GAMES AND ECONOMIC BEHAVIOR 10, 355-367 (1995)

A Transfer Property of Equilibrium Payoffs in
Economies with Land

Jerzy LeGUT*

Technical University of Wroctaw, Poland

Jos A. M. POTTERS

University of Nijmegen, The Netherlands
AND

STEF H. TuIs

University of Tilburg, The Netherlands

Received December 3, 1992

NTU-games and TU-games are often used as tools to analyze economic models.
Legut et al. (1994) investigated the properties of TU-games associated with econo-
mies with *“land.’’ In this paper we especially give attention to the NTU-games
connected with these kinds of economies. The main result is that equilibrium
payoffs in the NTU-model are connected to equilibrium payoff in the TU-model
by b-transfer, a concept introduced by Shapley (1969).  © 1995 Academic Press, Inc.

1. INTRODUCTION

We consider in this paper an exchange economy of Debreu type with
only one commodity, land. This commodity is modeled by a measure
space (L, %, v), wherein & is a o-algebra of subsets of L and v: B — R,
is a non-trival finite measure on L: 0 < »(L) < o (cf, Berliant (1982) and
Dunz (1984)).
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Utilities are given as integrals of ‘‘utility density functions’ f; over v-
measurable parcels C € B: Ui(C) = [¢ fidv.
An exchange economy with land € consists of

a set of agents N,
A B-partition {4}y of L, the initial endowments of the agents,

a set {fi}iey of nonnegative bounded v-measurable functions
fi L— R, the utility densities of the agents.

A @R-partition of L is a collection subsets A, € % such that
v(A; N A;) =0if i+ jand »(Ugey A) = v(L). Utilities are given by
U(C): = [ f; dv for every parcel C € B:

€ = {N, {A;, filien}.

To investigate these types of economies we introduce (cf. Legut et al.
(1992)) a transferable utility game (N, vg) defined by

Ug(S) 1= sup {gg fc. f;dv|{C}ies is a B-partition of A(S) = U A,}

i€§

and a non-transferable utility game (N, Vg) with
Ve(S):= {x € RS | there is a B-partition {C;};c5 of A(S) with x;
=[ fdvforallie s}.
G

In this paper we will prove a connection between the equilibrium payoffs
of the TU-game (N, vy) and the NTU-game (N, Vy).

The interpretation of the functions f; is different depending on the point
of view we take. If we consider these functions from a TU-point of view,
we are assuming that there is an exogeneously given medium, ‘‘money,”’
by which utility can be transfered from one agent to another. Then the
function values of f; have the dimension [$/m?], wherein $ is a unit for
the exogeneously given medium ‘‘money.”’ The utility of a parcel C has
the dimension [$]. If we take an NTU-point of view, the values of f; have
the dimension [u;/m?], where [w,] is the unit of subjective utility of player
i. Then U(C) = [ f; dv has the dimension [y;]. We must assume that

¢
the preferences of agent / over parcels C determine the utility density f;
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up to positive affine transformations (otherwise the integrals [ ¢ Jidv makes
no sense). The utilities must be cardinally determined.

There are more differences between both interpretations of the utilities.
In an NTU-setting, e.g., an economy in which one player owns all the
land (4; = L and A; = Jif j # i) is trivial, as no trade can take place. In
a TU-interpretation this economy is not trivial, as players j # i can buy
parcels from player i/ by means of ‘‘money.”’

Further, the concept of competitive equilibrium is different in both
contexts. In an NTU-setting a collection of JB-subsets X = {X},zy is a
competitive equilibrium if there is a (price) density g: L — R, such that

(D) {X}iey is a partition (the market clears),
() [,gdv=[, gdvioralli€ N (budget constraint),

(i) if [, fidv> [, f; dv, then [ gdv> [, g dv (maximality con-
dition). '

The NTU-equilibrium payoff associated with the competitive equilib-
rium { X}y is the N-vector x with coordinates x; := [, . Jidv for all agents
i € N. '

In a TU-setting condition (i) stays and condition (ii) disappears: there
is no budget constraint, as ‘‘money’’ can be used to balance any difference
between selling and purchasing. Condition (iii) becomes

(i)' [, (f — @ dv = [ (f; — g) dv for every parcel C € B (maxi-
mality). !

The TU-equilibrium payoff associated with {X};cy has the coordinates
X = J‘X’_(f,-~ g)dv + fAigdv.

Note that in condition (iii) only integrals of the same densities are
compared with each other. In (iii)’ the functions f; and g are subtracted
and must therefore have the same dimension [$/m’]. By the way, the
dimension of g in the NTU-setting can be [-/m?], where *‘-"" stands for a
numeral or any other unit of measurement.

In this paper we are going to compare the TU- and NTU-equilibrium
payoffs. We shall prove that these equilibrium payoff are connected by
““b-transfer.”’

First we recall the definition of the b-transfer of an NTU-game. Let
(N, V) be an NTU-game and b € RY. The b-transfer of the game (N, V)
is the TU-game 1,(V) with values

LL(VIS) = sup{(b, ©) | x € V(S)}

The set {(b, x) | x € V(S)} is not always bounded for every coalition, but
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if it is, the b-transfer can be defined. In Shapley (1969) the b-transfer of
a game is used to define the Shapley value for NTU-games. A point x €
V(N) is a point of the Shapley NTU-value if there is a transfer vector
b € RY such that the b-transfer #,(V) exists and (b;x;);cy is the Shapley
value of the TU-game (W, #,(V)).

Introducing a transfer vector & € RY is the same as introducing an
exchange rate between the utilities of different players. If (x;, . .., x,)
is a point of V(N), the vector b * x := (b;x;),p is meant as a TU-payoff
vector of which the coordinates are compared and added. So the dimension
of the coordinate b, must be [-/y;] or [$/u,].

In this paper we prove that, under mild conditions on €, a vector x €
Vi (N) is an NTU-equilibrium payoff if and only if there is a nonnegative
transfer vector b such that b * x is a TU-equilibrium payoff of 7,(Vy).
Furthermore, t,(Vy) is the TU-game associated with the economy b * €,
the economy with land, wherein each utility density f;is multiplied with b,.

2. MaIN RESULTS

As before we start with a measurable space (L, %, v), wherein L is a
nonempty set, 3R is a g-algebra of subsets of L, and »: % — R, is a finite
non-trivial measure.

An economy with land consists of a finite set of agents N, and for each
agent { € N, a v-measurable initial endowment A; C L and a nonnegative
(essentially) bounded v-measurable utility densxty fi on L. The integral
U{C) = f f:dv gives the appreciation of agent i for the measurable set
C. We assume that the following conditions hold:

(a) The measure v is non-atomic; i.e., for every set E € % with
v(E) > 0 there is a subset F C Ewith F € B and 0 < v(F) < »(E).

(b) The utilities f; are almost everywhere positive:
v({x € L | fi(x) = 0} = 0 for all agents i € N.

(c) The economy € is non-trivial; i.e., at least two agents have an
initial endowment of positive v-measure. An agent i with v(4;) = 0 is
called a dummy.

Let {X;};cn be a B-partition of L. A coalition § can improve upon {X;};ep
if there is a B-partition {Y;};cg of A(S) := U, A; such that f fidv=
f f; dv for all agents i € S and there is at least one strict 1nequahty
A ‘coalition S can strictly improve upon {X;};,ey if there is a B-partition
{Y}ies of A(S) such that [, fidv> [, f, dv for all agents i € S. A B-
partition {X;},cy of L is Paieto optzmal if the coalition N has no strict
improvement upon {X;};cy. A B-partition {X;},cy of L is strictly Pareto
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optimal if the coalition N has no improvement upon {X;};cy. A $-partition
{X}ien Of L is a core allocation if no coalition S has a strict improvement
upon {X;}iey. It is a strict core allocation if no coalition § has an im-
provement.

The following lJemma states that in economies satisfying conditions (a)
and (b) Pareto optimality is the same as strict Pareto optimality and the
core is the same as the strict core.

Lemma 1. If € is an economy with land satisfying the conditions (a)
and (b), then every improvement upon {X;}cy can be changed into a strict
improvement,

Proof. Let{Y};esbe animprovement of coalition S upon {X;};,cy . Then
[, fidv= f f; dv for all agents i € § and there is a strict inequality for
l(] E S.

By non-atomicity of v there is a subset E C ¥; with positive »-measure
and f f,dv < f f,0 dv — f fi, dv. By non-atomicity we can divide E

intos — 1 parcels E,ie S\{zoi with positive v-measure. By the positivity
of f; (condition (b)) we have [, fi dv > 0. Then Z;:= Y,\E together
with Z,:= YU E;fori€ S, # iy is a strict 1mprovement of S.

In the proof we used the theorem of Lyapounov (1940) for the one-
dimensional case, saying that if (L, %, v) is a non-atomic finite measure
space, E € % is a v-measurable set, and f is an essentially bounded
nonnegative v-measurable function, then for every real number 8 with
0= =a:= [, fdv thereis av-measurable set F C Ewith [, fdv = B.

It is the goal of this paper to characterize equilibrium payoffs by b-
transfer. In the following proposition we characterize, as a first step, the
Pareto optimal allocations by b-transfer.

PROPOSITION 2. A B-partition {X;}en of L is Pareto optimal if and
only if there exists a vector b € RY such that b, > 0 if v(X;) > 0 arnd
X, C' {x € L| bifix) = maxey b;fi(x)}. The notation E C' F means
v(E\F) = 0.

Proof. If b is as in the proposition and {¥}},cy is a strict improvement
upon {X}ey, then

ffdy<2b,.f fidv=S maxbfdv-—fx;g&bjﬁdv.

JEN IEN Y, ieN 'Y; JEN

Smce for (almost) all points x € X; b;f,(x) = maxsey bifi(x), we find
Yien fy bifidv = [, J, dv, where f, = maxey b;f;. Therefore, there is no
strict 1mprovement upon {X};ey and {X; },EN is Pareto optimal.



360 LEGUT, POTTERS, AND TS

Conversely, let {X,},cy be a Pareto optimal allocation, For agents j with
v(X;) = 0, we define b; = 0. Let A be the set of agents i whose parcel X;
has positive v-measure. For i, j € A, i # j, we define a real number g;;
by

a; = inf essy fil f;
:= sup{r € R | the set {x € X,| £,/ f;(x) = {} has v-measure zero}.

Further we define a; = 1 for all i € A.
Claim 1. For every pair (i, j), i, j € A, we have g;; < .

If a; = o then the sequence of »-measurable sets {x € X; | fil f;(x) = 27}
has v- measure zero. Then also the set X\f7'(0) has »-measure zero. By
property (b) we find v(X;) = 0.

Claim 2. 1f o is a permutation of A, then Il;c, 4, = 1.

It is sufficient to prove that Il a; . = 1 for every cycle C of the
permutation o of length =2. Without loss of generality we assume that
={1,2,...,ptand () =i+ 1fori=1,...,p ~ 1 and
a(p) = 1. Suppose that IT,c¢ a;,4 < 1. Choose ;) > ;0 such that
,EC @,y = 1. From the definition of a; we infer that the sets
E:={xEX|f/ fa(,)(x) < @; oy have a p051t1ve v-measure for all i € C.
Lete > 0 bea positive number such that II\, @, [, f; dv = & for i =
I, ..., p. As v is atomless and f; is posmve almost everywhere there
are subsets F, C E; w1thf fdv H<l G o)™ lg for alli € C. The integral
f £ ,)dv>a,,,(1)f f &' = f o fendv for all i € C. If we take ¥, =

(X AF) U Fo-1, for i € C and Y X; for j & C we have an improvement
upon {X,-},-EN and {X;};cy is not (strictly) Pareto optimal.

Claim 3. There is a positive vector b € R4, such that b/b; < a;; for
alliandj € A.

Take x € R4, arbitrarily and define the mapping ¢: R4, — R4 by
@(x); 1= mine, x;a;. As a; > 0 forall i, j € A we have ¢(x) > 0 and as
a; = 1 we have p(x) = x. Repeating the mapping ¢ we find a weakly
decreasing sequence

Zp) z )=zl = -

On the other side, if k > a := | A|, we find for each i € A

k = . Ce .
@ (x)i'—xt(k) Ayl tk—1) Ay2),001) " Ae(1),1(0)
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for some sequence #0) = i, 1), . . ., t(k) € A. As k > a the sequence
K0, t(1), . . . , t(k) contains repetitions and therefore by Claim 2 we have
o¥x); = ¢'(x); for some | = I(i) < k. Therefore the sequence oX(x) is
constant for k = a. We find a vector b := %x) > 0 with b, = min, 4 byay;
for alli € A.

Now we can finish the proof as follows. For almost all points of X,
i€ A, we have fi/ f; = a;; = b;/b;. Then, for agents i € A, b,f(x) = maxe,
b,f,(x) for almost every point of X;. We may replace max;c, by max;ey,
as b; = 0 when j & A. For i & A the equality b;f; = max,ey b;f; almost
everywhere on X is an empty condition. m

If b € RY we introduce the notation
fb=vbiﬁ’ ﬁ:z‘f‘i’\!’ fb:’:./\.ﬁ;v\i:
ies iEN

where /\;cg b, f;and \ /¢ b, f, denote the pointwise minimum and maximum
of the functions b,f;, (i € S). The function f, gives in every point the
second highest value. B

If ¢ = {N, {4;, fi}ien} is an economy with land, b * ¢ is the economy
with the same set of agents and initial endowments as in % but with utility
densities {b;f};cy instead of {fi},cy. The economy % has the functions
£V f as utility densities.

It is typical for economies with land that the trades necessary to reach
a reallocation {X;},cy can be reconstructed from the reallocation {X;},cy.
The parcels A; N X are sold by agent i to agent j and the payments (under
a price regime g) are f g dv. Therefore, it is not surprising that we
need, in the proof of the nain theorem, a theorem from the theory of
flows. In fact we use the following theorem of Hoffman (1960).

ProposiTioN 3 (Hoffman (1960)). If N is a finite set and L and C are
N X N-matrices with L < C, then the following statements are equivalent:

() There is an N X N-matrix Y with L <Y < C and Z;; ¥y =
P Yforalli€ N.

(i) For all subsets S C N we have Zicg Ziems Lij = Zies Ziems C

In the application of this proposition L; will be L nx, fy dvand C;; w1ll
be [ AnX, fy» dv. The matrix coefficients Y;; are the mtegrals f an; 8 dv,
If f, < g = f, the first condition of (i) is satisfied. The second

part of (i) says that fmx gdv= fA x, 8 dv. If we add g dv

we find the budget equality f gdv= f g dv.
After these preparations we forrnulate ‘the rather technical first version
of the main theorem:

S,
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ProposiTION 4. A RB-partition {X;}ey of L is an NTU-competitive
equilibrium in the non-trivial economy € if and only if there is a vector
b € RY with b # 0 such that

M X, C'{x € L|bifilx) = )},
W) Zies [y fydv=Zies [, (F3V 1) dv.

Moreover, b; > 0 if v(4;) > 0.

Proof. Let {X;},cn be an NTU-competitive equilibrium with price den-
sity g. Let b, be the infimum of the real numbers ¢ such that the set {x €
X | glx) = tf (x)} has v-measure zero: sup essy g/f;. Note that b, = 0 if
v(X ) = 0. Let ¢; := inf ess;\y, g/f;, i.e., the supremum of the numbers t
with the property that the set {x € L\X | g(x) = tfi(x)} has v-measure
ZEro.

Claim1. 0=b,=<c¢, = forall agents/ € N.

Suppose that ¢; < b; for some agent i € N. Take b;and ¢; such that
¢ <Ti<b;<b.Thesets Y:={x €X,| glx) =2 b,fi(x)}and Z := {x €
I\X; | g(x) = T, fi(x)} have positive »-measure. There is a measurable set
ECVYwitho< [ pJidv < fz f; dv because of the non-atomicity of » and
f; > 0 almost everywhere in X;. From the same property we infer that
there is a measurable set F C Zw:thf fidv <[ fidv < b/t [, fidv. If
we replace X; by X; = (X\E) U F we havef fdy > fifdv and

Lg dVZfEE[ﬁdV >E,-fFf,~dv2Lg dv.

Then g is not an equilibrium price for the competitive equilibrium {X};cy .
This finishes the proof of the claim.

Claim 2. If b; = 0, then v(A;) = 0; if b; = o, then v(4;) = 0 for every
Jj# I

If b; = 0 for some player i € N, then g(x) = 0 for almost every point
of X;. If »(X;) > 0, then every player j # i has f; > 0 almost everywhere
on X;. This means that agent j can obtain X; costless and his appreciation
for X; is positive. Then ({X}}, g) is not a price equilibrium. Therefore,
v(X;) = 0. If v(A;) > 0 (agent i is not a dummy), we have f f dv=0<
f f; dv and (X },en, g) is not a price equilibrium.

I b, = o, we also have ¢; = », For every number + > 0 we have
tilx) = gx) for almost every point of L\X;. As g is essentially bounded,
we find f; = 0 almost everywhere on L\X;. This means that »(L\X) = 0
or v(X;) = 0 for every agent j # i. As before we conclude that v(4;) = 0
for all agents Jj#
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In Claims 1 and 2 we proved that 0 < b, < « for all agents i € N if the
economy € is not trivial. Further, b; > 0 if agent i is not a dummy.

From the definition of b; we infer that, if i is not a dummy, b;f; = g
almost everywhere on X; and from the definition of ¢; and Claim 1 we find
b;f; = ¢;f; = g almost everywhere on X, for agents j # i. This means that
b S = f,, alrnost everywhere on X, and f,, =g= f, almost everywhere on
L.

As [, gdv= f g dv for all agents i € N (budget constraint) the matrix

Y; = fA nx, 8 dv is a circulation flow with lower capacity L;; = / ANX, Lo
dv and upper capacity C;; = i f, dv. By the theorem of Hoffrnan we

Janx,
find [, oo fo @ = fA(N\S)ﬂX(S) f, dv for all § C N. Adding to both

sides [, ¢ xns) J» @v, we find Jys) o dv = fA(S) (Fi\/ fy) dvforall § C N,
as almost everywhere on X(N\S) the function fj < f» and on X(S) the
function f3 = f, = f,.

Conversely, if there is a vector b satisfying the conditions of the theo-
rem, we prove that there is a bounded v-measurable function g such that

fH=g=f, and J gdv*—-jgdv.
X, Ai

If we define L; and C;; as before, condition (ii) of Proposition 4 implies
that the condmon in the theorem of Hoffman is satisfied and there is a
circulation ﬁow Y= (Y;)with Ly = ¥Y; = Cyforali*j Y=
ALy + (1 — NGy w1th N € [0 1], we define 8lany, by (A;fp +
(1 Au)fb)lAnX Thenfb =g <fb and f ox, 8 dv = ¥;. On A4, N X; the
function g can 'be chosen arbitrarily between f» and T-

Finally, we prove that the price density g satisfies the maximality condi-
tion (iii). Let i be any agent and let C € ® be a parcel of land with
f fidv> f [ dv. Then C\X; has a positive measure and b;f; < f, almost
everywhere on C\X;. Further, b,f; = f, almost everywhere on X,.

Then we have, if b; > 0,

gdv— gdv= fbdv-J. fpdv
X, XNC o, ~ X\C

= JC\X,- bifi v = J:'x'\c biﬁ dv > 0.

i

If b, = 0, then »(X;) = 0 and [, ngv.-fC\X £y dv > 0if f, > 0 almost
everywhere on C. This is clearly true if at least'two players have a positive
coordinate in b. If the economy is not trivial, the price of C is larger than
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the price of X; (and of A,). The function g is a price density to the %-
partition {X},cy. =

Before we come to the final version of the main theorem we have to
recall some results of Legut et al. (1994).

(e) In Legut et al. (1994) it is proved that a JB-partition {X},c is a
TU-competitive equilibrium if and only if, for all agents i E N, X, C' {x €
L | fi(x) = f(x)}. As {X};cy is a B-partition, the set ¥, := {x € L | fi(x) =
F(x) > f()} €’ X,. The equilibrium price can be any function between f
and f. Condition (i) of Proposition 4 states that {X;},cy is a TU-competitive
equilibrium in the economy b * €.

(8) For an economy with land € the TU-game vy as defined in the
Introduction has the following values:

ug(§) = f 7S dv.
A(S)
Rewriting condition (ii) we find for the right hand side

S [ Fvhdr=] v dv=v5(s),
€8 J4 - A(S)

where b * € is the economy with the same set of agents and initial endow-
ments as € but with utilities b,f;\/ f,, i € N. Condition (ii) of Proposition
4 says that {[, 7, dv}ecy is a core element of the TU-game 5.

(y) Finally, for a TU-competitive equilibrium {X},cy, the price den-
sity g (arbitrarily chosen between fand f) determines the TU-equilibrium
payoff

x,.:=j (f,.—g)dv-i-f gdv  forallieN
X A

completely. It is proved that {x;};,c is a TU-equilibrium payoff if and only
if x € Core(vg). Hence, as f, = b, f; almost everywhere on X;, condition
(ii) of Proposition 4 is equivalent with

b, f fi dv) is a TU-equilibrium payoff with respect to
X, len

{X.};ew in the economy b x %,

Summarizing we have
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THEOREM 5. A B-partition {X;}ey is an NTU-competitive equilibrium
of a non-trivial economy with land ‘€ = {N, {A;, fitien} if and only if there
is a transfer vector b € RY (with b; > 0 if v(A,) > 0) such that

() {X}en is a TU-competitive equilibrium of the economy b * 6,

() b * ( f fi dv)ien is a TU-equilibrium payoff with respect to
{X}icy in the economy b * 8.

For equilibrium payoffs we have

CoROLLARY., If% is a non-trivial economy with land and x is an element
of Vo(N), then x is an NTU-equilibrium payoff iff there is a transfer vector
b € RY (with b; > 0 if v(A)) > 0) such that b * x is a TU-equilibrium
payoff in the economy b * €.

Proof. Letx € Vg(N) and let b € RY be a vector such that b, > 0 if
v(A4;) > 0 and b * x is a TU-equilibrium payoff of b x €.

As x € Vg(N), there is B-partition {X;};cy such that x; =< [, £ dv for
all agents i € N. We prove that {X;},cy satisfies the conditions of
Theorem 5.

If we multiply these inequalities with b; and sum over i € N, we
find

b= | bifidv.

EN “x,

Since b * x is a TU-equilibrium payoff in  * %, we have in particular
that (b, x) = vp(N) = f f» dv and therefore all inequalities in the preced-
ing formula are equalmes bix; = f b;f, dv = f f,, dv for all agents
i € N. This means that X, C' x € L | bf(x) = £} and {Xien
is a TU-competitive equ111br1um in b * € by (o) (condition (i)). More-
over,bxx = b *( f [ dv)ey is a TU-equilibrium payoff in the economy
b * § (condition (n)) ]

3. CONCLUDING REMARKS

In this final section we will answer three fundamental questions about
the model we used in this paper.'

First the meaning of a TU-model and particularly of TU-equilibria can
be questioned.

' We are grateful to one of the referees who raised these questions.
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(1) What is the meaning of TU-models and especially of TU-equilib-
ria? Are price equilibria without budget constraint not strange to all
thinking about economies?

Indeed, a TU-model needs many preassumptions to make sense. It
assumes, ¢.g., that there is an externality like money, equally appreciated
by all the agents, and that in the economy to be considered ‘‘money is
not the problem” or, to say it differently, every player must have enough
“outside assets’’ to balance the difference between his buyings and his
sellings. Under these circumstances it makes sense to fix a price that
“‘clears the market’’ and gives after all the agents a payoff, partially in
goods (land) and partially in money, that is as high as possible. This is
exactly the TU-equilibrium concept we propose. In fact, there is some
tradition in modeling economic situations by TU-games (see, e.g., the
house market model of Shapley and Shubik (1972) and Kaneko (1976),
(1982)). Finally this paper shows that TU-equilibria are tightly connected
with economically not suspect NTU-equilibria.

The second question raises the issue of how far a commodity like *“land™
differs from traditional commodities.

(2) What is special to the commodity “‘land’’ compared with “‘nor-
mal commodities’’?

The main difference is the uniqueness of parcels of land. A parcel can
be bought from the owner and from nobody else. This makes it possible
to trace back who bought what parcel from whom after the trades are
made. In an economy with normal commodities (like crude oil or milk)
this cannot be done uniquely. In the paper we use this idea by comparing
the trading behavior with a flow of goods and money. Loosely speaking,
land can be seen as an overwhelming number of indivisible goods (the
points of L) that can be traded only in some combinations (the measurable
sets).

The last question is about the kind of utility functions we considered.

(3 What do the utility functions have the form they have?

Indeed, a difficult commodity like land requires a more sophisticated
utility function. In our first paper on this subject (Legut ef al. (1992)) we
referred to the Ph.D. dissertations of Berliant (1982) and Dunz (1984),
wherein attempts are made to consider more general utility functions.
But even the most general utility concept we know of (utility functions
only continuous with respect to an atomless measure (Dunz (1984)) cannot
deal with all the intricacies of a commodity like land. Here global geometri-
cal or topological concepts like shape of parcels, connectedness, or 1-
connectedness (there no enclaves owned by somebody else) play an im-
portant role. Therefore we used the simpler utility functions, as the more
sophisticated ones are not doing the job better.
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