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Abstract—The application of minimum variance control in
general does not result in an asymptotically stable closed
loop system. In this paper we show that for injective
controllable linear time-invariant systems a suitable chotce of
weighting matrix yields a minimum variance controller which
stabilizes the system. Moreover, a weighting matrix is
constructed which yields a minimum variance controller
which drives any initial state to zero in finite time. By means
of a simulation study the influence of the choice of the
weighting matrix on the controller and the closed loop
behaviour is illustrated.

1. Introduction

IN ECONOMICS and control engineering a lot of research has
been done on the design of optimal controllers and the
design of controllers which stabilize the closed loop system.
Usually, an optimal controller is meant to be a controller
that mimimizes some loss functional over a finite or infinite
time horizon. In this sense the word optimal has to be
interpreted in this paper too. Moreover, in the sequel we will
assume that the cost functional is quadratic. For most of the
infinite time optimal controllers it has been shown that they
have the property that they stabilize the system, provided the
weighting matrices occurring in the cost functional are
positive definite, and provided that some additional
conditions on the system are satisfied (e.g. stabilizability,
detectability, stability of reference trajectory) (Kwaker-
naak and Sivan, 1972; Chow, 1975; Maybeck, 1982;
Astréom, 1983: Astrém and Wittenmark, 1984; Engwerda,
1986). However, the performance of such a controller
depends on the particular weighting matrices chosen. Since
In many problems it i1s not clear a priori how these matrices
should be chosen, the selection of these matrices is an
important issue in the design of optimal stabilizing
controllers. Especially in economics hardly any prior
information about a good choice of these weighting matrices
1s available. This is due to the intrinsic phenomenon that
exact information about the long run development of
macro-economic reference and exogenous trajectories is
mostly unknown. Only in the short run to some extent
variables can be predicted, which make a better argumen-
tation about the choice of weighting matrices possible. Rustem
(1981) gives an algorithm how via the way of negotiation

* Received 25 February 1988; revised 8 July 1988;
received in final form 24 August 1988. The original version of
this paper was not presented at any IFAC meeting. This
paper was recommended for publication in revised form by
Associate Editor V. Kucera under the direction of Editor H.

Kwakernaak.
T University of Technology, Department of Mathematics

and Computing Science, Den Dolech 2, P.O. Box 513, 5600
MB Eindhoven, The Netherlands.

t Econometric Institute, State University of Groningen,
P.O. Box 800, 9700 AV Groningen, The Netherlands.

279

between policy-maker and control-engineer a feasible
weighting matrix can be determined. Feasible in the sense
that ultimately an acceptable optimal solution is attained.
Particularly in economics the system is, however, subjected
to noise. For that reason it is crucial that the chosen
weighting matrix 1s such that the corresponding optimal
controller stabilizes the system by a recursive application
(Engwerda, 1988). This requirement 1s mostly overlooked
in finite time optimal control problems. Therefore, we treat
in this paper the question of which weighting matrices in a
cost functional with a one-period planning horizon, in the
literature known as the minimum variance (MV) cost
criterion, are such that the corresponding optimal controller
stabilizes the closed loop system by a recursive application.
We show that, under the assumption that the system 1s
controllable, there exists a whole class of stabilizing
controllers and that the choice of the “best” one among this
class 1s again not a trivial one. The paper i1s organized as
follows. In Section 2 first the system and cost criterion are
introduced. Then, a class of weighting matrices yielding a
stabilizing controller 1s determined. Furthermore, we
construct in this section, by using Luenberger’s phase
canonical form, a weighting matrix which leads to a deadbeat
MV-controller. In Section 3 MV-control is applied to two
two-dimensional macro-economic models with one and two
control variables, respectively. Two control performances are
compared: one with an arbitrarily chosen weighting matrix
and one based on the phase canonical form. The paper ends
with a conclusion section.

2. Minimum variance control, reference stability and phase
canonical forms

We consider the following linear,
difference equation:

y(k+1)=Ay(k)+ Bu(k) + c(k) + v(k),

finite dimensional

(1)

where y(k) 1s an n-dimensional output/target vector
observed 1n period k; u(k) 1s an m-dimensional input/control
vector with m =n; c(k) is a p-dimensional deterministic
input, called exogenous input, and is assumed to be known at
period k; and v(k) 1s a serially uncorrelated vector with zero
mean and covariance V (white noise).

We shall assume that matrix B is injective (full column
rank) and that the pair (A, B) 1s controllable. Now consider
the cost functional

J=E{(y(k) = y*(k)' Q(y(k) — y*(k))},

where E{-} denotes the expectation, y*(k) is a reference
value for y(k) and Q 1s a symmetric positive definite
weighting matrix.

In the sequel we shall assume that the reference trajectory
1s given by the first-order difference equation

y*(k+1)=A%y*(k),

K=1;2, ..,

(2)
with y*(0) and A* known.
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Subtracting equations (2) from (1) yields
e(k +1)=Ae(k)+ Bu(k) + x(k) + v(k), (3)
where e(k):=y(k)—y*(k) and x(k):=(A—-A*)y*(k) +
c(k).

The optimal control minimizing J, subject to (3), is then
obtained by straightforward differentiation and equals

u(k)=—(B'QB) 'B"Q(Ae(k) + x(k)).
The resulting closed loop system then reads as follows:

e(k +1)=M[Ae(k) + x(k)] + v(k)
= Fe(k) + Mx(k) + v(k). (4)

Here M:=1—- B(B'QOB) 'B'Q.
In order to study the asymptotic behaviour of equation (4)
we introduce two definitions. Let ||-|| denote a norm.

Definition. The reference trajectory {y*(k)} is said to be

weakly admissible for the minimum variance control
sequence {u(k)} if there exists an € >0 and a k, such that
|E{e(k)}|| = € for kK = k. The reference trajectory is strongly

admissible for the control sequence {u(k)} if ||E{e(k)}|| =0
for k = k,,.

T'neorem 1. A bounded reference trajectory y*(-) is weakly

admissible 1f the exogenous input sequence {c(k)} is
bounded and F is stable, 1.e. lim F" = 0.

Fj—=x

Proof. Equation (4) can be rewritten as

e(k +1)=Fe(k)+ Mx(k)+ v(k)
=F(Fe(k— 1)+ Mx(k—1)+v(k—1))
+ Mx(k) + v(k)

k

> F'(Mx(k —i)+v(k —i)) + F¥*'e(0).

=0

o

Since, due to our assumptions on y*(-) and c(:), x(-) is
bounded we have that

k

|E{e(k + 1)}|| =D, F'Mx(k — i)+ F¥*'e(0)
i=0

k

< D IF'M|| a + ||[F¥*'e(0)]],

where a = sup |lx(k)||. Now Z{ |F'M|| < B < if Fis stable.
=0

From this, the stated result is immediately obtained.

One way to find a weighting matrix such that the
corresponding controller yields a stable closed loop system is
described in the next proposition.

Proposition 1. Let K be any positive definite matrix, and let
Q be the corresponding positive definite solution of the
following Riccati equation:

Q=A"(Q - QB(B"QB) 'B"Q)A +K.
Then the feedback gain F in equation (4) is stable.

Proof. Since the pair (A, B) is controllable, B is injective
and K is positive definite this result follows immediately as a
special case from Proposition 3 in Engwerda (1986). In this
last mentioned paper it is also proved that under these
conditions the Riccati equation possesses a unique positive
definite solution. This proof is similar to the one Bertsekas
provides in Section 3.1 (Bertsekas, 1976) under the
assumption that positive control costs are involved. That
proof works also in this case since, due to our assumptions,
B'KB is positive definite.

Note that our stabilizing weighting matrix Q is always
positive definite. That this property is not a prerequisite to
obtain a stabilizing MV-controller is shown for example in
Silverman (1976). There it is shown that in general also

semi-positive definite weighting matrices exist which give rise
to a stabilizing MV-controller.

In the remainder of this section we concentrate on the
construction of a best stabilizing weighting matrix. Best, in
the sense that if this weighting matrix i1s chosen in the cost
criterion the resulting controller becomes a deadbeat one
with an index that i1s as small as possible.

To that end we transform equation (4) into its so-called
phase canonical form (Luenberger, 1967).

Theorem 2. (Phase Canonical Form.) If the pair (A, B) is
controllable and rank(B)=m then there exist non-singular
transformation matrices S and T such that A =SAS™' and

B = SBT with

0 1 0 0
k, 1 0 0
* + #* + * * b *
) 0 0 10 0
A=| k, | 0 1 0 0
* - - # * - - * * % * “*
0 0 1 0
k|0 1
¥ ok %k ok %k kK x e . %
0 0 0
0
1 0
0
B=1]0
01 0
0
0
0 0 ]

where kK, =k,=---=k, =1 with ) k,=n the control-
(=1

lability indices, with k, as “the” controllability index, and
where * denotes a ““free’” parameter.

Theorem 3. In equation (4) F*' = 0 if the weighting matrix in
the cost functional is chosen as Q = S'S.

Proof. Premultiplying equation (4) by S we have
Se(k +1)=SMAS 'Se(k) + SMx(k) + Su(k).

Defining é(k) as Se(k) and choosing Q = S"'S we can rewrite
this equation as follows:

é(k +1)=[I1-B(B'B) 'B"|Aé(k) + SMx(k) + Sv(k)
.= Fé(k) + SMx(k) + Sv(k).

By simple calculation it can be shown that F =

diag (D,, ..., D,,) is nilpotent with index k,, i.e. FX'=0,
where
01 00
D,=| : 1
0 0

Note that this is consistent with Wonham (1974, pp.
122-126). .
Now, since F* = SF*S™! the result follows.

From the proof of Theorem 3 we see that the expected
closed loop system is given by

E{e(k + 1)} = FE{e(k)} + SMx(k). (5)
Evaluating equation (5) we obtain, for starting value
e(0) =0, after k, steps

E{é(k, + 1)) = F¥1¢(0) + '2 F'SMx(k, — i),

1=0
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or in general:

E{é(k +1)} = i FiSMx(k —i) for k=k,. (6)

i=0
Taking norms in this equation yields

ky—1

IE{e(k + D= D IIF| ISMx(k —i)|| = e(k,).

1 =0

(7)

From equations (6) and (7) the following conclusions can be

drawn.

(i) Under the condition that the sequence of exogenous
inputs {c(k)} is bounded, all bounded reference
trajectories {y*(k)} are weakly admissible. Note that
this 1s conformable to the statement in Theorem 1.

If x(k)=0 for all kK, and more in particular y*(k) =0
and c(k) =0 for all k, the MV-controller i1s a deadbeat
controller.

In case the number of control variables is smaller than
the number of target variables, the reference trajectory

{y*(k)} is strongly admissible for k > k, if the following
equation holds for all k:

x(k)=(A—-A%)y"(k)+c(k)=0.
Or, using (2), y*(k + 1) =Ay*(k) + c(k).
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The reader interested 1n an exact characterization of all
obtainable reference trajectories 1s referred to En-

gwerda (1988).

3. A simulation study
Consider the following reduced-form model:

[C(k)- _ 'a“ alz]rC(k— 1)- 4 -bn bl:!- -ul(k_ 1)]
(k) | lay, apllItk—1)1 Lby byplluy(k—1)
(€5 ] -lh(k)
+ -szx(k)+ _U;-,-_(k)]

where

C(k) = private consumption,;
I(k) = gross private investment,
u,(k) = governmental expenditures;
u,(k) = money supply;
x(k) = (non-controllable) exogenous input;
vT(k) = (v,(k)v,(k)) is a white noise
cov{v(k)v'(s)} = Vd,,.

vector with

All quantities are measured in billions of dollars, in quarter

K.
The simulation experiments are performed on two
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macro-economic models estimated by Kendrick for the U.S.
economy (Kendrick, 1981, 1982). The parameters obtained
by Kendrick are respectively as follows.

Model 1. An estimated macro-economic model with one
control (m =1).

e 1.014  0.002] . —0.004]
- 10.093 0.752 ] 1 =0.100 |
1,312 9 0
£ = | < V=
| (0.448 0 10

with initial values: C(0) =460.1; I(0) = 113.1 and x(0) = 10.

Model 2. An estimated macro-economic model with two
controls (m = 2).

i 0.914  —0.016] . 0.305 0.4247
10.097  0.424 | 1 =0.101 1.459 ]
"—=0.25 398 B
C = - = .
i ¥ () 8.58

with nitial values: C(0)=387.9; I(0)=85.3 and x(0) =
237.75.

1899.272 —r——1——1
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To show the effect of a different choice of weighting matrix
Q on the controlled system, the results of some experiments
with model 1 are discussed first. We simulated with two QO
matrices, namely

10
0 1

[ 1328 874
| —44 962

—44 962
1571 |

0, = and Q,=S"S=

The choices of these weighting matrices are motivated by the
fact that O, =1 will give rnise to an unstable closed loop
system, whereas (), makes from the minimum variance
controller a deadbeat controller.

The second weighting matrix is found by taking it equal to
S'S, where S is the transformation matrix obtained by
transforming equation (1) into the phase canonical form
(Luenberger, 1967).

The stabilization properties of a good weighting matrix are

best illustrated by Figs 1a and 2b, where we assumed that all
reference trajectories are generated and conformable to the

system dynamics; only the initial reference values are chosen
different from the mmitial model parameters (Engwerda,
1988). We assumed 1n these experiments that the model
contains no white noise components. From these figures we
see that the control error 1s, for as well consumption as
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investment, zero from timestep 2 on the (@, matrix
(reference stable), and steadily grows for Q,.

In case we assume that the model does contain white noise
terms we see from Figs 3b and 2b that the controller now
becomes very sensitive to these terms. This is due to the big
components of the J, matrix.

For model 2 similar experiments were carried out for the
controls u,(k) and u,(k) separately. It proved that the
weighting matrix Q = S'S for obtaining a deadbeat controller
In both cases was much smaller than for model 1, namely

42.5 78.7 [ 60.0 -13.97

Ca=|788 185.4] respectively Qe=| .. 55T

We discuss here the simulations performed with a
weighting matrix ;=1 and Q,, respectively, when the
governments expenditures are used as a means of control.
Again, the reference trajectories are chosen and conform to
the system dynamics and the initial states of reference and
model parameters different from each other. To obtain now
a more realistic model, however, the sign of the exogenous
terms 1s reversed. Since (4 also yields a stable closed loop
system 1n this case, we have that the reference paths are
smoothly tracked. By choosing the weighting matrix equal to
(), the tracking speed is increased, but this is at the expense
again of a controller which is more sensitive to white noise.
This 1s visualized 1n Figs 4 and 5, respectively. In this case
the consequences are, however, not as dramatic as in Fig. 3b.

All other simulation results with model 2 appeared to be
similar to those shown above.

4. Conclusions

[n this paper we investigated the influence of the weighting
matrix in the minimum variance control strategy on the
stability of the system.

We assumed that the system is described by an injective
controllable linear time-invariant recurrence equation.

We showed that, by making use of LQ theory, a whole
class of weighting matrices can easily be parametrized which
all give rise to a controller which stabilizes the system by a
recursive application.

This parameterization may be helpful in the choice of a
good weighting matrix in the MV cost criterion.

Two disadvantages of calculating a weighting matrix in this
way are that the direct relationship between the designer’s
requirements as concerns the quality of a given process and
the weighting matrix becomes less obvious, and that the
simplicity of the design is lost.

An additional natural question which arises when
discussing the influence of the weighting matrix on the
stability property of the closed loop system is, whether there

exists a weighting matrix which will make a deadbeat one
from the controller. Now, it is well known that there exist

direct methods to obtain a deadbeat controller. So, the
existence of a weighting matrix is herewith indirectly
answered.

However, an explicit relationship between deadbeat
control and minimum variance control, which may help to
give more insight, was lacking. We filled up this gap.

We showed that if the weighting matrix is based on the
Luenberger phase canonical form a deadbeat controller is
obtained.

In a simulation study we visualized the pros and cons of
different choices of the weighting matrix.

First we saw that 1if the weighting matrix is chosen
arbitrarily, the minimum variance controller does not yield in
general a stable closed loop system. So the conclusion can be
drawn that policy-makers must be careful in their choice of a
weighting matrix when they use this type of controller to
regulate the system.

The simulations show moreover that it is not self-evident
that always the weighting matrix must be chosen which
makes the controller a deadbeat one. The elements of this
matrix may be so large that the resulting controller becomes
too sensitive for small model disturbances. That is, small
disturbances in the system will give rise to heavy fluctuations
in the applied control. In conclusion, one can say that the
choice of weighting matrices should be a well considered
choice between tracking speed and disturbance sensitivity of
the controller.

So the problems that emerged in the infinite time optimal
control problems arise here again, extended with the
problem that the chosen weighting matrix should be a
stabilizing one. But now, since only a one-period ahead
optimality criterion 1s used, there is maybe more
fundamental discussion possible about the choice of
weighting matrices and reference trajectories.
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