services on the web, and as
such they can be called by the generic adapter as generated by
the service manager. The adapter that provides the mapping
between two protocols would then itself become a composite
web service, which can be subject to internal adaptation (or
reconfiguration).
As long as adapters and mappings are well-defined in terms of
their input and output, referring directly or indirectly to standard
protocols or ontologies, the adapter configuration is a non-trivial
but nevertheless feasible task.

5. CONCLUSION
In this paper, we have explored self-adaptation of web services,
a topic that is growing in relevance rapidly. We have shown
how a general self-adaptation model can be realized in the
Service Oriented Architecture. One important adaptation
strategy is mediation by means of configurable generic adapters.
We have described the adapter adoption process and how a
generic adapter can be configured for process mediation.
There are several tools that ease the development of XQuery
mappings such as Contivo (www.contivo.com). However, these
tools typically address the message level rather than the protocol
level and assume a human designer rather than self-adaptation.

Our research builds on previous work by [2]. This work
describes possible mismatches between web services and
solution patterns that can be used to resolve the mismatches.
Our solution addresses the same kind of mismatches, but rather
than providing patterns that can be applied by a human designer,
we have described a generic adapter that incorporates these
patterns automatically.
A similar list of mismatches has been described independently
in the context of the WSMX/WSMO working group. [5]
describe a Process Mediator that acts on public processes

(represented as WSMO choreographies) of the parties involved
in a communication and adjust the bi-directional flow of
messages to suit the requested/expected behavior of each party,
very similar to the FPA. The approach assumes that
choreographies are described in the WSMO ontology. Although
an ontological level as added-value, we do not want to require
such a framework given the present state-of-the-art, and prefer
to build forth on industry standards as XQuery. Other
differences between our FPA and the Process Mediator are that
we represent a protocol by means of messages and ordering
constraints, rather than a process description, and that we also
utilize a context to fill in missing values.
An important issue for future research is to evaluate the solution
direction given in this paper by building a prototype generic
adapter and by testing the adapter configuration on realistic
scenarios.

6. REFERENCES
[1] Argyris, C. and Schön, D. Theory in practice: Increasing

professional effectiveness, San Francisco: Jossey-Bass,
1974.

[2] Benatallah, B. F. Casati, D. Grigori, H. R. Motahari
Nezhad, F. Toumani, Developing Adapters for Web
Services Integration., Proc. CAiSE, 2005, pp.415-429.

[3] Spott, D., The Business Case for Service Oriented
Architecture, CBDI Journal, pp. 3-11, November 2004.

[4] Cheng, S-W., Huang, A-C., Garlan, D., Schmerl, B., and
Steenkiste, P. Rainbow: Architecture-based self-adaptation
with reusable infrastructure. IEEE Computer, 37, 10,
October 2004.

[5] Cimpian, E., Mocan, A. WSMX Process Mediation Based
on Choreographies. Proc. 1st Int Workshop on Web-Service
Choreography and Orchestration for Business Process
Management (BPM 2005), Nancy, 2005.

[6] Ganek, A.G., T.A. Corbi, The Dawning of the Autonomic
Computer Area, IBM Systems Journal, 42 (1): 5-18, 2003.

[7] Georgas, J., R. Taylor, Towards a knowledge-based
approach to architectural adaptation management. Proc.
WSOSS’04, ACM Press, 2004, pp.59-63.

[8] Hiel, M., H. Weigand, Requirements on the Use of Goal-
Directed Imitation for Self-Adaptation. In: 17th Int.
Workshop on Database and Expert Systems Applications
(DEXA 2006), IEEE Computer Society 2006, pp. 98-102.

[9] Kephart, O., D.M. Chess ,The Vision of Autonomic
Computing. Computer 36(1):41-50, 2003.

[10] McGovern, J., Sims, O., Jain, A., Little, M., Enterprise
Service Oriented Architectures Concepts, Challenges,
Recommendations. Springer, 2006.

[11] Mocan, A, Cimpian, E. WSMX Data Mediation. Technical
Report WSMX Working Draft,
http://www.wsmo.org/TR/d14/v0.1/ , March 2005.

[12] OASIS, 2006. “An Introduction to WSDM”, Committee
Draft, Report nr.: WSDM-1.0-intro-primer-cd-01, 24-2-
2006.

133

[13] Osterweil, L.J., L.A. Clarke, D.J. Richardson, and M.
Young, Perpetual Testing, In: Proceedings of the Ninth
International Software Quality Week, 1996.

[14] Owens, D.H. Feedback and Multivariate Systems. Peter
Peregrinus Ltd, Stevenage, 1978.

[15] Papazoglou, M.P. and W.J. van den Heuvel, Web Services
Management: A Survey, IEEE Internet Computing,
9(6):58-64, 2005.

[16] Papazoglou, M.P. and D. Georgakopoulos, Service-
Oriented Computing. In: Communications of the ACM,
46(10):25-28, October 2003.

[17] Reussner, R., Parameterised Contracts for Adapting
Software Component Protocols, PhD Thesis, Karlsruhe
University, 2002.

[18] Yellin, D. M., Strom, R. E.: Protocol specification and
Component adaptors. ACM TOPLAS, vol. 19, no. 2 (1997).

[19] Weigand, H., W.J. van den Heuvel, The challenge of self-
adaptive systems for E-commerce. In: Group Decision and
Negotiation (2007).

134

