
1

Applying Conceptual Graph Theory to the
User-Driven Specification of Network

Information Systems1

Aldo de Moor

Infolab, Tilburg University, P.O.Box 90153, 5000 LE Tilburg, The Netherlands,
e-mail: ademoor@kub.nl

Abstract. Users need to be strongly involved in the specification
process of network information systems. Characteristics of user-driven
specification are described, and process composition is proposed as a
feasible approach. The knowledge representation framework used in the
RENISYS specification method is introduced, using conceptual graph theory
as its underlying formalism. The role of ontological and normative
knowledge is explained. The presented theory is used to show how
legitimate process definitions can be generated by the users. The
facilitation of user-driven process composition is discussed.

1 Introduction

Research networks are goal-oriented networks of professionals that focus on
supporting certain stages of the research process, such as the planning and conduct of
research activities and the dissemination and implementation of the results.

One characteristic of such networks is that their activities are often highly
complex as well as innovative in nature, implying that their work processes need to
be continuously remodelled, and their supporting network information system
redesigned. A second trait is that research networks, which are often Internet-based,
make use of an ever increasing set of standard information tools, rather than custom-
designed programs, to implement their information systems. These tools enable a
fixed set of information and communication processes, which in turn allow
participants to carry out their network activities. Another important feature is that for
reasons such as the relative lack of hierarchical organization of the participants, and
the participants themselves being the task-experts, user-driven network information
system development is essential [1]. This means that the participants are responsible
for determining the exact roles that a suite of tools plays in the enabling of their work
processes.

In this paper, we aim to first delve in more detail into some key aspects of
network information system development. More particularly we focus on how users
should be involved in the system specification process through process composition.
We introduce the knowledge representation framework used in a specification method
for research network information systems currently under development (RENISYS),
using conceptual graphs as the underlying formalism. The importance of ontologies
as the conceptual foundation of specification knowledge is highlighted, and some
operations to change ontological type definitions are presented. Based on the
ontologies, sets of norms can be defined, which regulate user-behaviour both on the
operational and the compositional level. By means of an example adapted from a
concrete research network case we illustrate how legitimate process definitions can be

1 This paper has been presented at the Fifth International Conference on Conceptual
Structures - Fulfilling Peirce's Dream, University of Washington, Seattle, August 4-8,
1997. The conference proceedings have been published in the Springer-Verlag Lecture
Notes in Artificial Intelligence series, No.1257

2

generated. Subsequently, we briefly discuss how the previously developed theory can
be applied to facilitate more active user-driven process composition.

2 Involving the Users in the Information System
Development Process

2 . 1 What Is a Network Information System?

The network information system (NIS) can be described from an analysis as well as a
(high-level) design perspective. From the analysis point of view, the NIS is seen as
the set of meaningfully combined and configured information and communication
processes which are necessary to support and coordinate the activities of the network
participants in their various roles [1]. In the analysis view we thus focus on how
meaningful process requirement definitions can be made. However, we do not take
into account the roles that the available information tools play in the implementation
of the required process functionality. These roles are determined during design, in
which the set of required information and communication processes is mapped to the
available enabling information tools. When looking at the information system in this
way, we consider each tool to afford a number of generic information and
communication processes, which can be used in a particular network to enable specific
work processes.

2 . 2 Characteristics of User-Driven System Specification

User-driven NIS development is based on a paradigm very different from the one
underlying traditional information systems development approaches, such as ISAC or
SDM (Fig.1). Traditional methods are typically based on the waterfall paradigm.
These methods are used in large scale projects, in which a group of external experts
(represented in Fig.1 by the small pencils) analyzes the organization according to a
pre-defined series of steps. Users play a rather passive role, which is often limited to
being interviewed by the analysts. At a certain moment in time, the latter produce a
blueprint of the information system, which is approved of by the users, and then
implemented. However, this implementation is static and the functionality provided
often rapidly becomes obsolete, due to quickly changing user requirements. When the
mismatch between required and implemented functionality becomes too large, the
whole process has to start all over again. An excellent analysis of the many problems
encountered in this kind of large project-based software development is given by
Brooks in his famous book [2].

Information system development for research networks takes place very differently.
First of all, most of it is done by the users on their own. Network participants
themselves discuss what activities they should carry out, and determine which
information tools to use to accomplish their goals. Furthermore, as has been
recognized for quite some time already, such user-driven system development should
be based on an evolutionary approach [3]. In contrast with the waterfall-based
approaches, the required and implemented functionality gradually evolves, rather than
expands with leaps and bounds. Characteristically, a few researchers meet and decide to

3

Network Information System Development

Traditional Information System Development

NIS

fu
n

ct
io

n
al

it
y

IS V.1 IS V.2 IS V.3 IS V.4

t

fu
n

ct
io

n
al

it
y

t

Fig. 1. Network Information System Development:
Evolution Instead of Revolution

form a small network, supported by, for example, a simple mailing list in order to
freely exchange various kinds of information. Such a network can expand rapidly,
however, both in organizational and task complexity, requiring ever more
sophisticated information technological support. Another characteristic is that there is
not a single, bird's eye view on the universe of discourse, which the external analysts
of the waterfall methods (should) have. In user-driven development, there are rather
multiple ants' eyes views, each user in general only being knowledgeable about, and
interested in, the small part of the workflow she is involved in.

2 . 3 Process Composition

When classifying a NIS according to its purpose, it can be considered an ad hoc
workflow management system. A workflow management system allows for the
design, execution and management of work processes [4]. Ad hoc means that such a
system supports creative knowledge activities. These activities are notoriously
difficult to model; the workflow support provided can therefore at best provide some
sort of control to ensure that tasks, responsibilities, etc. are delivered [5]. However,
current workflow management modelling methods (input-process-output as well as
speech act-based methods), and user-oriented development approaches (e.g.
prototyping, radically tailorable tools), are not sufficiently capable of supporting such
user-driven system specification [6,7].

A more promising approach seems to be the one taken by Fitzpatrick and Welsh
to facilitate so-called process composition. A core concept they introduce is that of
process space. This is `a semantically rich and relatively well defined space, both
physically and conceptually, which constrains and bounds the very possibilities of
work' [8]. Through process composition, participants can determine the (maximally)
required information system functionality by describing their work processes, the total

4

information system process space being equal to the sum of the individually
composed processes.

Although some initial attempts have been made to formalise process composition
support (especially by [8]), there is still a lot of research needed before it can be
effectively used for network information system development.

The research agenda should include at least the following issues:
(1) How to adequately represent specification knowledge?
(2) How to ensure that only legitimate process definitions are made?
(3) How to foster more active user involvement in the specification process?
(4) How to match legitimate process definitions with the functionality enabled by the
available suite of information tools?

2 . 4 The RENISYS Specification Method

The RENISYS method (REsearch Network I nformation SYstem Specification
method) is currently being developed to provide a concrete specification approach and
tool for network participants to compose their own network information systems. The
scope of the method and methodological design criteria were discussed in [1,6]. A
model of the user-driven development process was described in [7]. In the model, we
subdivide this process into three main subprocesses: the specification,
implementation, and use of the network information system. Furthermore, we strictly
separate specification and implementation, while on the other hand we strongly
connect the specification and use process. For the method to be successful, it will at
least need to incorporate answers to the points raised in the above-mentioned research
agenda. For lack of space, in this paper, we will only focus on providing an initial
answer to the first three issues. It seems natural to address these questions first, since
process requirements must be defined before they can be assigned to (enabling) tools
in the system design, which the final issue is about.

2 . 5 Applying Conceptual Graph Theory

A user needs to be involved in a specification discourse which makes use of a
restricted form of natural language. The language must be rich enough to allow the
efficient expression of complex specifications. At the same time it must be
sufficiently formal and constrained to allow meaningful specification inferences to be
made for the method to adequately facilitate process composition. Conceptual graph
theory is more than a syntactic variant of first-order logic because it can enforce
conceptual definitions of concepts and relations in terms of natural language-related
primitives [9]. The formal structures and operations of the theory have been shown to
be useful for representing and processing terminological knowledge in concrete
applications, see e.g. [10]. This natural language-focus is an important reason for
choosing conceptual graph theory as the knowledge formalism of choice in
RENISYS. We will illustrate its potential by giving some preliminary solutions to
the research questions posed. In future research we hope to expand the application of
CG theory in the method; the purpose of this paper is only to generate some ideas and
discussion about the relevance of the theory to this particular kind of application.

3 Knowledge Representation in RENISYS

In RENISYS, the network information system is modelled from three different
perspectives, resulting in different domains. The domains are combined in a reference

5

framework. The framework is used to generate and store specification knowledge, of
which two important kinds are ontological and normative knowledge.

3 . 1 The Reference Framework

The reference framework consists of three, interconnected domains: the problem
domain, the human network, and the information system. In the problem domain, the
universe of discourse is interpreted from a task perspective (what are the goals and
activities?), in the human network it is described from the organizational point of
view (what are the participant interaction processes allowed by the organizational
positions?). Together, these domains form the usage context, which describes the
determinants of the (generic) information and communication processes. These
processes, having been assigned to the set of available information tools, constitute
the information system. Directed mappings connect the entities from the different
domains (for more details on the framework, we refer the interested reader to [7,11].

In RENISYS, we distinguish three types of knowledge. Ontologies contain
descriptions of the terminology used in the different domains. Norms describe the
desired behaviour of the various actors in the network. State knowledge can be used to
describe the actual or potential behaviour of actors. In RENISYS, it plays an
especially important role as a trigger of specification processes, when users use state
knowledge to describe the actual situation they are in, and the workflow problems
they experience. As the focus of this paper is on the specification process itself, rather
than on how exactly it is triggered, and since the correct expression of state knowledge
demands an ontological and normative knowledge basis, in the next sections we will
study the format and use of ontological and normative knowledge only. In our
treatment of these knowledge categories we have been influenced by the semiotic
theory of Stamper [12], who takes a strong subjectivist instead of the more regular
objectivist stance on the reality to be modelled. An extensive discussion on the
pressing need for, and feasibility of such subjectivist information system development
methods can be found in [13].

3 . 2 Ontologies

An ontology is an explicit specification of a conceptualization, which itself is an
abstract, simplified view of the world that needs to be represented for some purpose
[14]. In our case, this purpose is network information system specification. An
ontology can practically be used to organize the storage of information and access to
knowledge [15], which for us concerns specification knowledge. Thus, an ontology
forms only part of a knowledge base, as it contains a vocabulary useful for describing
a domain rather than knowledge about the state of the domain itself [14]. In this way,
it is an important instrument in supporting the correct reuse and extension of already
generated, complex knowledge structures.

The basis for the ontologies is the concept type hierarchy. Each concept used in
any ontological, norm, or state definition must be in this type hierarchy. However,
not all concepts that are included in the type hierarchy need to be defined by a
differentia as well. For relation types we use a, slightly modified, fixed subset of the
case relations used by Sowa [16]. For ontological purposes, type definitions as
described in CG theory are useful. We use type definitions instead of schemas because
we want ontological definitions only to contain necessarily, not just possibly existing
knowledge. In this way, type definitions provide a clear canonical core for norm and
state knowledge, and are useful in the enforcement of selectional constraints on what
are considered to be meaningful specifications.

6

Sources of Type Definitions

In RENISYS, two main sources of type definitions exist: a stable set of theory-
grounded definitions, and an evolving set of user-specified definitions.

Theories relevant to the analysis and design of research network information
systems provide axiomatic primitives. Some of these primitives are useful for the
natural expression of requirements by participants, some are relevant to the design of
the network information system, a third category is used to describe the reference
framework that provides the connection between these two sets of concepts. In our
approach we draw from several such theories, notably language action theory (as
introduced in [17] and concrete methodological approaches for organizational
communication theory (e.g. the Dynamic Essential Modelling of Organizations
method [18]. However, these provide only an initial set of specification entities,
which needs to be adapted by the users to match their specific work processes. Our
basic ontological goal therefore is not to come up with the definition of the
determinants of the information system in a (research network) usage context. Rather,
the basic, theory-grounded set of primitives forms a customizable conceptual
foundation that users can tailor to their unique, evolving requirements.

The second, more interesting source of ontological definitions is the network
participant herself. Users must be provided with the mechanisms to legitimately
customize ontological constructs. Developing facilities which assist users in
efficiently modelling their own worlds may furthermore help to considerably increase
the limited intellectual capacity available for ontology construction. The pioneering,
small groups of experts who currently try to do this cannot handle the sheer volume
of the tasks involved [9]; user-defined ontologies can be used directly, or at least form
an important input, in larger scale construction efforts.

Type definition operations form the basic tool set to implement such ontological
construction mechanisms.

Type Definition Operations

We distinguish three kinds of type definition operations which prescribe how users
can carry out such ontology customizations. These operations are: the creation,
modification, and termination of type definitions.

• Type Creation

In the creation of a type definition, both the type label and its differentia (if needed) are
generated. The type must be a subtype of an existing type, the differentia a
specialization of the differentia of the supertype. This operation can be implemented
using the standard form of type definition as described in [16].

Type creation can serve two uses: the specialization of a concept, or the
generalization of a set of concepts. If a concept is to be specialized, no further action
is required. If a set of concepts is generalized, all links to the original parent of each
concept must be reassigned to the newly created supertype.

 Example: The Creation of a Group_Report_Editor Type

Pre:
type EDITOR(x) is

[ACTOR:*x] <- (agnt) <- [CONTROL] -> (obj) -> [EDIT].

Post:
type EDITOR(x) is

[ACTOR:*x] <- (agnt) <- [CONTROL] -> (obj) -> [EDIT].

7

type GROUP_REPORT_EDITOR(x) is
[EDITOR:*x] <- (agnt) <- [EXECUTE] -> (obj) -> [EDIT] -> (rslt) -> [GROUP_REPORT].

The example given is one of type creation for concept specialization purposes. Let us
say a user intends to create a group report editor type. A group report editor is an
editor who can perform the actual editing of a group report. An editor type has already
been defined previously. In graph terms the operation could be represented as above
(an execution is a subtype of a control process; items that have changed after the
operation have been underlined).

• Type Modification

During the modification of a type, the type label is kept, only the differentia is
changed. All (type, norm, and state) definitions including the modified type remain the
same, although the role of this concept in these definitions changes due to the type
modification.

 Example: The Modification of a Group_Report_Editor Type

Pre:
type GROUP_REPORT_EDITOR(x) is

[EDITOR:*x] <- (agnt) <- [EXECUTE] -> (obj) -> [EDIT] -> (rslt) -> [GROUP_REPORT].

type PUBLISH_GROUP_REPORT(x) is
[TRANSFORMATION:*x] -

(obj) <- [EXECUTE] -> (agnt) -> [GROUP_REPORT_EDITOR]
(obj) <- [EVALUATE] -> (agnt) -> [CLIENT]
(matr) -> [GROUP_REPORT]
(rslt) -> [PUBLISHED_GROUP_REPORT].

Post:
type GROUP_REPORT_EDITOR(x) is

[EDITOR:*x] <- (agnt) <- [EVALUATE] -> (obj) -> [EDIT] -> (rslt) -> [GROUP_REPORT].

type PUBLISH_GROUP_REPORT(x) is
[TRANSFORMATION:*x] -

(obj) <- [EXECUTE] -> (agnt) -> [GROUP_REPORT_EDITOR]
(obj) <- [EVALUATE] -> (agnt) -> [CLIENT]
(matr) -> [GROUP_REPORT]
(rslt) -> [PUBLISHED_GROUP_REPORT].

In this example, the meaning of the concept type 'group report editor' is changed. For
example, the actor who has the modification authority decides that no longer is the
editor somebody who does the actual execution of the editing process, but the editor
becomes the one responsible for the final assessment of the produced report. The
actual execution can be distributed among a number of reviewers instead. This is a
real-life situation often experienced in growing research networks. As the example
shows, the differentia of 'group report editor' is changed, but the definition of 'publish
group report', in which a group report editor plays the role of executor, remains
identical. Changed type definitions thus have global implications, while at the same
time responsibilities for these definitional changes are clearly divided among the
network participants with the proper definitional authorities.

• Type Termination

When a type is terminated, both the type label and the type differentia are removed. In
this case, all occurrences of the old type in any ontological, norm, or state definition

8

must be replaced with for example the supertype or one of its subtypes, although
other termination scenarios are conceivable as well.

 Example: The Termination of a Group_Report_Editor Type

Pre:
type GROUP_REPORT_EDITOR(x) is

[EDITOR:*x] <- (agnt) <- [EVALUATE] -> (obj) -> [EDIT] -> (rslt) -> [GROUP_REPORT].

type PUBLISH_GROUP_REPORT(x) is
[TRANSFORMATION:*x] -

(obj) <- [EXECUTE] -> (agnt) -> [GROUP_REPORT_EDITOR]
(obj) <- [EVALUATE] -> (agnt) -> [CLIENT]
(matr) -> [GROUP_REPORT]
(rslt) -> [PUBLISHED_GROUP_REPORT].

Post:
type GROUP_REPORT_EDITOR(x): removed

type PUBLISH_GROUP_REPORT(x) is
[TRANSFORMATION:*x] -

(obj) <- [EXECUTE] -> (agnt) -> [EDITOR]
(obj) <- [EVALUATE] -> (agnt) -> [CLIENT]
(matr) -> [GROUP_REPORT]
(rslt) -> [PUBLISHED_GROUP_REPORT].

In the example, the ontological definition of 'group report editor' is removed, for
example because of a reorganization in the network. RENISYS must now find all
definitions in which the concept to be removed occurs. Note that, like in the other
type definition operations, the replacement of concepts in definitions with other
concepts is not trivial. The owners of these concept definitions may need to be
consulted, or at least notified that other actors plan to change the way in which 'their
concept' is being used. Finding out what kind of protocols best suit user-driven
specification is an important objective of our research. We have recently started
modeling such protocols along the line of speech-act based discourse protocols, as
described in [19].

3 . 3 Norms

Each network participant plays several actor roles. An actor is an interpreting entity
capable of playing process control roles. The actor states his requirements in terms of
the operational actions he is involved in. An action is a combination of a control
process (initiation, execution, evaluation) and a transformation (a process in which a
domain object, such as a paper, is generated). To produce specifications, actors can
also make compositions. These are combinations of control and definitional
processes, such as the creation of a type definition.

The dual control/controlled process approach allows users on the one hand to
define workflows and specification processes in terms of concrete deliverables, on the
other hand to clearly define the responsibilities for these processes.

Responsibilities have to do with the rules that the network participants agree on,
which specify their desired (non)behaviour, and have a normative character. However,
to think of norms only as responsibilities produces specifications that are too coarse
to properly model specification changes. Norms are therefore subdivided according to
the role they play in restricting or affording behaviour. This results in the following
categories: privileges, responsibilities, and prohibitions. Privileges comprise those
actions and compositions that an actor is permitted to carry out. If an actor is obliged

9

to carry out an action when appropriately triggered (e.g. by taking part in a
workflow), the actor has a responsibility. Thus, responsibilities consist of mandatory
actions and compositions. All responsibilities should be privileges as well, if not,
respecification of norms is necessary. Prohibitions are actions and compositions that
an actor is not permitted to carry out.

In order to define the required functionality of an information system, it is
important to know what actions specific actors actually are - or are not - allowed to
carry out. This knowledge we define in action norms, which of course must be
expressed in terms of the concepts that have been constructed using the type definition
operations described in the previous section. Besides action norms, in user-driven
system specification we also have a need for compositional norms. These norms
indicate which actors in the network can make what kind of knowledge definitions
about the network.

In CG terms, the basic representation of action norms is:

[ACTOR] <- (agnt) <- [CONTROL] -> (obj) -> [TRANSFORMATION].

An action norm thus shows which control rights an actor has over which
(operational) transformations. Compositional norms are similarly represented as:

[ACTOR] <- (agnt) <- [CONTROL] -> (obj) - [DEFINE] -> (rslt) -> [DEFINITION].

A definitional process is here either a creation, modification, or termination of a
type, norm, or state definition.

4 Generating Legitimate Process Definitions

An important issue in process composition is how to determine what are legitimate
knowledge definitions. Who must be involved in the evolution of norms and types?
This is often very unclear in the non-hierarchical kind of professional networks which
are our object of interest, as decision-making authority is role, instead of position-
bound.

A legitimate definitional change is one of which (1) the canonicity, and (2) the
authorization have been checked, thus combining meaningfulness with validity. This
helps to ensure as much as possible a model of the network and its information
system that represents the interests of, and is acceptable to all network participants.

4 . 1 Case: a Research Group Writing a Group Report

We will give a concrete illustration of the previously developed theory by producing a
legitimate process definition. The example concerns the definition of a group report
editor type, and is based on a real case. The B.C. Forests and Forestry Project Group
(BCFOR) is an Internet-mediated group aiming to do 'public research' on deforestation
in British Columbia, Canada2. Like most other such groups, it initially merely
allowed unstructured discussion through a mailing list.

However, after a while, the group decided to create a structured group report on a
specific discussion topic. More explicit workflows now needed to be defined, in order
to allow for both an adequate division of tasks and more tailored information
technological support. This specification process turned out to be very hard without a
proper conceptual framework to manage the system evolution [7]. We expect an

2BCFOR is part of the Global Research Network on Sustainable Development. More
information is available at: http://infolabwww.kub.nl:2080/grnsd/proj/gp-bcfor/

10

approach as described in this paper to allow participants in a network to better manage
the complexities of network information system evolution.

4 . 2 The Problem: Creating a Group Report Editor Type

In this section, we will illustrate how legitimate (canonical and authorized) process
definitions can be generated. In our current approach, the various knowledge categories
are represented in simple graphs (only using complex referents to store definition
graphs), as we expect this to considerably reduce the complexity of knowledge
processing operations. In the implementation of the tool, the different knowledge
categories could for example be distinguished by storing them in separate ontological
and norm knowledge bases. In the example, the boxed comments indicate the status of
the graphs (proposed type definition, accepted norm, etc.).

Example

At t=0, an editor(<actor), edit (<transformation), and paper (<object) type are
distinguished in the type hierarchy, all in the problem domain. The editor and edit
types also have a definition; the paper type (still) goes undefined:

 Category: Type Definition, Modality: Accepted
type EDITOR(x) is

[ACTOR:*x] <- (agnt) <- [CONTROL] -> (obj) -> [EDIT].

type EDIT(x) is
[TRANSFORMATION:*x] -> (rslt) -> [PAPER].

When the group decides to write a group report, it is agreed that a special kind of
editor, the group report editor, is required. The group does have the authority to create
a subtype of editor, as the following compositional norm was already previously
defined:

 Category: Permitted Composition, Modality: Accepted
[GROUP] <- (agnt) <- [CONTROL] -> (obj) -> [CREATE] -> (rslt) -> [TYPE:[EDITOR]].

After some group discussion, based on the existing definition of editor, it is
decided that a necessary condition for an editor to be a group report editor is that the
edit process she is responsible for should result in the group report as an output.
Thus, the proposed group report editor definition becomes:

 Category: Type Definition, Modality: Proposed
type GROUP_REPORT_EDITOR(x) is

[EDITOR:*x] <- (agnt) <- [CONTROL] -> (obj) -> [EDIT] -> (rslt) -> [GROUP_REPORT].

However, although the group has the authority to create this definition, the
definition is not legitimate, because it is not canonical. The new concept type 'group
report', which forms part of the definition, has not even been included in the type
hierarchy. The method checks if there is an actor who has the default authority for
doing this inclusion by (minimally) expanding the edit concept node in the editor
definition (using the existing edit type definition), which results in the following
graph:

 Category: Type Definition, Modality: Derived (by method)
type GROUP_REPORT_EDITOR(x) is

[EDITOR:*x] <- (agnt) <- [CONTROL] -> (obj) -> [EDIT] -> (rslt) -> [PAPER].

11

As (in RENISYS) a transformation can only result in a single type of output
object, the method knows that a group report must be a subtype of paper for the
proposed definition to be canonical. Subsequently, the method needs to identify the
proper authority for a paper type creation operation. It does this by projecting the
following query graph on its set of existing compositional norm graphs:

 Category: Query, Modality: Derived (by method)
[ACTOR] <- (agnt) <- [CONTROL] -> (obj) -> [CREATE] -> (rslt) -> [TYPE:[PAPER]].

Let us assume that this projection results in just one permitted composition,
namely:

 Category: Permitted Composition, Modality: Accepted
[EDITOR] <- (agnt) <- [CONTROL] -> (obj) -> [CREATE] -> (rslt) -> [TYPE:[PAPER]].

The method can now propose the users who play the editor role to create the
requested group editor type. If the editor does not agree, a negotiation discourse
between editor and group should be initiated and supported by RENISYS.

5 Facilitating User-driven Process Composition

Knowing how to create legitimate knowledge definitions is a necessary, but not yet a
sufficient condition for successful user-driven system specification. The dynamics of
the specification process deserve special care, due to the fact that users have only a
very limited interest in participating in this process. One possible solution to this
problem is to present users with customized views on the total process space, views
that make them better comprehend their privileges, responsibilities, and prohibitions
in the network, and that increase the incentives for users to initiate and participate in
more useful specification discourse. Therefore, we refine the concept of process space
into action and process composition spaces, and facilitate discourse initiation by
focusing on breakdowns.

5 . 1 Action and Process Composition Space

All permitted actions of an actor together form his action space. An example of a
possible action space of an actor 'author' at a certain moment in time is the conceptual
graph shown here:

[AUTHOR] -> (attr) -
[PERMITTED_ACTION: [EXECUTE] -> (obj) - [WRITE] -> (rslt) -> [CONTRIBUTION]]
[PERMITTED_ACTION: [INITIATE] -> (obj) -> [EDIT]].

The graph says that an author can execute writing a contribution, as well as initiate an
edit process. Depending on the exact mapping to the information and communication
processes enabled by the available information tools, this would result in certain
functionality specifications. As said before, we do not explain in this paper how this
information system design should be done.

In order to adapt his set of possible actions, called making compositions in our
terminology, an actor must have the authority to produce knowledge definitions, or
otherwise negotiate with an actor who does have this authority. The total set of
compositions that an actor is allowed to make we define as his (process) composition
space. The composition space of an actor generally, but not necessarily, comprises

12

some compositions required to update definitions that shape his own action space,
plus other kinds of compositions he has been authorized to carry out. An illustration
of a possible composition space for actor 'author' is given here:

[AUTHOR] -> (attr) -
[MANDATORY_COMPOSITION: [CONTROL] -> (obj) - [CREATE] -

(rslt) -> [TYPE: [CONTRIBUTION]]]
[PERMITTED_COMPOSITION: [INITIATE] -> (obj) -> [MODIFY] -

(rslt) -> [PERMITTED_ACTION: [EDITOR] <- (agnt) <- [CONTROL] -
 (obj) -> [EDIT] -> (matr) -> [CONTRIBUTION]]].

The graph should be interpreted as meaning that an author must decide on creating
subtypes of the concept type 'contribution' (for example, 'abstract' or 'paragraph'),
when requested. Furthermore, an author may initiate the modification process of the
norm which says that an editor is permitted to control the editing of contributions.

5 . 2 Recognizing Breakdowns

A fundamental idea regarding the facilitation of process composition is that the
method should not trigger users to define requirements according to the rigid analysis
and design steps that are prescribed by waterfall methods. Instead, it should support
them in resolving concrete functionality problems. These problems are experienced
when they play the roles as defined in their action spaces.

According to Winograd and Flores, 'breakdown' plays a key role in the adequate
design of artifacts. "A breakdown is not (necessarily) a negative situation to be
avoided, but a situation of non-obviousness, in which the recognition that something
is missing leads to unconcealing some aspect of the network of tools that we are
engaged in using" [17, p.165]. Thus, the proper identification and handling of
breakdowns, as soon as they occur, is crucial for users to become interested and
actively involved in the (re)specification of their network information system.

The specification method, besides helping the user in becoming aware of his
breakdowns, must also help formulate the breakdowns in network terminology,
involve relevant other actors in the specification discourse, and support the process of
making the actual changes in knowledge definitions.

 How exactly this should be done is in our current research focus. The human
computer interface now being constructed allows the method tool to have a pseudo-
natural language dialogue with users who either explore their own breakdowns, or are
involved in a specification discourse triggered by other users resolving their particular
breakdowns. Users are prompted to participate by tool-generated e-mail, and once they
log on to the RENISYS (web) server will be presented immediately with the
appropriate dialogue screens.

It is important to realize that users are not forced to participate in specification
discourse. They are allowed to delegate their authority. If they do not respond at all,
while not having delegated their responsibilities, network-agreed upon decision rules
should determine how the legitimacy of knowledge definitions should be established.

6 Conclusions

In this paper, we have attempted to indicate how conceptual graph theory can help to
enable the complex process of user-driven specification of network information
systems. Its intuitive semantics resulting from its roots in natural language,
combined with its formal power, make the theory a 'logical' candidate as the
underlying knowledge representation and reasoning formalism to be used in the
RENISYS specification method. We do not claim that our current use of conceptual

13

graph theory to represent the various specification constructs is the most appropriate
way; rather, it is an initial attempt meant to generate discussion on better
representations, and the algorithms needed to produce them.

Since the early days of conceptual graph theory, a lot of progress has been made in
extending and refining its terminology and operations. However, only little attention
has so far been paid to finding practical applications of the generic theoretical
constructs [20]. We hope that the RENISYS method can serve as such an application,
the research on the method both benefiting from the wealth of existing conceptual
graph resources and contributing to their further development.

RENISYS is going to be implemented as a client/server system, the clients being
standard web browsers. This will allow for maximum participation by the average
user, who is the main source of specification knowledge. Our original intention was
to develop the complete server in TCL, a powerful scripting language. However, it
would be worthwhile to see to what extent one of the 'standard CG workbenches' [21]
could be used as the heart of the server.

7 Acknowledgment

The author wishes to express his gratitude to Hans Weigand for his helpful
suggestions for improvement of the original manuscript.

References

1 . De Moor, A. Toward a More Structured Use of Information Technology in the Research
Community. The American Sociologist, 27(1), 1996, pp.91-101.

2 . Brooks, F. The Mythical Man-Month: Essays on Software Engineering. Addison
Wesley, anniversary edition, 1995.

3. Knight, K., editor. Participation in Systems Development. Applied Information
Technology Reports, Unicom, 1989.

4 . Abbott, K., Sarin, S. Experiences with Workflow Management: Issues for the Next
Generation. In Furuta, R., Neuwirth, C., editors, Proceedings of the ACM Conference
on Computer Supported Cooperative Work, Chapel Hill, October 22-26, 1994. ACM,
pp.113-120.

5 . Khoshafian, S., Buckiewicz, M. Introduction to Groupware, Workflow, and
Workgroup Computing. John Wiley & Sons, 1995.

6 . De Moor, A. Coordinating the Specification Process of Information Systems for
Research Networks: Methodological Design Principles. In Fidler, C., editor, 14th
International Association of Management Conference, Toronto, August 2-6, 1996,
Information Systems Proceedings, pp.95-103.

7 . De Moor, A., Van der Rijst, N. Fostering Active User Involvement in the
Specification of Network Information Systems. In Dutch Interdisciplinary Research
Conference on Information Science, December 13, 1996, Delft University of
Technology, pp.105-118.

8 . Fitzpatrick, G., Welsh, J. Process Support: Inflexible Imposition or Chaotic
Composition? Interacting with Computers, 7(2), 1995, pp.167-180.

9 . Lehmann, F. CCAT: The Current Status of the Conceptual Catalogue (Ontology)
Group, With Proposals. In Ellis, G., Levinson, R., editors, Proceedings of the Third
International Workshop on PEIRCE: A Conceptual Graphs Workbench, University of
Maryland, August 19, 1994, Lecture Notes in Artificial Intelligence, Vol. 835,
Springer-Verlag, pp.18-28.

10. Angelova, G., Bontcheva, K. DB-MAT: Knowledge Acquisition, Processing, and NL
Generation Using Conceptual Graphs. In Eklund, P., Ellis, G., Mann, G., editors,
Proceedings of the 4th International Conference on Conceptual Structures: Knowledge
Representation as Interlingua, Sydney, August 19-23, 1996, Lecture Notes in
Artificial Intelligence, Vol.1115, Springer Verlag, pp.131-134.

14

11. Van der Rijst, N., De Moor, A. The Development of Reference Models for the
RENISYS Specification Method. In Nunamaker Jr., J.F., Sprague Jr., R.H., editors,
Proceedings of the 29th Hawaii International Conference on System Sciences, January
3-6, 1996, pp.455-464.

12. Stamper, R. A Semiotic Theory of Information and Information Systems / Applied
Semiotics. In Invited Papers for the ICL / University of Newcastle Seminar on
"Information", September 6-10, 1993.

13. Hirschheim, R., Klein, H., Lyytinen, K. Information Systems Development and Data
Modeling - Conceptual and Philosophical Foundations. Cambridge University Press,
1996.

14. Gruber, T. Toward Principles for the Design of Ontologies Used for Knowledge
Sharing. Technical Report KSL 93-04, Knowledge Systems Laboratory, Stanford
University, 1993.

15. Mizoguchi, R. Knowledge Acquisition and Ontology. In KB&KS '93, Tokyo, 1993,
pp.121-128.

16. Sowa, J. Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley, 1984.

17. Winograd, T., Flores, F. Understanding Computers and Cognition - A New Foundation
for Design. Ablex Publishing Corporation, 1986.

18. Dietz, J. Modelling Business Processes for the Purpose of Redesign. In Proceedings of
the IFIP TC8 Open Conference on Business Process Redesign, North-Holland, 1994,
pp.249-258.

19. Chang, M., Woo, C. A Speech-Act Based Negotiation Protocol: Design,
Implementation and Test Use. ACM Transactions on Information Systems, 12(4),
1994, pp.360-382.

20. Lukose, D., Mineau, G., Mugnier, M.-L., Möller, J.W., Martin, P., Kremer, R., Zarri,
G. Conceptual Structures for Knowledge Engineering and Knowledge Modelling. In
Ellis, G., Levinson, R., Rich, W., Sowa, J., editors, Proceedings of the Third
International Conference on Conceptual Structures - Conceptual Structures:
Applications, Implementation and Theory, Santa Cruz, August 14-18, 1995, Lecture
Notes in Artificial Intelligence, Vol. 954, Springer-Verlag, pp.126-137.

21. Mann, G. What Conceptual Graph Workbenches Need for Natural Language
Processing. In Ellis, G., Levinson, R., Rich, W., Sowa, J., editors, Proceedings of the
Third International Conference on Conceptual Structures - Conceptual Structures:
Applications, Implementation and Theory, Santa Cruz, August 14-18, 1995, Lecture
Notes in Artificial Intelligence, Vol. 954, Springer-Verlag, pp.70-78.

