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Chapter 1

Introduction

Many processes, both technological and economic, consist of subprocesses that interact

with each other and are each controlled by a different decision unit. Often there also exists

a separate decision unit which influences every subprocess simultaneously. We call such a

process a hierarchical system. Some examples of hierarchical systems are computer net-

works, some production processes, the ecological system, the European Union. In all these

examples there exist several subprocesses that one tries to control separately while a cen-

tral entity (in the above examples the main system, the production manager, the national

government, the European council) tries to steer the whole system. This is formalized

by the notion of coordination; the central entity (coordinator) steers the whole system by

coordinating the actions of the individual decision units.

In this dissertation we discuss models of coordination in a hierarchical control framework.

We will argue that in the existing models for the coordination process to be successful it

is necessary that the individual decision units commit themselves to cooperate with the

coordinator. However, in practice this commitment is not always a realistic assumption.

By reacting strategically to the actions of the coordinator and the other decision units an

individual decision unit might actually gain. The term “strategic” is used here to indicate

that the individual decision units also use their actions to influence the behavior of the

coordinator and the other decision units. In this dissertation we incorporate strategic

behavior by the individual decision units into a new framework, making use of dynamic

noncooperative game theory (see e.g. Başar and Olsder (1995)). This is done first in the

context of two-player repeated games and later in the context of continuously repeated

two-player games. The latter model requires the analysis of an infinite-horizon differential

game. In this dissertation we provide tools for analyzing the stationary feedback Nash

equilibria of such a game.
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A prominent example of a hierarchical system, and one that has provided a background

motivation for the work in this dissertation, is the European Union. In this case the lower

level subsystems are formed by the member countries. On the upper level a major role is

played by the Council of Ministers and the European Commission (see e.g. Weeren et al.

(1993); Douven (1995)). The institutions on the upper level have the task to coordinate

the policies on the individual countries, as can be concluded from (Delors, 1989, page 6):

. . . The integration process thus requires more intensive and effective policy

coordination . . . Decision-making authorities are subject to many pressures and

even best efforts to take into account the international repercussions of their

policies are likely to fail at certain times. While voluntary cooperation should

be relied upon as much as possible to arrive at increasingly consistent national

policies, thus taking account of divergent constitutional situations in member

countries, there is also likely to be a need for more binding procedures. The

success of the internal market programme hinges to a decisive extent on a much

closer coordination of national economic policies, as well as on more effective

Community policies.

In this excerpt from the Delors report on Economic and Monetary Union, we see that one

of the key issues in the study of EMU concerns issues of coordination. The statement

that “voluntary cooperation should be relied upon as much as possible” indicates that a

cooperative mode of play is preferred by the upper level, but that it does not exclude the

possibility that sometimes “rules” must be enforced. In particular this raises the question

under which circumstances voluntary cooperation is likely to occur and how this can be

influenced by a coordinator (in this case the European Commission and the Council of

Ministers). Of course, if one wants to study the effects of coordination in the European

Union, strategic behavior is only one aspect that plays a role. Other important issues

are e.g. constitutional changes in the economic structure of the European Union involved

with the transition to the final stage of EMU, the influences of the world economy on

the European Union, as well as social and political influences. Clearly, building a model

for coordination in the European Union, which takes the above-mentioned aspects into

account, is a daunting task.

The models introduced in this dissertation are very simple models, based on two-player

repeated games in continuous time. The main reason for concentrating on two-player

games is that in the two-player case we do not have to concern ourselves with possible

coalition forming between the players, because in the two-player case there are only two

options, namely players can either cooperate or not. If we would allow for more than two

players as would be suggested by the EU-example, players also have to decide on which of
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the other players they will cooperate with, which would add a huge amount of complexity

to our analysis (see for instance the treatment of three-player bargaining situations in

Houba (1994)). Needless to say that one should be very careful in concluding whether

the approach towards hierarchical systems as taken in this dissertation is suited to study

coordination within the European Union. Nevertheless, we believe that the approach as

taken in this dissertation can be used as first step towards modelling coordination issues

regarding the European Union.

Although coordination in the European Union is an important motivation for our research,

we will not discuss the European Union any further in the remainder of this dissertation.

As already noted, the models introduced in this dissertation are very simple, and not able

to capture all the relevant issues in European policy coordination. Moreover, we believe

that our models are suited for a broader range of hierarchical systems. Therefore, in this

dissertation we will use a more general and abstract setup, and we will not go into detail

regarding some specific applications.

1.1 Outline

The dissertation has the following outline:

Chapter 1: Introduction,

Chapter 2: Models of coordination,

Chapter 3: Repeated games,

Chapter 4: Nash equilibria of differential games,

Chapter 5: Continuously repeated games,

Chapter 6: Conclusions.

In chapter two, we start out by specifying the hierarchical control framework. This setup

involves the control of a large-scale system, which can be divided into N subsystems,

interacting with each other. For every subsystem a separate policymaker has to decide how

to control that subsystem. In order to achieve some prespecified global control objective

a coordinator is introduced. This coordinator exchanges information with the separate

policymakers in order to achieve the global control objective. In section 2.2 we recall a

model specifying such a coordination process, based on Mesarovic et al. (1970); Jamshidi
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(1983); Singh (1980). We conclude (as in Weeren (1993)) that for the coordination process

to be successful, it is necessary that all policymakers commit themselves to cooperate

with the coordinator. As a consequence we note that in the framework as introduced in

section 2.2, strategic behavior by the individual policymakers is not modelled, for strategic

behavior implies that the individual policymakers should be allowed to deviate from the

cooperative strategy in order to influence the coordinator and the other policymakers. This

is our aim for the remainder of this dissertation: we will discuss how strategic behavior

can be introduced into the hierarchical control framework.

In chapter three we construct a simplified model incorporating strategic behavior in a hi-

erarchical control framework. We focus on repeated games in discrete time, which enables

us to concentrate on strategic aspects of coordination without having to worry about other

aspects like for instance informational issues. The main tool we use to specify and to

analyze the model is dynamic noncooperative game theory (see Başar and Olsder (1995)).

Therefore, we start chapter three by recalling some results from noncooperative game the-

ory. After this recapitulation we briefly discuss strategic bargaining theory (see e.g. Houba

(1994); Osborne and Rubinstein (1991)). This theory involves the specification of a bar-

gaining procedure as a dynamic game and the analysis of its equilibria. Inspired by this

idea we develop in section 3.4 a model for strategic behavior in a hierarchical framework.

This model involves the construction of a difference game, the so-called controlled game,

based on a static two-player game that is played repeatedly. Analysis of the controlled

game shows that it is desirable to rephrase the model as a differential game over an infi-

nite horizon. The specification of the continuous-time controlled game and its analysis is

postponed to chapter five.

In chapter four we take a closer look at a special class of nonzero-sum differential games,

namely nonzero-sum differential games of the linear-quadratic type. In the case of open-

loop information, i.e. the case where every player knows at time t only the initial condition

x0, we derive necessary and sufficient conditions for the existence of a unique open-loop

Nash equilibrium. Moreover, a sufficient condition is given under which the open-loop

Nash equilibrium can be obtained in the usual manner, i.e. via the solution of a system

of coupled Riccati differential equations. Furthermore, we show that, under some well-

posedness assumptions, the open-loop Nash equilibrium converges to a unique solution

when the horizon tends to infinity.

We will also show that the asymptotic behavior of the so-called feedback Nash equilibrium

is more complicated. We give a detailed analysis for the simplest case, namely the case

in which the dynamics are scalar. We show that for the feedback Nash equilibrium the

associated system of Riccati differential equations can have different stable critical points.

This implies in particular that the asymptotic behavior of feedback Nash equilibria depends
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critically on the weights put on the terminal values of the state x(tf ).

The final subject in chapter four is the study of linear stationary feedback Nash equilibria

for linear-quadratic differential games over an infinite horizon. In contrast with the generic

uniqueness of the linear feedback Nash equilibrium for linear-quadratic differential games

over a finite horizon, we find that in the infinite-horizon case nonuniqueness can be ex-

pected, even within the class of linear stationary feedback strategies. The explanation of

this apparent contradiction lies in the critical dependence on the weights put on terminal

values of the state in the finite-horizon case. Furthermore we show that the criterion of

dynamic stability of the critical points is not sufficient to fully eliminate this nonuniqueness.

After the digression in chapter four on the Nash equilibria of LQ-games, in chapter five

we will rephrase the model as introduced in chapter three in continuous time. Starting

out with a two-player static game which is played repeatedly over time, we introduce a

coordination mechanism and a decision rule for the coordinator, influencing the payoffs and

strategies of the underlying static game. This leads to a nonlinear differential game with

a one-dimensional state space, which we refer to as the controlled game. Unfortunately,

it is in general impossible to handle nonlinear differential games analytically, but we will

show how two-player nonlinear differential games with a one-dimensional state space can be

handled numerically. As is well known, feedback Nash equilibria of differential games can

be described by the Hamilton-Jacobi-Bellman-Isaacs (HJBI) equations. In chapter five we

show how the HJBI equations describing stationary feedback Nash equilibria for infinite-

horizon differential games can be handled numerically using recently developed methods

for calculating solutions of differential-algebraic equations. In a worked example, where

the underlying static game is a symmetric Cournot duopoly, we illustrate the numerical

method and discuss the obtained stationary feedback Nash equilibria. In particular we will

see that this example allows for uncountably many stationary feedback Nash equilibria.

We conclude chapter five with the observation that the choice of coordination mechanism

and the choice of decision rule for the coordinator can be viewed as a control problem; by

choosing the appropriate mechanism and decision rule the coordinator can steer towards a

global control objective.

Finally in chapter six we will review the results obtained in the previous chapters. We draw

some conclusions and give some indications for future research. In particular we discuss in

which directions the model described in chapter five might be extended.





Chapter 2

Models of coordination

2.1 Introduction

The main purpose of this chapter is to discuss the hierarchical control framework, and to

study typical problems associated with such a framework. The setup can be visualized as

in figure 2.1.
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Figure 2.1: The hierarchical control problem.

This setup involves the control of a large-scale system, which can be divided in N subsys-

tems, interacting with each other. We assume that for every subsystem i, i = 1, . . . , N ,

there is a separate policymaker, who decides on the input for the i-th subsystem, ui. One

of the first references dealing with large-scale systems posessing a hierarchical structure is

March and Simon (1958). Mesarovic et al. (1970) presented one of the earliest formal quan-
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titative treatments of hierarchical (multilevel) systems. Since then a great deal of work

has been done in the field (see e.g. Cohen (1977); Mahmoud et al. (1977); Singh (1980);

Jamshidi (1983)). In Jamshidi (1983) it is noted that there is no uniquely or universally

accepted set of properties associated with hierarchical systems. Nevertheless, Jamshidi

(1983) notes the following key properties:

1. A hierarchical system consists of decision making components structured in a pyramid

shape (as depicted in figure 2.1);

2. the system has an overall goal which may (or may not) be in harmony with all its

individual components;

3. the various levels of hierarchy in the system exchange information (usually vertically)

among themselves iteratively;

4. as the level of hierarchy goes up, the time horizon increases, i.e. the lower-level

components are faster than the higher-level ones.

The main reason for studying this kind of systems in the seventies and early eighties

has always been that the direct computation of optimal control solutions for large-scale

systems was a rather cumbersome, time-consuming job. Hierarchical systems were mostly

constructed by decomposition of large-scale systems, with the purpose of splitting up a large

optimization problem into smaller subproblems, which could be handled more easily. In

this sense the hierarchy was mostly artificial and mainly introduced just for computational

convenience. The idea of decomposition was first treated theoretically in the context of

large linear programming problems by Dantzig and Wolfe (1960). One often used method

of decomposition for continuous time large-scale systems, is based on time scale separation

(see e.g. Avramović (1979); Kokotović et al. (1980)).

Nowadays, in the presence of powerful computers, the motivation for studying hierarchi-

cal systems for computational reasons is less pressing, and so only little research in this

direction has been done since the seventies and early eighties. However, in reality, many

systems have a hierarchical structure by nature or by construction, e.g. computer net-

works, ecological systems, the economy of the European Community. One can imagine

that controlling such systems involves some special problems. Clearly, in the process of

finding an appropriate control law a policymaker depends on the other policymakers. To

facilitate the choice of suitable control laws, a coordinator is introduced, with the task to

steer the individual policy makers towards a situation in which a global control objective

is established. As we will argue at the end of this chapter, one can make a distinction here

between cooperative and noncooperative hierarchical control. In the cooperative setting
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we assume that all policymakers commit themselves to cooperate with the coordinator,

in the sense that they will follow the directions of the coordinator exactly. As opposed

to this we can study coordination in a noncooperative setting, where we do not assume

such a commitment a priori. The model for coordination as treated in section 2.2, which

goes back to the model of Mesarovic et al. (1970), is a typical example of cooperative

hierarchical control. We will note that commitment to cooperate with the coordinator is

a crucial assumption in this model. A first model using noncooperative ideas is proposed

by Ito and de Zeeuw (1990). In section 2.3 we will briefly discuss this model. We will end

this chapter with some concluding remarks in section 2.4.

2.2 Solution concepts in hierarchical optimal control

2.2.1 Introduction

This section is mainly based on Jamshidi (1983); Singh (1980); Weeren (1993). In this

section we confine ourselves to open-loop information structures (see also chapter four),

where every policymaker knows at time instant t the values of the initial states x0i for

all i. We will define a special class of hierarchical control problems. We assume that

the dynamics of the subsystems are described by linear difference equations, with time-

invariant parameters. The local control objectives we study involve the minimization of

quadratic cost functionals. The global control objective we study is the minimization of an

aggregate cost functional. Note that from a game theoretic point of view this can be related

to the problem of finding a Pareto efficient solution, in case we view the hierarchical system

as a dynamic game (see theorem 3.41). The restriction to a discrete-time linear-quadratic

setup is for convenience only, the same approach as used in this section can be applied to

more general systems.

2.2.2 Problem definition

As mentioned in the introduction, we study large-scale linear time-invariant systems, con-

sisting of N smaller subsystems, interacting with each other. We can describe such a

system in the following way :

xi(t+ 1) = Aixi(t) +
∑

j 6=i

Aijxj(t) +Biui(t), xi(0) = xi0, (2.1)

where:
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xi(t) : an ni-dimensional vector, representing the state of the i-th subsystem;

ui(t) : an mi-dimensional vector, representing the control input of the i-th subsystem.

For each subsystem we can now define a cost functional in the following way:

Ji(u) = xi(tf )
′Qixi(tf ) +

tf−1
∑

t=0

{xi(t)
′Qixi(t) + ui(t)

′Riui(t)} , (2.2)

where Qi > 0 and Ri > 0 are weighting matrices.

For the whole interconnected system we define the aggregate cost functional:

J(u) :=
N
∑

i=1

Ji(u). (2.3)

We can formulate the global minimization problem:


























min
u
J(u)

w.r.t.

xi(t+ 1) = Aixi(t) +
∑

j 6=i

Aijxj(t) +Biui(t),

xi(0) = xi0.

(2.4)

In order to describe a process of coordination, we use a approach which goes back to

Mesarovic et al. (1970). We first assume that an extra input, zi is entering the i-th sub-

system, being the interactions coming from the other N − 1 subsystems. Now, in a sense,

we cut the links between the subsystems and we suppose zi acts as a variable which is

manipulated by the i-th subsystem, just like xi and ui. Since zi can be arbitrarily chosen

by policymaker i, it is clear that in general zi 6=
∑

j 6=i

Aijxj. In this way the minimization

problem is completely decoupled into N subproblems, to be solved by the N policymakers.

In order to make sure that the individual subproblems yield a solution to the original prob-

lem, it is necessary that the interaction balance principle is satisfied, i.e. the independently

selected zi’s actually become equal to
∑

Aijxj, for all i. Formally, this can be achieved by

introducing a weighting parameter λ, which is called the coordination variable , and which

penalizes the performance of the system when the interactions do not balance. Hence, to

the cost functional (2.3) a penalty term is added:

L(x, u, z, λ) :=
N
∑

i=1

Ji(xi, ui, zi) +

tf−1
∑

t=0

λ(t)′e(t), (2.5)
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where ei(t) is the error

ei(t) := zi(t) −
∑

j 6=i

Aijxj(t). (2.6)

The problem is now split up into two levels as follows. On the first level every policymaker

minimizes for given λ

Li(xi, ui, zi, λ) := Ji(xi, ui) +

tf−1
∑

t=0

(

λi(t)
′zi(t) −

∑

j 6=i

λj(t)
′Ajixi(t)

)

, (2.7)

with respect to the dynamics

xi(t+ 1) = Aixi(t) +Biui(t) + zi(t), xi(0) = xi0. (2.8)

On the second level of the problem the coordinator manipulates the coordination variable

λ in order to achieve an interaction error zero.

Remark 2.1 The interaction variable λ can be interpreted as the Lagrange parameter

corresponding to the constraint zi =
∑

j 6=i

Aijxj.

2.2.3 The coordination process

In this section we solve the minimization problems, and we derive an algorithm, the inter-

action prediction algorithm, as a numerical example of how a coordination process can be

implemented.

First we solve the first-level problems, i.e. we are going to minimize Li for given λ, with

respect to the constraint

xi(t+ 1) = Aixi(t) + zi(t) +Biui(t), xi(0) = xi0.

We do this by using the maximum principle. (See for instance Başar and Olsder (1995)).

The Hamiltonians are given by

Hi(·) = x′iQixi + u′iRiui + λ′izi −
∑

j 6=i

λ′jAjixi + p′i [Aixi + zi +Biui] , (2.9)

and the adjoint states pi satisfy

pi(t) = Qixi(t) −
∑

j 6=i

A′
jiλj(t) + A′

ipi(t+ 1), (2.10)
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with pi(tf ) = Qixi(tf ).

The optimal ui, obtained using ∂Hi

∂ui
= 0, is given by

ui(t) = −Ei(t+ 1)−1B′
i [Ki(t+ 1) (Aixi(t) + zi(t)) + gi(t+ 1)] . (2.11)

Ki(t) satisfies the backward Riccati difference equation

Ki(t) = Qi + A′
iKi(t+ 1)Ai − A′

iKi(t+ 1)BiEi(t+ 1)−1B′
iKi(t+ 1)Ai, (2.12)

Ki(tf ) = Qi, (2.13)

with

Ei(t+ 1) := Ri +B′
iKi(t+ 1)Bi. (2.14)

gi(t) satisfies the following backward difference equation:

gi(t) = A′
iGi(t+ 1)′ [Ki(t+ 1)zi(t) + gi(t+ 1)] −

∑

j 6=i

A′
jiλj(t), (2.15)

gi(tf ) = 0, (2.16)

where

Gi(t+ 1) := I −BiEi(t+ 1)−1B′
iKi(t+ 1). (2.17)

Note that gi is not independent of zi.

Another necessary condition for optimality is ∂H
∂zi

= 0, where H =
N
∑

i=1

Hi. Note that

∂H
∂zi

= 0 if and only if ∂Hi

∂zi
= 0. From ∂Hi

∂zi
= 0 we derive

λi(t) = −pi(t+ 1). (2.18)

Remember that we have chosen λ arbitrarily. In general our choice for λ will not satisfy

(2.18). The coordinator’s objective, in the second-level problem, is to find a better choice

for λ, better in the sense that λ is closer to its optimal value and for all i zi is closer to
∑

j 6=i

Aijxj. In the first-level problem we have found (for fixed λ and z) optimal (x̂i, ûi, p̂i)

belonging to the pairs (λ, zi). Then we can use (2.18) to update λ and we can calculate

zi =
∑

Aijx̂j. For these new choices we can again solve the first-level problems, etc. We

obtain the following algorithm:

Algorithm 2.2 (Interaction Prediction.)

Step 1 : k := 1. For all i and for all t initialize λ1
i (t) := 0 and z1

i (t) := 0.



2.2 Solution concepts in hierarchical optimal control 13

Step 2 : Calculate for all i and t the solutions Ki(t) of the backward Riccati difference

equation (2.12).

Step 3 : Calculate for all i and t the solutions gk
i (t) of the backward difference equation

(2.15).

Step 4 : Calculate uk
i and xk

i using (2.11) and (2.1). Calculate pk
i using

pk
i (t) = Ki(t)x

k
i (t) + gk

i (t).

Step 5 : Check whether
∑

i,t

‖zk
i (t) −

∑

j 6=i

Aijx
k
j (t)‖2 < ε

for some small ε > 0 given a priori.

If not then λk+1
i (t) := −pk

i (t+ 1) and zk+1
i (t) :=

∑

j 6=i

Aijx
k
j (t). Go to step 3.

Step 6 : Stop.

Remark 2.3 The name interaction prediction can be explained by the fact that in the

(k + 1)-th iteration we use zk+1
i :=

∑

j 6=i

Aijx
k
j , where xk is the optimal x found in the

k-th iteration, as a prediction for the interactions
∑

j 6=i

Aijxj. Another approach could be

that one only updates λ every step and calculates zk
i in the first-level problems. Then

the second-level problem can be solved using well-known iterative search methods. This

is called the goal coordination approach (see Mesarovic et al. (1970)). However, the goal

coordination method has some serious drawbacks (see e.g. Jamshidi (1983); Singh (1980)).

Convergence is slower, but more important is that in order to use the goal coordination

method, one has to include a term z′iSizi, Si > 0, into the cost functionals Ji in order to

avoid singularity problems.

Remark 2.4 In general convergence of the interaction prediction algorithm cannot be

guaranteed. However, a sufficient condition for convergence, in terms of two self-adjoint

operators can be obtained (see Cohen (1977)).

2.2.4 The noncooperative problem

In this section we again study the system given by (2.1). We have seen in subsection

2.2.3 that it is possible to find a coordination scheme in order to achieve minimization

of the global cost functional J , as defined by (2.3). In this setting we suppose that for
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every subsystem i, i = 1 . . . N , policymaker i decides what the control ui will be. As

one can imagine, in most practical situations every policymaker is primarily interested in

minimizing his own cost functional Ji. In general this will not lead to minimization of the

aggregate cost functional J =
N
∑

i=1

Ji. In order to achieve minimization of the overall cost

functional J , we introduced a coordinator. The task of the coordinator is to negotiate with

all policymakers in order to balance the interactions between the subsystems.

From the nature of the hierarchical control problem, it is necessary that all policymakers

are willing to cooperate in order to minimize the overall cost functional J . One can imagine

that not all policymakers are willing to cooperate with a coordinator. Therefore, we will

now study the problem where the policymakers act strictly noncooperative. For this prob-

lem we will formulate the Nash equilibrium concept, and we will investigate whether a Nash

equilibrium exists and how a Nash equilibrium can be calculated. For a more extensive

treatment on Nash equilibria we refer to chapters three and four of this dissertation.

Definition 2.5 Consider the interconnected system described by (2.1). We call a control

function ū = (ū′1, . . . , ū
′
N)′ a Nash equilibrium if

Ji(ū1, . . . , ūi, . . . , ūN) = min
ui

Ji(ū1, . . . , ui, . . . , ūN) (2.19)

for all i = 1, . . . , N .

It can be proved that for the system (2.1) there exists a generically unique Nash equilibrium

(see Başar and Olsder (1995), section 6.2.11), due to the fact that for every i, i = 1, . . . , N ,

Ji is strictly convex in ui.

Lemma 2.6 Suppose a control function ū (with corresponding x̄) satisfies:

ūi(t) = −Ei(t+ 1)−1B′
i

(

Ki(t+ 1)

(

Aix̄i(t) +
∑

j 6=i

Aijx̄j(t)

)

+ ḡi(t+ 1)

)

, (2.20)

where Ki(t) satisfies the backward difference Riccati equation (2.12). Ei(t) is defined by

(2.14), and ḡi(t) satisfies the following backward difference equation:

ḡi(t) = A′
iGi(t+ 1)′

(

Ki(t+ 1)
∑

j 6=i

Aijx̄j(t) + ḡi(t+ 1)

)

, (2.21)

ḡi(tf ) = 0. (2.22)

1In this chapter we assume an open-loop information structure. Therefore we only consider open-loop

Nash equilibria. In Başar and Olsder (1995), section 6.2.1, it is proved that in the linear-quadratic case,

with Ri > 0 and Qi > 0 for all i, there exists a unique open-loop Nash equilibrium, under some regularity

condition.
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Then ū is a Nash equilibrium.

Proof : This follows immediately by minimizing Ji over ui, for given ūj, j 6= i. �

Lemma 2.7 Suppose ū is a Nash equilibrium. Then ū is of the form (2.20).

Proof : Suppose ū is a Nash equilibrium. Then ūi minimizes Ji, i = 1 . . . N , for given ūj,

j 6= i. Because Ri > 0 and Qi > 0 , it follows that ūi is of the form (2.20). �

Combining both lemmata with the existence and generic uniqueness as established in Başar

and Olsder (1995), we find the following corollary:

Corollary 2.8 For the hierarchical control problem, there exists a generically unique open-

loop Nash equilibrium ū given by (2.20,2.12,2.14,2.17,2.21).

Although we know there exists a generically unique Nash equilibrium for our system it is

not yet a trivial matter to calculate the Nash equilibrium. Note that the equation (2.20)

only gives an implicit characterization of the Nash equilibrium, and therefore an algorithm

is needed in order to calculate the Nash equilibrium. Based on equations (2.20)–(2.21) we

find the following algorithm:

Algorithm 2.9

Step 1 : For all i calculate Ki(t) from (2.12).

Step 2 : k:=0. Choose suitable u0
i , x

0
i , g

0
i , for all i = 1, . . . , N .

Step 3 : Calculate xk+1
i using :

xk+1
i (t+ 1) = Gi(t+ 1)

(

Aix
k+1
i (t) +

∑

j 6=i

Aijx
k
j (t)

)

−BiEi(t+ 1)−1B′
ig

k
i (t+ 1),

(2.23)

xk+1
i (0) = xi0.

Step 4 : Calculate gk+1
i using (2.21). Then calculate uk+1

i using (2.20).

Step 5 : If ‖uk+1
i − uk

i ‖ < ε then stop else k := k + 1, go to step 3.

Remark 2.10 When one compares this algorithm with the interaction prediction algo-

rithm 2.2, the main difference is the absence of the coordination variable λ, and related to

that the fact that the adjoint state variables pi are no longer needed in the calculations.



16 Models of coordination

Lemma 2.11 Suppose the algorithm 2.9 starts with x0 = x̄, u0 = ū, g0 = ḡ. Then x1 = x̄,

u1 = ū and g1 = ḡ. Hence (x̄, ū, ḡ) is a fixed point for the algorithm.

Proof : By equation (2.23) we have:

xk+1
i (t+ 1) = Gi(t+ 1)

(

Aix
k+1
i (t) +

∑

j 6=i

Aijx
k
j (t)

)

−BiEi(t+ 1)−1B′
ig

k
i (t+ 1),

xk+1
i (0) = xi0.

Now suppose (x0, u0, g0) = (x̄, ū, ḡ). Then x1 satisfies:

x1
i (t+ 1) = Gi(t+ 1)

(

Aix
1
i (t) +

∑

j 6=i

Aijx̄j(t)

)

−BiEi(t+ 1)−1B′
iḡi(t+ 1),

xk+1
i (0) = xi0 = x̄i(0).

Necessarily x1 = x̄. Then it follows straightforwardly that u1 = ū and g1 = ḡ. Hence

(x̄, ū, ḡ) is a fixed point for the algorithm 2.9. �

By corollary 2.8 we see that, provided that the algorithm 2.9 converges, ū := lim
k→∞

uk is the

Nash equilibrium.

Finally we will study the question under what conditions the algorithm 2.9 converges. We

define the following matrices:

E
(1)
ii :=











I

−Gi(2)Ai I
. . . . . .

−Gi(tf )Ai I











, (2.24)

E
(2)
ii :=











I −A′
iGi(2)′Ki(2)

. . . . . .

I −A′
iGi(tf )

′Ki(tf )

I











, (2.25)

Eii :=

(

E
(1)
ii

E
(2)
ii

)

, (2.26)

Eij :=











0 0

−A′
iGi(1)′Ki(1)Aij

. . . 0

−A′
iGi(tf )Ki(tf )Aij











, (2.27)
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Fii :=











−BiEi(1)−1B′
i

0
. . .

−BiEi(tf )
−1B′

i

0 0











, (2.28)

Fij :=















0 · · · 0

Gi(2)Aij

. . . 0

Gi(tf )Aij

0 0















, (2.29)

Hi :=











Gi(1)Ai1 · · · Gi(1)Ai · · · Gi(1)AiN

0 · · · 0 · · · 0
...

...
...

0 · · · 0 · · · 0











, (2.30)

E :=







E11 · · · E1N

...
. . .

...

EN1 · · · ENN






, (2.31)

F :=







F11 · · · F1N

...
. . .

...

FN1 · · · FNN






, (2.32)

H :=







H1

...

HN






. (2.33)

We also define:

ξi,1(k) :=
(

xk
i (1)′, . . . , xk

i (tf )
′
)′
, (2.34)

ξi,2(k) :=
(

gk
i (1)′, . . . , gk

i (tf − 1)′
)′
, (2.35)

ξi(k) := (ξi,1(k)
′, ξi,2(k)

′)
′
, (2.36)

ξ(k) := (ξ1(k)
′, ξ2(k)

′, . . . , ξN(k)′)
′
. (2.37)

The algorithm 2.9 is in fact nothing else than the iteration described by:

Eξ(k + 1) = Fξ(k) +Hx0, (2.38)

ξi,1(0) =
(

x0
i (1)′, . . . , x0

i (tf )
′
)′
, (2.39)

ξi,2(0) =
(

g0
i (1)′, . . . , g0

i (tf − 1)′
)′
. (2.40)
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Remark 2.12 Note that the algorithm 2.9 for every x0 ∈ R
n1+n2+···+nN and given initial

choice ξ(0) defines a unique sequence (ξ(k))k∈N
. This implies that the system given by

(2.38) is well defined.

Hence, a necessary and sufficient condition for the algorithm 2.9 to converge is that the

system (2.38) is asymptotically stable. This gives us the following main result:

Theorem 2.13 The algorithm 2.9 converges to the Nash equilibrium if and only if

∀|z|>1 det

(

E − 1

z
F

)

6= 0.

Proof : We have already argued that the algorithm 2.9 is convergent if and only if the

system (2.38) is asymptotically stable. The system (2.38) is asymptotically stable if and

only if for all z with |z| > 1 we have that det (zE − F ) 6= 0, or equivalently if and only if

∀|z|>1 det

(

E − 1

z
F

)

6= 0.

�

Corollary 2.14 A sufficient condition for convergence of the algorithm 2.9 is

‖F‖ < σmin(E),

where σmin(E) is the minimal singular value of the matrix E.

Remark 2.15 Although theorem 2.13 gives a necessary and sufficient condition for global

convergence of the algorithm 2.9, the criterion will in practice often be too complicated to

be useful. The theorem can be used as a starting point to derive simpler conditions that

are either necessary or sufficient.

2.3 The Ito model

In Ito and de Zeeuw (1990) an alternative framework for hierarchical control is proposed.

The main purpose of this model, to be called the Ito model in the sequel, is to study

integration issues in the European Community. In the Ito model the dynamics on the

lower level, are assumed to be described by

xi(t+ 1) = Aixi(t) + A0ix0(t) +Biui(t) +Didi(t), xi(0) = xi0, (2.41)
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and moreover for the coordinator, an aggregate model is introduced

x0(t+ 1) = A0x0(t) +B0u0(t) +D0d0(t), x0(0) = x00. (2.42)

Here xi(t) ∈ R
ni is the state variable of the i-th subsystem, ui(t) ∈ R

mi is the control

variable of the i-th subsystem and di(t) ∈ R
`i is the vector of exogenous inputs entering

the i-th subsystem, i = 1, . . . , N . Moreover, the aggegrates x0, u0 and d0 are obtained as

x0(t) :=
N
∑

i=1

W x
i (t)xi(t), (2.43)

u0(t) :=
N
∑

i=1

W u
i (t)ui(t), (2.44)

d0(t) :=
N
∑

i=1

W d
i (t)di(t), (2.45)

where for all t W x
i (t),W u

i (t) and W d
i (t) are weighting matrices of appropriate dimen-

sions, i = 1, . . . , N . It is understood that (2.41) and (2.42) must be compatible with

(2.43,2.44,2.45), i.e. the following assumption is implicitly made:

Assumption 2.16

There exist control functions ui and exogenous inputs di such that the Ito model is consis-

tent, i.e. there exist ui and di such that for all t = 0, . . . , tf − 1

N
∑

i=1

W x
i (t+ 1)

(

Aixi(t) + A0i

N
∑

j=1

W x
j (t)xj(t) +Biui(t) +Didi(t)

)

=

N
∑

i=1

(

A0W
x
i (t)xi(t) +B0W

u
i (t)ui(t) +D0W

d
i (t)di(t)

)

,

(2.46)

for given consistent initial conditions, i.e. initial conditions such that

x00 =
N
∑

i=1

W x
i (0)xi0.

In Ito and de Zeeuw (1990) the hierarchical control problem is split up in a central problem,

to be solved by the coordinator and N local problems to be solved by the coordinator.

Definition 2.17 (Central problem) Define the cost functional J0 by

J0 :=

tf−1
∑

t=0

{

‖x0(t) − x∗0(t)‖2
Q0

+ ‖u0(t) − u∗0(t)‖2
R0

}

.
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Then the central problem is the minimization problem

min
u0

J0(u0)

with respect to the dynamics

x0(t+ 1) = A0x0(t) +B0u0(t) +D0d0(t), x0 = x00.

Here R0 > 0 and Q0 > 0 are weighting matrices and ‖x0 − x∗0‖2
Q0

is a shorthand notation

for (x0 − x∗0)
′Q0(x0 − x∗0). x

∗
0(t) and u∗0(t) are desired paths given a priori.

Denote by x̂0 the optimal solution of the central problem. The local problems are defined

by

Definition 2.18 (Local problem) Define the cost functional Ji by

Ji :=

tf−1
∑

t=0

{

‖xi(t) − x∗i (t)‖2
Qi

+ ‖ui(t) − u∗i (t)‖2
Ri

}

.

Then the i-th local problem is the minimization problem

min
ui

Ji(ui)

with respect to the dynamics

xi(t+ 1) = Aixi(t) + A0ix̂0(t) +Biui(t) +Didi(t), xi = xi0.

Here Ri > 0 and Qi > 0 are weighting matrices. x∗i (t) and u∗i (t) are desired paths given a

priori.

For determining the desired paths u∗0 and x∗0 in Ito and de Zeeuw (1990) two different

approaches are proposed. In the first approach, the so-called top-down approach, the

coordinator selects u∗0 and x∗0 himself, independently of the individual (local) policymakers.

As opposed to this top-down approach, the bottom-up approach is introduced, in which

u∗0(t) =
N
∑

i=1

W u
i (t)u∗i (t),

and similarly

x∗0(t) =
N
∑

i=1

W x
i (t)x∗i (t),
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for t = 0, . . . , tf − 1.

In Ito et al. (1991) an econometric model for the European Community is estimated,

satisfying assumption 2.16. Using this model the central problem and the local problems

are solved in a myopic fashion (as was also done in Ito and de Zeeuw (1990)). This means

that at every time instant the optimization problems

min
u0(t)

{

‖x0(t) − x∗0(t)‖2
Q0

+ ‖u0(t) − u∗0(t)‖2
R0

}

for the central problem, and

min
ui(t)

{

‖xi(t) − x∗i (t)‖2
Qi

+ ‖ui(t) − u∗i (t)‖2
Ri

}

,

on the lower level, are solved. In Weeren et al. (1993) the open-loop solutions to the central

problem and the local problems are derived using the maximum principle, and have been

used to simulate the model as proposed in Ito et al. (1991).

There are some drawbacks to the Ito model. The most severe drawbacks orginate from

assumption 2.16. Although a priori this assumption is satisfied by construction, it is by

no means guaranteed that the optimal solutions x̂0, û0 satisfy (2.43) and (2.44). In this

sense assumption 2.16 is not necessarily satisfied a posteriori. In order to correct this, one

should constrain the set of admissible solutions. However, in general one might expect that

the set of admissible solutions, i.e. solutions (x̂i, ûi, di), i = 1, . . . , N , satisfying (2.46), is

too small to allow for interesting solutions, because the equation (2.46) imposes too heavy

a restriction on the set of admissible solutions. In particular, once the central problem is

solved (within the class of admissible solutions), the freedom to choose the individual ûi’s

is severely limited, leading to the conclusion that the individual policymakers do not have

enough freedom left to choose their policies. This leads to the conclusion that for studying

coordination issues, in this way the model is overspecified.

Even if one decides to allow for solutions that do not satisfy the conditions mentioned in

assumption 2.16, there are some additional drawbacks to the model. Most notable is the

absence of direct interactions between the subsystems in the Ito model.

To improve the Ito model some changes are necessary. First of all the restrictions imposed

by the aggregate model should be relaxed. Moreover direct interactions between the sub-

systems should be added. In Douven (1995) the following alternative is proposed. Consider

a model in which the dynamics are described by

xi(t+ 1) = Aixi(t) +
∑

j 6=i

Aijxj(t) +Biui(t) +Didi(t), xi(0) = xi0, (2.47)
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and cost functionals given by

Ji =

tf−1
∑

t=0

{

‖xi(t) − x∗i (t)‖2
Qi

+ ‖ui(t) − u∗i (t)‖2
Ri

}

. (2.48)

For the coordinator the cost functional C is introduced2, which is defined as

C =
N
∑

i=1

Ci, (2.49)

where

Ci =

tf−1
∑

t=0

‖xi(t) − x̄(t)‖2
Mi(t)

, (2.50)

x̄(t) =
N
∑

i=1

Wi(t)xi(t). (2.51)

Then some equilibria of the difference game (see section 3.2 for the definition of difference

games), with modified cost functionals

J̃i := (1 − λ) Ji + λCi, (2.52)

for λ ∈ (0, 1) are studied (see Douven (1995)). Note that in this setup the idea of an

aggregate model for the coordinator is abandoned.

2.4 Conclusions

We will conclude this chapter on coordination models with a discussion of the model

as introduced in section 2.2 and its properties. In section 2.2 we discussed a model for

hierarchical control in which the coordinator was given the task to steer the model towards

a Pareto efficient solution. This was accomplished by the introduction of the coordination

variable λ, manipulated by the coordinator in order to balance the interactions. The

information flow for the coordination process, between the coordinator and an individual

policy maker, can be depicted as in figure 2.2.

In every step of the coordination process every policymaker transmits his intended control

function ui and the desired value of the interaction input zi to the coordinator, and in return

2In Douven (1995) this cost functional is called the convergence function.
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�
�

�
�Policymaker i

6

ui, xi, zi λ

?

�
�

�
�Coordinator

Figure 2.2: Information flow in the coordination process

he receives the coordination variable λ. The coordination process, as specified in section

2.2, takes place before the actual controls ûi are implemented. The information used by the

policymakers to determine the control functions ûi is the initial value of the state x0, which

is assumed to be known to every policymaker, and the coordination variable λ. Therefore

we can conclude that the system is controlled in an open-loop fashion. However, in most

applications it is not reasonable to look for open-loop solutions. Moreover, it is more

likely that coordination will take place while the system is controlled, instead of before

the system is controlled. This would lead to a flow of information where at every time

instant t a policymaker transmits the current value of his state xi(t), the intended control

action ui(t) and his wish zi(t+1) to the coordinator, and in return he receives information

λ(t) from the coordinator. In this case the information available for policymaker i at time

instant t is

ηi(t) = {xi(t), λ(t− 1)} , (2.53)

and the information the coordinator has at t is

ηc(t) = {xi(t), ui(t), zi(t+ 1) | i = 1, . . . , N} . (2.54)

So the first-level problem is now how to choose ui(t) and zi(t + 1) based on ηi(t). The

second-level problem involves the choice of λ(t) based on ηc(t). The solution of these

problems is not a trivial matter, as it is related to the issue of incomplete information in

dynamic games, which is still an unsolved problem (except in some very special cases).

Apart from these informational considerations, we like to stress another problem regarding

the model as described in section 2.2. We have noted in subsection 2.2.4 that for the coor-

dination process to be successful, it is necessary that all policymakers commit themselves

to cooperate with a coordinator. As a consequence strategic behavior by the individual

policymakers is not incorporated in the framework as sketched in section 2.2. By strategic
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behavior we mean that the individual policymakers also use their controls ui to influence

the behavior of the coordinator and of the other policymakers. By the commitment to co-

operate with a coordinator, individual policymakers cannot deviate from ûi. This implies

that the framework of section 2.2 is not very well suited to model hierarchical systems

where policymakers have possibly conflicting interests, for in this case especially strategic

considerations are of predominant importance. In the remainder of this dissertation, we

will focus on some of the problems involved with the introduction of strategic behavior

into the hierarchical control framework.



Chapter 3

Repeated games

3.1 Introduction

In this chapter, we will make a first effort towards the incorporation of strategic behavior

into the hierarchical control framework. In chapter two, we noted that one of the short-

comings of the hierarchical control framework as described in Jamshidi (1983) and Singh

(1980) is the absence of the possibility to react strategically to the coordinator’s directions.

As a start to model strategic behavior, we will concentrate on repeated games in discrete

time. In this way, we obtain a stylized model in which we can concentrate on strategic

aspects of coordination and neglect other aspects like e.g. the dynamics of the underlying

system or imperfect information. Based on a static game which is repeatedly played, we

construct a model describing strategic behavior by the individual players. This model is

partly inspired by the theory of (strategic) bargaining (see e.g. Houba (1994); Osborne

and Rubinstein (1991)); therefore we will also briefly discuss some elements of bargaining

theory. A detailed analysis of the final model is postponed to chapter five, where we will

consider the model in continuous time.

As the remainder of this dissertation relies heavily on solution concepts from noncoop-

erative game theory, we start this chapter by recalling some standard results from non-

cooperative game theory (for a more extensive treatment see e.g. Fudenberg and Tirole

(1991); Gibbons (1992)). In particular, we will introduce the Nash equilibrium concept

and the concept of Pareto efficiency. Furthermore, we will define the concept of subgame

perfectness and discuss the Folk theorem for infinitely repeated games in discrete time.

This chapter can roughly be divided into three parts. In section 3.2 we recall some pre-
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liminaries from noncooperative game theory, which are used in the remainder of this dis-

sertation. In section 3.3 we will briefly consider the bargaining model as introduced by

Rubinstein (see van Damme (1991); Fudenberg and Tirole (1991); Gibbons (1992); Os-

borne and Rubinstein (1991)). Then, in section 3.4 we will propose a model introducing

strategic behavior in a hierarchical situation.

3.2 Preliminaries on game theory

We will use the following notation. Let G be an N -player game in strategic form. This

means that G is characterized by sets Γi, i = 1, . . . , N , called the (pure1) strategy spaces

of player i, and mappings πi : Γ1 × · · · × ΓN → R, denoting the payoffs of player i,

i = 1, . . . , N . The objective of player i is to choose γi ∈ Γi such that the payoff πi is

maximized. Throughout this dissertation we allow the strategy spaces Γi to be infinite.

Denote by

Γ := Γ1 × · · · × ΓN (3.1)

the cartesian product of the individual strategy spaces and by γ−i the (N − 1)-tuple of

strategies

γ−i :=
(

γ1, . . . , γi−1, γi+1, . . . , γN

)

. (3.2)

3.2.1 Nash equilibria

In this subsection we introduce the standard equilibrium concept in noncooperative game

theory: the Nash equilibrium (see Nash (1951)). Following van Damme (1991) we note

A solution of a noncooperative game is a set of recommendations which tell

each player how to behave in every situation that may arise. This solution

should be consistent, i.e. no player should have an incentive to deviate from

his recommendation. Hence, a solution must be self-enforcing: As long as the

others obey their recommendations, it should not be in my interest to deviate.

The Nash equilibrium does exactly this. It is constructed in such a way, that no player

has the incentive to deviate unilaterally from the Nash equilibrium. Formally, the Nash

equilibrium is introduced in the following way. We start by defining the concept of best

replies.

1In this dissertation we only consider pure strategies. Because of the fact that in general we will use

infinite strategy spaces, introduction of mixed strategies may lead to measure-theoretic difficulties.
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Definition 3.1 γ̂i is a best reply against γ−i if

πi(γ1, . . . , γ̂i, . . . , γN) = max
γi∈Γi

πi(γ1, . . . , γi, . . . , γN).

Denote by Ri(γ−i) the set of all best replies of player i against γ−i.

Then the Nash equilibrium is defined in the following way:

Definition 3.2 The N -tuple of strategies γ̄ ∈ Γ is a Nash equilibrium of G, if

γ̄i ∈ Ri(γ̄−i)

for every i ∈ {1, . . . , N}.

Note that the game G does not necessarily admit a Nash equilibrium. Moreover, if there

exists a Nash equilibrium it is not necessarily unique. Rosen (1965) proved the following

theorem (see also van Damme (1991); Fudenberg and Tirole (1991)):

Theorem 3.3 (Rosen,1965) Let G = (Γ1, . . . ,ΓN , π1, . . . , πN) be a game in strategic

form such that the following three conditions are satisfied for each i ∈ {1, . . . , N}:

1. Γi is a nonempty, compact and convex subset of some finite-dimensional Euclidean

space,

2. πi is continuous,

3. πi is concave in γi for all γ−i.

Then G possesses at least one Nash equilibrium.

In general G will have multiple Nash equilibria. One way of dealing with the problem

of nonuniqueness is by looking at refinements of the Nash equilibrium concept (see van

Damme (1991)). This is motivated by the observation that in case of multiple Nash

equilibria, some of the equilibria are “less desirable” than others. The key idea is to select

Nash equilibria which satisfy some additional nice properties like stability or perfection.

One way to introduce a refinement of a Nash equilibrium is by requiring the equilibrium to

belong to a subset S of Γ which has some nice properties (see for instance the definition of

Markov perfect equilibria in Maskin and Tirole (1994)). A possible complication in using

this approach is that the game G restricted to S might allow for a Nash equilibrium which

is not a Nash equilibrium of the original game G. This can be avoided by demanding S to

be closed under best replies.
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Definition 3.4 Let S ⊂ Γ. Then S is called closed under best replies if

∀i∈{1,...,N}Ri(γ−i) ∩ Si 6= ∅

for all γ ∈ S. Here Si is S|Γi
.

This definition basically says that if all other players choose their strategy in S, then I

have a best reply against that strategy, which also lies in S. Now the following proposition

is obvious.

Proposition 3.5 Let S ⊂ Γ and consider the restricted game G|S, i.e. the game G with

the strategy spaces Γi replaced by Si. Suppose S is closed under best replies. Suppose γ̄ is

a Nash equilibrium of G|S. Then γ̄ is also a Nash equilibrium of G.

Dynamic games

In the remainder of this subsection, we will discuss (deterministic) dynamic games in

extensive form. The extensive-form representation of a dynamic game is the representation

that explicitly displays the rules of the game, i.e. it specifies the following data (see e.g.

Başar and Olsder (1995); Fudenberg and Tirole (1991); van Damme (1991)):

(i) the order of moves in the game,

(ii) for every decision point, which player has to move at that point,

(iii) the information a player has whenever it is his turn to move,

(iv) the choices available to a player when he has to move,

(v) the payoffs for all players.

Formally:

Definition 3.6 The extensive form of a N -person finite dynamic game is a five-tuple

G = (T, P,Υ, C, π) ,

where
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- the game tree T is a finite tree with a distinguished node o, the origin of T ; succ(x) the

immediate successors of x; the endpoints

Z := {x | succ(x) = ∅} ;

and the decision points X, the complement of Z;

- the player partition P is a partition of X into N sets P1, . . . , PN , the set of decision

points of player i,

- the information partition Υ is an N -tuple (Υ1, . . . ,ΥN), where Υi is a partition of Pi

(into so called information sets of player i) such that for every information set every

path intersects the information set at most once and all nodes in the information set

have the same number of immediate successors; the information set η ∈ Υi which

contains x ∈ Pi represents the set of nodes player i cannot distinguish from x based

on the information he has when he has to move at x;

- the choice partition C is a collection of partitions C(η)

C =

{

C(η); η ∈
N
⋃

i=1

Υi

}

,

where C(η) is a partition of
⋃

x∈η

succ(x) into so called choices at η, such that every

choice contains exactly one element of succ(x) for every x ∈ η,

- the payoff function π is an N -tuple (πi, . . . , πN) where πi is a real-valued function with

domain the endpoints of T ; if the endpoint z is reached, player i gets the payoff πi(z).

Definition 3.7 A (pure) strategy γi of player i is a mapping which assigns a choice c ∈
C(η) to every information set η ∈ Υi. Denote by Γi the set of all mappings γi from Υi to

C.

When an N -tuple of strategies γ is played, this will result in a unique path in T , connecting

o to a certain z̃ ∈ Z. Hence playing the N -tuple of strategies γ will result in the N -tuple

of payoffs π(z̃). This gives rise to a mapping

Π : Γ → R, γ 7→ π(z̃). (3.3)

Note that (Γ,Π) defines a game in strategic form.

Definition 3.8 The game

S(G) := (Γ,Π)

is called the strategic form of G.
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The definition of a Nash equilibrium of an extensive form game is now obvious.

Definition 3.9 Let G := (T, P,Υ, C, π) be a finite dynamic game in extensive form. Then

γ is a Nash equilibrium of G if γ is a Nash equilibrium of S(G).

It is easy to show that for an N -tuple of stategies to be a Nash equilibrium it is only

necessary that rational behavior is prescribed at every information set which is actually

reached when the equilibrium is played; at every other information set the behavior may

be arbitrary. Selten (in Selten (1965)) argues that for this reason some Nash equilibria are

“more reasonable” then others. Consider the following example.

Example 3.10

Consider the following extensive form game G:

(3, 1) (0, 0)

(2, 2)

L R

U D

o

�
�

�
�

�
�

S
S

S
S

S
S
sZ

Z
Z

Z
ZZ

�
�

�
�

��

The strategic form of G is given by:

L R

U 2,2 2,2

D 3,1 0,0

Inspection of the game reveals that there exist two Nash equilibria, i.e. (D,L) and (U,R).

However, the Nash equilibrium (U,R) is not credible in the sense that it relies on the empty

threat by player 2 to play R.

From this example it is clear that especially in the case of extensive form games there is a

need for refinement of the Nash equilibrium concept to exclude “unreasonable” Nash equi-

libria. To this end one defines subgame perfect Nash equilibria. First we define subgames.
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Definition 3.11 Let x ∈ X and Tx be the subtree descending from x. If every information

set of G either is contained in Tx or is disjoint from Tx, then the restriction of G to Tx

constitutes a game of its own, to be called the subgame Gx starting at x. In this case every

N -tuple of strategies decomposes into a pair (γ−x, γx) where γx is an N -tuple of strategies

in Gx and γ−x is an N -tuple of strategies for the remaining part of the game (the truncated

game). If it is known that γx will be played in Gx then, in order to analyze G, it suffices

to analyze the truncated game G−x, which results from G by replacing the subtree Tx by a

single endpoint with payoff Πi,x(γx) for every player i.

Now we can introduce the subgame perfectness refinement.

Definition 3.12 Let γ̄ be a Nash equilibrium of G. Then γ̄ is called a subgame perfect

Nash equilibrium if for every subgame Gx of G the restriction γ̄x of γ̄ to Gx constitutes a

Nash equilibrium of Gx.

The following lemma can easily be proved:

Lemma 3.13 If γ̄x is a Nash equilibrium of the subgame Gx and γ̄−x is a Nash equilibrium

of the truncated game G−x, then γ̄ := (γ̄−x, γ̄x) is a Nash equilibrium of G.

Proof : Because of the fact that γ̄x is a Nash equilibrium for Gx, no player has the incentive

to deviate from γ̄ once the node x is reached. Moreover, because γ̄−x is a Nash equilibrium

of G−x, the equilibrium path of G−x ends in x and no player has the incentive to deviate

from γ̄ until x is reached. �

Remark 3.14 This lemma implies that a subgame perfect Nash equilibrium can be found

by means of dynamic programming.

Differential and difference games

Infinite dynamic games, i.e. games in which the the choice sets of the players comprise a

continuum of alternatives and players gain some dynamic information throughout the deci-

sion process, cannot be described by an extensive form consisting of a finite tree structure.

Instead, the extensive form of an infinite dynamic game involves a difference (in discrete

time) or a differential (in continuous time) equation, describing the evolution of the deci-

sion process. An extensive treatment on extensive forms for infinite dynamic games can

be found in (Başar and Olsder, 1995, chapter 5).

Definition 3.15 A difference game of prescribed fixed duration involves
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(i) An index set T = {0, . . . , tf}, denoting the stages of the game,

(ii) a set X, called the state space of the game, to which the state x(t) belongs for all

t ∈ T,

(iii) sets Ui(t), defined for t ∈ {0, . . . , tf − 1} and i = 1, . . . , N , which are called the

control sets of player i at time t; their elements are the permissible actions ui(t) at

time t,

(iv) a function ft : X × U1(t) × · · · × UN(t) → X, defined for each t ∈ {0, . . . , tf − 1},
such that

x(t+ 1) = ft(x(t), u1(t), · · · , uN(t)),

for given x0 ∈ X, x0 is called the initial state of the game; this difference equation is

called the state equation of the difference game,

(v) sets Yi(t), defined for each t ∈ {0, . . . , tf − 1} and each i = 1, . . . , N , which is called

the observation set of player i at time t, to which the observation yi(t) belongs at

time t,

(vi) a function hi,t : X → Yi(t), defined for each t ∈ {0, . . . , tf − 1} and i = 1, . . . , N , such

that

yi(t) = hi,t(x(t)),

which is the observation equation of player i with respect to the state x(t),

(vii) a finite collection ηi(t), defined for each t ∈ {0, . . . , tf − 1} and i = 1, . . . , N , as a

part of

(y1(0), . . . , y1(t), u1(0), . . . , u1(t− 1), . . . , yN(0), . . . , yN(t), uN(0), . . . , uN(t− 1)) ,

which determines the information gained and recalled by player i at time t; speci-

fication of ηi(t) for all t characterizes the information structure of player i, and the

collection over i = 1, . . . , N characterizes the information structure of the game,

(viii) a set Υi(t) defined for all t ∈ {0, . . . , tf − 1} and each i = 1, . . . , N , as an appropriate

subset of
∏

j=1,...,N

Yj(0) × · · · × Yj(t) × Uj(0) × · · · × Uj(t− 1),

compatible with ηi(t), called the information space of player i at time t, induced by

its information ηi(t),
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(ix) a prescribed class Γi(t) of mappings γi(t) : Υi(t) → Ui(t) which are the admissible

strategies of player i at time t, the aggregate mapping

γi = {γi(0), . . . , γi(tf − 1)}

is a strategy for player i in the game, and the class Γi of all such mappings γi is the

strategy space of player i,

(x) functionals

πi : (X × U1(0) × · · · × UN(0))×· · ·×(X × U1(tf − 1) × · · · × UN(tf − 1))×X → R,

called the payoff2 of player i in the game of fixed duration.

Remark 3.16 More general definitions, e.g. difference games of variable duration or dif-

ference games over an infinite horizon can be given along the same lines, see e.g. (Başar

and Olsder, 1995, section 5.2).

Similarly, differential games can be introduced.

Definition 3.17 A differential game D(Γ; T) of prescribed fixed duration involves

(i) A time interval T = [0, tf ], specified a priori, which denotes the duration of the evolu-

tion of the game,

(ii) a set S0 with some topological structure, called the trajectory space of the game, its

elements x : T → S0 constitute the admissible state trajectories of the game, where

S0 ⊆ R
n,

(iii) sets Ui with some topological structure, defined for i = 1, . . . , N , which is called the

control space of player i, whose elements are the control functions ui : T → Si of

player i, where Si ⊆ R
mi

(iv) a differential equation,

ẋ(t) = f(t, x(t), u1(t), . . . , uN(t)), x(0) = x0

whose solution describes the state trajectory of the game corresponding to the N -

tuple of control functions (u1 . . . , uN), for given initial state x0 ∈ S0,

2Usually difference games and differential games are defined in terms of costs instead of payoffs. Obvi-

ously, replacing costs by payoffs and minimization by maximization does not change any of the results in

this dissertation.
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(v) nondecreasing functions εi : T → T such that for all t ∈ T 0 6 εi(t) 6 t and a function

ηi(t), defined for i = 1, . . . , N , as

ηi(t) = x|[0,εi(t)],

ηi(t) determines the state information gained and recalled by player i at time t ∈
T; specification of ηi(·) characterizes the information structure of player i, and the

collection over i = 1, . . . , N characterizes the information structure of the game,

(vi) the sigma field Υi(t) in S0, generated by the cylinder sets

{x ∈ S0 | x(s) ∈ B(s), 0 6 s 6 εi(t)}

where B(s) is a Borel set in S0 for all s ∈ [0, εi(t)]; Υi(t) is called the information

field of player i,

(vii) a prescribed class Γi of mappings γi : T × S0 → Si, with the property that γi(t, ·) is

Υi(t) measurable for all t ∈ T; Γi is called the strategy space of player i,

(viii) two functionals qi : S0 → R, gi : T×S0×S1×· · ·×SN → R, defined for i = 1, . . . , N ,

such that the composite functional

Li(u1, . . . , uN) :=

∫ tf

0

gi(t, x(t), u1(t), . . . , uN(t))dt+ qi(x(tf ))

is well defined3, for every uj(t) = γj(t, x), γj ∈ Γj, and for all i = 1, . . . , N ; Li is the

cost (or payoff) functional of player i.

Remark 3.18 Note that a differential game, as formulated above is not yet well-defined,

unless we impose some additional constraints on some of the terms introduced. In particu-

lar, conditions on Γi and f are needed, such that the differential equation admits a unique

solution for every N -tuple of strategies γ ∈ Γ (see Başar and Olsder (1995)).

Remark 3.19 We will often consider memoryless perfect state information, which is de-

fined as ηi(t) = (x0, x(t)) , t ∈ T. Note that strictly speaking this information structure is

not covered by definition 3.17. However, (see theorem 5.1 in Başar and Olsder (1995)), it

can be shown that for this information structure, when S0 = Cn(T → S0), f continuous in

t and uniformly Lipschitz in x, u1, . . . , uN and γi continuous in t and uniformly Lipschitz

in x, the differential equation admits a unique solution for every γ ∈ Γ.

3See Başar and Olsder (1995).
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Note that, for any difference game and well-defined differential game, every N -tuple of

strategies γ ∈ Γ defines a unique state trajectory, and hence induces a mapping

J : Γ → R, γ 7→ L(γ1(η1), . . . , γN(ηN)),

such that (Γ, J) defines a game in strategic form. Hence a Nash equilibrium of a difference

(resp. differential) game is now easily defined as the Nash equilibrium of the associated

strategic form game.

Consider the memoryless perfect state information structure for a difference or a differential

game, ηi(t) = (x0, x(t)). It can easily be shown, see e.g. chapter four of this dissertation,

that in general there exist many Nash equilibria for dynamic games with this informa-

tion structure. In this case it can again be argued that some Nash equilibria are more

“reasonable” than others. Therefore we introduce the following refinement4.

Definition 3.20 Let β ∈ Γ. The truncated differential game Dβ

[s,tf ]
is defined by

Dβ

[s,tf ]
:= D(

{

γ ∈ Γ | γ[0,s) = β[0,s), γ[s,tf ] ∈ Γ[s,tf ]

}

, [0, tf ]).

A Nash equilibrium γ̄ ∈ Γ is strongly time consistent if its truncation γ̄[s,tf ] to the interval

[s, tf ] is a Nash equilibrium for the truncated differential game Dβ

[s,tf ]
, for every β ∈ Γ.

Remark 3.21 Strongly time consistent Nash equilibria under memoryless perfect state

information are necessarily independent of the initial state (see (Başar and Olsder, 1995,

page 257)). Therefore a strongly time consistent Nash equilibrium necessarily involves

feedback strategies, i.e. they only depend on current values of the state. Furthermore,

(see also lemma 3.13), strongly time consistent Nash equilibria can be found by means of

dynamic programming. This justifies the following definition of feedback Nash equilibria

(see also definition 6.6 in Başar and Olsder (1995)).

Definition 3.22 For a differential game under the memoryless perfect state information

structure, an N -tuple of strategies γ̄ constitutes a feedback Nash equilibrium, if there exist

functions Vi(·, ·) defined on T×S0, satisfying the following relations for each i = 1, . . . , N :

Vi(t, x) =

∫ tf

t

gi(τ, x̄(τ), γ̄1(τ, η1(τ)), . . . , γ̄N(τ, ηN(τ)))dτ + qi(x̄(tf ))

6

∫ tf

t

gi(τ, xi(τ), γ̄1(τ, η1(τ)), . . . , γi(τ, ηi(τ)), . . . , γ̄N(τ, ηN(τ)))dτ + qi(xi(tf )),

4We introduce time-consistency and feedback Nash equilibria here for differential games. It is however

obvious how to define the same concepts and to obtain similar results for difference games.
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for all t ∈ T, γi ∈ Γi, x ∈ R
n, and where, on T

ẋi(s) = f(t, xi(s), γ̄1(s, η1(s)), . . . , γi(s, ηi(s)), . . . , γ̄N(s, ηN(s))), xi(t) = x,

˙̄x(s) = f(s, x̄(s), γ̄1(s, η1(s)), . . . , γ̄N(s, ηN(s))), x̄(t) = x.

Remark 3.23 Another way of introducing the feedback Nash equilibrium is by restriction

of the class of admissible strategies to feedback strategies (see also the introduction of

Markov perfect equilibria in Maskin and Tirole (1994)). It is easily shown that the subclass

of feedback strategies is closed under best replies (see definition 3.4).

We have the following result:

Theorem 3.24 Every feedback Nash equilibrium is strongly time consistent and vice versa,

i.e. the class of strongly time consistent Nash equilibria coincides with the class of feedback

Nash equilibria.

Proof : From definition 3.22 it is immediately clear that any feedback Nash equilibrium is

strongly time consistent. Now let γ̄ be a strongly time consistent Nash equilibrium. Then

it is easily verified that the functions Vi defined on T × S0 by

Vi(t, x) :=

∫ tf

0

gi(τ, x̄(τ), γ̄1(τ, η1(τ)), . . . , γ̄N(τ, ηN(τ)))dτ + qi(x̄(tf )),

satisfy the inequalities as specified in definition 3.22. Hence γ̄ is a feedback Nash equilib-

rium. �

3.2.2 The Folk theorem for infinitely repeated games

A special class of difference games is formed by repeated games. Let G = (Γ, π) be a game

in strategic form. Denote by G(T ) the game in which G is played T times. Furthermore,

let 0 < δ < 1, and denote by G(∞, δ) the game in which G is repeated infinitely and the

payoffs are discounted by a factor δ. Denote by h(1) initial information available to all

players before G(T ) or G(∞, δ) is played and for t > 2 define

h(t) := (h(1), γ(1), γ(2), . . . , γ(t− 1)) , (3.4)

the history of the game until time t, and denote by

H(t) := {h(1)} × Γt−1, (3.5)

the set of all possible histories until time t. Throughout this dissertation we will assume

that all the players have perfect recall, i.e. at every time instant t every player knows h(t)

exactly.
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Definition 3.25 A (pure) strategy si is a sequence of maps

si(t) : H(t) → Γi

which maps possible histories h(t) ∈ H(t) to (pure) strategies γi ∈ Γi of G. Denote by Si

the set of all (pure) strategies of player i and define

S := S1 × · · · × SN .

For the the finitely repeated game the payoff Πi of player i is

Πi(s) :=
T
∑

t=1

πi(s(hi(t)),

and, under the assumption that πi is bounded for all i, for the infinitely repeated game

Πi(s) :=
∞
∑

t=1

δt−1πi(s(hi(t)).

Denote by S(G(T )) the strategic form game (S,Π), and similarly S(G(∞, δ)).

We can now straightforwardly define a Nash equilibrium for the repeated game G(T ) or

G(∞, δ).

Definition 3.26 s̄ ∈ S is a Nash equilibrium of the repeated game G(T ) (resp. G(∞, δ))

if it is a Nash equilibrium of S(G(T )) (resp. S(G(∞, δ))).

Similar to definition 3.11 we can define subgames of a repeated game G(T ) or G(∞, δ).

Definition 3.27 Let G(T ) be a repeated game and let s be an N -tuple of strategies. Then

the subgame G(T )|h(t) is the repeated game G(T − t+ 1) with h(1) replaced by h(t) and s

restricted accordingly.

Let G(∞, δ) be an infinitely repeated game and let s be an N -tuple of strategies. Then

the subgame G(∞, δ)|h(t) is the repeated game G(∞, δ) with h(1) replaced by h(t) and s

restricted accordingly.

Then a subgame perfect Nash equilibrium is defined in the following (obvious) way.

Definition 3.28 Let s̄ be a Nash equilibrium of G(T ) (resp. G(∞, δ)). Then s̄ is subgame

perfect if s̄ is a Nash equilibrium for every subgame of G(T ) (resp. G(∞, δ)) when restricted

to that subgame.
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The following proposition is easily proved.

Proposition 3.29 Let γ̄ be a Nash equilibrium of G. Then the strategy s̄ defined by

∀i,t s̄i(h(t)) = γ̄i

is a subgame perfect Nash equilibrium both for G(T ) and for G(∞, δ).

Proof : It is easily verified that s̄ is a Nash equilibrium for G(T ) or for G(∞, δ). Subgame

perfectness follows directly by noting that s̄ does not use any information at all, and

therefore is a Nash equilibrium of any subgame. �

For the finitely repeated game G(T ) we also find the following proposition.

Proposition 3.30 Suppose G has a unique Nash equilibrium γ̄. Then the subgame perfect

Nash equilibrium s̄ in which γ̄ is played at every time instant is the unique subgame perfect

Nash equilibrium of G(T ).

Proof : By dynamic programming. Consider the subgame G(T )|h(T ). Independently of

h(T ) this subgame has the unique Nash equilibrium γ̄. Backward induction yields the

advertized result. �

Remark 3.31 In the proof of this proposition we saw that the final stage becomes of

predominant importance; the players know that, no matter what has happened before,

they will always play the one-shot equilibrium in the last round. However, in most actual

situations one cannot exclude the possibility of meeting the opponent once more, hence,

a model in which the exact number of repetitions is known in advance is unrealistic.

In this sense infinitely repeated games offer a better approximation to model long term

competition.

We end this subsection with the Folk theorem for infinitely repeated games (see van Damme

(1991); Friedman (1971); Fudenberg and Tirole (1991); Gibbons (1992)).

Theorem 3.32 (Folk Theorem) Consider the infinitely repeated game G(∞, δ). Let

(e1, . . . , eN) be the payoffs of a Nash equilibrium of G, and let (x1, . . . , xN) be any other N -

tuple of admissible payoffs of G. If for every i = 1, . . . , N xi > ei, and δ is close enough to

one, then there exists a subgame perfect Nash equilibrium of G(∞, δ), with average payoffs5

(x1, . . . , xN).

5The average payoffs of G(∞, δ) are defined as (1 − δ) Π.
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Proof : Suppose γ̄ is a Nash equilibrium of G with payoffs (e1, . . . , eN). Define γx to

be the strategies of G with result in the payoffs (x1, . . . , xN). Now consider strigger (the

so-called trigger strategy), for player i:

strigger

i (1) := γx
i ,

strigger

i (t) :=

{

γx
i if h(t) only contains γx,

γ̄i otherwise.

It is easily verified that when all players adopt strigger as their strategy, then at every time-

instant γx will be played and the average payoff equals (x1, . . . , xN).

We will show in two steps that strigger is a subgame perfect Nash equilibrium. First we show

that strigger is a Nash equilibrium of G(∞, δ) for δ close enough to one. Suppose all other

players play strigger. Because γ̄ is a Nash equilibrium of G and every other player j will play

γ̄j for ever if player i deviates in the first period, the best reply of player i against strigger

−i is

to play γ̄i forever once he has deviated. Denote by γd
i a best reply of player i against γx

−i

resulting in the payoff di = πi(γ
d
i , γ

x
−i). Then di > xi > ei. Playing γd

i in the first period

results in the payoff di in that first period but “triggers” the play of γ̄ in all subsequent

periods. Hence the maximal payoff obtained by deviating in the first period equals

di +
∞
∑

t=2

δt−1ei = di +
δ

1 − δ
ei.

In case player i plays γx
i in the first period, the choice between γd

i and γx
i is postponed to the

second period. If playing γx
i in the first period is optimal for player i, then Πi = xi + δΠi,

and hence Πi = xi/(1 − δ). However if playing γd
i in the first period is optimal, then

Πi = di + δ
1−δ

ei. Hence, player i has no incentive to deviate from γx in the first period if

and only if
xi

1 − δ
> di +

δ

1 − δ
ei, i.e. iff δ >

di − xi

di − ei

.

Hence strigger is a Nash equilibrium if and only if δ > max di−xi

di−ei
, which is strictly smaller

than 1 because di > xi > ei for every i.

It remains to be shown that strigger is subgame perfect. There exist two possible subgames

of G(∞, δ):

(i) subgames in which in all previous periods γx has been played, and

(ii) subgames in which some player has deviated.

Whenever all players play strigger,

(i) in subgames of the first kind, the strategies strigger restricted to such a subgame again
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equal strigger, and

(ii) in subgames of the second kind, the strategies strigger restricted to such a subgame

prescribe γ̄ to be played every period, which is also a Nash equilibrium of G(∞, δ).

Hence strigger is a subgame perfect Nash equilibrium with average payoffs (x1, . . . , xN). �

3.2.3 Pareto efficiency

In the previous subsection we have considered Nash equilibria. From a noncooperative

point of view this solution concept is reasonable because it is self-enforcing; no single

player can gain by unilateral deviation. However, when binding agreements are possible,

it is not necessary that a solution is self-enforcing. In a cooperative context, i.e. when

binding agreements are allowed, a solution should be such that it can not be improved

upon by all players simultaneously. This motivates the concept of Pareto efficiency.

Definition 3.33 Let G be a game in strategic form. The N -tuple of strategies γ̂ is called

Pareto efficient if the set of inequalities

πi(γ) > πi(γ̂), i = 1, . . . , N,

where at least one of the inequalities is strict, does not allow for any solution γ ∈ Γ.

Definition 3.34 Let f : D → R be a function. Then the set arg max is defined by

arg max
x∈D

{f(x)} :=

{

x̂ ∈ D, f(x̂) = max
x∈D

f(x)

}

.

We have the following lemma:

Lemma 3.35 Let αi ∈ (0, 1), with
N
∑

i=1

αi = 1. If γ̂ ∈ Γ is such that

γ̂ ∈ arg max
γ∈Γ

{

N
∑

i=1

αiπi(γ)

}

,

then γ̂ is Pareto efficient.

Proof : Let αi ∈ (0, 1), with
N
∑

i=1

αi = 1, and

γ̂ ∈ arg max
γ∈Γ

{

N
∑

i=1

αiπi(γ)

}

.
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Assume γ̂ is not Pareto efficient. Then, there exists an N -tuple of strategies γ̃ such that

πi(γ̃) > πi(γ̂), i = 1, . . . , N,

where at least one of the inequalities is strict. But then

N
∑

i=1

αiπi(γ̃i) >
N
∑

i=1

αiπi(γ̂i),

which contradicts the fact that γ̂ is maximizing. �

Remark 3.36 Note that in this lemma we neither use any concavity conditions on the

πi’s nor any convexity assumptions regarding the Γi’s.

Before we can formulate a lemma stating in a sense the converse of the above lemma, we

first need the following separation theorem:

Theorem 3.37 Let X be a nonempty convex set in R
n. Furthermore, let x0 ∈ R

n, such

that x0 6∈ X. Then there exists a p ∈ R
n, p 6= 0, |p| < ∞, such that for all x ∈ X

p′x > p′x0.

Proof : See e.g. (Takayama, 1985, page 44). �

Remark 3.38 Note that usually this lemma is stated with the additional assumption

that X is a closed subset of R
n. The proof in Takayama (1985) however, shows that this

condition is superfluous. Note that when we demand X to be closed, the inequality is

strict.

Now we can formulate a converse to lemma 3.35.

Lemma 3.39 Assume that the strategy spaces Γi, i = 1, . . . , N are convex. Moreover,

assume that the payoffs πi are concave. Then, if γ̂ is Pareto efficient, there exist αi ∈ [0, 1],

i = 1, . . . , N , with
N
∑

i=1

αi = 1, such that for all γ ∈ Γ

N
∑

i=1

αiπi(γ) 6

N
∑

i=1

αiπi(γ̂).

Proof : Define for all γ ∈ Γ the set Zγ ⊂ R
N by

Zγ :=
{

z ∈ R
N | zi < πi(γ) − πi(γ̂), i = 1, . . . , N

}

,
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and define Z by

Z :=
⋃

γ∈Γ

Zγ.

Then, because γ̂ is Pareto efficient, 0 6∈ Z. Moreover, Z is convex. For, if z ∈ Zγ , z̃ ∈ Zγ̃

and λ ∈ [0, 1], then

λzi + (1 − λ) z̃i < λπi(γ) + (1 − λ)πi(γ̃) − πi(γ̂)

6 πi(λγ + (1 − λ) γ̃) − πi(γ̂),

and hence, λz + (1 − λ) z̃ ∈ Zλγ+(1−λ)γ̃ ⊂ Z.

By the separation theorem 3.37, we know that there exists a p̃ 6= 0, such that p̃′z > 0 for

all z ∈ Z. Because, for every i = 1, . . . , N , we can choose −zi arbitrarily large, it is obvious

that p̃i 6 0. Define p := −p̃. Then, for all z ∈ Z, p′z 6 0, and pi > 0, i = 1, . . . , N .

Let z ∈ Z. Then there exists a γ ∈ Γ, and ε ∈ R
N , with εi > 0, i = 1, . . . , N , such that

zi = πi(γ) − πi(γ̂) − εi, i = 1, . . . , N.

Moreover, by varying γ ∈ Γ and εi > 0, i = 1, . . . , N , we obtain all z ∈ Z. Hence, for all

γ ∈ Γ and for all εi > 0 we have

N
∑

i=1

pi (πi(γ) − πi(γ̂) − εi) 6 0,

and therefore for all γ ∈ Γ
N
∑

i=1

piπi(γ) 6

N
∑

i=1

piπi(γ̂).

If we define

αi :=
pi

N
∑

j=1

pj

,

we find that for all γ ∈ Γ
N
∑

i=1

αiπi(γ) 6

N
∑

i=1

αiπi(γ̂).

�

Remark 3.40 This lemma is due to K. Fan, I. Glicksberg and A.J. Hoffman, and appeared

as such in Fan et al. (1957). The proof as given above is essentially taken from Takayama

(1985).
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By combining the results from lemma 3.35 and lemma 3.39, we find the following theorem.

Theorem 3.41 Let αi > 0, i = 1, . . . N , satisfying
N
∑

i=1

αi = 1. If γ̂ ∈ Γ is such that

γ̂ ∈ arg max
γ∈Γ

{

N
∑

i=1

αiπi(γ)

}

,

then γ̂ is Pareto efficient.

Moreover, if Γi is convex and πi is concave for all i = 1, . . . N , then for all Pareto efficient

γ̂ there exist αi > 0, i = 1, . . . N , with
N
∑

i=1

αi = 1, such that

γ̂ ∈ arg max
γ∈Γ

{

N
∑

i=1

αiπi(γ)

}

.

Remark 3.42 Verkama gives in Verkama (1994) an elegant and short proof of this theo-

rem, in case the strategy spaces Γi are compact and convex subspaces of some Euclidean

space R
ni , and the payoffs πi are pseudoconcave.

3.3 Bargaining models

In this section we will elaborate on the theory of bargaining. This theory has its origin in

two papers by John Nash (Nash (1950) and Nash (1953)). In these papers a bargaining

problem is defined as a situation in which two (or more) individuals or organizations have

to agree on the choice of one specific alternative from a set of alternatives available to them,

while having conflicting interests over this set of alternatives. Note that these alternatives

can be the choice of which strategy to play in a game in strategic form; this case is

generally referred to as policy bargaining. For references on bargaining theory, we refer to

van Damme (1991); Fudenberg and Tirole (1991); Houba (1994); Osborne and Rubinstein

(1991). Nash (in Nash (1953)) proposes two different approaches to the bargaining problem,

namely the axiomatic and the strategic approach. The axiomatic approach lists a number

of desirable properties the solution must have, called the axioms. The strategic approach

on the other hand, sets out a particular bargaining procedure and asks what outcomes

would result from rational behavior by the individual players. Specifically, a dynamic

game in extensive form is specified, of which e.g. the subgame perfect Nash equilibria are

studied. In this section we will concentrate on this strategic approach. Furthermore, as

in the remainder of this dissertation we will restrict ourselves to the two-player case. For
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bargaining models involving more than two players and the difficulties involved in treating

these models, see e.g. Houba (1994).

A classic model in the context of strategic bargaining is Rubinstein’s alternating offer

model, in which two players must agree on how to share a pie of size 1 (see Rubinstein

(1982)). In periods 0, 2, 4, etc., player 1 proposes a sharing rule (x, 1 − x) that player 2

can either accept or reject. If player 2 accepts any offer, the game ends. However, if player

2 rejects player 1’s offer in period 2k, then in period 2k + 1 he can propose a sharing rule

(x, 1 − x) that player 1 can accept or reject. If player 1 accepts one of player 2’s offers

the game ends, otherwise he can make an offer in the subsequent period, and so on. If

(x, 1 − x) is accepted at time t, the payoffs are defined by π := (δt
1x, δ

t
2 (1 − x)). A first

observation we make is that this game allows for many Nash equilibria. The strategy in

which player 1 always demands x = 1, and rejects all smaller offers and in which player

2 always offers x = 1 and accepts any offer, is a Nash equilibrium. However, this Nash

equilibrium is not subgame perfect, for if player 2 rejects player 1’s first offer, and offers

player 1 a share x > δ1, then player 1 should accept, because the best possible outcome if

he rejects is to receive the entire pie tomorrow, which is worth only δ1.

Define the continuation payoffs of a pair of strategies in a subgame starting at t to be the

payoffs in time-t units of the outcome induced by that strategies. We find the following

proposition.

Proposition 3.43 The Rubinstein bargaining model has a subgame perfect Nash equilib-

rium. The Nash equilibrium, in which player i always demands a share (1 − δj) / (1 − δiδj)

when it is his turn to make an offer, and he accepts any share which is greater than or

equal to δi (1 − δj) / (1 − δiδj), is subgame perfect. Moreover, subgame perfect equilibrium

continuation payoffs are unique.

Proof : (Adapted from Fudenberg and Tirole (1991)).

Define vi and vi to be the infimum resp. supremum of player i’s continuation payoffs of

any subgame in which he is allowed to make the first offer. Similarly, define wi and wi to

be the infimum resp. supremum of player i’s continuation payoffs in subgames where the

other player makes the first offer. We will prove that vi = vi and wi = wi.

When player imakes an offer x, the other player will accept any x such that his share (1 − x)

exceeds δjvj, since he cannot expect more than vj in the continuation game following his

refusal. Hence, vi 6 1 − δjvj.

Also, since player i will never offer player j more than δjvj, wj 6 δjvj.

Since player j can obtain at least vj in the continuation game by rejecting player i’s offer,
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he will reject any offer 1 − x such that 1 − x 6 δjvj. Therefore, vi satisfies

vi 6 max
{

1 − δjvj, δiwi

}

6 max
{

1 − δjvj, δ
2
i vi

}

= 1 − δjvj.

Combining all inequalities yields

vi 6 1 − δjvj 6 1 − δj (1 − δivi)

and

vi > 1 − δjvj > 1 − δj (1 − δivi) .

Hence,
1 − δj

1 − δiδj
6 vi 6 vi 6

1 − δj
1 − δiδj

.

Similarly, wi = wi =
δi(1−δj)

1−δiδj
. This shows that the subgame perfect equilibrium continuation

payoffs are unique.

By the above arguments player i must offer exactly vi. Player j is indifferent between

accepting and rejecting this offer. If he always accepts this leads to the subgame perfect

Nash equilibrium as stated above. �

Remark 3.44 It can be shown that in the subgame perfect equilibrium given above the

players reach an immediate agreement on a Pareto efficient point. It can even be proved

that this point is the so-called Nash bargaining solution. (See van Damme (1991)).

3.4 Coordination in repeated games

3.4.1 Introduction

In this section we provide a general model to study the role of a coordinator in reaching a

cooperative equilibrium for a repeated game. The model allows the individual players to

react in a strategic fashion to the behavior of the coordinator, and so the natural question

arises whether there is a way in which a coordinator can encourage cooperative play. In

Klompstra (1992), in the context of linear-quadratic differential games, it is shown that if

players are allowed to switch in time between cooperative and noncooperative behavior,

such switches do indeed occur. With this idea in mind, we can conclude that the decision

whether or not to cooperate has a dynamical flavor, i.e. willingness to cooperate should

be modelled in a dynamic way. The theory of (strategic) bargaining, briefly introduced
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in the previous section, shows that using threats to play noncooperatively (i.e. to reject),

individual players can influence the final outcome of a game. This idea is also used in our

model, in the sense that individual players can influence the behavior of the coordinator

by deviating from a cooperative strategy. The coordinator can then be interpreted as an

institution appointed to promote a prespecified mode of play. In this way our model can

be interpreted as a first step in introducing strategic behavior into the hierarchical control

model. In order to concentrate on the strategic aspects, our model is constructed in such

a way that it ignores the dynamical and informational aspects of the hierarchical control

problem. This is accomplished by building the model on a two-player game, which is played

repeatedly, rather than on a system with a non-trivial state space (as was done in chapter

two). Regarding this repeated game we introduce the notion of coordination and discuss

the resulting difference game.

3.4.2 General model formulation

Consider the following situation. Two players repeatedly play a nonzero-sum game G.

Assume now that the game G depends in some way (through the payoffs that the players

receive, or through the strategy spaces that are available to them) on a parameter α ∈ [0, 1]

that may vary in time. The value of α is determined by a ‘coordinator’ through some

decision rule that takes the actions of the players into account. In this way the decisions of

the players can influence their future payoffs, and a difference game arises which we shall

refer to as the ‘controlled game’. Comparing the equilibria of the controlled game to the

possible modes of play in the original game G, we can see whether the decision rule chosen

by the coordinator is effective in establishing cooperation between the players.

We formalize this idea as follows. Consider a two-player static game G in strategic form,

with strategy spaces Γi and payoff functions πi. From this game G we construct a new

game, G(α), for every α in [0, 1], where α is the variable that is manipulated by the

coordinator. Denote by Γi(α) the strategy spaces of G(α) and by νi(α, γ1(α), γ2(α)) the

payoffs. Now assume that the coordinator can observe the strategies γi(α) chosen by the

individual players, and uses a decision rule

α(t+ 1) = f(α(t), γ1(α(t)), γ2(α(t)))

to determine the future values of α. Finally, by choosing as a criterion

Li =

tf−1
∑

t=0

νi(α(t), γ1(α(t)), γ2(α(t))),

a difference game is specified, which we refer to as the controlled game. So the construction

of a controlled game from a static game G is done in the following steps:
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Step 1: construction of a coordination mechanism G � G(α),

Step 2: specification of a decision rule

α(t+ 1) = f(α(t), γ1(α(t)), γ2(α(t)))

for the coordinator.

3.4.3 Construction of a controlled game

In this subsection we will construct a class of controlled games we will use in the remainder

of this chapter. First we make some assumptions on the underlying static game G.

Assumption 3.45

The strategy spaces Γi ⊆ R
k are convex.

The payoff functions πi : Γ1×Γ2 → R, i = 1, 2, are twice differentiable and strictly concave,

i.e.

(

∂2πi

∂γ2
1

∂2πi

∂γ1∂γ2

∂2πi

∂γ1∂γ2

∂2πi

∂γ2
2

)

< 0.

By γ̄ =
(

γ̄1, γ̄2

)

∈ Γ1 × Γ2 we denote a Nash equilibrium of the game G.

Denote by γ∗i (α) the cooperative strategy for player i, to be played when the coordinator

selects α. Furthermore, denote by γa
i (α) an alternative strategy, that player i would play

when playing noncooperatively. We have to make a choice for the alternative strategy

γa. The issue on how to choose such an alternative strategy is closely related to the issue

of choosing threatpoints or disagreement strategies in bargaining theory (see e.g. Houba

(1994); Osborne and Rubinstein (1991)). A possible choice of alternative strategy is a Nash

equilibrium for the underlying game G. Especially in the case that G has a unique Nash

equilibrium this seems a good choice, for the Nash equilibrium is the standard equilibrium

concept in noncooperative situations (see section 3.2).

We introduce ci(t), which is a parameter reflecting the willingness of player i to play

cooperatively at time instant t. If ci(t) = 0 then player i chooses to play the alternative

strategy γa
i (α(t)) and if ci(t) = 1 then player i chooses to play the strategy γ∗i (α(t)). We

allow the players to hesitate between cooperative and noncooperative play by allowing the

parameter ci(t) to take values between 0 and 1. For given ci, the strategy played by player

i is given by ui(ci) := ciγ
∗
i (α) + (1 − ci) γ

a
i (α).

Now we assume that the coordinator, by observing the actions of both players at time-

instant t, can determine the values of ci(t). Using this information the coordinator adjusts
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the value of α(t). The process of coordination can be described by a decision rule

α(t+ 1) = f(α(t), c1(t), c2(t)). (3.6)

This decision rule has to satisfy some properties:

1. f is sufficiently smooth, i.e. f is at least twice differentiable w.r.t. ci, and at least

differentiable w.r.t. α,

2. ∀c1,c20 6 f(α, c1, c2) 6 1,

3. ∂2f

∂ci∂cj
= 0, ∂f

∂ci
6≡ 0.

The smoothness condition is imposed in order to prevent some technical difficulties in the

sequel of this chapter. Clearly this condition might be weakened at the expense of some

technical complications. The second condition is crucial, in the sense that it guarantees

that α(t) remains in [0, 1] for all t. Finally, the third condition is sufficient to guarantee that

the optimization problems we will encounter are strictly concave, and that the mechanism

is not trivial. Obviously also this condition might be weakened, and in this case a more

delicate analysis would be required. An example of a coordination rule satisfying properties

1 to 3 is

f(α, c1, c2) = α+ βα (1 − α) (c2 − c1) ,

where β ∈ (0, 1) is an arbitrary constant. This decision rule reflects the intuition that

whenever one of the players shows less willingness to cooperate, the coordinator might try

to convince this player to play more cooperatively in the future by choosing a new α, which

is more favorable for that particular player. When β is chosen in (−1, 0), the decision rule

is such that the coordinator punishes any player who is not playing cooperatively.

A further assumption we make is that both players exactly know the mechanism f the

coordinator is using. It is this assumption that creates the possibility for strategic behavior

by both players. By choosing c1 and c2 the players can influence the behavior of the

coordinator. A nonlinear difference game emerges, where α is the state variable, c1 and c2
are the controls, and with the payoff functionals

Li =

tf−1
∑

t=0

νi(α(t), u1(c1(t)), u2(c2(t))), (3.7)

in which ui(ci(t)) = ci(t)γ
∗
i (α(t)) + (1 − ci(t)) γ

a
i (α(t)). We refer to this newly defined

difference game as the controlled game.
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Note that by introducing ui(ci) = ciγ
∗
i (α) + (1 − ci) γ

a
i (α) the payoff for player i at time

instant t is given by νi(α(t), u1(c1(t)), u2(c2(t))), which we will sometimes write with some

abuse of notation as νi(α(t), c1(t), c2(t)). In the sequel of this chapter we will assume that

ν1 and ν2 are strictly concave in
(

c1, c2
)

.

3.4.4 Equilibria of the controlled game

A natural solution concept to consider for the controlled game is the feedback Nash equi-

librium. We find the following proposition.

Proposition 3.46 Let γ̄ be a Nash equilibrium of G. Suppose there exist for all α ∈ (0, 1)

numbers λi(α) ∈ R and µi(α) ∈ (0,∞), i = 1, 2, such that

νi(α, u1(c1), u2(c2)) = λi(α) + µi(α)πi(u1(c1), u2(c2)),

and moreover, suppose that the alternative strategies γa are such that for all α ∈ (0, 1) the

system of equations

c̄1(α)γ∗1(α) + (1 − c̄1(α)) γa
1 (α) = γ̄1,

c̄2(α)γ∗2(α) + (1 − c̄2(α)) γa
2 (α) = γ̄2,

has a solution (c̄1(α), c̄2(α)) ∈ [0, 1] × [0, 1]. Then (c̄1(α), c̄2(α)) constitutes a feedback

Nash equilibrium for the controlled game. Moreover, the actions (u1(c̄1(α(t))), u2(c̄2(α(t)))

played at every time instant t are equal to the Nash equilibrium γ̄ of G.

Proof : By dynamic programming. In the last stage the Nash equilibrium of the game

with payoffs νi(α, u1(c1), u2(c2)) has to be determined. Because

νi(α, u1(c1), u2(c2)) = λi(α) + µi(α)πi(u1(c1), u2(c2)),

and because there exist (c̄1(α), c̄2(α)) such that

c̄1(α)γ∗1(α) + (1 − c̄1(α)) γa
1 (α) = γ̄1,

c̄2(α)γ∗2(α) + (1 − c̄2(α)) γa
2 (α) = γ̄2,

we find

νi(α, u1(c̄1(α)), u2(c̄2(α))) = λi(α) + µi(α)πi(γ̄1, γ̄2),

and hence (c̄1(α), c̄2(α)) is a Nash equilibrium for the game played at the last time instant.

This argument can be repeated at all other time instants, completing the proof. �

The following corollary is straightforwardly proved.
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Corollary 3.47 Suppose γ̄ is the unique Nash equilibrium of G. Suppose there exist for

all α ∈ (0, 1) numbers λi(α) ∈ R and µi(α) ∈ (0,∞), i = 1, 2, such that

νi(α, u1(c1), u2(c2)) = λi(α) + µi(α)πi(u1(c1), u2(c2)),

and moreover, suppose that the alternative strategies γa are such that for all α ∈ (0, 1) the

system of equations

c̄1(α)γ∗1(α) + (1 − c̄1(α)) γa
1 (α) = γ̄1,

c̄2(α)γ∗2(α) + (1 − c̄2(α)) γa
2 (α) = γ̄2,

has a unique solution (c̄1(α), c̄2(α)). Then (c̄1(α), c̄2(α)) is the unique feedback Nash equi-

librium for the controlled game. The actions (u1(c̄1(α(t))), u2(c̄2(α(t)))) played at every

time instant t are equal to the Nash equilibrium γ̄ of G.

Remark 3.48 Comparing this corollary with proposition 3.30, we observe again (as in

remark 3.31) that the last stage becomes of predominant importance. Exactly as in remark

3.31 we might conclude that a model in which the exact number of repetitions is known

in advance is often unrealistic, and that therefore we should consider the controlled game

over an infinite time horizon.

3.4.5 A redistribution mechanism

As previously noted, there are several ways in which the coordination parameter α may

affect the underlying static game G. In this subsection we consider the case in which the

payoffs depend on α and the strategy spaces do not.

We make the following assumptions about the underlying static game G.

Assumption 3.49

(i) The game G is symmetric, i.e. Γ1 = Γ2 and π1(γ1, γ2) = π2(γ2, γ1),

(ii) G has a unique Nash equilibrium
(

γ̄1, γ̄2

)

, with equilibrium payoffs
(

π̄1, π̄2

)

,

(iii) the unique Nash equilibrium of G is not Pareto efficient.

The symmetry suggests restricting our attention to Pareto efficient strategies γ̂(1
2
) cor-

responding to αi = 1
2

(see theorem 3.41). So for the cooperative strategy we choose

γ∗i (α) = γ̂i(
1
2
). The second assumption, that G has a unique Nash equilibrium, justifies

the choice of this Nash equilibrium as the alternative strategy, i.e. γa
i (α) = γ̄i. Note that
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both the cooperative strategies γ∗ and the alternative strategies γa do not depend on α in

this case. The extra payoffs from playing ui(ci) = ciγ̂i(
1
2
) + (1 − ci) γ̄i are given by

π∗(c1, c2) := π1(u1(c1), u2(c2)) + π2(u1(c1), u2(c2)) − π1(γ̄1, γ̄2) − π2(γ̄1, γ̄2). (3.8)

Now suppose that these extra payoffs are redistributed over the players by the coordinator,

according to the rule

ν1(α, c1, c2) := απ∗(c1, c2), (3.9)

ν2(α, c1, c2) := (1 − α) π∗(c1, c2). (3.10)

Then we find the following result.

Proposition 3.50 The unique feedback Nash equilibrium for the redistribution controlled

game is given by c̄i ≡ 1.

Proof : The symmetry of the game G implies γ̄1 = γ̄2 =: γ̄ and γ̂1(
1
2
) = γ̂2(

1
2
) =: γ̂. Then

elementary calculus shows that
(

∂2π∗

∂c21

∂2π∗

∂c1∂c2
∂2π∗

∂c1∂c2

∂2π∗

∂c22

)

= (γ̂ − γ̄)2

((

∂2π1

∂γ2
1

∂2π1

∂γ1∂γ2

∂2π1

∂γ1∂γ2

∂2π1

∂γ2
2

)

+

(

∂2π2

∂γ2
1

∂2π2

∂γ1∂γ2

∂2π2

∂γ1∂γ2

∂2π2

∂γ2
2

))

.

From the strict concavity of π1 and π2 it follows that
(

∂2πi

∂γ2
1

∂2πi

∂γ1∂γ2

∂2πi

∂γ1∂γ2

∂2πi

∂γ2
2

)

< 0,

i = 1, 2, and hence
(

∂2π∗

∂c21

∂2π∗

∂c1∂c2
∂2π∗

∂c1∂c2

∂2π∗

∂c22

)

< 0,

since γ̂ 6= γ̄, by assumption 3.49 (iii).

Now, using this strict concavity of π∗, it is easily verified, again using dynamic programming

and using similar arguments as in the proof of proposition 3.46, that at every time instant

t, a necessary and sufficient condition for c̄i to be a Nash equilibrium, is that in (c̄1, c̄2)

∂π∗

∂c1
=
∂π∗

∂c2
= 0.

Again elementary calculus shows that ∂π∗

∂c1
= ∂π∗

∂c2
= 0, if and only if

∂π1

∂γ1

(u1(c̄1), u2(c̄2)) +
∂π2

∂γ1

(u1(c̄1), u2(c̄2)) = 0,

∂π1

∂γ2

(u1(c̄1), u2(c̄2)) +
∂π2

∂γ2

(u1(c̄1), u2(c̄2)) = 0,
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which are exactly the first order conditions characterizing γ̂ (see theorem 3.41). Hence,

c̄i = 1. �

Remark 3.51 Also here remark 3.31 and remark 3.48 can be stated again. Also in this

case it might be more appropriate to study the controlled game over an infinite time

horizon.

3.5 Conclusions

In the first part of this chapter we have introduced solution concepts from noncooperative

game theory. In particular we have introduced Nash equilibria for games in strategic

form, for finite dynamic games in extensive form and for difference and differential games.

Especially in the case of dynamic games, we saw that there is a need for refinements of

the Nash equilibrium concept, to avoid “unreasonable” outcomes. In the case of finite

dynamic games and repeated games this led to the subgame perfectness refinement, and

for difference and differential games to feedback Nash equilibria. Finally, in subsection

3.2.3, we have introduced the concept of Pareto efficiency for cooperative situations, and

we gave a characterization of Pareto efficient outcomes in theorem 3.41.

In section 3.3 we have briefly introduced (strategic) bargaining theory. By means of Rubin-

steins alternating offer model we have seen an example of how bargaining can be modelled,

by prescribing explicitly a bargaining procedure. Moreover it was shown how in such a

model the outcomes can be determined. Specifically, the bargaining procedure was for-

mulated as a dynamic game, of which the subgame perfect Nash equilibria are studied.

Inspired by this idea we have developed in 3.4 a model incorporating strategic behavior in

a hierarchical framework. This model involves the specification of a difference game, the

so-called controlled game. Analysis of this model, i.e. determination of the feedback Nash

equilibria of the controlled game, showed (see remarks 3.48 and 3.51) that it is desirable to

rephrase the model over an infinite horizon. The analysis of infinite-horizon feedback Nash

equilibria of difference games involves the solution of functional equations of the form

V1(x) = max
u1

{rV1(f(x, u1, u2)) + π1(x, u1, u2)} ,
V2(x) = max

u2

{rV2(f(x, u1, u2)) + π2(x, u1, u2)} ,

which appears to be a nasty problem. In the continuous-time case, i.e. in the case of

infinite-horizon differential games, we will show in chapter five (and appendix A) that

these functional equations are replaced by differential-algebraic equations which we can

solve numerically. Therefore, in chapter five we will redefine the controlled game as a
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differential game over an infinite horizon, and analyze it in more detail. Before doing

so, we will consider in chapter four the effects of introducing an infinite horizon into a

special class of differential games (namely linear-quadratic differential games) and also the

asymptotics of finite-horizon linear-quadratic differential games when the horizon tends to

infinity.





Chapter 4

Nash equilibria in differential games

4.1 Introduction

Differential games were first introduced in Isaacs (1956), within the framework of two-

person zero-sum games. Recently, the theory of zero-sum differential games has successfully

been used in the area of H∞ control theory, see e.g. Başar and Bernard (1991); Stoorvo-

gel (1992). Nonzero-sum differential games were introduced in the papers Starr and Ho

(1969b,a). A good survey of the area of noncooperative dynamic games is provided in the

book Başar and Olsder (1995). This chapter is mainly based on the papers Engwerda and

Weeren (1995b); Weeren et al. (1994).

In this chapter we look at a special class of nonzero-sum differential games, namely nonzero-

sum differential games of the linear-quadratic type. The dynamics are described by a linear

differential equation,

ẋ(t) = Ax(t) +B1u1(t) +B2u2(t), x(0) = x0, (4.1)

and for each player a quadratic cost functional is given:

L1(u1, u2) := x(tf )
′K1fx(tf )+

∫ tf

0

{x(t)′Q1x(t) + u1(t)
′R11u1(t) + u2(t)

′R12u2(t)} dt,
(4.2)

L2(u1, u2) := x(tf )
′K2fx(tf )+

∫ tf

0

{x(t)′Q2x(t) + u1(t)
′R21u1(t) + u2(t)

′R22u2(t)} dt,
(4.3)

in which all matrices are symmetric, and moreover Qi > 0 and Rii > 0.
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The objective of the game for each player is the minimization of his own cost functional

by choosing appropriate inputs for the underlying linear dynamical system.

For given information sets ηi(t) and any pair of strategies
(

γ1, γ2

)

, the actions of the players

are completely determined by the relations
(

u1, u2

)

=
(

γ1(η1), γ2(η2)
)

. Substitution of the

pair
(

u1, u2

)

in (4.2–4.3), together with the corresponding unique state trajectory, yields a

pair of numbers
(

L1(u1, u2), L2(u1, u2)
)

. Therefore we have a mapping for each fixed initial

state vector x0, defined by

Ji : Γ1 × Γ2 → R,
(

γ1, γ2

)

7→ Li(u1, u2), (4.4)

which we call the cost functional of player i for the game in strategic form (see section 3.2).

In Nash (1951) the Nash equilibrium concept was introduced, which was argued to be

a natural concept in a noncooperative context. The Nash equilibrium is defined in the

following way (see section 3.2):

Definition 4.1 A pair of strategies (γ∗1 , γ
∗
2) ∈ Γ1 × Γ2 is a Nash equilibrium for the differ-

ential game, if for all (γ1, γ2) ∈ Γ1 × Γ2 the following inequalities hold:

J1(γ
∗
1 , γ

∗
2) 6 J1(γ1, γ

∗
2), (4.5)

J2(γ
∗
1 , γ

∗
2) 6 J2(γ

∗
1 , γ2). (4.6)

The Nash equilibrium is defined such that it has the property that there is no incentive

for any unilateral deviation by any one of the players. A possible problem when dealing

with Nash equilibria, is that in general one cannot expect to have a unique Nash equi-

librium. Already in the paper Starr and Ho (1969a), for nonzero-sum differential games,

non-uniqueness problems regarding Nash equilibria were discussed.

In almost all papers on linear-quadratic differential games, the games are studied over a

fixed time period [0, tf ]. In the case of open-loop information, where every player knows

at time t ∈ [0, tf ] the initial state x0 (denoted by ηi(t) = x0), conditions for the existence

of a unique Nash equilibrium can be given (see Engwerda and Weeren (1995b) and section

4.2). In the case of closed-loop perfect state information, where every player knows at time

t ∈ [0, tf ] the complete history of the state (denoted by ηi(t) = x|[0,t]), one can show that

there exist many Nash equilibria. In this case it is possible to define a refinement of the

Nash equilibrium concept towards (linear) feedback Nash equilibria, which have the nice

property of strong time consistency (see theorem 3.24). In the finite (fixed) horizon case,

generic uniqueness of the linear feedback Nash equilibrium can be shown (see e.g. Başar

and Olsder (1995)).
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Only a few authors have studied the game over an infinite time horizon, or the asymp-

totic behavior of Nash equilibria for tf → ∞. In Abou-Kandil et al. (1993), the asymptotic

behavior of open-loop Nash equilibria is studied. For the feedback Nash equilibrium, in Pa-

pavassilopoulos et al. (1979), an initial study is made of stationary feedback Nash equilibria

for the differential game over an infinite horizon. However, in the paper Papavassilopoulos

et al. (1979) the asymptotic behavior of feedback Nash equilibria is not studied. Also, the

problem of existence of stationary feedback Nash equilibria for infinite-horizon differen-

tial games is not addressed. Instead, some sufficient solvability conditions for the coupled

algebraic Riccati equations are derived, using Brouwer’s fixed point theorem.

In section 4.2 of this chapter, we discuss the asymptotic analysis of Nash equilibria in the

open-loop case, based on the fact that in the open-loop case the Nash equilibrium can

be related to a linear differential system (see papers Abou-Kandil and Bertrand (1986);

Abou-Kandil et al. (1993); Engwerda and Weeren (1994b)). In section 4.3, we will show

that for feedback Nash equilibria it is not possible to follow a similar approach. Instead

we will give a detailed asymptotic analysis for the special case that all system parameters

are scalar. Finally, in section 4.4, we study linear stationary feedback Nash equilibria for

the differential game over an infinite horizon, and use the results from section 4.3 to show

that linear stationary feedback Nash equilibria are not unique.

4.2 Open-loop Nash equilibria

In this section we study the open-loop information structure , i.e. ηi(t) = x0, t ∈ [0, tf ].

4.2.1 Introduction

A well known problem studied in the literature on dynamic games is the existence of

a unique open-loop Nash equilibrium. It is often stated (see e.g. Starr and Ho (1969b);

Simaan and Cruz Jr. (1973); Abou-Kandil and Bertrand (1986); Abou-Kandil et al. (1993))

that the open-loop Nash equilibrium is given by

u∗1(t) = −R−1
11 B

′
1K1(t)Φ(t)x0 (4.7)

u∗2(t) = −R−1
22 B

′
2K2(t)Φ(t)x0 (4.8)

provided that the set of coupled asymmetric Riccati-type differential equations

K̇1 = −A′K1 −K1A−Q1 +K1S1K1 +K1S2K2, K1(tf ) = K1f , (4.9)

K̇2 = −A′K2 −K2A−Q2 +K2S2K2 +K2S1K1, K2(tf ) = K2f , (4.10)
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has a solution (K1(t), K2(t)) on [0, tf ]. Here Φ(t) satisfies the transition equation

Φ̇(t) = (A− S1K1(t) − S2K2(t))Φ(t), Φ(0) = I (4.11)

and Si = BiR
−1
ii B

′
i, i = 1, 2.

We will show by means of an example that, stated this way, this assertion is in general

not correct. As correctly stated by Başar and Olsder in (Başar and Olsder, 1995, theorem

6.12) existence of a solution to the above mentioned Riccati differential equations is just

a sufficient condition to conclude that there exists an open-loop Nash equilibrium for the

game. Unfortunately, Başar and Olsder make an assumption in their proof on the costate

variable (that it can be obtained by letting a differentiable matrix act on the state variable),

which is flawed. For, we will show that in case this assumption does hold the existence of

a solution to the Riccati equations is both a necessary and a sufficient condition for the

existence of an open-loop Nash equilibrium, and we show by an example that this is not

true. Therefore we present a correct proof of theorem 6.12 as stated in Başar and Olsder

(1995).

We will analyze the open-loop Nash equilibrium from its roots: the corresponding Hamil-

tonian equations. In subsection 4.2.2 we will show how both necessary and sufficient

conditions for the existence of a unique open-loop Nash equilibrium from the Hamiltonian

equations can be derived, in terms of the invertibility of a certain matrix H(tf ). In subsec-

tion 4.2.3 we give a correct proof of the theorem stated by Başar and Olsder. Moreover, we

present a sufficient condition which guarantees the existence of the set of Riccati differential

equations (4.9–4.10).

One area where games of this type are widely used is in policy coordination problems (see

e.g. van Aarle et al. (1995); Dockner et al. (1985); Fershtman and Kamien (1987); Petit

(1989)). In many economic policy coordination problems an interesting question is to

analyze the effect of an expanding planning horizon on the resulting equilibria. Therefore

we consider this effect if one expands the horizon tf to infinity in a separate section.

One nice property is that the equilibrium solution becomes much easier to calculate and

implement than in the finite horizon case. Before we present the results on this subject

in subsection 4.2.5, we first consider the algebraic Riccati equations associated with (4.9–

4.10) and their solutions. In subsection 4.2.4 we show how all solutions of these equations

can be determined from the eigenstructure of the matrix M , and that the eigenvalues

of the associated closed-loop system, obtained by applying the control functions u∗i (t) =

−R−1
ii B

′
iKiΦ(t)x0 to (4.1), are completely determined by the eigenvalues of matrix M .

Finally, in subsection 4.2.6 we will study the scalar case which is of particular interest for

many economic applications. We will show that in the scalar case the above mentioned
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invertibility condition is always satisfied, that as a consequence the equilibrium solution is

given by (4.7,4.8), and that the solutions converge to a stabilizing control if the planning

horizon expands.

4.2.2 Existence conditions for an open-loop Nash equilibrium

In this subsection, we consider the existence of a unique open-loop Nash equilibrium of the

differential game in detail. Due to the stated assumptions, both cost functionals Ji, i = 1, 2,

are strictly convex functions of γi for all admissible control functions uj, j 6= i and for all x0.

This implies that the conditions following from the minimum principle are both necessary

and sufficient (see e.g. (Başar and Olsder, 1995, section 6.5)).

Minimization of the Hamiltonian

Hi = (x′Qix+ u′1Ri1u1 + u′2Ri2u2) + ψ′
i(Ax+B1u1 +B2u2), i = 1, 2, (4.12)

with respect to ui yields the optimality conditions (see e.g. Başar and Olsder (1995) or

Abou-Kandil and Bertrand (1986)):

u∗1(t) = −R−1
11 B

′
1ψ1(t), (4.13)

u∗2(t) = −R−1
22 B

′
2ψ2(t), (4.14)

where the n-dimensional vectors ψ1(t) and ψ2(t) satisfy

ψ̇1(t) = −Q1x(t) − A′ψ1(t), with ψ1(tf ) = K1fx(tf ), (4.15)

ψ̇2(t) = −Q2x(t) − A′ψ2(t), with ψ2(tf ) = K2fx(tf ), (4.16)

and

ẋ(t) = Ax(t) − S1ψ1(t) − S2ψ2(t), x(0) = x0. (4.17)

In other words, the problem has a unique open-loop Nash equilibrium if and only if the

differential equation

d

dt





x(t)

ψ1(t)

ψ2(t)



 = −





−A S1 S2

Q1 A′ 0

Q2 0 A′









x(t)

ψ1(t)

ψ2(t)



 , (4.18)

with boundary conditions

x(0) = x0,

ψ1(tf ) −K1fx(tf ) = 0,

ψ2(tf ) −K2fx(tf ) = 0,
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has a unique solution. Denoting the state variable (x′(t) ψ′
1(t) ψ

′
2(t))

′ by y(t), we can

rewrite this two-point boundary value problem in the standard form

ẏ(t) = −My(t), with Py(0) +Qy(tf ) = (x′0 0 0)′, (4.19)

where

M =





−A S1 S2

Q1 A′ 0

Q2 0 A′



 , (4.20)

P =





I 0 0

0 0 0

0 0 0



 , (4.21)

Q =





0 0 0

−K1f I 0

−K2f 0 I



 . (4.22)

From (4.19) we have immediately that there exists a unique open-loop Nash equilibrium if

and only if the equation

(P +Qe−Mtf )y(0) = (x′0 0 0)′, (4.23)

or equivalently

(PeMtf +Q)e−Mtfy(0) = (x′0 0 0)′, (4.24)

is uniquely solvable for every x0. Elementary matrix analysis shows then that

Theorem 4.2 The two-player linear quadratic differential game has a unique open-loop

Nash equilibrium for every initial state x0 if and only if the matrix H(tf ) is invertible,

where

H(t) :=
(

I 0 0
)

eMt





I

K1f

K2f



 . (4.25)

Moreover, the open-loop Nash equilibrium together with the associated state trajectory can

be calculated from the linear two-point boundary value problem (4.19).

4.2.3 Sufficient conditions for existence of an open-loop Nash

equilibrium

In this subsection, we will reconsider the usual approach to the problem in terms of the

Riccati equations (4.9–4.10) in more detail. First we show that whenever the set of Riccati

equations (4.9–4.10) has a solution, there exists an open-loop Nash equilibrium.
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Theorem 4.3 If the set of Riccati equations (4.9–4.10) has a solution then there exists an

open-loop Nash equilibrium.

Proof : Let Ki(t) satisfy the set of Riccati equations (4.9–4.10). Assume that the control

functions ui(t) = −R−1
ii B

′
iKi(t)Φ(t)x0 = −R−1

ii B
′
iKi(t)x(t) are used to control the system

given by (4.1).

Now, define ψi(t) := Ki(t)x(t). Then, obviously ψ̇i(t) = K̇i(t)x(t) +Ki(t)ẋ(t).

Substitution of K̇i from (4.9–4.10) and ẋ from (4.1) yields

ψ̇i = (−A′Ki −Qi)x = −A′ψi −Qix.

From this we conclude that the two-point boundary value problem (4.19) has a solution,

which proves the claim. �

Now, under the assumption that the open-loop problem has a solution, it follows immedi-

ately from theorem 4.2 and (4.24) that

y0 = eMtf





I

K1f

K2f



H−1(tf )x0. (4.26)

Since y(t) = e−Mty0, it follows that the entries of y(t) can be rewritten as

x(t) = (I 0 0)eM(tf−t)





I

K1f

K2f



H−1(tf )x0, (4.27)

ψ1(t) = (0 I 0)eM(tf−t)





I

K1f

K2f



H−1(tf )x0, (4.28)

ψ2(t) = (0 0 I)eM(tf−t)





I

K1f

K2f



H−1(tf )x0. (4.29)

Using these formulas the following lemma can easily be proved.

Lemma 4.4 If H(t), as defined in (4.25) is invertible for all t ∈ [0, tf ], then

ψ1(t) = K1(t)x(t) and ψ2(t) = K2(t)x(t)

for some continuously differentiable matrix functions K1(t) and K2(t).
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Proof : From (4.27) we have that

x(t) = H(tf − t)H−1(tf )x0.

Since by assumption the matrix H(t) is invertible for all t, it follows that

H−1(tf )x0 = H−1(tf − t)x(t).

Substitution of this expression into the equations for ψi, i = 1, 2, in (4.28,4.29) yields:

ψ1(t) = G1(tf − t)H−1(tf − t)x(t), (4.30)

ψ2(t) = G2(tf − t)H−1(tf − t)x(t), (4.31)

for some continuously differentiable matrix functions Gi, i = 1, 2. Since also H−1(·) is a

continuously differentiable matrix function the advertized result is obvious now. �

We like to stress here that the condition as stated in lemma 4.4 is just a sufficient condition

for the adjoint state variables ψi, i = 1, 2 to be written as the product of a differentiable

matrix and the state variable. Given the fact that such a representation is possible, the

next corollary shows that then the open-loop Nash equilibrium can be obtained by solving

the set of Riccati differential equations. This shows the flaw in the proof given by Başar

and Olsder. For it implies in particular (see the result of theorem 4.3) that whenever this

representation is possible a unique open-loop Nash equilibrium exists if and only if the set

of Riccati differential equations (4.9–4.10) has a solution, whereas it will be shown below

(see example 4.6) that such an equivalence does not hold.

Corollary 4.5 If H(t) is invertible for every t ∈
[

0, tf
]

, then the unique open-loop Nash

equilibrium is given by (4.7–4.10).

Proof : From (4.13–4.14) we know that ψ1(t) and ψ2(t) satisfy

ψ̇1(t) = −Q1x(t) − A′ψ1(t), ψ1(tf ) = K1fx(tf ),

ψ̇2(t) = −Q2x(t) − A′ψ2(t), ψ2(tf ) = K2fx(tf ),

and

ẋ(t) = Ax(t) − S1ψ1(t) − S2ψ2(t), x(0) = x0.

According to lemma 4.4, under the above mentioned condition, ψ1(t) and ψ2(t) can be

written as K1(t)x(t) and K2(t)x(t) for some continuously differentiable matrix functions

K1(t) and K2(t). So, in particular we have that

ψ̇i = K̇ix+Kiẋ, i = 1, 2.
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Substitution of ψ̇i and ψi, i = 1, 2 into the above formulas yields
(

K̇1 + A′K1 +K1A+Q1 −K1S1K1 −K1S2K2

)

eMtx0 = 0,

with

(K1(tf ) −K1f ) e
Mtfx0 = 0,

and
(

K̇2 + A′K2 +K2A+Q2 −K2S2K2 −K2S1K1

)

eMtx0 = 0,

with

(K2(tf ) −K2f ) e
Mtfx0 = 0,

for arbitrarily chosen x0. From this the stated result is obvious. �

Note that this result in particular implies that under the above mentioned invertibility

condition the existence of a solution to the set of Riccati equations is guaranteed. So

verification of the solvability condition becomes superfluous.

The next example shows that there exist situations where the set of Riccati differential

equations (4.9–4.10) does not have a solution, whereas there exists an open-loop Nash

equilibrium for the game.

Example 4.6

Let

A =

( −1 0

0 −0.9

)

, B1 = B2 = Q2 =

(

1 0

0 1

)

,

R11 =

(

500 −200

−200 100

)−1

, R22 =

(

1000 200

200 50

)−1

, Q1 =

(

2 1

1 1

)

.

Now, choose tf = 0.1. Then, numerical calculations show

H(0.1) =

(

35.0323 9.3217

−1.8604 0.4729

)

+

(

366.4330 −142.9873

−36.5968 16.4049

)

K1f

+

(

850.3143 172.4050

−22.0161 −3.5423

)

K2f

=: V





I

K1f

K2f



 .
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Now, choose

K1f =

(

− 1
V23

1−V21

V24
1−V21

V24
2

)

, and K2f =

(

0 0

0 −V22+V23K1f (1,2)+2V24

V26

)

.

Then H(0.1) =

(

20.11 1096.54

0 0

)

is not invertible.

So, according to theorem 4.2 there exists no open-loop Nash equilibrium, and therefore

(see theorem 4.3) the corresponding set of Riccati differential equations has no solution on

[0, 0.1].

Next consider H(0.11). Numerical calculations show that with the system parameters as

chosen above, H(0.11) is invertible. So, according to theorem 4.2 again, the game does have

an open-loop Nash equilibrium for tf = 0.11. However, since the set of Riccati differential

equations can be rewritten as one autonomous vector differential equation, whose solutions

are known to be shift invariant, it is clear that the corresponding set of Riccati differential

equations can not have a solution on [0, 0.11], since it had no solution on [0, 0.1].

4.2.4 The solutions for the algebraic Riccati equation

To study the asymptotic behavior of the open-loop Nash equilibrium, we first consider in

this subsection the set of solutions of the algebraic Riccati equations corresponding with

(4.9–4.10)

−A′K1 −K1A−Q1 +K1S1K1 +K1S2K2 = 0, (4.32)

−A′K2 −K2A−Q2 +K2S2K2 +K2S1K1 = 0. (4.33)

MacFarlane (1963) and Potter (1966) discovered independently that there exists a relation-

ship between the stabilizing solution of the algebraic Riccati equation and the eigenvectors

of a related Hamiltonian matrix for linear-quadratic control problems. We will follow their

approach here and formulate similar results for our case. In fact Abou-Kandil et al. (1993)

already pointed out the existence of a similar relationship. One of their results is that if

the horizon tf tends to infinity, under some technical conditions on the matrix M , the solu-

tion of the Riccati differential equations (4.9–4.10) converges to a solution of the algebraic

Riccati equations (4.32–4.33) which can be calculated from the eigenspaces of matrix M .

In this subsection we will elaborate the relationship between solutions of the algebraic

Riccati equations (4.32–4.33) and the matrix M in detail (see also Engwerda and Weeren

(1995a)). We will present both necessary and sufficient conditions in terms of the matrix
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M under which the algebraic Riccati equations (4.32–4.33) have (a) real solution(s). In

particular we will see that all solutions can be calculated from the invariant subspaces of

M and that the eigenvalues of the associated closed-loop system, obtained by applying the

control functions u∗i (t) = −R−1
ii B

′
iΦ(t)x0, are completely determined by the eigenvalues of

matrix M . As a corollary of these results we obtain both necessary and sufficient conditions

for the existence of a stabilizing control of this type, a result which will be used in the next

subsection.

In our analysis, the set of all M -invariant subspaces will play a crucial role. Therefore we

introduce a separate notation for this set:

Minv := {T |MT ⊆ T } (4.34)

It is well known (see e.g. Lancaster and Tismenetsky (1985)) that this set contains only

a finite number of (distinct) elements if and only if all eigenvalues of M have geometric

multiplicity one.

The set of possible solutions for the algebraic Riccati equation can, as will be shown in the

next theorem, directly be calculated from the following collection of M -invariant subspaces:

Kpos :=







K ∈ Minv | K ⊕ im





0 0

I 0

0 I



 = R
3n







. (4.35)

Remark 4.7 Elements in the set Kpos can be calculated using the set of matrices

Kpos :=







K ∈ R
3n×n | K =





X

Y

Z



 , X invertible







. (4.36)

The exact result on how all solutions of the algebraic Riccati equations (4.32–4.33) can be

calculated reads as follows:

Theorem 4.8 The pair (K1, K2) is a real solution to the algebraic Riccati equations (4.32–

4.33) if and only if K1 = Y X−1 and K2 = ZX−1 for some

K = im





X

Y

Z



 ,

such that

K ∈ Kpos.
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Moreover, if the control functions u∗i (t) = −R−1
ii B

′
iKiΦ(t)x0 are used to control the system

(4.1), the spectrum of the matrix −A+ S1K1 + S2K2 coincides with σ(M |K).

Proof : ” ⇒ ” Assume
(

K1, K2

)

solve (4.32–4.33). Then simple calculations show that

M





I

K1

K2



 =





−A+ S1K1 + S2K2

Q1 + A′K1

Q2 + A′K2



 =





I

K1

K2



 (−A+ S1K1 + S2K2) ,

which completes this part of the proof.

” ⇐ ” Let K ∈ Kpos. Then there exist K1 and K2 such that K = im





I

K1

K2



, and a matrix

J such that

M





I

K1

K2



 =





I

K1

K2



 J.

Spelling out the left hand side of this equation gives





−A+ S1K1 + S2K2

Q1 + A′K1

Q2 + A′K2



 =





I

K1

K2



 J,

which immediately yields that J = −A+ S1K1 + S2K2. Substitution of this equality into

the right hand side of the equality shows then that

Q1 + A′K1 = K1 (−A+ S1K1 + S2K2) ,

Q2 + A′K2 = K2 (−A+ S1K1 + S2K2) ,

or stated differently,
(

K1, K2

)

satisfies (4.32–4.33). This proves the second part of the

theorem.

The last statement of the theorem concerning the spectrum of the matrix −A+S1K1+S2K2

is a well-known fact. �

From theorem 4.8, a number of interesting properties concerning the solvability of the

algebraic Riccati equations (4.32–4.33) follow. First of all, we observe that every element

of Kpos defines exactly one solution of (4.32–4.33). Furthermore, this set contains a finite

number of elements if the geometric multiplicities of all eigenvalues of M is one. So, in that

case we immediately conclude that the algebraic Riccati equations will have at most a finite

number of solutions and that the algebraic Riccati equations will have no real solution if

Kpos is empty. Another conclusion which immediately follows from theorem 4.8 is that
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Corollary 4.9 The algebraic Riccati equations (4.32–4.33) will have a set of solutions
(

K1, K2

)

stabilizing A− S1K1 − S2K2 if and only if there exists an M-invariant subspace

K in Kpos such that Reλ > 0 for all λ ∈ σ(M |K).

To illustrate some of the above mentioned properties, reconsider example 4.6.

Example 4.10 (Continued from example 4.6)

Numerical calculations show that the eigenvalues of M are

σ(M) = {−42.1181,−0.8866,−0.3441 ± 4.6285i,−0.3168, 42.1096} ,

and the corresponding eigenspaces

T1 = span
{

(−0.9968 0.0549 0.0471 0.0229 0.0242 − 0.0013)′
}

,

T2 = span
{

(−0.0178 0.0108 − 0.2191 − 0.5272 − 0.1570 0.8056)′
}

,

T3 = span
{

(−0.0439 0.1636 − 0.085 − 0.1382 0.0519 − 0.1906)′ ,

(0.2512 − 0.9146 − 0.0284 − 0.0425 0.0168 − 0.0582)′
}

,

T4 = span
{

(0.1145 − 0.4047 − 0.2570 − 0.4975 0.1676 − 0.6939)′
}

,

T5 = span
{

(−0.9970 0.0545 − 0.0450 − 0.0219 − 0.0231 0.0013)′
}

.

It is easily verified that there exist

(

4

2

)

+1 = 7 two-dimensional M -invariant subspaces,

i.e. Kpos has maximally 7 elements. Then, according to theorem 4.8, the algebraic Riccati

equations can have at most 7 real solutions. Furthermore, there is no solution which

stabilizes the closed-loop system matrix A− S1K1 − S2K2.

As an example consider




X

Y

Z



 :=
(

T5 T4

)

.

This yields the solution

K1 = Y X−1 =

(

0.0450 −0.2570

0.0219 −0.4975

)(

0.9970 0.1145

−0.0545 −0.4047

)−1

=

(

0.0811 0.6581

0.0905 1.2549

)

,

K2 = ZX−1 =

(

0.0231 0.1676

−0.0013 −0.6939

)(

0.9970 0.1145

−0.0545 −0.4047

)−1

=

(

0.0006 −0.4141

0.0939 1.7411

)

.
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The eigenvalues of the “closed-loop” system matrix are

σ(A− S1K1 − S2K2) = {−42.1096, 0.3168} .

It is easily verified that the rank of the first two rows of every other candidate solution is

also two, so we conclude that the system of algebraic Riccati equations has seven solutions,

none of which is stabilizing.

4.2.5 Convergence results

As argued in the introduction of this section, it is for a number of reasons interesting to

see how the open-loop Nash equilibrium changes when the horizon tf tends to infinity.

To study convergence properties, it seems reasonable to require the existence of a unique

open-loop Nash-equilibrium for every finite horizon tf . Therefore we will make in this

section the following well-posedness assumption (see theorem 4.2)

H(tf ) is invertible for all tf <∞. (4.37)

Furthermore, we will see that general convergence results can only be derived if the eigen-

structure of matrix M satisfies an additional property. Therefore we define this property

first.

Definition 4.11 M is called dichotomically separable if there exist subspaces V1 and V2

such that MVi ⊆ Vi, i = 1, 2, V1 ⊕ V2 = R
3n, dimV1 = n, dimV2 = 2n, and moreover

Reλ > Reµ for all λ ∈ σ(M |V1
) and µ ∈ σ(M |V2

).

Using corollary 4.5 we have now immediately from (4.37) that to study the convergence of

the open-loop Nash equilibrium we can restrict ourselves to the study of the set of solutions

to the Riccati differential equations (4.9–4.10) at time 0. We will denote the corresponding

solutions of (4.9–4.10) by Ki(0, tf ). So the question is under which conditions the solutions

of this set of differential equations will converge if tf increases. Note that Ki(0, tf ) can

be viewed as the solution k(t) of an autonomous vector differential equation k̇ = f(k),

with k(0) = k0 for some fixed k0, and where f is a smooth function. Elementary analysis

shows then that Ki(0, tf ) can only converge to a limit k̄ if the limit k̄ satisfies f(k̄) = 0.

Therefore, we immediately deduce from theorem 4.8 the following necessary condition for

convergence.

Lemma 4.12 Ki(0, tf ) can only converge to a limit K̄i(0) if the set Kpos is nonempty.
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Note that dichotomic separability of M implies that Kpos is nonempty. On the other

hand it is not difficult to construct an example where Kpos is nonempty, whereas M is not

dichotomically separable.

To study the convergence of Ki(0, tf ) we reconsider (4.30) and (4.31) in lemma 4.4. From

these formulas we have that

K1(0, tf ) = (0 I 0)eMtf





I

K1f

K2f







(I 0 0)eMtf





I

K1f

K2f









−1

, (4.38)

K2(0, tf ) = (0 0 I)eMtf





I

K1f

K2f







(I 0 0)eMtf





I

K1f

K2f









−1

. (4.39)

We are now able to give an elementary proof of the following result (see also (Abou-Kandil

et al., 1993, section 4))

Theorem 4.13 Assume that the well-posedness assumption (4.37) holds. Then, if M is

dichotomically separable and span





I

K1f

K2f



⊕ V2 = R
3n,

K1(0, tf ) → Y0X
−1
0 ,

K2(0, tf ) → Z0X
−1
0 ,

where X0, Y0, Z0 are defined by (using the notation of definition 4.11)

V1 =: span





X0

Y0

Z0



 .

Proof : Choose





I 0 0

K1f I 0

K2f 0 I



 as a basis for R
3n. Then, because

span





I

K1f

K2f



⊕ V2 = R
3n,
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there exists an invertible matrix V22 ∈ R
2n×2n such that V2 = span

(

0

V22

)

. Moreover,

because M is dichotomically separable, there exist matrices J1, J2 such that

M = V

(

J1 0

0 J2

)

V −1,

where

V =





X0 0
(

Y0

Z0

)

V22



 ,

and σ(Ji) = σ(M |Vi
), i = 1, 2.

Using this, we can rewrite Ki(0, tf ), i = 1, 2, in (4.38,4.39) as G̃i(tf )H̃
−1(tf ), i = 1, 2,

where

G̃1(tf ) = (0 I 0)V e−λntf

(

eJ1tf 0

0 eJ2tf

)

V −1





I

K1f

K2f



 ,

G̃2(tf ) = (0 0 I)V e−λntf

(

eJ1tf 0

0 eJ2tf

)

V −1





I

K1f

K2f



 ,

H̃(tf ) = (I 0 0)V e−λntf

(

eJ1tf 0

0 eJ2tf

)

V −1





I

K1f

K2f



 .

Here λn is the element of σ(M |V1
) which has the smallest real part.

Next, consider G̃1(tf ) − Y0X
−1
0 H̃(tf ).

Simple calculations show that this matrix can be rewritten as

e−λntf (−Y0X
−1
0 I 0)V

(

eJ1tf 0

0 eJ2tf

)

V −1





I

K1f

K2f



 , (4.40)

Since (−Y0X
−1
0 I 0) (X ′

0 Y
′
0 Z

′
0)

′ = 0, (4.40) equals

e−λntf
(

I 0
)

V22e
J2tfV −1

22

(

K1f − Y0X
−1
0

K2f − Z0X
−1
0

)

.

As e−λntf eJ2tf converges to zero for tf → ∞, it is obvious now that G̃1(tf ) − Y0X
−1
0 H̃(tf )

converges to zero for tf → ∞. Similarly it can be shown that also G̃2(tf ) − Z0X
−1
0 H̃(tf )
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converges to zero for tf → ∞. To conclude from this that K1(0, tf ) → Y0X
−1
0 , and

K2(0, tf ) → Z0X
−1
0 , it suffices to show that H̃−1(tf ) remains bounded for tf → ∞. This

follows, however, directly by spelling out H̃(tf ) as

H̃(tf ) = e−λntfX0e
J1tfX−1

0 .

�

Combination of the results from theorem 4.13 and corollary 4.9 yields then

Corollary 4.14 If the horizon tf in the linear quadratic differential game tends to infin-

ity, the unique open-loop Nash equilibrium u∗i (t, tf ) = −R−1
ii B

′
iKi(t, tf )Φ(t)x0 converges to

u∗i (t) = −R−1
ii B

′
iKie

t(A−S1K1−S2K2)x0, i = 1, 2, which stabilizes the associated ”closed-loop”

system, if the following conditions are satisfied:

1. all conditions mentioned in theorem 4.13,

2. Reλ > 0 for all λ ∈ σ(M |V1
).

Moreover, the constant matrices Ki can be calculated from the eigenspaces of the matrix

M (see theorem 4.13).

4.2.6 The scalar case

We start this subsection by showing that the invertibility condition mentioned in corollary

4.5 is always satisfied if the dimensions of both the state space and the input spaces

for the system (4.1) equal one. This implies that for this kind of systems the usually

stated assertion that the open-loop Nash equilibrium is given by (4.7–4.10) is correct and,

moreover, that the Riccati equations (4.9–4.10) yield the appropriate solution. To prove

this result we first calculate the exponential of the matrix M . To stress the fact that in

this section we are dealing with the scalar case, we will put the system parameters in lower

case, so e.g. a instead of A.

Lemma 4.15 Consider the matrix M in (4.19) and assume s1q1 + s2q2 > 0. The expo-

nential of the matrix M , eMs, is given by

V





e−µs 0 0

0 eas 0

0 0 eµs



V −1, (4.41)
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where

V =





a+ µ 0 a− µ

−q1 −s2 −q1
−q2 s1 −q2



 ,

and

V −1 =
1

detV





(s1q1 + s2q2) s1(a− µ) s2(a− µ)

0 −2q2µ 2q1µ

−(s1q1 + s2q2) −s1(a+ µ) −s2(a+ µ)



 ,

where the determinant of V is given by detV = 2µ
(

s1q1+s2q2
)

, and µ =
√

a2 + s1q1 + s2q2.

Proof : Straightforward calculations. �

Next consider the matrix H(s) from lemma 4.4 for an arbitrarily chosen s ∈ [0, tf ]. Obvi-

ously,

H(s) = (1 0 0)eMs





1

k1f

k2f



 .

Using the expressions in lemma 4.15 for V and V −1 we find

H(s) = 2µ
[

(µ− a) eµs + (µ+ a) e−µs +
(

eµs − e−µs
)

(s1k1f + s2k2f )
]

.

Clearly, H(s) is positive for every s > 0. This implies in particular that H(s) differs from

zero for every s ∈ [0,∞). So from corollary 4.5 we now immediately have the following

conclusion.

Theorem 4.16 Assume s1q1+s2q2 > 0. Then the scalar linear-quadratic differential game

has a unique open-loop Nash equilibrium:

γ1(x0) = u∗1(t) = − 1

r11
b1k1(t)φ(t)x0,

γ2(x0) = u∗2(t) = − 1

r22
b2k2(t)φ(t)x0,

where k1(t) and k2(t) are the solutions of the coupled asymmetric Riccati differential equa-

tions

k̇1 = −2ak1 − q1 + s1k
2
1 + s2k1k2, k1(tf ) = k1f ,

k̇2 = −2ak2 − q2 + s2k
2
2 + s1k1k2, k2(tf ) = k2f ,

and

φ̇(t) = (a− s1k1(t) − s2k2(t))φ(t), φ(0) = 1.

Here si = 1
rii
b2i , i = 1, 2.
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We conclude this subsection by considering the convergence properties of the open-loop

equilibrium solution mentioned above. It turns out that in the scalar case we can prove

that this solution always converges.

Theorem 4.17 Assume that s1q1 + s2q2 > 0. Then, the open-loop Nash equilibrium as

given in theorem 4.16 converges to the strategies:

γ1(x0) = u∗1(t) = − 1

r11
b1k1e

−µtx0,

γ2(x0) = u∗2(t) = − 1

r22
b2k2e

−µtx0,

where k1 = (a+µ)q1

s1q1+s2q2
and k2 = (a+µ)q2

s1q1+s2q2
. Moreover, these strategies stabilize the system

(4.1).

Proof : Since s1q1 + s2q2 > 0, it is clear from (4.41) that M is dichotomically separable.

Furthermore we showed above that the well-posedness assumption is always satisfied in the

scalar case. Note that µ > 0, so according to corollary 4.14 the open-loop Nash equilibrium

converges whenever kif , i = 1, 2, are such that

s1q1 + s2q2 + s1(a− µ)k1f + s2(a− µ)k2f 6= 0.

Now consider the case that

s1q1 + s2q2 + s1(a− µ)k1f + s2(a− µ)k2f = 0.

To study this case, reconsider (4.38) and (4.39) for tf → ∞. Elementary spelling out

of these formulas, using (4.41), shows that also in this case both k1(0, tf ) and k2(0, tf )

converge to the limit as advertized above, which concludes the proof. �

4.2.7 Concluding remarks

In this section, we reconsidered the existence and asymptotic behavior of a unique open-

loop Nash equilibrium in the two-player linear-quadratic game. We analyzed the problem

starting from its basics: the Hamiltonian equations. We derived necessary and sufficient

conditions for the existence of a unique open-loop Nash equilibrium in terms of a full rank

condition on a modified fundamental matrix. An open problem remains to find general

conditions on the system matrices which guarantee that the rank condition is satisfied.

Furthermore we showed by means of an example that in general a solution to the system

of differential Riccati equations may fail to exist whereas an open-loop Nash equilibrium
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does exist. A sufficient condition is given under which the open-loop Nash equilibrium can

be obtained via the solutions of the Riccati differential equations (4.9–4.10).

To study convergence of the open-loop Nash equilibrium if the horizon tf tends to infinity,

we argued that for well-posedness reasons we can restrict ourselves to study the asymptotic

behavior of the Riccati differential equations. To that end we first considered the existence

of real solutions for the corresponding algebraic Riccati equations. We showed how ev-

ery real solution to the algebraic Riccati equations can be calculated from the invariant

subspaces of the matrix M . Furthermore, we showed how the eigenvalues of the ”closed-

loop” system matrix if the open-loop strategies are used to control (4.1) correspond to the

eigenvalues of the matrix M .

In particular this approach makes it possible to conclude whether the algebraic Riccati

equations have a real solution, and if so, how many solutions there are (there are always

only a finite number of solutions if the geometric multiplicity of all eigenvalues of M

equals one) and which of these solutions give rise to control strategies that stabilize the

”closed-loop” system. We noted that in general the algebraic Riccati equations will allow

for more than one stabilizing solution. We like to note that it is not difficult to show by

means of an example that this property is independent of the fact whether the matrix M

is dichotomically separable or not.

These results raise a number of open interesting questions, for instance, is it possible

to say a priori something on the relationship between the eigenstructure of matrix M

(in particular the structure which guarantees the existence of stabilizing solutions to the

algebraic Riccati equations, and more in particular the structure which generically implies

convergence of the solutions of the Riccati differential equations) and geometric properties

of the system parameters in (4.1). A first attempt to answer the question under which

conditions on the system matrices there may exist a stabilizing solution was addressed in

Engwerda and Weeren (1994a), where for a number of particular situations it is shown that

matrix M always has at least n eigenvalues (counted with their algebraic multiplicities)

with a positive real part. On the other hand it is shown there by means of an example

that this property does not always hold.

The results on the existence of real solutions to the algebraic Riccati equations were used

to show that if the dimension of the direct sum of the invariant subspaces corresponding

to the n largest eigenvalues (counted again with algebraic multiplicities) equals n, then

generically the solution to the Riccati differential equations converges to a solution which

can be directly calculated from this direct sum.

Since there are a number of applications which just involve scalar systems we concluded



4.3 Feedback Nash equilibria 75

this section with a detailed analysis of that case. We showed that for those systems the

unique open-loop Nash equilibrium can always be found by solving the Riccati differential

equations, and that this solution converges to a strategy which stabilizes the system when

the planning horizon tends to infinity.

Finally we note that the obtained results can straightforwardly be generalized to the N -

player game.

4.3 Feedback Nash equilibria

4.3.1 Introduction

In this section we study memoryless perfect state (MPS) information, i.e.

ηi(t) = (x0, x(t)) , t ∈ [0, tf ].

For this information structure, the following theorem is well known (see Başar and Olsder

(1995); Starr and Ho (1969b)):

Theorem 4.18 Let the strategies
(

γ∗1 , γ
∗
2

)

be such that there exist solutions (ψ1, ψ2) to the

differential equations

ψ̇′
1 = −∂H1

∂x
(x∗, γ∗1(t, x0, x

∗), γ∗2(t, x0, x
∗), ψ1)

− ∂H1

∂u2

(x∗, γ∗1(t, x0, x
∗), γ∗2(t, x0, x

∗), ψ1) ·
∂γ∗2
∂x

(t, x0, x
∗)

(4.42)

ψ̇′
2 = −∂H2

∂x
(x∗, γ∗1(t, x0, x

∗), γ∗2(t, x0, x
∗), ψ2)

− ∂H2

∂u1

(x∗, γ∗1(t, x0, x
∗), γ∗2(t, x0, x

∗), ψ2) ·
∂γ∗1
∂x

(t, x0, x
∗)

(4.43)

in which, for i = 1, 2,

Hi(x, u1, u2, ψi) := x′Qix+ u′1Ri1u1 + u′2Ri2u2 + ψ′
i(Ax+B1u1 +B2u2) (4.44)

with terminal conditions, for i = 1, 2,

ψi(tf ) = Kifx
∗(tf ), (4.45)

such that for i = 1, 2,

∂Hi

∂ui

(x∗, γ∗1(t, x0, x
∗), γ∗2(t, x0, x

∗), ψi) = 0 (4.46)
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and x∗ satisfies

ẋ∗(t) = Ax∗(t) +B1γ
∗
1(t, x0, x

∗(t)) +B2γ
∗
2(t, x0, x

∗(t)), x∗(0) = x0. (4.47)

Then
(

γ∗1 , γ
∗
2

)

is a Nash equilibrium with respect to the MPS information structure, and

the following equalities hold:

u∗i (t) = γ∗i (t, x0, x
∗(t)) = −R−1

ii B
′
iψi(t).

Remark 4.19 Let (γol
1 , γ

ol
2 ) be an open-loop Nash equilibrium. Then it is easily seen that

(γol
1 , γ

ol
2 ) is also a Nash equilibrium with respect to the MPS information structure, because

∂
∂x
γol

i = 0.

When we restrict the admissible strategies to the class of (possibly time-varying) linear

feedback strategies, i.e. Γfb
i := {γi ∈ Γi | γi(x, t) = Fi(t)x} (see section 3.2), then there

exists a generically unique feedback Nash equilibrium (see e.g. (Başar and Olsder, 1995,

section 6.5.2)). The following theorem can be found in Başar and Olsder (1995); Starr and

Ho (1969b).

Theorem 4.20 Suppose (K1, K2) satisfy the coupled Riccati equations, given by

K̇1 = −A′K1 −K1A−Q1 +K1S1K1 +K1S2K2 +K2S2K1 −K2S02K2 (4.48)

K̇2 = −A′K2 −K2A−Q2 +K2S2K2 +K2S1K1 +K1S1K2 −K1S01K1 (4.49)

K1(tf ) = K1f (4.50)

K2(tf ) = K2f (4.51)

where

S1 = B1R
−1
11 B

′
1,

S2 = B2R
−1
22 B

′
2,

S01 = B1R
−1
11 R21R

−1
11 B

′
1,

S02 = B2R
−1
22 R12R

−1
22 B

′
2.

Then the pair of strategies (γ∗1(x, t), γ
∗
2(x, t)) :=

(

−R−1
11 B

′
1K1(t)x,−R−1

22 B
′
2K2(t)x

)

is a

feedback Nash equilibrium. The functions ψi of theorem 4.18 are given by ψi(t) = Ki(t)x(t).

Proof :(outline) Write (ψ1, ψ2) in theorem 4.18 as ψi = Kix. Then the Nash equilibrium

is given by γ∗i (x, t) = −R−1
ii B

′
iψi(t) = −R−1

ii B
′
iKix.

Obviously (γ∗1 , γ
∗
2) ∈ Γfb

1 × Γfb
2 . Moreover, it is easily verified that K1 and K2 satisfy the

coupled Riccati equations (4.48–4.51). �
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Remark 4.21 When we allow for more general (e.g. nonlinear feedback) strategies, there

may exist many more Nash equilibria for the MPS information structure.

In the previous section we have characterized the open-loop Nash equilibrium by means of a

linear differential system, as in the papers Abou-Kandil and Bertrand (1986); Abou-Kandil

et al. (1993); Engwerda and Weeren (1995b). In that way, it was easier to investigate the

asymptotic properties of the open-loop Nash equilibrium and it also enabled us to calculate

the solutions of (4.9–4.10). We will now see what happens if we try to rewrite the Riccati

equations (4.48–4.51) for the feedback Nash equilibrium as a linear system, following a

similar approach as in the previous section. For the feedback Nash equilibrium the functions
(

ψ1, ψ2

)

, as described by theorem 4.18, satisfy the following differential equations:

ψ̇1 = −Q1x− (A′ −K2S2)ψ1 −K2S02ψ2, (4.52)

ψ̇2 = −Q2x−K1S01ψ1 − (A′ −K1S1)ψ2. (4.53)

This gives for the matrix M

M = M(K1, K2) =





−A S1 S2

Q1 A′ −K2S2 K2S02

Q2 K1S01 A′ −K1S1



 . (4.54)

In the (realistic) case R12 = 0, R21 = 0, (4.54) simplifies to

M = M(K1, K2) =





−A S1 S2

Q1 A′ −K2S2 0

Q2 0 A′ −K1S1



 . (4.55)

Note that, even in this special case, M depends on (K1, K2), so that the resulting equations

are still nonlinear. In the rest of this section we will study in detail the quadratic system

of Riccati differential equations for the feedback Nash equilibrium in the most simple case

where all parameters are scalar and R12 = 0, R21 = 0. This analysis will show that

the situation for the feedback Nash equilibrium is much more complicated than in the

open-loop case.

4.3.2 The scalar case

Below we restrict our attention to the case in which all the system parameters are scalar1.

Furthermore, we shall confine ourselves to the case where q1, q2, s1 and s2 are all strictly

1To emphasize the fact that all system parameters are scalar we put them in lower case, e.g. q1 instead

of Q1.
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positive. If we rewrite the terminal value problem for
(

k1(t), k2(t)
)

as an initial value

problem for
(

k1(τ), k2(τ)
)

, we get

k̇1 = 2ak1 + q1 − s1k
2
1 − 2s2k1k2, (4.56)

k̇2 = 2ak2 + q2 − s2k
2
2 − 2s1k1k2, (4.57)

k1(0) = k1f , (4.58)

k2(0) = k2f . (4.59)

Now define

σi := siqi, i = 1, 2, (4.60)

κi := siki, i = 1, 2. (4.61)

Then we get the following system of quadratic differential equations:

κ̇1 = 2aκ1 + σ1 − κ2
1 − 2κ1κ2, (4.62)

κ̇2 = 2aκ2 + σ2 − κ2
2 − 2κ1κ2. (4.63)

The study of planar quadratic systems in general is a very complicated topic, as e.g. can

be seen in the survey papers Coppel (1966); Reyn (1987). For example the famous 16th

Hilbert problem, to determine the maximal number of limit cycles, Hd, for dth degree

polynomial planar systems, is still unsolved even for quadratic systems (d = 2). Hence, in

general we can expect complicated dependence on the parameters for the quadratic system

(4.62–4.63); for instance in Reyn (1987), Reyn finds 101 topologically different global phase

portraits for a 6-parameter family of quadratic systems. In the following subsections we

address some of the characteristics of the quadratic system (4.62–4.63) that one typically

is interested in.

4.3.3 Periodic solutions

The first question we address is the determination of the maximal number of limit cycles

for the quadratic system (4.62–4.63). This leads to the question of existence of periodic so-

lutions. We recall a famous criterion due to Bendixson (introduced in the paper Bendixson

(1901), see also e.g. Perko (1991)):

Theorem 4.22 (Bendixson) Let f ∈ C1(E → R
2), where E is a simply connected region

in R
2. If the divergence ∇·f of the vector field f is not identically zero and does not change

sign in E, then the planar system ẋ = f(x) has no periodic solution lying entirely in E.
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Recall that the divergence of a vector field in R
2 is given by the trace of the Jacobian

matrix. The divergence of the quadratic system (4.62–4.63) is given by

∇ · f = 4a− 4κ1 − 4κ2. (4.64)

Hence, the divergence equals zero on the line

a− κ1 − κ2 = 0. (4.65)

It follows from theorem 4.22 that if there would exist a periodic solution of the quadratic

system (4.62–4.63), this solution would have to cross the line (4.65) at least two times.

However, on the line (4.65) we have

κ̇1 = σ1 + κ2
1 > 0,

κ̇2 = σ2 + κ2
2 > 0,

and hence any solution of (4.62–4.63) can cross the line (4.65) at most once. We conclude

therefore that there does not exist any periodic solution to the quadratic system (4.62–

4.63), and thus there are no limit cycles.

4.3.4 Critical points

The question of determining critical points of the quadratic system (4.62–4.63) is closely

related to the question of the existence of stationary feedback Nash equilibria. The critical

points of the differential equations (4.62–4.63) are the intersection points of the hyperbolas

given by

2aκ1 + σ1 − κ2
1 − 2κ1κ2 = 0, (4.66)

2aκ2 + σ2 − κ2
2 − 2κ1κ2 = 0. (4.67)

Simple calculations show that hyperbola (4.66) has the asymptotes κ1 = 0 and κ2 = a− 1
2
κ1

and hyperbola (4.67) has the asymptotes κ2 = 0 and κ2 = 2a−2κ1. Furthermore hyperbola

(4.66) intersects the κ1-axis in the points where κ1 = a±
√
a2 + σ1, and hyperbola (4.67)

intersects the κ2-axis in the points where κ2 = a ±
√
a2 + σ2. We are now able to prove

the following lemma:

Lemma 4.23 The hyperbolas (4.66) and (4.67) can only intersect in the first or third

quadrant of the
(

κ1, κ2

)

plane.
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Proof : Suppose (4.66) and (4.67) intersect in a point S =
(

κ̄1, κ̄2

)

where κ̄1 > 0.

Hyperbola (4.67) intersects the κ2-axis in the points κ2 = a ±
√
a2 + σ2. Because the

κ1-axis is an asymptote of (4.67), in S we have either κ̄2 > 0 or κ̄2 < 0 and then κ̄2 <

a −
√
a2 + σ2, i.e. S might be located either on the upper curve or on the lower curve of

(4.67). Suppose, in the intersection point S, κ̄2 < a−
√
a2 + σ2, i.e. S is located on the lower

curve of (4.67). Elementary calculus shows that on (4.66) for κ1 > 0, κ2 < a −
√
a2 + σ2

iff κ1 >
√
a2 + σ2 +

√
a2 + σ1 + σ2. Hence, necessarily κ̄1 >

√
a2 + σ2 +

√
a2 + σ1 + σ2.

Moreover, because the intersection point S lies on (4.66) to the right of the κ2-axis, we

know S has to be located above the asymptote κ2 = a− 1
2
κ1, hence κ̄2 > a− 1

2
κ̄1. Similarly,

S has to be located on (4.67) below the asymptote κ2 = 2a − 2κ1. Hence κ̄1 <
2a
3
. But

this contradicts the fact that κ̄1 >
√
a2 + σ2 +

√
a2 + σ1 + σ2. Therefore κ̄2 > 0, and thus

there exists no intersection point in the fourth quadrant. Along the same lines one can

prove that there exists no intersection point in the second quadrant. �

We can identify two square regions in R
2 in which critical points can be located. Define

the following two regions in R
2,

G1 :=
(

0, a+
√

a2 + σ1

)

×
(

0, a+
√

a2 + σ2

)

, (4.68)

G2 :=
(

a−
√

a2 + σ1, 0
)

×
(

a−
√

a2 + σ2, 0
)

. (4.69)

We have the following lemma:

Lemma 4.24 The critical points of the quadratic system (4.62–4.63) are located in the

regions G1 and G2. Moreover, each of the regions contains at least one critical point.

Proof : The region G1 lies entirely in the first quadrant. (4.66) intersects the κ1–axis,

in the point where κ1 = a +
√
a2 + σ1, and hence any critical point in the first quadrant

has to be located to the left of κ1 = a +
√
a2 + σ1. Similarly, any critical point in the

first quadrant has to be located below the line κ2 = a +
√
a2 + σ2. Hence, any critical

point in the first quadrant has to be located in G1, and similarly any critical point in the

third quadrant has to be located in G2. Furthermore, it is easily seen that (4.66) enters

G1 in the point
(

0, a +
√
a2 + σ2

)

, and leaves G1 through the line κ1 = a +
√
a2 + σ1.

Hyperbola (4.67) enters G1 through the line κ2 = a+
√
a2 + σ2, and leaves G1 in the point

(

a+
√
a2 + σ1, 0

)

. Necessarily, (4.66) and (4.67) have to intersect at least once2 in G1 (and

similarly at least once in G2). �

Lemma 4.25 In every critical point S = (κ̄1, κ̄2) located in G1, we have a− κ̄1 − κ̄2 < 0,

and in every critical point T = (κ̃1, κ̃2) located in G2, we have a− κ̃1 − κ̃2 > 0.

2Note that, counting multiplicities, we even have that the number of intersection points in G1 necessarily

is odd.
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Proof : Let S = (κ̄1, κ̄2) be a critical point in G1. Because S is located on the hyperbola

(4.66), we know S is located above the asymptote κ2 = a− 1
2
κ1, and thus

κ̄2 > a− 1

2
κ̄1.

And hence

a− κ̄1 − κ̄2 < a− κ̄1 − a+
1

2
κ̄1 = −1

2
κ̄1 < 0.

The proof that for every critical point T = (κ̃1, κ̃2) located in G2, we have a− κ̃1 − κ̃2 > 0,

goes along the same lines. �

Remark 4.26 The property a− κ̄1 − κ̄2 < 0 means that the closed-loop system obtained

by applying the linear stationary feedback strategies

γ̄i(x) = − bi
rii

k̄ix

is asymptotically stable.

We see that the system (4.62–4.63) has at least two critical points. Because the system

is quadratic we also know that the system (4.62–4.63) has at most four critical points.

Furthermore, the system (4.62–4.63) can only have critical points of multiplicity up to 3,

because of the location of the critical points in the areas G1 and G2.

Lemma 4.27 If the quadratic system (4.62–4.63) has a critical point of multiplicity 2 or

3, then the system parameters have to satisfy the equation

a8 +
(

6σ1σ2 − 6σ2
1 − 6σ2

2

)

a4 +
(

12σ2
1σ2 + 12σ1σ

2
2 − 8σ3

1 − 8σ3
2

)

a2

−9σ2
1σ

2
2 + 6σ3

1σ2 + 6σ1σ
3
2 − 3σ4

1 − 3σ4
2 = 0 (4.70)

Proof : Suppose S is a critical point of higher multiplicity of the system (4.62–4.63). Then

the tangent of (4.66) and the tangent of (4.67) in S have to coincide. Note that, because

of the fact that on the line a− κ1 − κ2 = 0, both κ̇1 > 0 and κ̇2 > 0, in any critical point

a− κ1 − κ2 6= 0. We find that in S necessarily







2aκ1 + σ1 − κ2
1 − 2κ1κ2 = 0

2aκ2 + σ2 − κ2
2 − 2κ1κ2 = 0

(a− κ1 − κ2)
2 − κ1κ2 = 0

(4.71)

Using a Gröbner basis (calculated with Maple V) for the system of equations (4.71) κ1 and

κ2 are eliminated from the equations (4.71), and we find that the system parameters have

to satisfy the equation (4.70). �
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Figure 4.1: Case (i), two critical points

From the previous lemma, we see that bifurcations can occur where the system parameters

satisfy equation (4.70). When equation (4.70) is not satisfied, all critical points will have

multiplicity 1. In points where equation (4.70) is satisfied two (or three) critical points

may coincide. In case all critical points have multiplicity 1, there will be either two or four

critical points. Noting that the number of critical points in G1 or G2 necessarily has to be

odd (counting multiplicities), we find three possibilities:

(i) The system (4.62–4.63) has exactly two critical points, one of them lies in G1, the other

in G2. (see figure 4.1)

(ii) The system has four different critical points, one of them lies in G1 and all the others

in G2. (see figure 4.2)

(iii) The system has four different critical points, one of them lies in G2 and all the others

in G1. (see figure 4.3)

We will illustrate the above results in an example.
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Figure 4.2: Case (ii), four critical points, one in G1.
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Figure 4.3: Case (iii): four critical points, three in G1.
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Example 4.28

In this example we take σ1 = 0.25 and σ2 = 0.2. Then (4.62–4.63) is given by

κ̇1 = 2aκ1 + 0.25 − κ2
1 − 2κ1κ2,

κ̇2 = 2aκ2 + 0.2 − κ2
2 − 2κ1κ2.

The equation (4.70) is given by

16000a8 − 50400a4 + 12960a2 − 1323 = 0,

which has the (real) solutions a ≈ ±0.6383. First we study the case a = 1. In this case

the critical points are

P1 ≈ (−0.110,−0.087) ,

P2 ≈ (1.925, 0.102) ,

P3 ≈ (0.712, 0.820) ,

P4 ≈ (0.139, 1.832) .

Now the case a = 0. Then the critical points are

P1 ≈ (−0.321,−0.230) ,

P2 ≈ (0.321, 0.230) .

Finally, we study the case a = −1. The critical points are:

P1 ≈ (−0.139,−1.832) ,

P2 ≈ (−0.712,−0.819) ,

P3 ≈ (−1.925,−0.102) ,

P4 ≈ (0.110, 0.087) .

In the bifurcation at a ≈ 0.6383, the system changes from having four critical points (for

a > 0.6383) towards a situation in which there are two critical points (for a < 0.6383).

In the bifurcation at a ≈ −0.6383 the system changes again from two critical points (for

a > −0.6383) to four critical points (for a < −0.6383).

For the case a = 1 we have calculated some solutions of the differential equations (4.62–

4.63) (see figure 4.4).
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Figure 4.4: Solutions of the differential equations for a = 1, σ1 = 0.25 and σ2 = 0.2.

4.3.5 The behavior at infinity

Finally we analyze the critical points at infinity. We study the behavior of trajectories

”at infinity” by studying the flow of the quadratic system (4.62–4.63) on the so-called

Poincaré sphere. This approach was introduced by Poincaré in the paper Poincaré (1881).

A description of this theory can be found in (Perko, 1991, pp. 248–269). When we consider

a flow of a dynamical system on R
2, given by

{

ẋ = P (x, y)

ẏ = Q(x, y)
(4.72)

where P and Q are polynomial functions of x and y, then the critical points at infinity for

the polynomial system (4.72) occur at the points (X,Y, 0) on the equator of the Poincaré

sphere where X2 + Y 2 = 1 and

XQm(X,Y ) − Y Pm(X,Y ) = 0. (4.73)

Here, m is the maximal degree of the terms in P and Q, Pm and Qm denote the polynomials

consisting of the terms of degree m. The solutions X,Y of (4.73), with X2 + Y 2 = 1, can

be found at the polar angles θj and θj + π satisfying

Gm+1(θ) ≡ Qm(cos θ, sin θ) cos θ − Pm(cos θ, sin θ) sin θ = 0. (4.74)
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For the system (4.62–4.63), m = 2 and the polynomials P and Q are given by

P (x, y) = 2ax+ σ1 − x2 − 2xy, (4.75)

Q(x, y) = 2ay + σ2 − y2 − 2xy. (4.76)

Thus, P2 and Q2 become

P2(x, y) = −x2 − 2xy, (4.77)

Q2(x, y) = −y2 − 2xy. (4.78)

The critical points at infinity for the system (4.62–4.63) can now be found by solving the

following equations:

XQ2(X,Y ) − Y P2(X,Y ) = 0, (4.79)

X2 + Y 2 = 1, (4.80)

which is equivalent to

XY 2 − Y X2 = 0, (4.81)

X2 + Y 2 = 1. (4.82)

The critical points at infinity are listed in table 4.1.

X Y θ nature

P1 1 0 0 saddle

P2
1
2

√
2 1

2

√
2 1

4
π unstable node

P3 0 1 1
2
π saddle

P4 −1 0 π saddle

P5 −1
2

√
2 −1

2

√
2 5

4
π stable node

P6 0 −1 3
2
π saddle

Table 4.1: Critical points at infinity

Note that the behavior at infinity of the system (4.62–4.63) is independent of the param-

eters a, σ1, σ2.
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4.3.6 The nature of the critical points

In this subsection we study the nature of the finite critical points of the quadratic system

(4.62–4.63). The Jacobian of the system (4.62–4.63) is given by

Df(κ1, κ2) =

(

2(a− κ1 − κ2) −2κ1

−2κ2 2(a− κ1 − κ2)

)

(4.83)

The eigenvalues of Df(κ1, κ2), for
(

κ1, κ2

)

in G1 or G2, are given by

λ1,2 = 2(a− κ1 − κ2) ± 2
√
κ1κ2. (4.84)

In any critical point of multiplicity 1, (a − κ1 − κ2)
2 6= κ1κ2, hence any critical point of

multiplicity 1 is hyperbolic. Moreover, since λ1 and λ2 are both real, all hyperbolic critical

points are either nodes or saddles, there are no foci.

On the projective plane (which can be thought of as the projection of the upper hemisphere

of the Poincaré sphere onto the unit disk), we know for the vector field, defined by (4.62–

4.63), by the Poincaré Index theorem, that n− s = 1, where n is the number of nodes and

s is the number of saddles. In the previous section we determined the nature of the critical

points at infinity (2 saddles and 1 node), hence

nf − sf = 1 − n∞ + s∞ = 2, (4.85)

where nf , sf are the number of ”finite nodes” and ”finite saddles”, respectively, and n∞,

s∞ are the number of nodes and saddles respectively at infinity.

Case (i): two finite critical points of multiplicity 1. In case there are exactly two

finite critical points, we deduce from (4.85) that these points necessarily have to be nodes.

Because of the fact that for the critical point in G1, by lemma 4.25, a − κ1 − κ2 < 0, we

know that in this point, in agreement with (4.84), the eigenvalues of the Jacobian λ1 and

λ2 are both negative. Hence the critical point in G1 is a stable node. Similarly, the critical

point in G2 is an unstable node.

Case (ii): four finite critical points, one of them in G1. We have four finite critical

points, hence nf + sf = 4. Moreover, by (4.85) we know nf − sf = 2. Hence, nf = 3 and

sf = 1: there are three nodes and one saddle. Denote the critical point in G1 by
(

κ̄1, κ̄2

)

.

We will show that this point is a stable node. We can (locally) interpret hyperbola (4.66)

as a function, given by κ2 = h1(κ1), and similarly we can (locally) interpret hyperbola
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(4.67) as a function given by κ2 = h2(κ1). Then, the derivative of h1 in a point
(

κ1, κ2

)

on

hyperbola (4.66), is given by

h′1(κ1, κ2) =
a− κ1 − κ2

κ1

, (4.86)

and the derivative of h2 in a point
(

κ1, κ2

)

on hyperbola (4.67), is given by

h′2(κ1, κ2) =
κ2

a− κ1 − κ2

. (4.87)

Furthermore, the determinant of the Jacobian (4.83) is given by

detDf(κ1, κ2) = 4
(

(a− κ1 − κ2)
2 − κ1κ2

)

. (4.88)

Since, in G1, κ1 > 0, κ2 > 0 and
(

a− κ1 − κ2

)

< 0 we find

detDf(κ1, κ2) > 0 ⇔ h′(κ1, κ2) < 0, (4.89)

where

h(κ1) = h1(κ1) − h2(κ1). (4.90)

Now it is easily verified, that the critical point in G1 is the point where h(κ̄1) = 0, and

moreover that h(κ1) changes sign from positive to negative when κ1 is increased. Hence,

h′(κ̄1, κ̄2) < 0, (4.91)

and thus

detDf(κ̄1, κ̄2) > 0, (4.92)

meaning that the eigenvalues λ1 and λ2 are both negative. Thus,
(

κ̄1, κ̄2

)

is a stable node.

Case (iii): four finite critical points, one of them in G2. Similarly as in case (ii),

we find nf = 3 and sf = 1. The only critical point in G2 is an unstable node, the remaining

three critical points in G1 now consist of two stable nodes and one saddle.

For the three cases, with finite critical points of multiplicity 1, we find the global phase

portraits, as sketched in figures 4.5, 4.6 and 4.7.
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Figure 4.5: Case (i), two finite critical points.

Figure 4.6: Case (ii), four finite critical points, one in G1.



90 Nash equilibria in differential games

Figure 4.7: Case (iii), four finite critical points, three in G1.

Remark 4.29 On the axis κ1 = 0 we find that κ̇1 > 0 and similarly on κ2 = 0 we find

κ̇2 > 0. From this and the global phase portraits it follows now that for any pair of initial

conditions
(

k1f , k2f

)

, with k1f > 0, k2f > 0, the solutions of (4.62–4.63) converge to (one

of) the critical point(s) in the first quadrant. Moreover, all solutions of (4.62–4.63) starting

in the first quadrant, will never leave the first quadrant.

Apart from the bifurcations, we see that there exist three topologically different phase

portraits of the system (4.62–4.63). Even more possibilities can be expected when the

dimension of the state space or the number of players is increased. The analysis in this

section can not straightforwardly be generalized to more dimensions or to the general N -

player case. In our opinion it is a rather complicated task to perform a more general

multidimensional, N -player, analysis. However, since in the 1-player case (the LQ optimal

control problem) we know that the behavior in the multivariable case is similar to the

behavior in the scalar case, we believe that our analysis provides some clues to what can

be expected in the more general case.

The most important observation we have made is that it is possible that there exist several

different stable critical points for the system of coupled Riccati differential equations (4.48–

4.51). In that case, even over a longer (finite) horizon, the solutions of the system of coupled

Riccati differential equations depend heavily on the terminal conditions
(

K1f , K2f

)

.
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4.3.7 An illustrative example

We end this section with an example, illustrating the results obtained in this section. The

example is inspired by Tabellini (1986). Tabellini studies in Tabellini (1986) a differential

game, played between fiscal and monetary authorities. In this model the law of motion of

public debt is given by the government budget constraint

ḋ(t) = rd(t) + f(t) −m(t), (4.93)

where all variables have been scaled to nominal income, and where d is the stock of out-

standing public debt, f is the fiscal deficit net of interest payments, m is the creation of

monetary base against liabilities of the Treasury, and where r can be shown to be the dif-

ference between the real rate of interest net of taxes and the rate of growth of real income.

The cost functionals3 Li are given by

L1 =

∫ tf

0

{

(m(t) − m̄)2 + τd(t)2
}

dt+ k1fd(tf )
2, (4.94)

L2 =

∫ tf

0

{

(

f(t) − f̄
)2

+ λd(t)2
}

dt+ k2fd(tf )
2, (4.95)

in which τ, λ > 0, m̄ and f̄ are given targets for m(t) and f(t). Now introduce

u1(t) := m(t) − m̄, (4.96)

u2(t) := f(t) − f̄ , (4.97)

c := f̄ − m̄, (4.98)

x(t) := d(t). (4.99)

Then (4.93) can be rewritten as

ẋ(t) = rx(t) − u1(t) + u2(t) + c, (4.100)

and the cost functionals Li as

L1 =

∫ tf

0

{

τx(t)2 + u1(t)
2
}

dt+ k1fx(tf )
2, (4.101)

L2 =

∫ tf

0

{

λx(t)2 + u2(t)
2
}

dt+ k2fx(tf )
2. (4.102)

3In Tabellini (1986) discounted infinite-horizon criteria are used. In this section however we will study

the asymptotic behavior of the finite-horizon undiscounted equivalents.
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Then, by (Başar and Olsder, 1995, corollary 6.5), the feedback Nash equilibrium for the

differential game is given by

γ1(x, t) = k1(tf − t)x+ ζ1(tf − t), (4.103)

γ2(x, t) = −k2(tf − t) − ζ2(tf − t), (4.104)

in which k1 and k2 satisfy the Riccati differential equations

k̇1 = 2rk1 + τ − k2
1 − 2k1k2, k1(0) = k1f , (4.105)

k̇2 = 2rk2 + λ− k2
2 − 2k1k2, k2(0) = k2f , (4.106)

and ζ1, ζ2 are given by

ζ̇1 = ck1 + (r − k1 − k2)ζ1 − k1ζ2, ζ1(0) = 0, (4.107)

ζ̇2 = ck2 − k2ζ1 + (r − k1 − k2)ζ2, ζ2(0) = 0. (4.108)

Now it is easily verified that the critical points of the system (4.105–4.108) can be identified

with the critical points of the Riccati differential system (4.105–4.106), which is exactly of

the form (4.62–4.63). For any critical point
(

k̄1, k̄2

)

of (4.105–4.106) the critical point of

(4.105–4.108) is given by
(

k̄1, k̄2, ζ̄1, ζ̄2
)

, in which
(

ζ̄1, ζ̄2
)

are given by

ζ̄1 =
ck̄1(k̄1 − r)

λ+ τ + r2 − 3k̄1k̄2

, (4.109)

ζ̄2 =
ck̄2(k̄2 − r)

λ+ τ + r2 − 3k̄1k̄2

. (4.110)

We find the following lemma:

Lemma 4.30 Let S :=
(

k̄1, k̄2

)

be a critical point of (4.105–4.106) and S :=
(

k̄1, k̄2, ζ̄1, ζ̄2
)

the corresponding critical point of (4.105–4.108). Then S is a(n) (un)stable node of (4.105–

4.108) if and only if S is a(n) (un)stable node of (4.105–4.106).

Proof : Let S :=
(

k̄1, k̄2

)

be a critical point of (4.105–4.106) and S :=
(

k̄1, k̄2, ζ̄1, ζ̄2
)

the

corresponding critical point of (4.105–4.108). Then the Jacobian Df of (4.105–4.108) in S
is given by

Df (S) =











2(r − k̄1 − k̄2) −2k̄1 0 0

−2k̄2 2(r − k̄1 − k̄2) 0 0

c− ζ̄1 − ζ̄2 −ζ̄1 r − k̄1 − k̄2 −k̄1

−ζ̄2 c− ζ̄1 − ζ̄2 −k̄2 r − k̄1 − k̄2











.
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The eigenvalues of Df are given by

σ(Df (S)) =
{

r − k̄1 − k̄2 ±
√

k̄1k̄2, 2
(

r − k̄1 − k̄2 ±
√

k̄1k̄2

)}

.

Note that the eigenvalues of the Jacobian of (4.105–4.106) in S are

λ1,2 = 2
(

r − k̄1 − k̄2 ±
√

k̄1k̄2

)

,

which proves our claim. �

By lemma 4.25 we note that in every critical point of (4.105–4.108), for which k̄1 > 0 and

k̄2 > 0, the associated closed loop system

ẋ = (r − k̄1 − k̄2)x+ c− ζ̄1 − ζ̄2, (4.111)

is asymptotically stable with respect to the steady state

x̄ = − c− ζ̄1 − ζ̄2
r − k̄1 − k̄2

. (4.112)

From the previous results in this section we note that exist values of the parameters r, λ and

τ , such that there are different critical points of the system (4.105–4.108) with k̄1, k̄2 > 0.

In that case, especially when the game is played over a longer horizon, the behavior of the

feedback Nash equilibrium critically depends on the specified terminal conditions k1f , k2f .

This suggests that in the infinite-horizon case there can exist multiple linear stationary

feedback Nash equilibria (see also next section) depending on the parameters r, τ and λ.

Remark 4.31 Tabellini does not find multiple feedback Nash-equilibria in the infinite-

horizon discounted case, in apparent contrast with the results that we find here. With

the results of the next section it can be shown that for all values of r, and for all τ > 0

and λ > 0 there exists a linear stationary feedback Nash equilibrium for the undiscounted

infinite-horizon game4. We will show that every critical point of the system (4.105–4.108)

with k̄1, k̄2 > 0 corresponds to a linear stationary feedback Nash equilibrium for the infinite-

horizon undiscounted game, showing nonuniqueness. Moreover (see remark 4.26), in every

linear stationary feedback Nash equilibrium the resulting closed-loop system is asymptot-

ically stable, showing that also the steady states are likely to be nonunique.

4From this we might conclude that for the purpose of obtaining stationary feedback Nash equilibria,

there is no need to introduce discounting into the cost functionals.
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4.4 The infinite-horizon feedback Nash equilibrium

In this section we consider the feedback Nash equilibrium in linear stationary strategies for

the differential game over an infinite time horizon. We study the following cost functionals:

L1(u1, u2) =

∫ ∞

0

{x(t)′Q1x(t) + u1(t)
′R11u1(t)} dt, (4.113)

L2(u1, u2) =

∫ ∞

0

{x(t)′Q2x(t) + u2(t)
′R22u2(t)} dt, (4.114)

with Qi > 0 and Rii > 0.

Before we can state the main result of this section we first need some results from linear-

quadratic optimal control theory.

Definition 4.32 Consider the system

Σ :

{

ẋ = Ax+Bu

y = Cx+Du

Σ is called output stabilizable, if there exists a state feedback control law u(t) = Fx(t),

such that the corresponding output

yF (t) = (C +DF )x(t)

converges to zero as t tends to infinity for every x0.

Then the following theorem can be proved (see Geerts (1989); Geerts and Hautus (1990)):

Theorem 4.33 Consider the system ẋ = Ax+Bu together with the linear quadratic cost

functional

J (x0, u) =

∫ ∞

0

{x(t)′Qx(t) + u(t)′Ru(t)} dt,

with Q > 0 and R > 0. Factorize

(

Q 0

0 R

)

=

(

C ′

D′

)

(

C D
)

.

Then the following statements are equivalent:

(i) For every x0 ∈ R
n there exists a u such that J (x0, u) <∞,
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(ii) The algebraic Riccati equation

A′P + PA+Q− PBR−1B′P = 0, (4.115)

has a real symmetric positive semidefinite solution P ,

(iii) The system
(

A,B,C,D
)

is output stabilizable.

Assume that these conditions hold. Then there exists a smallest real symmetric positive

semidefinite solution of the algebraic Riccati equation (4.115), i.e. there exists a real sym-

metric solution P− > 0 such that for every real symmetric solution P > 0 we have P− 6 P .

For every x0 we have

J ∗(x0) := inf
{

J (x0, u)
}

= x′0P
−x0.

Furthermore, for every x0 there is exactly one optimal input function, i.e. a function u∗ such

that J (x0, u
∗) = J ∗(x0). This optimal input is generated by the time-invariant feedback

law

u∗(t) = −R−1B′P−x(t).

We find the following proposition:

Proposition 4.34 Suppose
(

Ci, Di

)

are such that C ′
iCi = Qi, D

′
iCi = 0 and D′

iDi = Rii.

Suppose that there exist
(

K1, K2

)

satisfying the coupled algebraic Riccati equations

A′K1 +K1A+Q1 −K1S1K1 −K1S2K2 −K2S2K1 = 0, (4.116)

A′K2 +K2A+Q2 −K2S2K2 −K2S1K1 −K1S1K2 = 0, (4.117)

such that K1 is the smallest real positive semidefinite solution of (4.116) for given K2 and

K2 is the smallest real positive semidefinite solution of (4.117) for given K1, and moreover

K1 and K2 are such that the systems

(

A−B2R
−1
22 B

′
2K2, B1, C1, D1

)

and
(

A−B1R
−1
11 B

′
1K1, B2, C2, D2

)

are both output stabilizable. Then the strategies γi, given by

ui = γi(x) = −R−1
ii B

′
iKix,

constitute a feedback Nash equilibrium in linear stationary strategies.

Proof : Suppose the second player plays some linear stationary feedback strategy γ2(x) =

F2x, where F2 is such that the system
(

A + B2F2, B1, C1, D1

)

is output stabilizable. To
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obtain the best reply for player 1, player 1 has to solve the linear-quadratic optimal control

problem

min
u1

∫ ∞

0

{x(t)′Q1x(t) + u1(t)R11u1(t)} dt,

subject to

ẋ = (A+B2F2)x+B1u1, x(0) = x0.

Because
(

A+B2F2, B1, C1, D1

)

is output stabilizable, we know from theorem 4.33 that the

optimal u1 is given by the linear stationary feedback strategy u1 = γ1(x) = −R−1
11 B

′
1Px,

where P is the smallest real positive semidefinite solution of the algebraic Riccati equation,

given by
(

A+B2F2

)′
P + P

(

A+B2F2

)

− PS1P +Q1 = 0.

Now suppose player 2 plays the strategy γ2(x) = −R−1
22 B

′
2K2x, for some K2, such that

the system
(

A − B2R
−1
22 B

′
2K2, B1, C1, D1

)

is output stabilizable. Then, the best reply

against this strategy for player 1 is to play the strategy γ1(x) = −R−1
11 B

′
1K1x, where

K1 is the smallest real positive semidefinite solution of (4.116) for given K2. Similarly,

for given K1 such that the system
(

A − B1R
−1
11 B

′
1K1, B2, C2, D2

)

is output stabilizable,

the best reply of player 2 against γ1(x) = −R−1
11 B

′
1K1x is to play γ2(x) = −R−1

22 B
′
2K2x,

where K2 is the smallest real postive semidefinite solution of (4.117) for given K1. Hence,
(

γ1(x), γ2(x)
)

=
(

−R−1
11 B

′
1K1x,−R−1

22 B
′
2K2x

)

is a Nash equilibrium in linear stationary

feedback strategies. �

Remark 4.35 Note that, although we require the smallest real symmetric solutions of the

coupled Riccati equations, the lemma in no way implies uniqueness of equilibria.

Remark 4.36 Taking a closer look at the proof of this lemma, we see that the best

reply against any linear stationary feedback strategy is again a linear stationary feedback

strategy, i.e. the class of linear stationary feedback strategies is closed under best replies

(see definition 3.4).

In the scalar case analyzed in the previous section, all (dynamic) equilibria in the first

quadrant are also linear stationary feedback Nash equilibria. This illustrates the possible

nonuniqueness of linear stationary feedback Nash equilibria. We also see that the crite-

rion of dynamic stability does distinguish between these equilibria, but only partly: the

nonuniqueness is reduced, but not eliminated completely. Moreover (see remark 4.26) in

the scalar case all the linear stationary feedback Nash equilibria stabilize the closed-loop

system.
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4.5 Conclusions

In this chapter we have studied the asymptotic properties of some different Nash equilibria

in two-player, nonzero-sum, linear-quadratic differential games. In section 4.2 we have

presented a detailed analysis of the open-loop Nash equilibrium. We analyzed the open-

loop Nash equilibrium starting from its basics: the Hamiltonian equations. Necessary and

sufficient conditions for the existence of a unique open-loop Nash equilibrium were derived.

Moreover, a sufficient condition is given under which the open-loop Nash equilibrium can be

obtained via the solutions of the Riccati differential equations (4.9–4.10). In theorem 4.13

we showed that, under some well-posedness assumptions, the open-loop Nash equilibrium

converges to a unique solution when the horizon tf tends to infinity.

In section 4.3 we have seen that the situation for the feedback Nash equilibrium is more

complicated. We found out that even in the scalar case it is possible that there exist

different (stable) critical points of the system of Riccati differential equations. This implies

in particular that the asymptotic behavior of feedback Nash equilibria depends critically

on the specified terminal conditions, i.e. on the weights put on the terminal values of the

state x(tf ).

Finally, in section 4.4, we have studied linear stationary feedback Nash equilibria for games

over an infinite time horizon. We saw that, although in the finite-horizon case there is a

generically unique feedback Nash equilibrium, in the infinite-horizon case nonuniqueness

can be expected, even within the class of linear stationary feedback strategies. This possible

nonuniqueness seems to be in contradiction with the generic uniqueness of finite-horizon

feedback Nash equilibrium. The explanation of this phenomenon can be found in the

critical dependence on the weights put on terminal values of the state. Furthermore, we

have seen that the criterion of dynamic stability of the critical points is not sufficient to

eliminate this nonuniqueness. Nonuniqueness can be reduced using the criterion of dynamic

stability, but can not be eliminated completely.





Chapter 5

Continuously repeated games

5.1 Introduction

In this chapter, we provide a general model for studying the role of a coordinator in

reaching a prespecified global control objective in a continuously repeated game. The

model, which is the continuous-time counterpart of the model as introduced in section

3.4, allows the individual players to react in a strategic fashion to the behavior of the

coordinator. This chapter is mainly based on Weeren et al. (1995). In chapter two,

we recapitulated models in hierarchical control (see also Jamshidi (1983); Singh (1980);

Weeren (1993)) in which a coordinator is introduced as a mechanism for finding a Pareto

efficient equilibrium for a dynamic hierarchical control system. As already pointed out in

section 2.4 and in Weeren (1993), it is necessary for all players to commit themselves to

cooperate with the coordinator in order that the coordination can be successful. Therefore,

the models as described in chapter two can be viewed as cooperative hierarchical control

models. The model as proposed in section 3.4 and in this chapter is a first step towards

the incorporation of strategic behavior into the hierarchical control framework.

The model in this chapter is based upon a two-player static game, which is played re-

peatedly in continuous time. We introduce the notion of coordination and arrive at a

differential game with nonlinear dynamics. In chapter three we have concluded that it

is desirable to formulate the model in continuous time over an infinite horizon. Unfortu-

nately, it is impossible to handle the model analytically, but we will show how the model

can be handled numerically. We consider this the second main contribution of this chapter.

We will show how stationary feedback Nash equilibria of a general nonlinear differential

game over an infinite time horizon, with a scalar state, can be obtained numerically. As is
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well known (see Başar and Olsder (1995); Feichtinger and Wirl (1993); Klompstra (1992);

Tsutsui and Mino (1990)) these feedback Nash equilibria can be described by the so-called

Hamilton-Jacobi-Bellman-Isaacs (HJBI) equations. In this chapter we propose to solve

these equations directly using recently developed methods for solving differential-algebraic

equations (see Brenan et al. (1989); Griepentrog and März (1986); Hairer et al. (1989);

Hairer and Wanner (1991)).

The outline of this chapter is as follows. In section 5.2 we will develop the general model

describing the strategic interactions between players and coordinator. In section 5.3 we

will discuss solution methods for differential-algebraic equations in general and for HJBI

equations in particular. Then in section 5.4 and 5.5 we present two mechanisms fitting

the general model of section 5.2. In section 5.4 we present a redistribution mechanism in

which the coordinator is given direct control over the distribution of the payoffs between

the individual players. We will discuss how one can numerically obtain all stationary

feedback Nash equilibria of the resulting differential game using the methods developed

in section 5.3, and illustrate this by a worked example. In section 5.5 we present another

possible mechanism fitting the general model, which we refer to as the Pareto mechanism.

In this case the coordinator influences the choice of Pareto efficient strategy, in such a way

that the resulting differential game describes a movement along the Pareto frontier of the

underlying static game. Finally, in section 5.6 we present some conclusions.

5.2 General model formulation

As in section 3.4, we consider the following situation. Two players repeatedly play a

nonzero-sum game G. It is again assumed that the game G depends in some way (through

the payoffs that the players receive, or through the strategy spaces that are available to

them) on a parameter α ∈ [0, 1] that varies in time, where the value of α is determined by a

“coordinator” through some decision rule that takes the actions of the players into account.

In this way, the decisions of the players can influence their future payoffs, which now gives

rise to a differential game which we shall again refer to as the “controlled game”. As

suggested in remarks 3.48 and 3.51 we study the controlled game over an infinite horizon.

Then we can compare the asymptotic values of the equilibria of the controlled game to the

possible modes of play in the original game G, which allows us to conclude whether the

decision rule chosen by the coordinator is effective in establishing a global control objective

or not.

Similar as in section 3.4 we formalize this idea as follows. Consider a two-player static

game G in strategic form, with strategy spaces Γi and payoff functions πi, in which the
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objective for player i is the maximization of his payoff πi. From this game G we construct

a new game, G(α), for every α in [0, 1], where α is the variable that is manipulated by the

coordinator. Denote by Γi(α) the strategy spaces of G(α) and by νi(α, γ1, γ2) the payoffs.

Now assume that the coordinator can observe the strategies γi(α) chosen by the individual

players, and uses a decision rule

α̇ = f(α, γ1(α), γ2(α))

to determine the future values of α. Finally, by choosing as a criterion either

Li =

∫ tf

0

νi(α(t), γ1(α(t)), γ2(α(t)))dt

or

Li =

∫ ∞

0

e−rtνi(α(t), γ1(α(t)), γ2(α(t)))dt

for some r > 0, a differential game is specified, which we refer to as the controlled game.

So the construction of a controlled game from a static game G is done in the following

steps:

Step 1: construction of a coordination mechanism G � G(α),

Step 2: specification of a decision rule

α̇ = f(α, γ1(α), γ2(α)),

for the coordinator,

Step 3: choice between a finite-horizon criterion and an infinite-horizon discounted crite-

rion, and in the latter case specification of r > 0.

Regarding step 3, for reasons as specified in remarks 3.48 and 3.51, we choose an infinite-

horizon discounted criterion.

5.2.1 Construction of a controlled game

In this subsection, we will construct a class of controlled games we will use in the remainder

of this chapter. First we make some assumptions on the underlying static game G.

Assumption 5.1

The strategy spaces Γi ⊆ R
k are convex.

The payoff functions πi : Γ1×Γ2 → R, i = 1, 2, are twice differentiable and strictly concave,

i.e.

(

∂2πi

∂γ2
1

∂2πi

∂γ1∂γ2

∂2πi

∂γ1∂γ2

∂2πi

∂γ2
2

)

< 0.
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By γ̄ = (γ̄1, γ̄2) ∈ Γ1 × Γ2, we denote a Nash equilibrium of the game G.

Denote by γ∗i (α) the cooperative strategy for player i, to be played when the coordinator

selects α. Furthermore, denote by γa
i (α) an alternative strategy, that player i would play

when playing noncooperatively. We have to make a choice for the alternative strategy

γa. The issue on how to choose such an alternative strategy is closely related to the issue

of choosing threatpoints or disagreement strategies in bargaining theory (see e.g. Houba

(1994); Osborne and Rubinstein (1991)). A possible choice of alternative strategy is a Nash

equilibrium for the underlying game G. Especially in the case that G has a unique Nash

equilibrium this seems a good choice, for the Nash equilibrium is the standard equilibrium

concept in noncooperative situations (see section 3.2).

As before, we introduce ci(t), which is a parameter reflecting the willingness of player i

to play cooperatively at time instant t. If ci(t) = 0 then player i chooses to play the

alternative strategy γa
i (α(t)) and if ci(t) = 1 then player i chooses to play the strategy

γ∗i (α(t)). We allow the players to hesitate between cooperative and noncooperative play

by allowing the parameter ci(t) to take values between 0 and 1. For given ci, the strategy

played by player i is given by ui(ci) := ciγ
∗
i (α) + (1 − ci) γ

a
i (α).

Now we assume that the coordinator, by observing the actions of both players at time-

instant t, can exactly determine the values of ci(t). Using this information the coordinator

adjusts the value of α(t). The process of coordination is described by a decision rule

α̇(t) = f(α(t), c1(t), c2(t)). (5.1)

This decision rule has to satisfy some properties:

1. f is sufficiently smooth, i.e. f is at least twice differentiable w.r.t. ci, and at least

differentiable w.r.t. α,

2. ∀c1,c2f(0, c1, c2) > 0, f(1, c1, c2) 6 0,

3. ∂2f

∂ci∂cj
= 0, ∂f

∂ci
6≡ 0.

The smoothness condition is imposed in order to prevent some technical difficulties in the

sequel of this chapter. Clearly this condition might be weakened at the expense of some

technical difficulties. The second condition is crucial, in the sense that it guarantees that

α(t) remains in [0, 1] for all t. Note that, due to this property, every nontrivial choice

for f will be nonlinear. Finally, the third condition is sufficient to guarantee that the

optimization problems we will encounter are strictly concave, and that the mechanism

is not trivial. Obviously also this condition might be weakened, and in this case a more
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delicate analysis would be required. An example of a coordination rule satisfying properties

1 to 3 is

f(α, c1, c2) = βα
(

1 − α
)(

c2 − c1
)

,

where β ∈
(

0,∞
)

is an arbitrary constant. This decision rule reflects the intuition that

whenever one of the players shows less willingness to cooperate, the coordinator might try

to convince this player to play more cooperatively in the future by choosing a new α, which

is more favorable for that particular player. When β is chosen in
(

−∞, 0
)

, the decision

rule is such that the coordinator punishes any player who is not playing cooperatively.

A further assumption we make is that both players exactly know the mechanism f the

coordinator is using. This creates a possibility for strategic behavior by both players. By

choosing c1 and c2 the players can influence the behavior of the coordinator. A nonlinear

differential game emerges, where α is the state variable, c1 and c2 are the controls, and

with the payoff functionals

Li =

∫ ∞

0

e−rtνi(α(t), u1(c1(t)), u2(c2(t)))dt, (5.2)

in which ui(ci(t)) = ci(t)γ
∗
i (α(t)) +

(

1 − ci(t)
)

γa
i (α(t)). We refer to this newly defined

differential game as the controlled game. The fact that both players at time instant t know

exactly which α(t) is selected by the coordinator, justifies the assumption of memoryless

perfect state information (see section 3.2).

Note that by introducing ui(ci) = ciγ
∗
i (α) + (1 − ci) γ

a
i (α), the payoff for player i at time

instant t is given by νi(α(t), u1(c1(t)), u2(c2(t))), which we will sometimes write with some

abuse of notation as νi(α(t), c1(t), c2(t)). In the sequel of this chapter we will assume that

ν1 and ν2 are strictly concave in (c1, c2).

5.2.2 Equilibria of the controlled game

A natural solution concept to consider for the controlled game is the feedback Nash equi-

librium (see section 3.2). As argued in section 3.4, we will consider the controlled game

over an infinite time horizon, with discounted payoffs. This produces the payoff functionals

Li =

∫ ∞

0

e−rtνi(α(t), u1(c1(t)), u2(c2(t)))dt, (5.3)

where ui(ci(t)) = ci(t)γ
∗
i (α(t)) +

(

1 − ci(t)
)

γa
i (α(t)). Moreover we shall restrict attention

to stationary feedback Nash equilibria1 corresponding to continuously differentiable value

1In Feichtinger and Wirl (1993); Maskin and Tirole (1994); Tsutsui and Mino (1990) these are called

Markov perfect Nash equilibria.
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functions.

The Hamilton-Jacobi-Bellman-Isaacs (HJBI) equations describing stationary feedback Nash

equilibria (see appendix A and e.g. Feichtinger and Wirl (1993); Tsutsui and Mino (1990))

are given by

rV1(α) = max
c1∈[0,1]

{V ′
1(α)f(α, c1, c2) + ν1(α, u1(c1), u2(c2))} , (5.4)

rV2(α) = max
c2∈[0,1]

{V ′
2(α)f(α, c1, c2) + ν2(α, u1(c1), u2(c2))} . (5.5)

Remark 5.2 The characterization of stationary feedback Nash equilibria by the HJBI

equations (5.4–5.5) must be understood in the following sense. It can be shown (see

appendix A) that if
(

V̄1, V̄2, c̄1, c̄2
)

are continuously differentiable solutions of (5.4–5.5) such

that V̄1 and V̄2 are bounded, then the pair of strategies (c̄1, c̄2) is a stationary feedback

Nash equilibrium (see also Tsutsui and Mino (1990)).

Remark 5.3 Note that by requiring stationary feedback Nash equilibria, Folk-theorem-

like results do not immediately hold, for trigger strategies are not admissible (see Maskin

and Tirole (1994)). Nevertheless, stationary feedback Nash equilibria are in general not

unique (see Feichtinger and Wirl (1993); Tsutsui and Mino (1990), and section 4.4).

Equivalent (by the concavity assumptions) to (5.4–5.5) is the system

∂f

∂c1
(α, c1, c2)V

′
1(α) +

∂ν1

∂c1
(α, c1, c2) = η1, (5.6)

∂f

∂c2
(α, c1, c2)V

′
2(α) +

∂ν2

∂c2
(α, c1, c2) = η2, (5.7)

f(α, c1, c2)V
′
1(α) + ν1(α, c1, c2) − rV1(α) = 0, (5.8)

f(α, c1, c2)V
′
2(α) + ν2(α, c1, c2) − rV2(α) = 0, (5.9)

0 6 c1 6 1,
(

1 − c1
)

η1 6 0, c1η1 > 0,

0 6 c2 6 1,
(

1 − c2
)

η2 6 0, c2η2 > 0.

In case no constraint on c1 and c2 is active, this results in the system of differential-algebraic

equations

∂f

∂c1
(α, c1, c2)V

′
1(α) +

∂ν1

∂c1
(α, c1, c2) = 0, (5.10)

∂f

∂c2
(α, c1, c2)V

′
2(α) +

∂ν2

∂c2
(α, c1, c2) = 0, (5.11)

f(α, c1, c2)V
′
1(α) + ν1(α, c1, c2) − rV1(α) = 0, (5.12)

f(α, c1, c2)V
′
2(α) + ν2(α, c1, c2) − rV2(α) = 0. (5.13)
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Similar equations may be written down when one or both of the constraints are active.

5.3 Treatment of HJBI-DAEs

5.3.1 General DAEs

In the current section we will discuss the (numerical) treatment of DAEs in general and the

HJBI-DAEs in particular. For a more extensive treatment of general DAEs the interested

reader is referred to Brenan et al. (1989); Griepentrog and März (1986); Hairer et al. (1989);

Hairer and Wanner (1991).

By a differential-algebraic equation (DAE) is meant an equation of the form

F (t, y, y′) = 0, (5.14)

in which y is a function of t, and y′ is the first derivative of y with respect to t. Regarding

this DAE we can consider the system of equations

F (t, y, y′) = 0

d

dt
F (t, y, y′) = 0 (5.15)

...
dj−1

dtj−1
F (t, y, y′) = 0

which can be written as

Fj(t, y,yj) = 0, (5.16)

where

yj =







y′

...

y(j)






. (5.17)

Then the (differential) index of (5.14) is defined in the following way (see Brenan et al.

(1989); Gear (1988)).

Definition 5.4 The index of (5.14) is the smallest ν such that Fν+1(t, y,yj) = 0 uniquely

determines the variable y′ as a continuous function of y, t.
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The index is of crucial importance in selecting a numerical solution method for a given

DAE. Backward differentiation formulas (BDF) have emerged as the most popular and best

understood class of linear multistep methods for DAEs (see Brenan et al. (1989); Hairer

and Wanner (1991)). In general, multistep methods and Runge-Kutta methods are not

stable for higher-index DAE systems. In the case of a system of DAEs of index 0 or 1 it is

always possible to use these methods. A well known implementation of the BDF technique

is provided in the Fortran package DASSL (as described in Brenan et al. (1989)). For

the treatment of higher-index systems the reader is referred to Brasey and Hairer (1993);

Brenan et al. (1989); Gear (1988); Hairer et al. (1989); Hairer and Wanner (1991).

5.3.2 The index of HJBI-DAEs

Returning to the system of coupled DAEs (5.6–5.9), we note that whenever these systems

have index 0 or 1, they can directly be solved with the use of DASSL. First we take a look

at the system of HJBI-DAEs (5.10–5.13), i.e. the system of HJBI equations in case the

constraints c1 > 0, c1 6 1, c2 > 0 and c2 6 1 are not active. For ease of notation, we will

ignore the arguments of f ,Vi and νi in the rest of this section. Define

y :=











V1

V2

c1
c2











. (5.18)

To determine the index we first compute the Jacobian Fy′ ,

Fy′ =











∂f

∂c1
0 0 0

0 ∂f

∂c2
0 0

f 0 0 0

0 f 0 0











. (5.19)

Clearly Fy′ is not invertible, hence the index of the system of HJBI-DAEs is at least 1.

Differentiating the system of HJBI-DAEs once, using ∂2f

∂ci∂cj
= 0 and (5.10–5.11), we obtain

the additional equations

∂2f

∂α∂c1
V ′

1 +
∂f

∂c1
V ′′

1 +
∂2ν1

∂α∂c1
+
∂2ν1

∂c21
c′1 +

∂2ν1

∂c1∂c2
c′2 = 0, (5.20)

∂2f

∂α∂c2
V ′

2 +
∂f

∂c2
V ′′

2 +
∂2ν2

∂α∂c2
+

∂2ν2

∂c1∂c2
c′1 +

∂2ν2

∂c22
c′2 = 0, (5.21)

fV ′′
1 −

(

∂f

∂α
− r

)(

∂ν1

∂c1
/
∂f

∂c1

)

+
∂ν1

∂α
+

(

∂ν1

∂c2
− ∂f

∂c2
· ∂ν1

∂c1
/
∂f

∂c1

)

c′2 = 0, (5.22)

fV ′′
2 −

(

∂f

∂α
− r

)(

∂ν2

∂c2
/
∂f

∂c2

)

+
∂ν2

∂α
+

(

∂ν2

∂c1
− ∂f

∂c1
· ∂ν2

∂c2
/
∂f

∂c2

)

c′1 = 0. (5.23)
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In this way we find the following lemma:

Lemma 5.5 The system of HJBI-DAEs (5.10–5.13) has index 1 if and only if the equa-

tions (5.10–5.13) together with the equations (5.20–5.23) determine y′ uniquely as a con-

tinuous function of y and α.

Note that we can eliminate V ′′
1 and V ′′

2 from (5.22–5.23) using equations (5.20–5.21). Using

this elimination we can straightforwardly derive that (5.22–5.23) constitute an implicit

ODE for c′1 and c′2 if and only if the matrix

J :=





−f · ∂2ν1

∂c21
/ ∂f

∂c1

∂ν1

∂c2
− ∂

∂c2

(

f · ∂ν1

∂c1

)

/ ∂f

∂c1

∂ν2

∂c1
− ∂

∂c1

(

f · ∂ν2

∂c2

)

/ ∂f

∂c2
−f · ∂2ν2

∂c22
/ ∂f

∂c2



 (5.24)

is nonsingular. So we now have the following result:

Proposition 5.6 The system of HJBI-DAEs (5.10–5.13) has index 1 if and only if the

matrix J given by (5.24) is nonsingular.

The systems of DAEs which emerge when one of the constraints c1 > 0, c1 6 1, c2 > 0

or c2 6 1 becomes active, can be shown to have index at least one in a similar fashion.

Moreover, conditions as described in proposition 5.6 can be derived.

In case two constraints are active, the equations are either index 0 (i.e. implicit ODEs) or

algebraic, depending on whether f(α, c1, c2) = 0 or not.

Remark 5.7 Note that the method of studying HJBI equations via the so-called auxiliary

equations as introduced in Tsutsui and Mino (1990) is closely related to the setup described

in this section. The model considered in Tsutsui and Mino (1990) is of a more special

form than the one considered here, which makes it possible to obtain explicit expressions

for the equilibrium feedback strategies and to substitute these in the HJBI equations.

Then, by differentiating the HJBI equations (implicit) ODEs are obtained. These ODEs

have the property that they do not depend on V1 and V2. After deriving the ODEs,

symmetry conditions are used to reduce the system of ODEs to a single first order ODE

in y = V ′
1 = V ′

2 . This ODE is then solved analytically. In Feichtinger and Wirl (1993) a

similar setup is used.
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5.4 A redistribution mechanism

As already discussed in sections 5.2 and 3.4, there are several ways in which the coordination

parameter α may affect the underlying static game G. In this section we consider the case

in which the payoffs depend on α and the strategy spaces do not.

5.4.1 A symmetric redistribution game

We make the following assumptions about the underlying static game G.

Assumption 5.8

(i) The game G is symmetric, i.e. Γ1 = Γ2 and π1(γ1, γ2) = π2(γ2, γ1),

(ii) G has a unique Nash equilibrium
(

γ̄1, γ̄2

)

, with equilibrium payoffs
(

π̄1, π̄2

)

,

(iii) the unique Nash equilibrium of G is not Pareto efficient.

The symmetry suggests restricting our attention to Pareto efficient strategies γ̂(1
2
) cor-

responding to αi = 1
2

(see theorem 3.41). So for the cooperative strategy we choose

γ∗i (α) = γ̂i(
1
2
). The second assumption, that G has a unique Nash equilibrium, justifies

the choice of this Nash equilibrium as the alternative strategy, i.e. γa
i (α) = γ̄i. Note that

both the cooperative strategies γ∗ and the alternative strategies γa do not depend on α in

this case. The extra payoffs from playing ui(ci) = ciγ̂i(
1
2
) +

(

1 − ci
)

γ̄i are given by

π∗(c1, c2) := π1(u1(c1), u2(c2)) + π2(u1(c1), u2(c2)) − π1(γ̄1, γ̄2) − π2(γ̄1, γ̄2). (5.25)

Now suppose that these extra payoffs are redistributed over the players by the coordinator,

according to the rule

ν1(α, c1, c2) := απ∗(c1, c2), (5.26)

ν2(α, c1, c2) :=
(

1 − α
)

π∗(c1, c2). (5.27)

Then the HJBI equations describing the stationary feedback Nash equilibria of the con-

trolled game are given by

rV1(α) = max
c1∈[0,1]

{V ′
1(α)f(α, c1, c2) + απ∗(c1, c2)} , (5.28)

rV2(α) = max
c2∈[0,1]

{

V ′
2(α)f(α, c1, c2) +

(

1 − α
)

π∗(c1, c2)
}

, (5.29)



5.4 A redistribution mechanism 109

or, as long as the constraints c1 > 0, c1 6 1, c2 > 0, c2 6 1 are not active, in the form

(5.10–5.13):

∂f

∂c1
V ′

1 + α
∂π∗

∂c1
= 0, (5.30)

∂f

∂c2
V ′

2 +
(

1 − α
)∂π∗

∂c2
= 0, (5.31)

fV ′
1 + απ∗ − rV1 = 0, (5.32)

fV ′
2 +

(

1 − α
)

π∗ − rV2 = 0. (5.33)

As the coordinator’s decision rule, we take

f(α, c1, c2) = βα
(

1 − α
)(

c2 − c1
)

,

with β 6= 0.

Now, if we solve (5.30–5.31) for
(

V ′
1 , V

′
2

)

, and then substitute the result in (5.32–5.33), we

obtain

−βα
(

1 − α
)

V ′
1 + α

∂π∗

∂c1
= 0, (5.34)

βα
(

1 − α
)

V ′
2 +

(

1 − α
)∂π∗

∂c2
= 0, (5.35)

α
(

c2 − c1
)∂π∗

∂c1
+ απ∗ − rV1 = 0, (5.36)

−
(

1 − α
)(

c2 − c1
)∂π∗

∂c2
+
(

1 − α
)

π∗ − rV2 = 0. (5.37)

The matrix J (see (5.24)) is given by

J :=





α
(

c2 − c1
)

∂2π∗

∂c21
α
(

∂π∗

c1
+ ∂π∗

∂c2
+
(

c2 − c1
)

∂2π∗

∂c1∂c2

)

(

1 − α
)

(

∂π∗

c1
+ ∂π∗

∂c2
−
(

c2 − c1
)

∂2π∗

∂c1∂c2

)

−
(

1 − α
)(

c2 − c1
)

∂2π∗

∂c22



 .

(5.38)

Note that J is nonsingular for all α ∈
(

0, 1
)

if and only if the matrix J̃ given by

J̃ :=

(

0 ∂π∗

∂c1
+ ∂π∗

∂c2

−
(

∂π∗

∂c1
+ ∂π∗

∂c2

)

0

)

+
(

c2 − c1
)

(

∂2π∗

∂c21

∂2π∗

∂c1∂c2
∂2π∗

∂c1∂c2

∂2π∗

∂c22

)

(5.39)

is nonsingular.

Before we show that the system of HJBI-DAEs (5.34–5.37) is an index 1 system, we first

need the following lemma:
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Lemma 5.9 The function π∗ defined in (5.25) is strictly concave, i.e. the matrix
(

∂2π∗

∂c21

∂2π∗

∂c1∂c2
∂2π∗

∂c1∂c2

∂2π∗

∂c22

)

is negative definite.

Proof : The symmetry of the game G implies γ̄1 = γ̄2 =: γ̄ and γ̂1(
1
2
) = γ̂2(

1
2
) =: γ̂. Then

elementary calculus shows that
(

∂2π∗

∂c21

∂2π∗

∂c1∂c2
∂2π∗

∂c1∂c2

∂2π∗

∂c22

)

= (γ̂ − γ̄)2

((

∂2π1

∂γ2
1

∂2π1

∂γ1∂γ2

∂2π1

∂γ1∂γ2

∂2π1

∂γ2
2

)

+

(

∂2π2

∂γ2
1

∂2π2

∂γ1∂γ2

∂2π2

∂γ1∂γ2

∂2π2

∂γ2
2

))

.

From the strict concavity of π1 and π2 it follows that
(

∂2πi

∂γ2
1

∂2πi

∂γ1∂γ2

∂2πi

∂γ1∂γ2

∂2πi

∂γ2
2

)

< 0,

for i = 1, 2, and hence
(

∂2π∗

∂c21

∂2π∗

∂c1∂c2
∂2π∗

∂c1∂c2

∂2π∗

∂c22

)

< 0

since γ̂ 6= γ̄ by assumption 5.8 (iii). �

Proposition 5.10 The system of HJBI-DAEs (5.34–5.37) has index 1 on its domain of

validity
(

0, 1
)

×
(

0, 1
)

.

Proof : We will show that the matrix J̃ appearing in (5.39) is nonsingular for all α ∈
(

0, 1
)

.

We will consider two cases, first the case c1 6= c2, and secondly the case c1 = c2. In the

case c1 6= c2 we note that J̃ is the sum of a skew-symmetric matrix and a matrix that is,

depending on the sign of c2 − c1, either positive or negative definite. Hence, for c1 6= c2 J̃
is nonsingular.

In the case c1 = c2, we see that

J̃ =

(

0 ∂π∗

∂c1
+ ∂π∗

∂c2

−
(

∂π∗

∂c1
+ ∂π∗

∂c2

)

0

)

.

Note that π∗(c1, c2) = π∗(c2, c1), and hence J̃ is singular if and only if ∂π∗

∂c1
= ∂π∗

∂c2
= 0.

Elementary calculus shows that ∂π∗

∂c1
= ∂π∗

∂c2
= 0 if and only if

∂π1

∂γ1

(u1(c1), u2(c2)) +
∂π2

∂γ1

(u1(c1), u2(c2)) = 0,

∂π1

∂γ2

(u1(c1), u2(c2)) +
∂π2

∂γ2

(u1(c1), u2(c2)) = 0.
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Note that these last equations are (see theorem 3.41) precisely the first order conditions

characterizing γ̂(1
2
), and hence satisfied if and only if c1 = c2 = 1. However, c1 = c2 = 1

lies outside the domain of validity
(

0, 1
)

×
(

0, 1
)

. �

Because the system of HJBI-DAEs (5.34–5.37) has index 1, we can derive ODEs for c1 and

c2 by differentiating (5.34–5.37) once. The resulting ODEs are given by

(

c′1
c′2

)

= J −1







(

−
(

c2 − c1
)

− r

β

(

1−α

)

)

∂π∗

∂c1
+ π∗

(

(

c2 − c1
)

− r
βα

)

∂π∗

∂c2
+ π∗






(5.40)

We shall be interested in particular in symmetric solutions, i.e. those for which c1(α) =

c2(1 − α) and V1(α) = V2(1 − α). These solutions can be characterized as follows.

Lemma 5.11 A solution
(

V1, V2, c1, c2
)

of the HJBI-DAEs (5.34–5.37) is symmetric if

and only if it satisfies c1(
1
2
) = c2(

1
2
).

Proof : By writing the HJBI-DAEs (5.34–5.37) and its first derivatives, evaluated in

α = 1
2
, it is easily verified that there are only 2 degrees of freedom in specifying consistent

initial2 conditions, i.e. when 2 variables out of

{

V1(
1

2
), V2(

1

2
), c1(

1

2
), c2(

1

2
), V ′

1(
1

2
), V ′

2(
1

2
), c′1(

1

2
), c′2(

1

2
)

}

are chosen, the other variables are fixed by the system of HJBI-DAEs (5.34–5.37) and its

first derivatives, evaluated in α = 1
2
.

Now let
(

V1(α), V2(α), c1(α), c2(α)
)

be a solution of the HJBI-DAEs (5.34–5.37) corre-

sponding to the initial conditions
(

c1(
1
2
), c2(

1
2
)
)

. Then it can straightforwardly be shown

that
(

V2(1−α), V1(1−α), c2(1−α), c1(1−α)
)

is a solution of the HJBI-DAEs (5.34–5.37)

corresponding to the initial conditions
(

c2(
1
2
), c1(

1
2
)
)

. From (5.40) we see, because

g(α, c1, c2) := J −1







(

−
(

c2 − c1
)

− r

β

(

1−α

)

)

∂π∗

∂c1
+ π∗

(

(

c2 − c1
)

− r
βα

)

∂π∗

∂c2
+ π∗







is a C1 function and hence satisfies a Lipschitz condition, that whenever c1(
1
2
) = c2(

1
2
),

necessarily c1(α) = c2(1 − α) for all α ∈
(

0, 1
)

. �

2Note that in this case we consider α = 1

2
as the ‘starting point’, i.e. initial conditions are specified in

α = 1

2
.
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5.4.2 A worked example

As an example of a redistribution controlled game we choose for G a Cournot duopoly, in

which the prices are determined by

p(y) =

{

120 − y if y 6 120

0 if y > 120
(5.41)

and production costs are given by

ci(yi) = y2
i . (5.42)

Then the payoffs of G are given by (see e.g. Gibbons (1992); Takayama (1985)):

πi(y1, y2) = yi (120 − y1 − y2) − y2
i . (5.43)

The Nash equilibrium γ̄ of G, with payoff π̄, and the Pareto efficient strategy γ̂(1
2
), with

payoff π̂ are given by

γ̄ = 24, (5.44)

π̄ = 1152, (5.45)

γ̂(
1

2
) = 20, (5.46)

π̂ = 1200. (5.47)

Hence, the additional payoffs after redistribution (5.25) are

π∗(c1, c2) = 96 (c1 + c2) − 32
(

c21 + c1c2 + c22
)

. (5.48)

Remark 5.12 The controlled game constructed in this way, can be interpreted as follows.

Consider two firms who produce an identical product. Instead of selling the products them-

selves, the goods are sold on an instantaneously clearing market by a separate institution

(the coordinator), who distributes the payoffs between the two firms using the decision rule

f .

From (5.34–5.37) we find the HJBI-DAEs

V ′
1 =

96 − 64c1 − 32c2

β
(

1 − α
) , (5.49)

V ′
2 =

−96 + 32c1 + 64c2
βα

, (5.50)

V1 =
α

r

((

c2 − c1
)(

96 − 64c1 − 32c2
)

+ π∗(c1, c2)
)

, (5.51)

V2 =
1 − α

r

((

c1 − c2
)(

96 − 32c1 − 64c2
)

+ π∗(c1, c2)
)

. (5.52)
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Similar HJBI-DAEs can be derived for the cases where one or more constraints on ci become

active.

By starting the integration at α = 1
2

and using symmetry, the systems of HJBI-DAEs are

solved using DASSL (see Brenan et al. (1989)). In fact, we only calculate V1, V2, c1 and c2
for α from α = 1

2
to α = 0.999, (thus avoiding the singularity at α = 1), and then by using

symmetry (i.e. c1(α) = c2(1 − α)) we obtain the results for α = 0.001 to α = 0.999. The

DASSL-output is then fed into Matlab, where we use spline interpolation and the built-in

Runge-Kutta ODE solver to simulate the resulting closed-loop dynamics of the controlled

game.

We have already seen in the proof of lemma 5.11 that in specifying consistent initial

conditions the degree of freedom is 2, i.e. when one of the pairs of variables
(

V1(
1
2
), V2(

1
2
)
)

or equivalently
(

c1(
1
2
), c2(

1
2
)
)

is chosen, the others are fixed by the system of HJBI-DAEs.

By requiring the extra symmetry condition c1(α) = c2(1 − α), V1(α) = V2(1 − α), i.e.

c1(
1
2
) = c2(

1
2
), the degree of freedom is reduced to 1. In the experiments we have started

by fixing the initial value of c1(
1
2
) = c2(

1
2
), which then fully determines the consistent initial

conditions.

In the experiments we have fixed the parameters β = 1
3

and r = 1. We have varied the

initial conditions c1(
1
2
) = c2(

1
2
) (see table 5.1). Consistent values V1(

1
2
) = V2(

1
2
) are then

calculated using the HJBI-DAEs (5.49-5.52) evaluated in α = 1
2
.

c1(
1
2
) = c2(

1
2
) V1(

1
2
) = V2(

1
2
)

0.75 45

0.79 45.8832

0.796 46.002432

0.8 46.08

0.9 47.52

0.99 47.9952

Table 5.1: Some consistent initial conditions for β = 1
3
, r = 1

The results of the experiments are shown in figures 5.1–5.6. In figure 5.1 and figure

5.2 we see that for the initial conditions corresponding to c1(
1
2
) = c2(

1
2
) = 0.75 and

c1(
1
2
) = c2(

1
2
) = 0.79, the solutions V1 and V2 become unbounded, and hence do not cor-

respond to a stationary feedback Nash equilibrium of the controlled game3. In the other

cases (see figures 5.3,5.4,5.5,5.6), V1 and V2 are continuously differentiable and bounded,

3Note that π∗ is bounded and hence also απ∗ and
(

1− α
)

π∗. Using the fact that the discount factor r

is positive, it immediately follows that any value function is necessarily bounded.
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and hence by theorem A.3 correspond to stationary feedback Nash equilibria for the con-

trolled game. Note that in particular we can conclude from this that all initial conditions

c1(
1
2
) = c2(

1
2
) ∈ [0.795, 1) specify a valid stationary feedback Nash equilibrium, implying

that this differential game allows for uncountably many stationary feedback Nash equilib-

ria. In the figures 5.3,5.4,5.5,5.6 we have plotted V1(α), c1(α), the closed-loop mechanism

f(α, c1(α), c2(α)) and the simulated closed-loop dynamics α̇(t) = f(α(t), c1(α(t)), c2(α(t)))

for α(0) = 0.35, 0.4, 0.45, 0.5, 0.55, 0.6 and 0.65.

In figure 5.3 and 5.4 we see that the corresponding stationary feedback Nash equilibria

support five different steady states; three of these are unstable (α = 0, α = 0.5 and

α = 1), and two are stable (α ≈ 0.4 and α ≈ 0.6). Finally, in figure 5.5 and figure 5.6,

the stationary feedback Nash equilibria support only three steady states; two of these are

unstable (α = 0 and α = 1) and one is stable (α = 0.5). This suggests that somewhere

between c1(
1
2
) = c2(

1
2
) = 0.9 and c1(

1
2
) = c2(

1
2
) = 0.8 a bifurcation takes place. To

confirm this, we calculated the steady states, belonging to equilibria corresponding to

initial conditions c1(
1
2
) = c2(

1
2
) ranging from 0.8 to 0.9. The outcomes are plotted in figure

5.7. In all the stable steady states we have also determined the corresponding values of

the cooperation parameters c1 = c2. These values are plotted in figure 5.8. In figure 5.9

we have plotted the payoffs for player 1 and 2 in the stable steady states which are greater

than or equal to 1
2
. The dotted line in this figure is the payoff in the steady state 1

2
.

In all stationary feedback Nash equilibria that we find, convergence takes place to a quite

cooperative situation; a threshold value of approximately 0.84 is found for the cooperation

coefficients. However, there are two ways in which this cooperation is achieved. If the

players are already cooperative above the threshold value in a situation of equal distribution

of profits (α = 1
2
), then a symmetric solution is obtained. This symmetry breaks down

however if the players are less cooperative at α = 1
2
; the slightest deviation of the initial

value α(0) = 1
2

will cause a process in which convergence takes place to a situation in

which both players are equally cooperative but take unequal shares in the revenues of

cooperation.

In a second experiment we have fixed the parameters at r = 1 and β = −1
3
. In this

case it is easily verified that the strategies c1 = c2 ≡ 1 give a stationary feedback Nash

equilibrium, with corresponding value functions V1(α) = 96α and V2(α) = 96
(

1 − α
)

.

Moreover, we calculated solutions of the HJBI equations corresponding to several initial

conditions c1(
1
2
) = c2(

1
2
) ∈

[

0, 1
)

. In all these calculated solutions V1 and V2 turn out to be

unbounded. This suggests that the only symmetric stationary feedback Nash equilibrium

is given by c1 = c2 ≡ 1. Apparently the mechanism in which the coordinator punishes

any deviation from a joint cooperative strategy (i.e. the mechanism with β < 0) is more

effective, in the sense that it supports full cooperation (i.e. c1 = c2 ≡ 1) as the only
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Figure 5.8: Steady state cooperation

symmetric stationary feedback Nash equilibrium of the controlled game.

5.5 A Pareto mechanism

In this section we will consider a situation in which the coordination parameter α affects the

underlying static game G not through the payoffs but rather through the strategy spaces

of both players. We motivate the choice of coordination mechanism by the following result

(see theorem 3.41, see also e.g. Takayama (1985))
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Figure 5.9: Steady-state payoffs

Theorem 5.13 For all µ ∈
(

0, 1
)

holds that if
(

γ̂1, γ̂2

)

∈ Γ1 × Γ2 satisfies

(

γ̂1, γ̂2

)

∈ arg max
(γ1,γ2)∈Γ1×Γ2

{

µπ1(γ1, γ2) +
(

1 − µ
)

π2(γ1, γ2)
}

,

then
(

γ̂1, γ̂2

)

is Pareto efficient.

Moreover, if Γ1,Γ2 are convex, and π1, π2 are concave, then for all Pareto efficient
(

γ̂1, γ̂2

)

there exists a µ ∈
[

0, 1
]

, such that

(

γ̂1, γ̂2

)

∈ arg max
(γ1,γ2)∈Γ1×Γ2

{

µπ1(γ1, γ2) +
(

1 − µ
)

π2(γ1, γ2)
}

.

We will no longer assume that G is symmetric. Now the task of the coordinator is to choose

the Pareto efficient strategy to be considered by the individual players, i.e. the coordinator

determines the choice of µ according to theorem 5.13 at time instant t. The cooperative

strategies to be considered are γ∗i (α) = γ̂i(α). In this section we will exclude the possibility

of sidepayments or redistribution, by taking

νi(α, γ1, γ2) = πi(γ1, γ2). (5.53)

The HJBI equations describing the stationary feedback Nash equilibria of the controlled

game, are given by

rV1(α) = max
c1∈[0,1]

{V ′
1(α)f(α, c1, c2) + π1(u1(c1), u2(c2))} , (5.54)

rV2(α) = max
c2∈[0,1]

{V ′
2(α)f(α, c1, c2) + π2(u1(c1), u2(c2))} . (5.55)

We find the following proposition (compare with proposition 3.46):
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Proposition 5.14 Suppose G has a unique Nash equilibrium (γ̄1, γ̄2). Furthermore, sup-

pose the alternative strategy γa is such that for all α ∈ (0, 1) the system of equations

c1(α)γ∗1(α) + (1 − c1(α)) γa
1 (α) = γ̄1,

c2(α)γ∗2(α) + (1 − c2(α)) γa
2 (α) = γ̄2,

has a unique solution (c̄1(α), c̄2(α)), with 0 6 c̄i(α) 6 1. Then a stationary feedback Nash

equilibrium of the controlled game is given by

(c1(α), c2(α)) =
(

c̄1(α), c̄2(α)
)

.

The actions (u1(c̄1(α(t))), u2(c̄2(α(t)))) played at every time instant t are equal to the Nash

equilibrium (γ̄1, γ̄2) of G.

Proof : For all α ∈ (0, 1) the Nash equilibrium of G is recovered for

(c1, c2) = (c̄1(α), c̄2(α)) ,

more precisely

c̄1(α) ∈ arg max
c1

{πi(u1(c1), u2(c̄2(α)))} ,
c̄2(α) ∈ arg max

c2
{πi(u1(c̄1(α)), u2(c2))} .

Note that, for all α ∈ (0, 1), πi(u1(c̄1(α)), u2(c̄2(α))) = πi(γ̄1, γ̄2), which does not depend

on α. The HJBI equations are given by

rVi(α) = πi(γ̄1, γ̄2),

V ′
i (α) = 0.

�

Remark 5.15 Note that although the actions at every time instant t equal the actions

corresponding to the unique Nash equilibrium of G, they emerge from a different strategy.

Moreover, these equilibrium strategies can give rise to a nontrivial dynamic behavior of α.

So in this sense a coordination process does take place, but is never successful, because

both players attain the same payoff as in the case of noncooperative play.

Remark 5.16 In general the conditions of proposition 5.14 will not be satisfied for all

α ∈
(

0, 1
)

. In that case a stationary feedback Nash equilibrium of the controlled game will

allow for different actions to be played. Also in the case of multiple Nash equilibria for the

game G different actions can be expected. Furthermore it is important to note that, even

in the case that all the conditions of proposition 5.14 are fulfilled, this stationary feedback

Nash equilibrium is not necessarily unique.
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In the Cournot duopoly example that we introduced in the previous section, it can straight-

forwardly be shown that the stationary feedback Nash equilibrium described by proposition

5.14, in case the alternative strategies γa
i are chosen to be equal to the Nash strategies γ̄i,

is in fact unique. This is a consequence of the fact that c1(
1
2
) = c2(

1
2
) = 0 provides the

only consistent initial conditions for the HJBI-DAEs. In this case the determinant of the

matrix J (see (5.24)) is given by

detJ = −331776
16α4 − 32α3 + 3α2 + 13α− 4

(

1 − 16α + 16α2
)2 , (5.56)

so that detJ = 0 for α = −1
8
+ 1

8

√
17 ≈ 0.390 or for α = 9

8
− 1

8

√
17 ≈ 0.610, and moreover

the denominator of detJ equals 0 for α = 1
2
± 1

4

√
3. Hence the system of HJBI-DAEs is

locally of higher index. As a consequence the DASSL code can not be used to obtain the

solution. However, using the code RADAU5 (see Hairer et al. (1989); Hairer and Wanner

(1991)), which is also suited for semi-explicit index 2 and index 3 systems, it is possible to

find the solution efficiently4.

5.6 Conclusions

In this chapter we have reintroduced the model as specified in section 3.4 for the process

of coordination, now in continuous time and over an infinite horizon. The most important

aspect in this setup is that we have allowed for strategic behavior by the individual play-

ers, influencing the outcome of the coordination process. We have obtained a nonlinear

differential game, with state variable α, which we called the controlled game. We have

taken a closer look at two special cases of such a controlled game, namely a redistribu-

tion controlled game and a Pareto controlled game. Using recently developed methods for

differential-algebraic equations (DAEs), we have described in what way for such differential

games all stationary feedback Nash equilibria can be calculated. In a worked example of

a repeated symmetric Cournot duopoly, we have illustrated the numerical method for the

redistribution controlled game. We saw that for this example there are several qualitatively

different stationary feedback Nash equilibria. In this example we saw that if the players

are sufficiently willing to cooperate at the point where all extra payoffs are divided equally

between the players, this point is supported by the stationary feedback Nash equilibria

as the only stable steady state. However, in case the players are not sufficiently willing

to cooperate at this point, the stability of the steady state is lost. Moreover, we have

seen that if the coordinator’s decision rule is changed in such a way that deviations from

4Of course in this case we did not need to use any numerical method to find the solution. However, we

can use this case as a testcase for the different numerical methods for DAEs.
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a cooperative strategy are punished by the coordinator, a symmetric stationary feedback

Nash equilibrium exists that supports full cooperation of both players. In the case of the

Pareto controlled game, we found for the same example that the unique stationary feedback

Nash equilibrium does not support any cooperation at all; in this case the coordination

mechanism is too weak to stimulate cooperation. We can conclude that the choice of coor-

dination mechanism and the choice of decision rule for the coordinator can be viewed as a

control problem; by choosing the appropriate mechanism and decision rule a global control

objective can be pursued.



Chapter 6

Conclusions

In this last chapter we take the opportunity to briefly recapitulate the main conclusions

from the different chapters of this dissertation and based on these conclusions we propose

some directions for future research. In particular we will state some open problems and

briefly comment on how they might be tackled.

6.1 Summary

In this dissertation we have dealt with hierarchical systems. We started this study by

recapitulating models for hierarchical control which are known in the literature on large-

scale systems (see e.g. Mesarovic et al. (1970); Jamshidi (1983); Singh (1980); Weeren

(1993)). We noted that there are some omissions in these models, namely the lack of

a realistic information flow, i.e. one that takes place in real time, and the fact that the

given model formulation presupposes full cooperation of the individual decision units. This

second issue is taken as the starting point of our research. We noted that the presupposition

of full cooperation causes the models of Mesarovic et al. (1970); Jamshidi (1983); Singh

(1980) to be not very suitable for hierarchical situations where the individual decision units

have possibly conflicting interests. This led to the main question to be answered: how

can we incorporate strategic behavior by the individual decision units into the hierarchical

control framework?

To answer this question the key instrument is dynamic noncooperative game theory. In-

spired by strategic bargaining models (see section 3.3), in which a specific bargaining

procedure is formulated as a dynamic game whose equilibria are studied, in section 3.4
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a model is developed describing strategic behavior. Based on a repeatedly played static

game, a stylized model is obtained, which enables us to concentrate on the strategic aspects

of coordination and neglects other aspects like e.g. incomplete information or dynamics of

the underlying system. This model involves the specification of a difference game, the

so-called controlled game. Determination of the feedback Nash equilibria of the controlled

game in section 3.4 showed (see remarks 3.48 and 3.51) that it is desirable to rephrase

the model over an infinite horizon. Furthermore, in section 3.5 we concluded that for

computational reasons it is desirable to rephrase the model in continuous time.

Before reformulating and analyzing the controlled game as an infinite-horizon differential

game, we have studied in chapter four the asymptotic properties of Nash equilibria in linear-

quadratic differential games in order to get a better perspective on the relation between

finite-horizon and infinite-horizon results. In section 4.2 we derived necessary and sufficient

conditions for the existence of an open-loop Nash equilibrium. In theorem 4.13 we showed

that, under some well-posedness assumptions, the open-loop Nash equilibrium converges

to a unique solution when the horizon tf tends to infinity. In contrast to this result we

have seen in section 4.3 that the asymptotic behavior of linear feedback Nash equilibria

depends critically on the weights put on the terminal values of the state x(tf ). In section

4.4 we have studied linear stationary feedback Nash equilibria for games over an infinite

horizon. The most important conclusion is that in the infinite-horizon case nonuniqueness

can be expected.

Chapter five was completely devoted to the analysis of the continuous-time, infinite-horizon

controlled game. In this chapter we have proposed a new method to obtain stationary feed-

back Nash equilibria for infinite-horizon differential games with a one-dimensional state

space. This method is based on the direct calculation of solutions of the Hamilton-Jacobi-

Bellman-Isaacs (HJBI) equations using techniques for numerically solving differential-

algebraic equations. We showed how, by using this method, the controlled game can be

analyzed, and we illustrated this by a worked example. We can conclude that we have suc-

ceeded in constructing a stylized model that describes strategic behavior in a hierarchical

control framework and that is amenable to analysis.

6.2 Future research

In the course of this dissertation we have signalled a number of open problems. In this

section we will discuss some of these open problems and the perspectives on tackling

these problems. In subsection 6.2.1 we will discuss the informational problems we have

mentioned in section 2.4, i.e. the problems encountered when the coordination process
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as described in section 2.2 is reformulated such that coordination takes place while the

hierarchical system is controlled instead of before it is controlled. In subsection 6.2.2 we

discuss possible extensions to the model as introduced in chapter five. We conclude this

section on future research by considering the control problem of choosing an appropriate

coordination mechanism and a suitable decision rule in the specification of a controlled

game.

6.2.1 Information in hierarchical control

In section 2.4 we noted that it would be more realistic to formulate the hierarchical control

model as stated in section 2.2, in such a way that coordination takes place while the

system is controlled, instead of before. We already noted there that this would result in

the information structures

ηi(t) = {xi(t), λ(t− 1)} , (6.1)

for the individual decision units, and

ηc(t) = {xi(t), ui(t), zi(t+ 1) | i = 1, . . . , N} , (6.2)

for the coordinator. The first-level problem consists of determining ui(t) and zi(t + 1)

based on ηi(t), such that the modified cost functionals Li (see (2.7)) are minimized by the

individual policymakers. On the second level λ(t) is manipulated by the coordinator, in

order to minimize1 the interaction error ‖e‖ (see (2.6)), based on the information ηc(t). To

give an impression of the problems involved with the given information structures consider

the following situation. If policymaker i at time instant t would have the information

η̃i(t) = {x(t), λ(t)}, and in the first-level problem he would have to choose ui(t) and zi(t),

the first-level problems could be solved using dynamic programming, i.e. by solving

Vi(xi, t) = min
ui,zi

{

x′iQixi + u′iRiui + λ′izi −
∑

j 6=i

λ′jAjixi

+Vi(Axi +Biui +
∑

j 6=i

Aijxj, t+ 1)

} (6.3)

Vi(xi, tf ) = x′iQixi. (6.4)

Assuming the second-level problem can be solved, we conclude that the first-level problems

where ηi(t) is replaced with η̃i(t) are solvable. However, the individual policymakers do

1Note that in general we can not expect to achieve interaction error zero; therefore we have replaced

the statement that the interaction error should be zero in the second-level problem by the more reasonable

demand that it should be minimized in some sense.
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not have the information η̃i(t) but they only have partial state information (they know

xi(t) instead of x(t) as a whole), and there is a delay in the information they get from the

coordinator (they know λ(t − 1) instead of λ(t)). Moreover, they have to select zi(t + 1)

rather than zi(t). Therefore the solution of the originally stated first-level problem, i.e.

selection of ui(t) and zi(t + 1) based on ηi(t), also involves making predictions x̃(t) for

x(t) and λ̃(t) for λ(t) based on the information ηi(t). One might be tempted to think

that the only problem to be solved is the (separate) problem of prediction of the needed

information η̃i(t) based on the available information ηi(t), and plug in the estimates in

the (solved) optimization problem. Problems of this kind are for instance adressed in

Witsenhausen (1971)2, where it is shown that in general the problem of estimating the

necessary information (η̃i in our case) and the solution of the optimization problem can

not be separated, except in some very special cases. Due to this lack of a separation

principle, which is also the reason that in general differential or difference games with

incomplete information cannot be handled yet, the solution of the first-level problems is

a very difficult, if not unsolvable, problem. However, James et al. (1994) propose in the

context of nonlinear H∞ problems a different approach towards incomplete information in

difference games using the so-called “information state”. Also Maskin and Tirole (1994)

show that there might exist a relation between the issue of incomplete information in

difference games and realization problems. A possible way to get around informational

problems as discussed above, is to look for suboptimal solutions, as is for instance done in

Sethi and Zhang (1994)3.

6.2.2 Extensions to the controlled game

Finally, in this subsection we discuss possible extensions to the model as introduced in

chapter five. A number of possible extensions come to mind:

(i) allowing for more than two players,

(ii) replacement of the repeated game by a diffential game with a nontrivial state space,

(iii) inclusion of stochastic elements,

(iv) incomplete information.

We will briefly discuss the possible extensions below.

2In Witsenhausen (1971) a stochastic setup is used, but the conclusion remains valid also in a deter-

ministic setup.
3Sethi and Zhang (1994) use the concept of asymptotic optimality in a stochastic framework, with one

decision unit on the lower level.
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The N-player case

As mentioned already in chapter one, handling the N -player case in its full generality,

involves considering coalitions. Already in the three-player case the complexity introduced

by coalitions is enormous, as can for instance be concluded from the discussion on three-

player strategic bargaining problems in Houba (1994). In our setup however, there is a

way out. We can make the assumption that the individual players can only communicate

with the coordinator, and hence only have to decide whether or not to cooperate with

that coordinator. The setup in chapter five can then be extended straightforwardly to N

players. This would lead to a controlled game, in which the coordination variable α is a

vector on the unit simplex SN . Hence the controlled game is a nonlinear infinite-horizon

differential game with an (N − 1)-dimensional state space. Using similar techniques as in

appendix A, we can show that also in this case the stationary feedback Nash equilibria

are given by HJBI equations, which are now partial differential equations with algebraic

constraints:

rV1(α) = max
06c161

{V1,α(α)f(α, c1, . . . , cN) + ν1(α, c1, . . . , cN)} , (6.5)

rV2(α) = max
06c261

{V2,α(α)f(α, c1, . . . , cN) + ν2(α, c1, . . . , cN)} , (6.6)

...

rVN(α) = max
06cN61

{VN,α(α)f(α, c1, . . . , cN) + νN(α, c1, . . . , cN)} , (6.7)

in which

Vi,α(α) =
(

∂Vi

∂α1
(α) · · · ∂Vi

∂αN
(α)

)

. (6.8)

Although it is possible to characterize the stationary feedback Nash equilibria by the HJBI

equations, these HJBI equations are no longer equivalent to differential-algebraic equations.

Therefore it is not possible to use the same numerical techniques as discussed in section

5.3 to obtain the equilibria of the controlled game. Hence with the assumption that the

individual players only communicate via the coordinator the solution of the general N -

player case calls for work on partial differential equations of the form (6.5–6.7).

Differential games instead of repeated games

Ultimately, it would be nice if we could make a synthesis of the models as discussed in

section 2.2 and the models as introduced in chapter five. To accomplish this we should

be able to build the model as described in chapter five on a differential game with a
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nontrivial state space instead of a continuously repeated game. It is easily verified that

the construction of a controlled game based on a differential game will lead to a nonlinear

differential game with a state space of dimension greater than one. Hence, analysis of

controlled games based on general differential games calls for work on partial differential

equations of the following type (for the two-player case):

rV1(α, x) = max
06c161

{

∂V1

∂α
(α, x)f(α, c1, c2) + V1,x(α, x)F (x, u1(c1, x), u2(c2, x))

+ν1(α, x, u1(c1, x), u2(c2, x))} ,
(6.9)

rV2(α, x) = max
06c261

{

∂V2

∂α
(α, x)f(α, c1, c2) + V2,x(α, x)F (x, u1(c1, x), u2(c2, x))

+ν2(α, x, u1(c1, x), u2(c2, x))} ,
(6.10)

in which

Vi,x(α, x) =
(

∂Vi

∂x1
(α, x) · · · ∂Vi

∂xn
(α, x)

)

. (6.11)

Stochastic models

Throughout this dissertation we have worked in a completely deterministic framework. We

recall the following fact. Consider the stochastic differential game (see (Başar and Olsder,

1995, section 6.7)) given by the stochastic differential equation

dxt = F (t, xt, u1(t), . . . , uN(t))dt+ σ(t, xt)dwt, xt|t=0 = x0, (6.12)

and the cost functionals

Li(u1, . . . , uN) =

∫ tf

0

gi(t, xt, u1(t), . . . , uN(t))dt+ qi(x(tf )). (6.13)

Now by considering memoryless perfect state information4, i.e. ηi(t) = (x0, xt), the expected

cost functionals for the game in strategic form are given by

Ji(γ1, . . . , γN) = E [Li(u1, . . . , uN) | uj(·) = γj(·, ηj), j = 1, . . . , N ] . (6.14)

Here E [·] denotes the expectation operation taken with respect to the statistics of the

standard Wiener process wt. Then, it can be shown that the Nash equilibria of this

4Note that we do not allow for noisy measurements here. Stochastic differential games with noisy

measurements cannot be solved yet, due to inavailability of a separation principle (see Başar and Olsder

(1995); Witsenhausen (1971)). However, as noted before in section 6.2.1, a promising approach towards

difference games with incomplete or imperfect information, making use of the concept of “information

state” can be found in James et al. (1994).
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differential game coincide with the feedback Nash equilibria of the equivalent deterministic

differential game (see (Başar and Olsder, 1995, theorem 6.24)). From this fact we can

conclude that such a stochastic reformulation of a differential game does not change the

analysis substantially. In particular, the set of interesting Nash equilibria does not change.

Hence, a stochastic reformulation in this way does not add anything to our model, while a

stochastic reformulation involving noisy measurements calls for research on dynamic games

with imperfect information.

Incomplete information

Throughout the model formulation in section 3.4 and in chapter five we have assumed

that the coordinator can perfectly observe the actions of the individual players. This

assumption is crucial because the actions of the players are inputs for the coordinator’s

decision rule. Evidently, when the coordinator is not able to perfectly observe their actions,

individual players can exploit this fact to their own benefit. It is however not difficult to

incorporate this kind of imperfect information into the model of chapter five. Assume

that the coordinator observes the actions of the individual players through observation

functions hi : Γi(α) → Υi(α). Then the coordinator’s decision rule f can be specified as a

function of α and the observations, i.e. f is now a function mapping (0, 1)×Υ1(α)×Υ2(α)

to (0, 1). Obviously, introduction of such a decision rule does not change the analysis in

chapter five substantially. However, the nature of the model does change essentially. As

noted in section 5.6 the choice of decision rule of the coordinator can be viewed as a control

problem. When making the modification as mentioned above, the choice of decision rule

must also take into account the imperfect observations of the coordinator.

The considerations on extensions to the model as introduced in chapter five given above

can briefly be summarized as follows. Allowing for more than two players or replacement of

the underlying continuously repeated game by a differential game leads to a formulation in

which the analysis of partial differential equations of the form (6.5–6.7) or of the form (6.9–

6.10) plays an important role. Inclusion of stochastic elements into the controlled game

either leads to a situation that does not add anything to the analysis or to a situation

that requires the analysis of a differential game with incomplete or imperfect information.

Finally, inclusion of imperfect information at the coordinator’s end can straightforwardly

be achieved, although it has some consequences for the control problem of choosing a

suitable decision rule for the coordinator.
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6.2.3 The control problem

We have seen in section 3.4 and in chapter five that the construction of a controlled game

involved the specification of a coordination mechanism and of a decision rule for the coor-

dinator. Given some prespecified global control objective and a coordination mechanism

transforming G into G(α), the challenge is to design a decision rule for the coordinator such

that the global control objective is reached. In the Cournot duopoly example as discussed

in chapter five, we saw that for the redistribution mechanism, the choice of a decision rule

which punishes deviations from a cooperative strategy, establishes a controlled game which

succeeds in reaching the global control objective of full cooperation. From a consumers

point of view one can also consider the following global control objective: is it possible to

force the firms to produce such amounts that the marketprice equals the marginal produc-

tion costs? Obviously, in order to reach this global control objective a different decision

rule must be designed.

As argued before, the problem of choosing an appropriate decision rule can be viewed as

a control problem. In general, the design of a decision rule involves the specification of a

(nonlinear) compensator which takes the strategies γ1 and γ2 as its inputs and has α as its

output. Such a compensator can be described in the following way:

ż = f(z, γ1, γ2), (6.15)

α = h(z). (6.16)

Note that the decision rules as introduced in chapter five are a special case of this more

general form, in which h(z) = z. Of course, the analysis of a controlled game, using a more

general compensator of the form (6.15–6.16) as its decision rule, can involve some problems.

In particular, one might want to assume that the players know at every time-instant t the

state z(t), thus assuring memoryless perfect state information. If the players would only

be able to observe α, we again face problems involving incomplete information.
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Derivation of HJBI equations

In this appendix we derive the HJBI equations associated to stationary feedback Nash

equilibria of general nonlinear differential games, where the state space is an open and

bounded subinterval of R. The results of this appendix can straightforwardly be generalized

to more general state spaces. Although the results of this appendix may be considered

essentially well known (see Feichtinger and Wirl (1993); Tsutsui and Mino (1990)), we

have not been able to find suitable references in the existing literature. Therefore we have

decided to provide the proofs in this appendix. Similar results for optimal control problems

can be found in Fleming and Soner (1993).

First we consider the optimal control problem

max
u

∫ ∞

0

e−rτπ(x(τ), u(τ))dτ,

under the conditions

ẋ = f(x, u),

x(0) = x0,

in which r > 0.

Assume that for all x0,

max
u

∫ ∞

0

e−rτπ(x(τ), u(τ))dτ <∞.

Now define the value function

V (x0) := max
u

∫ ∞

0

e−rτπ(x(τ), u(τ))dτ.
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Then we find the following lemma:

Lemma A.1 Assume that the value function V is continuously differentiable. Then V

satisfies the Hamilton-Jacobi-Bellman equation

rV (x0) = max
u0

{π(x0, u0) + V ′(x0)f(x0, u0)} .

Proof : Let ∆t > 0 and let x(·) be any admissible trajectory satisfying x(0) = x0. Then,

because V is continuously differentiable

V (x(t)) = V (x0) + V ′(x0)f(x0, u(0))∆t+ o(∆t),

for ∆t→ 0.

Now we find

V (x0) = max
u

∫ ∞

0

e−rτπ(x(τ), u(τ))dτ

= max
u

{∫ ∆t

0

e−rτπ(x(τ), u(τ))dτ +

∫ ∞

∆t

e−rτπ(x(τ), u(τ))dτ

}

= max
u

{∫ ∆t

0

e−rτπ(x(τ), u(τ))dτ + e−r∆t

∫ ∞

0

e−rτπ(x(τ + ∆t), u(τ + ∆t))dτ

}

= max
u

{∫ ∆t

0

e−rτπ(x(τ), u(τ))dτ + e−r∆tV (x(∆t))

}

= max
u0

{

π(x0, u0)∆t+ e−r∆tV (x0) + e−r∆tV ′(x0)f(x0, u0)∆t+ o(∆t)
}

= max
u0

{π(x0, u0)∆t+ (1 − r∆t)V (x0) + V ′(x0)f(x0, u0)∆t+ o(∆t)}
= (1 − r∆t)V (x0) + max

u0

{(π(x0, u0) + V ′(x0)f(x0, u0)) ∆t+ o(∆t)} ,

for ∆t→ 0.

This immediately implies

∀∆t>0 rV (x0) = max
u0

{π(x0, u0) + V ′(x0)f(x0, u0) + o(∆t)/∆t} ,

and hence necessarily

rV (x0) = max
u0

{π(x0, u0) + V ′(x0)f(x0, u0)} .

�

Now consider the differential game

ẋ = f(x, u1, u2),
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with payoff functionals

L1(u1, u2) :=

∫ ∞

0

e−rτπ1(x(τ), u1(τ), u2(τ))dτ,

L2(u1, u2) :=

∫ ∞

0

e−rτπ2(x(τ), u1(τ), u2(τ))dτ.

Because we are interested in stationary feedback Nash equilibria, we limit the admissible

strategies to the class of stationary feedback strategies. As in (Başar and Olsder, 1995,

section 5.3), we demand that the strategies satisfy a Lipschitz continuity condition to

ensure well-posedness.

Now define the value functions V1, V2 by

V1(x0, γ2) := max
u1

∫ ∞

0

e−rτπ1(x(τ), u1(τ), γ2(x(τ)))dτ,

V2(x0, γ1) := max
u2

∫ ∞

0

e−rτπ2(x(τ), γ1(x(τ)), u2(τ))dτ.

We assume that for all γ1 ∈ Γ1 and for all γ2 ∈ Γ2:

max
u1

∫ ∞

0

e−rτπ1(x(τ), u1(τ), γ2(x(τ)))dτ < ∞,

max
u2

∫ ∞

0

e−rτπ2(x(τ), γ1(x(τ)), u2(τ))dτ < ∞.

Then we immediately find, using lemma A.1, provided V1 and V2 are continuously differ-

entiable, that V1 and V2 satisfy the stationary Hamilton-Jacobi-Bellman-Isaacs equations

rV1(x0, γ2) = max
u0

{

π1(x0, u0, γ2(x0)) +
∂V1

∂x
(x0, γ2)f(x0, u0, γ2(x0))

}

,

rV2(x0, γ1) = max
u0

{

π2(x0, γ1(x0), u0) +
∂V2

∂x
(x0, γ1)f(x0, γ1(x0), u0)

}

.

This leads to the following lemma:

Lemma A.2 If (γ̄1, γ̄2) is a stationary feedback Nash equilibrium, with continuously dif-

ferentiable value functions V1 and V2, then V1 and V2 satisfy the HJBI equations

rV1(x0, γ̄2) = max
u0

{

π1(x0, u0, γ̄2(x0)) +
∂V1

∂x
(x0, γ̄2)f(x0, u0, γ̄2(x0))

}

,

rV2(x0, γ̄1) = max
u0

{

π2(x0, γ̄1(x0), u0) +
∂V2

∂x
(x0, γ̄1)f(x0, γ̄1(x0), u0)

}

.
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Moreover

γ̄1(x0) ∈ arg max
u0

{

π1(x0, u0, γ̄2(x0)) +
∂V1

∂x
(x0, γ̄2)f(x0, u0, γ̄2(x0))

}

,

γ̄2(x0) ∈ arg max
u0

{

π2(x0, γ̄1(x0), u0) +
∂V2

∂x
(x0, γ̄1)f(x0, γ̄1(x0), u0)

}

.

With a slight abuse of notation we write Vi(x0) instead of Vi(x0, γ̄j).

We now find the following theorem:

Theorem A.3 (Verification theorem) Suppose
(

V̄1, V̄2, γ̄1, γ̄2

)

are

solutions of the HJBI equations

rV1(x0) = max
u0

{π1(x0, u0, γ̄2(x0)) + V ′
1(x0)f(x0, u0, γ̄2(x0))} ,

rV2(x0) = max
u0

{π2(x0, γ̄1(x0), u0) + V ′
2(x0)f(x0, γ̄1(x0), u0)} ,

with

γ̄1(x0) ∈ arg max
u0

{π1(x0, u0, γ̄2(x0)) + V ′
1(x0)f(x0, u0, γ̄2(x0))} ,

γ̄2(x0) ∈ arg max
u0

{π2(x0, γ̄1(x0), u0) + V ′
2(x0)f(x0, γ̄1(x0), u0)} ,

and V̄1, V̄2 continuously differentiable and bounded.

Then, V̄1 and V̄2 are value functions, i.e.

V̄1(x0) = max
γ1

∫ ∞

0

e−rtπ1(x(t), γ1(x(t)), γ̄2(x(t)))dt

V̄2(x0) = max
γ2

∫ ∞

0

e−rtπ2(x(t), γ̄1(x(t)), γ2(x(t)))dt

Proof : We find
∫ ∞

0

e−rtπ1(x(t), γ̄1(x(t)), γ̄2(x(t)))dt

=

∫ ∞

0

e−rt
[

rV̄1(x(t)) − f(x(t), γ̄1(x(t)), γ̄2(x(t)))V̄
′
1(x(t))

]

dt

=

∫ ∞

0

[

− d

dt

[

e−rt
]

V̄1(x(t)) − e−rtẋ(t)V̄ ′
1(x(t))

]

dt

=

∫ ∞

0

− d

dt

[

e−rtV̄1(x(t))
]

dt

= V̄1(x0).
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Similarly, we can derive V̄2(x0) =
∫∞

0
e−rtπ2(x(t), γ̄1(x(t)), γ̄2(x(t)))dt.

Now suppose γ1 is any admissible stationary feedback strategy. Then we find for all x:

π1(x, γ1(x), γ̄2(x)) + f(x, γ1(x), γ̄2(x))V̄
′
1(x) 6 rV̄1(x),

and hence:
∫ ∞

0

e−rtπ1(x(t), γ1(x(t)), γ̄2(x(t)))dt

6

∫ ∞

0

e−rt
[

rV̄1(x(t)) − f(x(t), γ1(x(t)), γ̄2(x(t)))V̄
′
1(x(t))

]

dt

=

∫ ∞

0

[

− d

dt

[

e−rt
]

V̄1(x(t)) − e−rtẋ(t)V̄ ′
1(x(t))

]

dt

=

∫ ∞

0

− d

dt

[

e−rtV̄1(x(t))
]

dt

= V̄1(x0).

This implies

V̄1(x0) = max
γ1

∫ ∞

0

e−rtπ1(x(t), γ1(x(t)), γ̄2(x(t)))dt,

and similarly we find

V̄2(x0) = max
γ2

∫ ∞

0

e−rtπ2(x(t), γ̄1(x(t)), γ2(x(t)))dt.

�
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Avramović, B. (1979). Iterative algorithms for the time scale separation of linear dynamical

systems. In Fink, L. H. and Trygar, T. A., editors, Systems Engineering for Power:

Organizational Forms for Large-Scale Systems. US DOE, Washington, D.C., pages 1.10–

1.12.
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heit. Zeitschrift für die gesamte Staatswissenschaft, 12:301–324.

Sethi, S. P. and Zhang, Q. (1994). Hierarchical Decision Making in Stochastic Manufac-

turing Systems. Systems & Control: Foundations & Applications. Birkhäuser, Boston.
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Samenvatting

Veel processen, zowel economische als technische, bestaan uit elkaar bëınvloedende deelprocessen,

elk bestuurd door een afzonderlijke besturingseenheid. Vaak bestaat er ook nog een

afzonderlijke besturingseenheid die het gehele proces bëınvloedt. Een dergelijk proces

noemen we een hiërarchisch systeem. Enkele voorbeelden van hiërarchische systemen zijn

computernetwerken, sommige produktieprocessen, het ecologisch systeem en de Europese

Unie. In al deze voorbeelden bestaan er verschillende, afzonderlijk bestuurde deelprocessen,

terwijl een centrale eenheid (in de bovenstaande voorbeelden het centrale systeem, het

produktie management, de nationale overheid, de Europese raad) het geheel probeert te

sturen. Formeel spreken we over coördinatie; de centrale eenheid (coördinator) bestuurt

het gehele systeem door de acties van de afzonderlijke besturingseenheden te coördineren.

In dit proefschrift bespreken we modellen voor coördinatie binnen een hiërarchische besturingsopzet.

Bestaande modellen voor coördinatie gaan er van uit dat de afzonderlijke besturingseenheden

volledig samenwerken met de coördinator. In de praktijk echter is het meestal niet erg

realistisch om volledige samenwerking te veronderstellen. Een individuele besturingseenheid

kan zich verbeteren door op een strategische manier te reageren op de acties van de

coördinator en van de andere besturingseenheden. We gebruiken de term “strategisch”

om aan te duiden dat de afzonderlijke besturingseenheden hun acties niet alleen gebruiken

om het systeem te besturen, maar eveneens om het gedrag van de coördinator en de andere

besturingseenheden te bëınvloeden. In dit proefschrift introduceren we een nieuwe opzet

voor hiërarchische besturingsmodellen, waarin we strategisch gedrag van de afzonderlijke

besturingseenheden toestaan. Hierbij maken we gebruik van dynamische niet-coöperatieve

speltheorie (zie bijv. Başar and Olsder (1995)). Deze nieuwe opzet wordt eerst gëıntroduceerd

binnen de context van twee-speler herhaalde spelen en wordt later uitgebreid geanalyseerd

in de context van continu herhaalde spelen. In dit laatste model moet een oneindige-horizon

differentiaalspel geanalyseerd worden. Daarom gaan we in dit proefschrift uitgebreid in op

de analyse van stationaire feedback Nash-evenwichten in dergelijke spelen.

Het proefschrift heeft de volgende indeling:
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Hoofdstuk 1: Inleiding,

Hoofdstuk 2: Modellen voor coördinatie,

Hoofdstuk 3: Herhaalde spelen,

Hoofdstuk 4: Nash-evenwichten van differentiaalspelen,

Hoofdstuk 5: Continu herhaalde spelen,

Hoofdstuk 6: Conclusies.

In hoofdstuk twee beginnen we met het vastleggen van de hiërarchische besturingsopzet.

Deze opzet behelst de besturing van een grootschalig systeem, dat opgesplitst kan worden in

N elkaar bëınvloedende deelsystemen. Voor elk deelsysteem moet een aparte beleidmaker

beslissen hoe zijn deelsysteem bestuurd moet worden. Om een vooraf gespecificeerde

globale regeldoelstelling te bereiken wordt een coördinator gëıntroduceerd. Deze coördinator

wisselt informatie uit met de afzonderlijke beleidsmakers om uiteindelijk het globale doel te

bereiken. In sectie 2.2 recapituleren we een model voor zo’n coördinatie-proces, gebaseerd

op Mesarovic et al. (1970); Jamshidi (1983); Singh (1980). We concluderen (zie ook

Weeren (1993)) dat een dergelijk coördinatie-proces alleen kan werken als alle beleidsmakers

volledig samenwerken met de coördinator. Dit heeft tot gevolg dat in de opzet zoals

gedefinieerd in sectie 2.2 strategisch gedrag van de individuele beleidsmakers niet mogelijk

is. Immers, strategisch gedrag zou betekenen dat de individuele beleidsmakers af kunnen

wijken van de coöperatieve strategie, om zo de coördinator en de andere beleidsmakers te

bëınvloeden. Dit is dan ook het doel van dit proefschrift: we bestuderen de mogelijkheid

om strategisch gedrag in een hiërarchische besturingsopzet toe te staan.

In hoofdstuk drie beginnen we met de constructie van een eenvoudig model dat strategisch

gedrag in een hiërarchische besturingsopzet mogelijk maakt. We richten ons op herhaalde

spelen in discrete tijd, omdat we ons zo kunnen concentreren op strategische aspecten van

coördinatie, zonder dat we ons druk hoeven te maken over andere zaken zoals bijvoorbeeld

informationele aspecten. Het belangrijkste gereedschap waar we gebruik van maken om

het model te specificeren en te analyseren is dynamische niet-coöperatieve speltheorie (zie

Başar and Olsder (1995)). Daarom beginnen we hoofdstuk drie met een korte introductie

van dynamische niet-coöperatieve speltheorie. Na deze introductie in de speltheorie geven

we ook nog een korte bespreking van strategische onderhandelingstheorie (zie bijv. Houba

(1994); Rubinstein (1982)). Deze theorie behelst de specificatie van onderhandelingsprocedures

als een dynamisch spel en de analyse van de evenwichten van dat spel. Gëınspireerd door

dit idee ontwikkelen we in sectie 3.4 een model voor strategisch gedrag in een hiërarchische

besturingsopzet. Dit model bestaat uit een differentiespel, dat we het “bestuurde spel”
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noemen, gebouwd op een statisch twee-speler spel dat herhaald gespeeld wordt. Analyse

van dit bestuurde spel toont aan dat het wenselijk is om het model opnieuw te specificeren

als een differentiaalspel dat gespeeld wordt over een oneindige horizon. De specificatie en

analyse van het bestuurde spel in continue tijd wordt uitgesteld tot hoofdstuk vijf.

In hoofdstuk vier beschouwen we een speciale klasse van niet-nulsom differentiaalspelen,

namelijk niet-nulsom lineair-kwadratische differentiaalspelen. In het geval van open-loop

informatie, dat wil zeggen dat iedere speler op tijdstip t slechts de begintoestand x0 kent,

leiden we noodzakelijke en voldoende voorwaarde af voor de existentie van een uniek open-

loop Nash-evenwicht. Bovendien geven we een voldoende voorwaarde zodat het open-

loop Nash-evenwicht op de gebruikelijke manier gevonden kan worden, namelijk via de

oplossingen van een gekoppeld systeem van asymmetrische Riccati differentiaalvergelijkingen.

Bovendien laten we zien dat, onder de voorwaarde dat het probleem goed gedefinieerd is,

het open-loop Nash-evenwicht convergeert naar een unieke oplossing als de tijdshorizon

naar oneindig gaat.

We laten eveneens zien dat het asymptotisch gedrag van het zogenaamde feedback Nash-

evenwicht ingewikkelder is dan in het open-loop geval. We geven een gedetailleerde analyse

voor het meest eenvoudige geval, namelijk het geval waarin de dynamica scalair is. We laten

zien dat voor het feedback Nash-evenwicht het stelsel van gekoppelde Riccati differentiaalvergelijkingen

mogelijk meerdere stabiele kritieke punten heeft. Dit betekent in het bijzonder dat het

asymptotische gedrag van feedback Nash-evenwichten gevoelig af kan hangen van de weging

op de eindwaarden van de toestand x(tf ).

Als laatste onderwerp in hoofdstuk vier beschouwen we lineaire stationaire feedback Nash-

evenwichten van lineair-kwadratische differentiaalspelen die gespeeld worden over een oneindige

horizon. In tegenstelling tot de generieke uniciteit van lineaire feedback Nash-evenwichten

van lineair-kwadratische spelen over een vaste eindige horizon, vinden we in het geval van

een oneindige horizon dat zelfs binnen de klasse van lineaire feedback strategieën niet-

uniciteit verwacht kan worden. De verklaring van deze schijnbare tegenstelling ligt in

de gevoelige afhankelijkheid van de wegingen op de eindwaarden van de toestand in het

geval van een eindige horizon. We laten verder nog zien dat het criterium van dynamische

stabiliteit van kritieke punten niet voldoende is om de niet-uniciteit te elimineren.

Na het uitstapje in hoofdstuk vier naar de Nash-evenwichten van LQ-spelen, herformuleren

we in hoofdstuk vijf het model van hoofdstuk drie in continue tijd. Uitgaande van een

twee-speler statisch spel dat herhaald gespeeld wordt, introduceren we een coördinatie-

mechanisme en een beslissingsregel voor de coördinator die de uitbetalingen en strategieën

van het onderliggende statische spel bëınvloeden. Dit mondt uit in een niet-lineair differentiaalspel,

waarvan de toestandsruimte dimensie een heeft, waaraan we refereren als het bestuurde
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spel. Helaas is het in het algemeen onmogelijk om een dergelijk niet-lineair differentiaalspel

analytisch te bestuderen. We laten echter zien hoe stationaire feedback Nash-evenwichten

van twee-speler niet-lineaire differentiaalspelen met een een-dimensionale toestandsruimte

numeriek verkregen kunnen worden. Zoals bekend worden feedback Nash-evenwichten

van differentiaalspelen beschreven met behulp van Hamilton-Jacobi-Bellman-Isaacs (HJBI)

vergelijkingen. In hoofdstuk vijf laten we zien hoe oplossingen van deze HJBI-vergelijkingen

numeriek kunnen worden verkregen in het geval van stationaire feedback Nash-evenwichten

voor scalaire differentiaalspelen. In dat geval vormen de HJBI vergelijkingen een stelsel

van differentiaal-algebräısche vergelijkingen, en kunnen recentelijk ontwikkelde numerieke

methoden hiervoor gebruikt worden. In een uitgewerkt voorbeeld, waarin het onderliggende

statische spel een Cournot duopolie is, illustreren we de numerieke methode en bespreken

we de gevonden stationaire feedback Nash-evenwichten. In het bijzonder merken we op dat

in dit voorbeeld er sprake is van overaftelbaar veel verschillende stationaire feedback Nash-

evenwichten. We besluiten hoofdstuk vijf met de observatie dat de keuze van coördinatie-

mechanisme en beslissingsregel van de coördinator gezien kan worden als een regelprobleem;

door het kiezen van het juiste mechanisme en de juiste beslissingsregel kan de coördinator

sturen in de richting van een globale besturingsdoelstelling.

Tenslotte laten we in hoofdstuk zes de gevonden resultaten nogmaals de revue passeren.

We trekken een aantal conclusies en geven aan in welke richting toekomstig onderzoek kan

worden verricht. In het bijzonder bespreken we mogelijke uitbreidingen van het model

zoals gëıntroduceerd in hoofdstuk vijf.


