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Abstract: The paper considers a production and process improvement
problem of a firm in which the total manufacturing costs of a specific
product depend on the output rate as well as the effects of autonomous and
induced learning. Autonomous learning typically results from the repetition
of a particular task, whereas induced learning is a result of explicit
investments in production process improvements. The cumulative effects of
the learning processes are represented by two stocks of knowledge. The
stock of autonomous knowledge is built up at a rate corresponding to
current output. Induced knowledge is built up by process improvement
investments. Both stocks are subject to decay, due to obsolescence or
forgetting of knowledge. For short and long term planning situations, we
study the optimal evolution over time of the output rate, the process
improvement expenditures rate and the two stocks of knowledge.
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1 Introduction

The paper deals with productivity increases and cost reductions that result from
learning processes. The concept of learning in production is well established in
management theory and practice. It means that increased experience in the
manufacturing of a product leads to higher productivity, better quality, lower unit
production costs, lower set-up costs, or other performance improvements.
Following Rosenberg [1], who states that a sizeable portion of productivity
growth takes the form of a slow accretion of individually small improvements and
innovations, our focus will be on gradual changes in labour productivity, rather than
infrequent adoptions of innovations to enhance productivity. We suppose that these
gradual changes are the product of two sources of learning within the organization.
Autonomous learning is a consequence of producing per se and hence requires little
explicit managerial influence. Induced learning is the result of deliberate (manage-
ment induced) investments in production process improvements. The manufacture of

Copyright © 2001 Inderscience Enterprises Ltd.
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automobiles is an example of production processes that have benefited from the
autonomous learning effects of mass production as well as induced learning (e.g. due
to various ‘Japanese’ process improvement methods).

To measure quantitatively the benefits of learning processes, one uses a learning
curve to provide a mathematical relationship between a specific performance
measure and the firm’s experience in manufacturing the product. Traditionally,
cumulative output has been used as a proxy for autonomous learning. The
assumption here is that labour productivity, in particular, increases as output
accumulates. These productivity improvements translate into lower costs of
manufacturing. To formalize the idea, let Z(z) denote a firm’s cumulative output
of a product by time ¢ and ¢(¢) the unit cost of production. The relationship between
production experience and cost is given by a cost learning curve ¢ =h(Z), #’(Z) <0.
Thus, the unit manufacturing cost decreases as experience accumulates. Popular
choices for the cost function have been the power and exponential laws, but learning
curve theory often assumed that the parameters of these laws were exogenously fixed.
Zangwill and Kantor observed that ‘traditional learning curve theory offers no
organized way for management to improve the slope of the learning curve so that
learning ... occurs faster’ ([2], p. 912). But even in the fixed parameter set-up,
management has an opportunity to influence the rate of learning; one can
deliberately choose to operate at high output levels to obtain a fast decrease of
the unit cost of production.* This type of production policy has often been observed
for new product innovations, e.g. in electronic products industries.

Apart from expanding output to generate the traditional learning by doing
effects, management has other instruments to influence the accumulation of
production experience. Here the distinction between autonomous and induced
learning is useful [5]. As mentioned, autonomous learning typically results from the
repetition of a certain task such that learning improves the ability to perform the
task (‘practice makes perfect’). These benefits can be reaped without very much
explicit management action and their cost effects are modelled by the learning curve
¢=h(Z). In addition to its descriptive purposes, the autonomous learning curve has
been used in dynamic optimization problems in production and marketing [3,4,6].

Induced learning, on the other hand, should be viewed as a result of explicit
managerial actions by which manufacturing processes are changed to augment the
capabilities of the workers and enhance the efficiency of the production system. This
type of learning has been considered in descriptive models [5] and in dynamic
optimization problems [7-11]. Arrow [12] suggested to use cumulative investments in
induced learning as a proxy for this type of knowledge. This approach is similar to
the one used in human capital accumulation models [7,13,14].

With respect to prescription, there are only a few studies of the problem of
simultaneous autonomous and induced learning [8,10]. Being particularly interested
in quality, these authors consider two types of knowledge: productivity knowledge
and quality knowledge. In this paper we look at learning in a different way and
introduce two stocks of knowledge: knowledge which is built up by continued

* Clearly, an output policy has to satisfy other objectives than the mere reduction of unit manufacturing
costs. Thus, the policy must be coordinated with pricing, promotion, inventory, and distribution strategies,
cf. Clarke et al. [3], Jorgensen et al. [4].
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production (autonomous knowledge) and knowledge acquired through explicitly
designed process improvement efforts (induced knowledge).

The paper proceeds as follows. In Section 2 we propose a dynamic optimization
model in which management can influence the development of both types of learning
through its choice of production volume and process improvement efforts and where
the total manufacturing costs depend on output and the two stock levels. Using
optimal control theory, Section 3 derives the solution of the problem. This section
also provides the managerial prescriptions that can be inferred from the
mathematical analysis. Section 4 concludes.

2 Dynamic optimization problem

The firm’s efforts to improve the production of a particular product are reflected in
the process improvement expenditure rate, denoted by u(z). Let K(z) denote the
stock of induced knowledge accumulated by time ¢. Spence [7] used the dynamics
K(t)=dK(t)/dt u(f), but here we wish to allow for decay of the stock K(z).
Experience in production can be forgotten or lost, due to factors such as employee
turnover and technological obsolescence. Moreover, we wish to modify the
assumption of constant marginal effects of process improvement expenditures that
underlies the model K(¢) =u(z). The dynamics for the stock K() are given by (see
also Harti [14])

K() = f(u(r), K(2) — aK (1), K(0) = Ko > 0 1)

in which a=const. >0 is the decay rate of knowledge. Function f is twice
continuously differentiable on the open set {u > 0, K > 0} and satisfies

S, +)>0Vu>0,/(0)=0,£,(0,) =+
fu>0,fu < 0,fk < 0,fxx < 0,fuk <0, fufxx — (fux)* >0 )

Here and in the sequel, a variable appearing as a subscript, denotes partial
differentiation with respect to that variable.

Since we wish to study the impacts of process improvement expenditures on the
firm’s intertemporal development, situations in which management choose not to
influence its stock of induced knowledge are less interesting. Hence, we impose the
last condition in the first row of (2) to make u(z) =0 suboptimal at any instant of
time. In the second row of (2), the two first inequalities mean that (given any level of
knowledge), process improvement expenditures increase the stock of knowledge, but
subject to decreasing marginal effectiveness. The next two inequalities mean that
(given the expenditure rate) the rate of change of the stock decreases (at an
increasing speed) as the current stock of knowledge increases. Further, the marginal
effectiveness of process improvement expenditures (f,) is decreasing in K, i.e. the
higher the stock of knowledge, the smaller the effect of an additional dollar spent on
process improvements. Finally, f'is a strictly concave function.

To model the accumulation of autonomous learning, denote by x(f) the
production rate at time ¢. Current production adds linearly to the stock of
autonomous knowledge Z(z). Allowing for decay of autonomous knowledge yields
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the following dynamics for the stock Z
Z () =x(t) = 8Z(t), Z(0) = Zy >0 (3)

in which é is a positive and constant decay rate of the stock of autonomous
knowledge.

Denote by C(¢) the total cost of production at time ¢. Following Spence [7] we
suppose that induced learning affects this cost in an indirect way; process
improvement expenditure u(¢) influences the stock K(¢) through (1) and C(¢) is a
function of K(¢). The cost effects of autonomous learning are accounted for by
letting C(¢) depend directly on autonomous knowledge Z(#) [3,4]. Finally, C(¢) also
depends on current output x(¢). Altogether, one obtains a general production cost
function C=g(K, Z, x). Not unexpectedly, this formulation is too general to admit
analytical insights and we shall employ the following specialization:

C=g(K, Z, x)=G(Z, x)+ F(K) (4)

In (4) it is important to note that the cost effects of autonomous knowledge and are
separated from those of induced learning. Thus, induced learning affects the total
production cost by shifting the part of the cost curve (G) that depends on current
output x and autonomous knowledge Z. As any other assumption, our hypothesis of
separated effects of the two types of learning is open to critique. Thus, if process
improvement efforts do interact with autonomous learning effects, the assumption will
not be satisfied. Clarke et al. [3] argued that in some instances, process improvement
efforts and the resulting induced knowledge is beneficial to the general organization of
the production process and leads to a shift of the variable cost function.

Functions G and F are twice continuously differentiable on the open sets
{Z > 0, x > 0} and {K > 0}, respectively and satisfy

G(Z,0)=0,G>0forx>0,G.<0,G,>0
GZZ < 07 Gxx > 07 GZx < 0: GZZGxx > (GZx)Z
F>0,F <0,F">0

The assumptions in (5) imply that the cost component G(Z,x) decreases as
autonomous knowledge Z increases, whereas the component F decreases as induced
knowledge K accumulates. Each type of learning is subject to decreasing marginal
effectiveness. Functions G and F are strictly convex which makes C strictly convex.
Turning to the firm’s revenue, we assume that all output is sold at a unit price p
which depends on current output (= demand) x(z). The demand function p(x) is
twice continuously differentiable on {x >0} and downward sloping, i.e. p'(x) < 0.
The revenue function R(x) =p(x)x is assumed to be strictly concave: R”(x) < 0. To
make a zero output rate suboptimal, we introduce the assumption R'(0)=p(0) >
G.(Z(1), 0) for all feasible Z. Figure 1 depicts the overall structure of the model.
If the firm plans for a finite period of time (i.e. Tis finite), we impose the terminal
constraints K(T) = Kz = const. > K, Z(T) = Zr = const. > Z,. These constraints
reflect that the firm sets target levels for its stocks of knowledge; Kr, Z7 represent
these targets. Note that we are only interested in situations in which the initial
knowledge levels are below their target levels. If the horizon is infinite, the terminal
stock constraints make no sense and are omitted. In this case we confine our interest
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Figure 1 The dynamic structure of the model.

to situations in which initial knowledge levels are below their steady state levels.
Thus, representing the steady states by K, Z, we only consider cases where
ko < K , Zo < Z

The firm’s decision problem is to find controls x(¢) and u(t), te[0, T], that are
piecewise continuous and maximize the objective

T
7 =Terrex(e)) - (6(2 () + FKW) + co] - u(t)}a (6)
0

subject to the dynamical constraints (1) and (3), the terminal constraints on XK and Z
(if the horizon is finite) and feasibility of state and control variables:

K(t)~0, Z(t) >0, u(t) =20, x(¢) > 0Vie[0, T] (7

3 Results and managerial implications

This section starts out by stating the optimality conditions for the problem stated in
Section 2. Section 3.2 characterizes the optimal output and process improvement
expenditure policies.
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Section 3.3 uses phase diagrams to study the intertemporal development of
optimal output, process improvement expenditures and the stocks of autonomous
and induced knowledge. Sensitivity analyses are presented in Section 3.4.

3.1 Optimality conditions

First we deal with feasibility, cf. Equation 7. By assumption, optimal process
improvement expenditures and output remain strictly positive. Use Equations 1-3 to
obtain

K (D)l k=0 = (u(2),0) > 0, Z(2)| 720 = x(1) > 0

Invoking the initial conditions K(0) > 0, Z(0) > 0 shows that the nonnegativity
constraints K > 0, Z > 0 are satisfied.

If the planning horizon is finite, a necessary and sufficient optimality condition
for the optimal control problem of Section 2 is as follows (cf. Feichtinger and Hartl
[15], Theorems 2.2 and 2.4, or Seierstad and Sydsaeter [16], Theorem 5 (p. 107) and
Theorem 14 (p. 236)). Define the current value Hamiltonian

H = W[R(x) — (G(Z,x) + F(K) + co) — u] + A(f (4, K) — aK)

+n(x —62Z) ®)

in which w is a nonnegative constant. Let (K*(¢), Z*(t), x*(¢) u*(¢)) be a feasible
quadruple. If there exists continuous and piecewise continuously differentiable
costate variables A(f), n(¢) such that for all ¢ € [0, 7] the following condition is
satisfied with w > 0

u* (1) and x™(¢) maximize H(K*(¢),Z*(t),u, x, A(t), n(2)) 9
and, at all points of continuity of w*(¢), x*(¢), the costate equations

A() = [r+a— fi(@* (1), K* () A(r) + BF (K™ (1)), A(T) = 0 (10)
#(t) = (r 4 8)n(t) + wG=(Z* (£),x™ (1)), n(T) = 0 (11)

are satisfied and the maximized Hamiltonian is concave in (K, Z) for all ¢, then the
quadruple (K*(¢), Z*(¢), x*(¢)u*(t)) is optimal. If the horizon is infinite, the above
conditions are necessary and sufficient for optimality in the catching-up sense if we
replace A(T)=n(T)=0 in Equations 10 and 11 by the limiting transversality
conditions

lim7_. yoe™TA(T)[K(T) — K*(T)]
> 0,limr_, e n(T)[Z(T) ~ Z*(T)] 2 0 (12)
in which (K(+), Z(+)) is an arbitrary, feasible state trajectory. In the appendix we
prove that the constant W is positive and then it can, by normalization, be put equal

to one. The appendix also proves that the maximized Hamiltonian is strictly concave
in (K, Z). The remaining optimality conditions are dealt with in Sections 3.2-3.3.
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3.2 Optimal output and process improvement policies

From now on we frequently omit the time-argument. The Hamiltonian maximiza-
tion conditions in Equation 9 become

H. =0 R(x)+n=G(Z,x);H,=0& -1+ 1f,(u,K) =0 (13)

Note that H,, < 0 and H,, < 0 which implies that the optimal output and process
improvement expenditure rates are unique and continuous in ¢. Since the maximized
Hamiltonian is strictly concave in (Z, K), the optimal state trajectory (Z*, K*) is
unique.

The first condition in Equation 13 is intuitive since R'(x) is marginal revenue and
= (¢) is the shadow price of the stock of autonomous knowledge Z. The shadow price
measures the marginal contribution to the optimal objective function of a one-unit
addition to the stock Z. Hence, the optimality condition balances current as well as
future benefits of producing an additional unit against the current cost of
manufacturing that unit. This can also be illustrated by using Equation 11 and the
first condition in Equation 13 from which it is straightforward to derive

Go(Z(8), x(0) + | G(Z(s), x(s))e=r+96=0ds = /(x(1)) Vre[0, T

t

The first term on the left-hand side is the usual ‘short-run’ marginal production cost
and the right-hand side is the usual ‘short-run’ marginal revenue. These terms reflect
the immediate costs and benefits of producing and selling one more unit. However,
producing the marginal unit also increases the stock of autonomous knowledge
which implies that as of time ¢, production cost decreases (by Gz) over the remaining
planning period. The integral on the left-hand side measures this stream of cost
reductions. Note that one must correct for decay of knowledge (multiplying by exp{—
8(s~1)}) and discount to time ¢ (multiplying by exp{ — r(s— #)}). We obtain the usual
marginal cost equals marginal revenue condition if Gz=0. In this case neither type
of learning influences the marginal production cost.

The following proposition characterizes the optimal production rate (all proofs
have been relegated to the appendix).

PROPOSITION 1. The first condition in Equation 13 determines implicitly the
optimal production rate x*as a continuously differentiable function of (Z, n). It holds
that

ox™ Gyz ox™ -1

Z R -G V% TR -G

The first result clearly is driven by the assumption G,z < 0. Thus, when the stock Z
increases, the marginal cost of producing falls and it certainly pays to increase
output. The intuition of the second result simply is that when the shadow price of Z
increases (i.e. the stock Z becomes more valuable), the production rate should be
increased.

The second condition in Equation 13 also has an intuitive interpretation.
Consider a one-dollar increase in process improvement expenditures ». The term —1
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is the marginal contribution to current profit (since the only effect of the increase in
expenditure is to decrease the instantaneous profit by one dollar). The costate
variable A is the shadow price of the stock of induced knowledge K and the effect of a
marginal increase in u on the stock K is measured by the derivative f,,. The product
Af, then is the marginal contribution of current expenditure to future objective
function value, through the current expenditure’s effect on the growth rate of the
stock K. The next proposition characterizes the optimal process improvement
expenditure rate.

PROPOSITION 2. The second condition in Equation 13 determines implicitly the
optimal expenditure rate u* as a continuously differentiable function of (K, A). It holds
that

glii = :ﬁ‘.’i < 0’§u_* = :Iﬁ >0

0K  fu A Mu

The first inequality states that the optimal expenditure rate is decreasing in the stock
K. This result is mainly a consequence of the assumption that the higher the current
stock of knowledge, the less efficient are the current expenditures in raising the
stock (f,x < 0). The second inequality has a similar interpretation as the one in
Proposition 1.

The effects of taking into account dynamic learning effects can be assessed by
comparing the optimal decisions in Equation 13 with the optimal decisions of a
myopic firm. The optimal output decision of a myopic firm is an x,,, which satisfies
R (xm) = G(Z, x). Let x, denote the optimal dynamic output rate in Equation 13.
Using Equation 13 and the fact that the shadow price = is positive, shows that x; >
X Thus, a myopic firm produces less than a far-sighted firm. The reason is that a
myopic firm does not take into account the benefits from future learning, as
represented by the shadow price n>0. The optimal process improvement
expenditure of a myopic firm clearly is u,, =0: any positive expenditure would be
an unnecessary cost because a myopic firm disregards the future impacts of its
current expenditures. The conclusion is that a non-myopic firm takes into account
both current and future benefits of autonomous and induced learning and produces
more output and spends more on process improvement efforts than a myopic firm.

3.3 Phase diagram analysis

Since cost and revenue functions are not explicitly specified, it is impossible to get
closed-form expressions for the optimal control and state trajectories. Instead we
derive a series of qualitative results. In a decision support context, they should be
seen as qualitative guidelines since they only can give the directions of change of
control and state variables. If we had fully specified functional forms, it might be
possible to get explicit solutions. On the other hand, it is sometimes seen that
functional forms are chosen specifically to satisfy such an objective. This creates
some arbitrariness whereas our cost function retains some generality and the results
are to a lesser extent driven by specific assumptions.
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Suppose that x*(¢) and u*(z) are continuously differentiable with respect to ¢ for
all ¢ € (0, 7). Then the control variables must satisfy

d

d
(i) =2

H,)=0forte(0,T). (14)

Using Equations 10, 11 and 13 we eliminate the costate variables from Equation 14
to obtain

= Z =G+ DR — G2, 0) + (2~ 62)GualZ,%) = G2, 0] (19)

= S PR, W)+ (- = K Ko 1) + o ()

x (—aK +f(K,u))] (16)

u

The system consisting of Equations 1, 3, 15, 16 is a 4-dimensional system in
(K,Z,x,u) space and has a unique optimal solution. Mainly because of the
separability of the cost function with respect to K and Z, this system can be
decoupled in two independent systems. One system consists of Equation 15 and 3
and can be depicted in the (Z, x) plane. The other consists of Equation 16 and 1 and
can be depicted in the (K, u) plane. To determine the steady states of the two systems
we have the algebraic equations

R(%) +#=Gu(Z,%), 2 = G2(Z,%)/(r+8),%=06Z (17)
(R, =1,4=—F (R)/Ir +a—fx(@,K),K = f(2,K)/a (18)

where Equation 17 uniquely determines the steady state triple (Z,%, #) and Equation
18 uniquely determines (K, @ /I) The first Equation in 17 and 18, respectively, is the
Hamiltonian maximization condition. The second equation comes from costate
Equations 10 and 11 and the third from state Equations 1 and 3. All six steady state
values are positive.

For the (7, x) differential equation system given by Equations 3 and 15 we have
the following result.

PROPOSITION 3. (A) If

(r +28)Gz(Z, %) + Gzz(Z,%) > 0 (19)
the steady state in the (Z, x) phase plane is a saddle point. The stable branch is the only
trajectory (Z(t), x(t)) that converges to the steady state. This branch is downward
sloping, at least in a neighbourhood of the steady state. (B) If

(r +28)Gsz(2, %) + Gzz(Z,%) =0 (20)

the steady state in the (Z,x) phase plane is a saddle point. The stable branch is
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horizontal, at least in a neighbourhood of the steady state. (C) If the inequalities

(r+20)Gz(Z,%) + Gzz(Z,%) < 0 (21)
~3(8 + N)[R'(%) = Gxx(Z, %)) + Gzz(Z,%) + Grz(Z, %) (r +258) > 0 (22)

are satisfied, the steady state in the (Z, x) phase plane is a saddle point. The stable
branch is upward sloping, at least in a neighbourhood of the steady state.

The inequality in Equation 19 can be satisfied if the discount and decay rates are
sufficiently small (since G,z <0 and Gzz > 0). This happens if the firm is sufficiently
far-sighted and the decay of autonomous knowledge is not too fast. The situation in
Equation 20 is a hairline case which generates a rather extreme result: constant
output rate at all instants of time. The inequality in Equation 21 holds for sufficiently
large discount and decay rates, but here we need the additional assumption in
Equation 22 to guarantee saddle point stability. Note that Equation 22 becomes
harder (or even impossible) to satisfy if |G,z| is very large. Then the learning effect is
so significant that it is optimal to increase the output rate and the solution will not
converge along a stable saddle point path to a steady state.

Remark. Our conclusions about the slope of the stable branch are valid only in a
neighbourhood of the steady state. In the proof of Proposition 3 we show the
existence of the stable branch on the time interval [0, o0), but this is not sufficient to
guarantee the existence of a stable branch emanating from any feasible initial state
Z,. To assure this we must verify a global saddle point theorem (see, e.g. Feichtinger
and Hartl [15]). In our model, the verification of such a theorem has not been
successful. Notice, however, that our conclusions about the slopes of stable branches
are guaranteed for initial states Z, that are sufficiently close to the steady state Z.

In an infinite horizon problem there are only two kinds of optimal trajectories in
(Z,x) space; the stock Z is either montonically increasing or decreasing over time. In
any of the three phase diagrams of Figure 2, the solid curves leading to the steady
state represent the stable path. On this path, the pair (Z(z), x(¢)) converges to the
steady state as time goes to infinity. The initial condition for Z is Z,. To obtain the
initial condition for x we start out with the steady state values Z, % and, exploiting
the differential Equations 3 and 15, we work backward in time to find the value x(0)
that corresponds to Z,. Recall the assumption Z0 < Z, that is, we are only interested
in situations in which the initial stock of autonomous knowledge is below the steady
state value.

Consider Figure 2A which corresponds to Case A of Proposition 3. The firm has
a ‘small’ initial stock of autonomous knowledge Z, and the stock of knowledge
increases steadily over time. The output rate is decreasing over time. The reason is
that the inequality in Equation 19 is satisfied, which means that the decrease in
marginal production cost due to autonomous learning, as measured by |G.z|, is
relatively small. It does not outweigh the reduction of the negative effect of
autonomous knowledge on production cost (Gzz > 0). Although the output rate
decreases, output remains sufficiently large to compensate for the decay of
knowledge. Hence the stock of knowledge increases. The optimal price increases
over time (clearly due to the decrease of output).
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Figure 2A  (Z, x) phase diagram — case A.

In Figure 2B, which depicts Case B of Proposition 3, the production rate is
constant over time, equal to its steady state value %. The case of a constant output
rate over an infinite horizon is somewhat extreme and can be thought of as a hairline
case.

Finally, Case C of Proposition 3 is illustrated in Figure 2C. Here, both the
knowledge stock and the production rate increase over time. The reason is that the
decreasing effect of learning on the marginal production cost (G.z < 0) is sufficiently
large to warrant an increasing output policy. Convergence to the steady state is still
optimal. This is because the additional assumption 22 implies that the total
stabilising effects of concavity of the production function and convexity of the cost
function outweigh the destabilizing effect induced by the negative sign of G,z (this
effect is destabilizing since production increases knowledge which lowers production
costs, making it more attractive to increase production). The stock increases because
the production rate is sufficiently large, even initially, to compensate for the decay of
knowledge. The policy of increasing output is accompanied by a falling price. Such
policies have been noticed in many instances, perhaps most prominently in the
electronic products industries; see, e.g. Philips et al. [17].

In the finite horizon problem, all optimal trajectories are off the stable path. To
illustrate, Figure 2A depicts two possible trajectories, I and II. Which trajectory is
optimal depends on the initial and terminal states, Z, and Zr (Zy < Z7) and the
value of T.

Zo<Z< Z2: The stock Z is always increasing. The optimal trajectory is of Type II.
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x)
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° z, 1z VA z:

Figure 2B (Z, x) phase diagram — case B.

Depending on the initial stock, the production rate either is monotonically
increasing over time, or it is first decreasing and then increasing.

Zy< Zh < Z: The optimal trajectory is either of Type I or II. A Type II trajectory is
as above. On a Type I trajectory, production always decreases.

Remark. The optimal output policy of the Li and Rajagopalan [10] model differs
from the above. In the Li and Rajagopalan model, the optimal production rate is
steadily increasing over time. This result may occur in the case where Zp < Z< z2
but in our set-up other policies are also possible. The difference is due to our
assumption Gy, > 0, that is, marginal production cost increases with the production
rate. Hence it becomes more expensive to produce as output x increases. This output
stabilizing effect is absent in the Li and Rajagopalan model because their production
cost function is linear in x.

The next proposition deals with the (K,u) differential equations system in
Equations 1 and 16, having the steady state in 18.

PROPOSITION 4. The steady state in the (K, u) phase plane is a saddle point with a
downward sloping stable branch.

The negative slope of the stable branch implies that process improvement efforts
decrease with the stock of induced knowledge (see also Proposition 2). This is
because it is more difficult to build up knowledge if the stock is already large (fx. <
0) and additional knowledge has less effect on production costs if the level of
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Figure 2C (Z, x) phase diagram — case C.

knowledge is already high (F'/(K) <0). The phase diagram for the (X, u) differential
equations system is depicted in Figure 3.

In the infinite horizon problem, the firm starts out in a point on the stable path
(corresponding to the initial condition) and the trajectory (K(z),u(r)) converges to
the steady state as time goes to infinity. It suffices to note that for Ky < K, process
improvement expenditures decrease over time. They remain sufficiently large to
compensate for the decay of learning such that the stock of induced knowledge
increases over time. In the finite horizon case, similar remarks as those given in
conjunction with Figure 2 apply.

3.4 Sensitivity analysis

To make a fully dynamic sensitivity analysis one needs closed-form expressions for
the optimal trajectories or global information about implicit relationships. Here,
optimal trajectories are only qualitatively characterized and we have only local
information (i.e. in neighbourhoods of the steady state) on the variables Z and x.
Hence, for this system we can only investigate the sensitivity of the steady state
values.

By Equation 17 the steady state values of Z and x are implicitly given as
functions of the model parameters § and r and we have
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Figure 3 (X, U) phase diagram.

PROPOSITION 5. (A) The higher the rate of interest r, the lower the steady state
output % and the stock of autonomous knowledge Z.

(B)If —Z Gyz < —Z(r+8)(R" — Gxx) + 7, the steady state stock of autono-
mous knowledge Z decreases with the decay rate 0.

The results in Part (A) are plausible, recognising that a high rate of discount
means that the firm is myopic and puts less emphasis on future streams of profits. A
far-sighted firm has a low discount rate which leads to higher steady state levels of
the stocks and the control variables. The steady state output rate is decreasing in the
discount rate which confirms our discussion about myopic behaviour where we
concluded that a myopic firm produces less than a far-sighted one at any instant of
time.

Part (B) shows that the intuitive result — the steady state stock decreases with the
decay rate — is only valid with a disclaimer. Its interpretation is that the numerical
value of the mixed partial derivative G,z must not be too large. If |G, z| is large the
stock of autonomous knowledge has a high impact on production cost. Moreover, if
the decay rate § is large, the steady state production level is large which implies high
production costs. To reduce these costs one needs to have a higher steady state level
of autonomous knowledge; the effect of this is sizeable when |G.z| is large.

For the (K, u) system it is possible to make an analysis of the steady state values
as well as a dynamic sensitivity analysis for the finite horizon problem:
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PROPOSITION 6. (A) The higher the value of the decay rate 6, the lower the steady
state stock of induced knowledge K. The higher the rate of interest r, the lower the
process improvement expenditures i and the stock of induced knowledge K.

(B) In the finite horizon case it holds that the higher the rate of interest r, the lower
the optimal stock of induced knowledge K(t,r) for all te[0,T) and the lower the
optimal process improvement expenditures u(t,r), at least on a time interval [0, t,),
Hh<T.

The results in Part A are intuitive: their interpretation is similar to that in
Proposition 5. In particular, the optimal process improvement expenditure is
decreasing in the discount rate. This confirms our discussion about myopic
behaviour where we concluded that a myopic firm spends nothing on process
improvements. The last result in Part B confirms a finding of Li and Rajagopalan
[10].

4 Concluding remarks

The paper has considered the dynamic effects of two types of learning in
production. Autonomous learning reflects the well known ‘learning by doing’
phenomenon. Besides contributing to sales revenue, an important positive benefit of
producing more now is that the firm automatically gains production experience that
benefits future production, in terms of a lower unit manufacturing cost in the
future. This learning effect alone often leads to a production policy where output
increases over time. But our model also takes into account some counterbalancing
effects: variable manufacturing costs increase progressively with output and
autonomous learning has more effect on production cost when production
experience is low than when it is high. In the infinite horizon case, these effects
stabilize the output policy such that the production rate does not increase infinitely,
but converges to a steady state. An important contribution of the paper is the
demonstration that the relative magnitude of the ‘increased production now makes
future production cheaper’ effect is a key factor in the determination of the firm’s
production behaviour.

The second type of learning results from efforts that are purposefully aimed at
enhancing the skills of the work force and improve the production process with
respect to equipment and organization. Process improvement efforts creates a stock
of induced knowledge (human capital) and our results show that optimal process
improvement efforts are negatively related to the size of the stock of induced
knowledge. The hypotheses driving this result are that it is more difficult to increase
knowledge if knowledge is already high and production costs are reduced the most
by process improvement efforts if knowledge is not too high.

For the agenda of future research we propose two items. Firstly, a generalisation
of the demand function to include more than just current output (demand). Current
demand, particularly for durable goods, is often observed to depend on the level of
cumulative sales. In marketing literature one speaks about positive [negative]
demand diffusion effects if consumers increase [decrease] their current demand with
the level of cumulative sales. Positive demand diffusion effects is a factor that, in
marketing theory and in practice, has been used as a rationale for policies of
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increasing output and decreasing price, in conjunction with unit cost reductions
obtained by increasing cumulative output (autonomous learning). Secondly, it could
be worthwhile to try to relax the assumption that the two stocks do not interact in
the cost function, to see the impacts of ‘spillover’ of learning. Most likely, however,
both suggestions will result in optimization problems that are too complex to be
analytically tractable and one will have to resort to numerical simulations.
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Appendix

PROOF OF w > 0. By contradiction. Assume that w=0. From (8) and (9) we have
H, = —w =+ Af,(u, K) = 0 which for w = 0 becomes H — u = Af,(u,K) = 0. Since
f.> 0, it must hold that A is zero for all 7. Using 1 and 6, the optimal objective J* is
given by

r !
re"’ rR(x*(t)) — oo+ G(Z* (1), %" (1) + F(Ko) + f(f(u*(s),
5 0

K*(s)) — aK*(s))ds)] - u*(t)] dt

so that 3J* /0Ky = F'(K*) > 0. It is known that 8J* /0K, = A(0) and hence 1(0) > 0.
This contradicts A(z) =0 for all ¢ and hence w=0 cannot be true. It follows that
w > 0.

PROOF OF CONCAVITY OF THE MAXIMIZED HAMILTONIAN. We write
the maximized Hamiltonian as

H* = {R(x*) = G(Z,x™) + n(x* = 62)} + {-F(K) — u* + A(f (u*, K) — aK)}
= $(Z,x") + Y(K,u")

in which x*(Z, ) and u*(X, ) are the optimal controls stated in Propositions 1 and
2, respectively. If function ¢ is concave in Z for any given n and function y is
concave in X for any given 4, then the maximized Hamiltonian is concave in (K, Z)
for any given (m, A). Differentiate function ¢ twice with respect to Z and use
Equation 13 and Proposition 1 to obtain

o
0z2

(GxZ(Z, x*))2

— - * -
= G._(Z’x ) .R”(x*) - G.tx(z7 x*)

(A1)

If the right-hand side of (A.1) is negative, function ¢ is strictly concave. To prove
this, use the assumptions G.Gy >G%, R’"<0, and G. >0 to obtain
—GR" + GGy > Gzzx. It is readily seen that the latter inequality implies that
the right-hand side of (A.1) is negative. Next differentiate function ¥ twice with
respect to K and use Equation 13 and Proposition 2 to obtain
ﬂ——F”(K)+——i—U (K, u™ (K, u™) — fug (K, u*))? A2
oK~ fw(K,u*) kxk(A, U )f;zu U ) qu( YU ))] ( )
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Exploiting the concavity of functions fand F and that 1 =1/f,, shows that the right-
hand side of A2 is negative. Hence function ¢ is strictly concave.

PROOF OF PROPOSITIONS 1 AND 2. In Equation 13 define h(x,Z,
7n)=R/(x)+7 — G«(Z, x) =0 and note that 4 is continuously differentiable by the
assumptions on demand and cost functions. Let (x°, Z, ) denote the unique point at
which A=0 for each admissible pair (Z, ). This point exists since R” (x) < 0 and
G > 0. Moreover, h(x°, Z, ) < 0. In a neighbourhood of (x°, Z, =), x is implicitly
given as a continuously differentiable function of (Z,=) for which the implicit
function rule yields the derivatives stated in Proposition 1. Proposition 2 is proved in
a similar way.

PROOF OF PROPOSITION 3. Define the Jacobian matrix & of the differential
equation system given by Equations 3 and 15 and evaluate the elements of this
matrix at the steady state (Z, %):

oz oz -5 . 1

= |0Z 0@ = 2z X X

S = % —ag = — Gz (Zv )’c’)'i' (r+25)Gx%(Z,x)] r+6 (A3)
37 ox R (%) — Gxx(Z, %)

The steady state is a saddle if and only if det S < 0, which by using A3, is equivalent
to

—8(8 +1[R"(R) = Gox(Z, %)) + G22(Z, %) + Goz(Z, %) (r +28) > 0 (A4)

The inequality A4 is the same as Equation 22. Calculating the slopes of the isoclines
yields

dx = —0Z/dZ _ _ dx = —0x/0Z
dZ'%=" 8Z/ox  dZ*" " oi/ox
_ GzZ(G,x)+ (r +26)G.z(Z, x)
(r+8)[R'(x) = Gxx(Z, )]

(A3)

The Z =0 isocline has a positive slope but the slope of the x =0 isocline depends on
the sign of the numerator in the last expression in AS, that is,

sgn/:j—; x=0\ = —sgn(Gzz(Z,x) + (r + 26)Gyz, (Z, x))

The results of the proposition now follow. Case (4): Equation 19 implies A4 and the
x =0 isocline is downward sloping, cf. A5, at least in a neighbourhood of the steady
state. Case (B): obviously A4 is satisfied. When Equation 20 holds, A5 shows that the
slope of the x = 0 isocline is zero, at least in a neighbourhood of the steady state. The
stable branch coincides with the x=0 isocline. Case (C): When Equation 21 holds,
A4 must be satisfied in itself. Using A5 and Equation 24 shows that the x = 0 isocline
has a positive slope, at least in a neighbourhood of the steady state.
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PROOF OF PROPOSITION 4. Consider the Jacobian matrix S of the system
Equations 1 and 16 and evaluate the elements of this matrix at the steady state (K, 2):

oL ~a+fi i
S= [:ai; %—] = (e m it + P err oy Jrr ] @9
u

Using A6 and the assumptions on functions f and F shows that det3 < 0 and the
steady state is a saddle. For the slopes of the isoclines we have, using A6

du, ~_—OK/OK _ du, _—Buf3K
'd—IEIK=0 - 8K/6u > 7ZE|11=0 - au/au >

The K =0 isocline is upward sloping while the #=0 isocline is downward sloping.
With these results at hand, the phase diagram in Figure 3 follows.

The following two remarks apply to both Proposition 3 and Proposition 4. On
the stable branches, the x, u, Z and K trajectories converge and hence the integrand
of the optimal objective function is a bounded function. As the discount rate is
positive, we conclude that the objective integral is finite. The trajectories (Z(t), x())
and (K(t), u(2)) in Figures 2 and 3 converge to steady states as time goes to infinity.
Using this fact we have verified the limiting transversality conditions in Equation 12
because these conditions are satisfied when we have feasible and bounded state
trajectories Z and K that converge to steady states. Optimality is implied.

PROOF OF PROPOSITION 5. The results of the proposition follow by
straightforward differentiations in Equation 20.

PROOF OF PROPOSITION 6. Part A follows by partial differentiations in
Equation 21. For Part B it suffices to note that in the Jacobian matrix given by A3,
all elements are positive, except the one in the north-western corner which is
negative. The result of Part B then follows by applying Theorem 4.10 in Feichtinger
and Hartl [15].



