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Abstract. Nash equilibria for strategic games were characterized by Peleg and
Tijs (1996) as those solutions satisfying the properties of consistency, converse
consistency and one-person rationality.

There are other solutions, like the e-Nash equilibria, which enjoy nice
properties and appear to be interesting substitutes for Nash equilibria when
their existence cannot be guaranteed. They can be characterized using an ap-
propriate substitute of one-person rationality. More generally, we introduce
the class of “personalized” Nash equilibria and we prove that it contains all of
the solutions characterized by consistency and converse consistency.
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1. Introduction

The starting point for this work was an attempt to see whether the axi-
omatizations for Nash equilibria given in Peleg and Tijs (1996) and in Peleg,
Potters and Tijs (1996), could be adapted to get axiomatizations for -
equilibria also.

In Peleg and Tijs (1996) it was proved that (OPR) (One Person Rational-
ity), (CONS) (Consistency) and (COCONS) (Converse Consistency) can be
used to provide an axiomatic characterization for Nash equilibria (briefly;
NE). We refer to that paper for motivation and references to related work.

* All correspondence to Fioravante Patrone,
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Further references, in which the above mentioned results have been extended,
are: Norde, Potters, Reijnierse and Vermeulen (1996), Peleg and Sudhdlter
(1994) and Shinotsuka (1994).

Looking for a characterization of e-NE, it was clear that the key point was
to replace (OPR) by (e-OPR). By (OPR), in Peleg and Tijs (1996) it was
named the requirement that for I1-person games the solution to be charac-
terized coincides with payoff maximization. Clearly, (e-OPR) should mean
that for 1-person games we look for e-maximizers instead of maximizers.

Being interested also in other kinds of approximate NE, like the (e-k)-NE
introduced in Lucchetti, Patrone and Tijs (1986), and studied also in Jurg and
Tijs (1993) and Norde and Potters (1995), we looked at a unified way to
achieve this kind of axiomatic characterizations.

The solution is simple: it is sufficient to introduce a (possibly personalized)
“choice rule” p for all of the potential players, and to substitute a conveniently
defined (£-OPR) for (OPR). In this way, we get the axiomatic character-
izations of NE and of the various kinds of approximate NE in which we were
interested: the distinction between the various solution concepts is simply
done by means of an appropriate choice of the choice rules p.

To be more detailed, by means of a set 2 of choice rules p we define 2-
NE. Then, #-NE is characterized by (#?-OPR), (CONS) and (COCONS).
Furthermore, it is proved that every solution satisfying (CONS) and (CO-
CONS) is in fact a #-NE, for an appropriate family £ of choice rules p: so,
#-NE appear to be all of the solutions which can be considered if we want to
respect consistency (direct and converse).

Also a characterization of #-NE is provided by means of (£-OPR),
(NEM) (non emptiness) and (CONS), along the lines of Peleg, Potters, and
Tijs (1996).

2, #-Nash equilibria

The main tool to define #-NE is the “choice rule” that was mentioned in the
introduction. Actually, it will be assumed that different players may have dif-
ferent choice rules: i.e., we are prepared to consider “personalized” choice
rules, which is reflected in the name of #-NE,

Definition 2.1. 4 choice rule is a pair (U, p), where:

— 9 is a nonempty set of real valued functions
—~ pisamap that to every u e %, u: A — R, associates a subset p(u) of A.

Remark 2.1: We (implicitly) assume that every function u e % is defined on a
nonempty set. We do not assume that p(u) #0. [

The definition says, in words, that the rule (%,p) “chooses™, for a given
function u, a subset of 4, the domain of u. Usually, we shall refer to the rule
simply by p. The set % will be called the domain of the rule.

For ease of reference, we shall use also the notation p(4,u), where 4
stands for the domain of the function u. Clearly superfluous, but useful to give
“a name” to the domain of u.

Before providing some examples, let us point out that we could have con-
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sidered choice rules based on preferences, instead of (utility) functions; how-
ever, for definiteness, we shall not pursue this point of view.

Example 2.1: In the cases (a)-(g), there is no particular restriction on the
choice of the domain % for p. For definiteness, one could think of % as being
U, the set of all real-valued functions defined on all finite sets

(a) p(A4,u) = argmax, u

(b) p(d,u) = 4 o

(c) p(A,u) = {ae A:u(a) > supyu—e}, where ¢ >0 is given, independent
of u

(d) p(A,u) = {a e A: u(a) = k}, where k € R is given, independent of u

(e) p(A,u) = {ae A:u(a) =supyu—eoru(a) =k}, where ¢ and k are as
before

(f) p(A,u) = {ae A: u(a) = max,u, if any; else u(a) > supAdu— ¢, if any;
else u(a) > k}, where ¢ and k are as before
Notice that, for ¢ > 0, in (e) and (f) we have p(4,u)#0 for every ue %
(also for ¥ #UF)

(g) p(4,u) = {a e A: u(a) is an even integer}

(h) Assume % = U:

p(A4,u) = {a e A: u(a) is equal to the mean value of u}
(i) Assume % is the set of all real valued functions defined on subsets of N:
p(A,u)={aeA:aiseven} [J

First of all, we shall assume that it is given a set /" (to be interpreted as
the set of potential players), which will be kept fixed throughout all of the
paper.

A game is G = (N, 4,u), where N is a finite subset of A, 4 =T],. vy 4,
where A; are nonempty sets, and u = (4;);.y, With u;: A = R,

We shall denote by % the class of all of such games.

Assume now that for each (player) i € 4 is given a choice rule (%;, p;): we
shall denote by 2 = (%, pi);. 4 the profile of these choice rules.

Consider a game G = (N, 4,u) € 4, this game is coherent with & if, for
every i € N and for every a € A4, the function % = u;(-,a-;): 4; — R belongs
to %;. We shall denote by %5 the class of all of such games.

Definition 2.2. Let be given G € Y, and let @ = (G;);. y € A. We shall say that
aisa P-NE if a; € p;(A;,0if) for every i e N.

Example 2.2: Let G be a game. If the class # is conveniently chosen, then £-
NE corresponding to the case in which all of the players use the choice rule
described in (a) of Example 2.1 are just the Nash equilibria, while the case in
which all use the rule (¢) gives rise to e-NE. [

Example 2.3: Let G be a semi-infinite bimatrix game. Assume that % is chosen
as in the previous example. Then, the definition of weakly determined game,
given in Lucchetti, Patrone and Tijs (1986), can be given using the rules de-
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scribed in cases (c) and (d) of Example 2.1. The results established in Jurg and
Tijs (1993) and Norde and Potters (1995) can be rephrased saying that the
games considered there have a #-NE for every ¢ > 0 and k € R, where:

— player I uses the rule given in (a)
— player IT uses the rule given in (e) O

Example 2.4: In the game given by the following table, (7, L) is the unique 2-
NE (we consider only pure strategies), if both players adopt the rule described
in Example 2.1, (g).

NI | L R

T | 0,-2) | 1)

O

Notice that in Example 2.3 the players use different rules. Another obvious
instance of this is the case of a saddle point: it is a #-NE for a game where
both players look at the same payoff function, but player I maximizes and
player IT minimizes.

Let us conclude with a warning. We did not put any restriction on the
choice rules p;. For this reason, one could have obtained different strategy
profiles as #-NE simply defining them in a slightly different way: e.g., using
i = ] 4,x(7 > instead of the . To avoid such a kind of troubles, one can
add the requirement that the choice rules satisfy the following ‘“‘compatibility
condition™:

given (4,u) and (B,v), s.t. v, ve % and A4, B are their respective
(CC) | domains, assume that there is a bijection f: 4 — B s.t. vo f=u:

then, p(v) = f{p(w)).
3. Consistency and converse consistency
Let G=(N,(4);cp, W)iey) €% be a game. Let SS N, S#0 and

%= (%);cy € A. We shall say that G5 = (S, (4));. 5, (4F),c5) is the reduced
game of G, w.r.t. § and X, if uf: As = [[;.s 4; — R is defined as follows:

10 (vs) = w(ys, Xan\s)

Given a class 4 of games, we shall say that ¢ is a solution (on %) if, for every
G=(N,(A)jen: (Wi)ien) €%, itis §(G) < A.

Definition 3.1. Let 4 be a class of games. We shall say that % is closed under
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reduction if the following holds:

for every G = (N, (A1) e, (w)e) € @, for every € A and

(CLOS) for every S € N, §#0, we have G5* ¢ 9.

Assume now that a solution ¢ on ¢ is given. If the condition above is sat-
isfied for every % € #(G), instead of every X € A, we shall say that & is closed
under reduction w.r.t. ¢ and we shall denote it by (CLOS4).

Definition 3.2. Let be given a class 4 of games and a solution ¢ (on G ).
We shall say that ¢ satisfies consistency if:

Jor every Ge 9, for every X € A and for every SS N,
S#£0 s.2. G e ¥

(CONS) ]
[if %€ $(G), then %5 € $(G5F)).

We say that a solution ¢, defined on a class 4 of games satisfying (CLOS),
satisfies converse consistency if:

for every G € %, and for every X e A: i
[if, for every S s.t. S N, S ¢ {0, N}, %5 € $(G>%),
then % € ¢(@)).

(COCONS)

Let be given a class % = %». On such classes of games, we shall say
that a solution ¢ satisfies personalized one-person rationality if the following
holds:

for every i € A,
and for every game G = ({i}, 4,u) €  we have that

¢(G) =Pi(A»“)

(#-OPR)

For the result we want to prove, we need the following:

Lemma 3.1. Let % = %5 be a fumily of games satisfying (CLOS). Let ¢,, ¢,
be solutions on 4 s.1. ¢, satisfies (P-OPR) and (CONS), while ¢, satisfies
(P-OPR) and (COCONS). Then, ¢, & ¢,

Proof: By induction on the number of players. For card(N) = 1, it is guaran-
teed by (2-OPR); we have even equality of the sets.

Assume that ¢,(H) < ¢,(H) for every game H s.t. card(N(H)) < k. We
shall prove that for every game G s.t. card(N(G))=k+1 we have
$1(G) = 6:(G). .

Let X 4,(G). By (CLOS), G5 e ¥ for every S<N. By (CONS),
%s € ¢,(GS%). So, by the induction hypothesis, %5 € ¢, (G>%) € ¢,(G5¥). But
{COCONS) guarantees that X € ¢,(G). O
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We can now state

Theorem 3.1. Let 4 = %5 be a family of games satisfying (CLOS). Then, a
solution ¢ on % is the P-NE if and only if ¢ satisfies (#-OPR), (CONS) and
(COCONS).

Proof: Tt is straightforward to verify that #-NE satisfies (#-OPR), (CONS)
and (COCONS). Notice that, to achieve (CONS) and (COCONS), condition
(CLOS) and the fact that ¢ < %, guarantee that the appropriate choice rules
can be applied.

Since 2-NE satisfies all of the three properties, Lemma 3.1 gives us both
¢ = #-NE and #-NE < ¢. Hence, the proof. [

The proofs of Lemma 3.1 and of Theorem 3.1 show that (#-OPR) lies, so
to say, in the background. It has some kind of parametric role. In other
words, everything is pointing to the fact that a solution satisfying (CONS) and
(COCONS) should be some kind of Z-NE.

Actually, the following result is an instance of the principle sketched
above. It is stated in a special class to avoid too many technical details.

Theorem 3.2, Let ¥ < 9 be the class of all finite games. Let ¢ be a solution on
4, satisfying (CONS) and (COCONS).

Then ¢ determines, by one-person games, a unique family of choice rules
(Pi)icur> €ach of whom is defined on Up. Moreover, ¢ is the P-NE determined
by these choice rules.

Proof: Let ie ¥, A be a finite set and let u: 4 — R. Define p;(4,u) =
#({i}A,0). | - |
By definition of p;, clearly ¢ satisfies (-OPR) w.r.t. this family of choice
rules.
Since by assumption ¢ satisfies also (CONS) and (COCONS), thanks to
Theorem 3.1 we have that ¢ = #-NE. []

Let us notice at this point that, since perfect NE do not satisfy (CONS),
they cannot be #-NE. The same is true for other refinements of NE which do
not satisfy (CONS): see Example 2.4 of Peleg and Tijs (1996).

One word on the independence of the properties (2°-OPR), (CONS) and
(COCONS). Again, examples 2.16 and 2.17 from Peleg and Tijs (1996) show
that neither (CONS) nor (COCONS) are implied by the other two. For what
concerns (#-OPR), the previous Theorem gives an answer. Let us notice that
for the solution ¢ provided in Peleg and Tijs to show that (OPR) is not implied
by (CONS) and (COCONS), we have actually that ¢ = 2-NE, for p given as
in Example 2.1 (b).

Referring to Peleg and Tijs (1996) once more, we point out that it is pos-
sible to extend to this setting also their results on the extensive form games: in
particular, defining 2-SPE (that is, #-subgame perfect equilibrium).

We end this section providing an example of a solution which is not a
#-NE. This solution could be seen as a refinement of the (e-k)-NE which
correspond to the #-NE induced by the choice rule described in Example 2.1
(e). In this way it is shown that the phenomenon by which refinements of NE
do not satisfy (CONS), extends also to “refinements” of #-NE.
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Example 3.1: Let be given 6>0 and keN, k>1. Given G=
(N> (Ai)ieNy (”i),'EN), we define

{a:foreveryieN,

1;(@) = supy, wi{a;, d_;) — &} if nonempty,
{a:for every i e N,

(ui(@) = supa, wi(as,a_;) — € or u;(a) = k)} otherwise.

#(G) =

We provide a counterexample to show that ¢ does not satisfy (CONS).

Let N = {I,II,Ill}; A= {T,B} x N x N; us(x, y,2) =
{1 ifx=Tandy=1 . . _ 1 ifx=T wn (e 2) = 2.

0 otherwise ’ e y ifx=R 1

Clearly x = (B, k, k) is in ¢(G) (notice that the payoff of III prevents the
existence of &-NE). ) )

However, for the reduced game G5¥, with § = {I,IT}, (B,k) ¢ ¢(G>),
because G5* has a NE (the point (T, 1)). [

4. The ancestor property

Given a class % of games and a solution ¢ on ¥, Peleg, Potters and Tijs (1996)
have introduced a directed graph, denoted by Graph(%, ¢), whose vertices are
couples (G,x) with G & ¢ and x € ¢(G).

Two nodes (H, y) and (X, z) in the graph are connected if K is a reduced
game of H, given y. That is:

N(K) = N(H),N(K) ¢ {0, N(H)}
K = gVEW
Z=YfN(K)

Also the following property was introduced in Peleg, Potters and Tijs
(1996).

Definition 4.1. The graph Graph(%, $) has the ancestor property if:

(4P) Jor every (G, x) € Graph (9, ¢), there is a game H € & s.t. for
every y € ¢(H) the vertex (H,y) is connected with (G, x).

It is easy to notice that Theorem 1 of Peleg, Potters and Tijs (1996) holds
also if we drop any reference to (OPR). That is, we can prove the following
theorem. Before that, a piece of notation: if a solution ¢ on a class ¢ is non-
empty valued, we shall say that ¢ satisfies (NEM).

Theorem 4.1. Let 4 be a class of games, and let ¢ be a solution on %, satisfying
(NEM) and (CONS).

If ¢ is a solution on % which satisfies (AP), then ¢ is minimal (on 9, w.r.L.
inclusion) in the class of solutions on 4 which satisfy (NEM) and ( CONS).
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Proof: Let ¢ be given, which satisfies (NEM) and (CONS), s.t. § = 4. We
shall prove that ¢ = ¢.

Let Ge¥% and x e ¢(G). Consider H, whose existence is guaranteed
by (AP). We have, for (NEM), that #(H)#0. So, let je ¢(H). Now
Fle) € B(HN(@F) by (CONS) applied to . But j & §(H), hence j € 4(H).
S0, Jln(g) = x by (AP). _ _ _

Hence, we have proved that x e g(HV(9:7), but HV O = G by the defi-
nition of Graph(%,¢). O

Now, we can prove the following result, which extends to #-NE the con-
siderations made by Peleg, Potters and Tijs (1996) after their Theorem 1.

Theorem 4.2. Let 4 = 9» be a class of games s.t. P-NE satisfies (NEM ) and
(AP) on &.

Let ¢ be a solution on 4 that satisfies (NEM), (CONS) and (#-OPR). If
the class % satisfies (CLOS ¢), then ¢ = P-NE.

Proof: Since ¢ satisfies (2-0OPR) and (CONS), while 2-NE satisfies (#-OPR)
and (COCONS), we have that ¢ = #-NE by Lemma 3.1 (notice that in the
proof is actually needed only (CLOS#), not (CLOS})).

But #-NE on ¢ satisfies (CONS) and (NEM). Since we assumed also that
2-NE satisfies (AP) on ¢, thanks to Theorem 4.1 we can conclude that #-NE
is minimal on ¢ w.r.t. (NEM) and (CONS). So, Z-NE=¢. [

We shall now see how the same idea used in the proof of Theorem 3 of
Peleg, Potters and Tijs (1996) can be used to characterize &-NE, in a way
similar to their characterization for NE. We shall assume that every player in
A" has its choice rule with domain %r. We shall, furthermore, assume that all
of these rules satisfy (CC). We need a further restriction on these rules.

Definition 4.2. A choice rule (%,p) is said to separate points if:

(S) there exist B, y € R s.t. for every function u: 2 — R(ue %) s.t.
u(@Q) = {B,v}, it is p(Q,u) = {w € Q: u(w) =y}

The idea behind this definition is clear. Let us add that (S) is not very
useful without (CC). Referring to Example 2.1, notice that on %y rules (a),
(c),(d), (e), (f) and (g) satisfy (S), while the rules (b) and (h) do not. All of
them satisfy (CC). For rule (c), when ¢ > 0, it is sufficient to take f = 0 and
y = 2¢. Notice that the functions u considered in (S) fail to be continnous on
“nice” topological spaces (e.g., an interval of the reals), so that this road is
barred if one is interested in extending the result that we shall give to a
context like those studied in Peleg and Sudhélter (1994) or in Norde, Potters,
Reijnierse and Vermeulen (1996).

Let us prove our result:

Theorem 4.3. Let be given an infinite set N of potential players. Assume that
Jor every i e & we are given a choice rule (%, p;) s.t. U = %r and satisfying
(CC) and (S).
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Let 9 = 45;%” “NE be the class of all finite games, with players in N, which have
P-NE.
Then, -NE satisfies (AP) on %.

Proof: Let (G,%) € 9. We shall essentially repeat the construction in Peleg,
Potters and Tijs (1996) of a game H to prove (AP).

We add one player to N(G). Take a player je ./ st j¢N. So,
N(H) = N(G)uU{j}. The strategy spaces of H are: for i € N(G),4;is as in G.
For player j, A4; = {T, B}.

The payoff functions are defined as follows:

for player j:
Uj(f, B) =%
Uj(x,B) =, forxe A s.t. x#X

Ui(x,T) =7, forxe 4 st. x#X

for player i

Ui(x, B) = ui(x)
Ui(x, T) = B; if xi#%
Ulx, T) = y; if x; = X;

It can be verified that (X, B) is the unigue #-NE for H (the arguments are
as in Peleg, Potters and Tijs (19962_). So, H e 4. 1t is straightforward to see
that (%, B) y(g = % and that HNGWxB) = G, O

Corollary 4.1. Let A be infinite. Consider the profile 2, that is obtained, given
g > 0, when every i € A uses the choice rule of Example 2.1 (c) (that is: we are
looking at e-NE).

Let 9 = %%NE be the class of all finite games, with players in A, which
have %-NE.

Let ¢ be a solution on % that satisfies (NEM ), (%-OPR), (CLOS$) and
(CONS). Then, ¢ = #-NE.

The proof of this corollary is a simple adaptation of the proof of Theorem
3 in Peleg, Potters and Tijs (1996), taking into account Theorems 4.3 and 4.2,
and the fact that the choice rule used in & satisfies (S) and (CC), as can easily
be checked.
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