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Summary We take a fresh look at Theil’s BLUS residuals and ask why they have gone out
of fashion. All our simulation experiments indicate that tests based on BLUS residuals have
higher power than those based on the more popular recursive residuals, even in those cases
(structural breaks) where intuition would favour the recursive residuals.
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1. INTRODUCTION

Henri Theil, prolific and brilliant Dutch econometrician, produced, over a period of 50 years, on
average five articles per year and one book every 3 years. At the age of 29, he invented the method
of two-stage least squares, first published in 1953 as a memorandum of the Dutch Central Planning
Bureau (Theil 1953a,b). This established his reputation in the international arena. In 1956, Theil
founded the Econometric Institute in Rotterdam and the first course program in econometrics
worldwide. In 1965 he left the Netherlands for the University of Chicago. His monumental
Principles of Econometrics appeared in 1971. In 1981 he moved to the University of Florida.
Much of what is now mainstream econometrics originated with Henri Theil. The econometrics
profession owes him a colossal debt.

This paper is not about Theil’s errors. Even in the unlikely event that we had found errors in
Theil’s work, more courage than we possess would have been required to expose them. The paper
does, however, concern Theil’s treatment of errors (disturbances) in regression. In particular, it
concerns Theil’s treatment of the predicted errors, the so-called residuals.

Theil worried about the fact that, even if the disturbances are i.i.d., the residuals are
neither independent nor identically distributed, thus making direct use of the residuals in testing
homoskedasticity or serial independence impossible. Thus motivated, he introduced the BLUS
residuals in a path-breaking paper in 1965. These residuals are linear, unbiased, have a scalar

C© Royal Economic Society 2005. Published by Blackwell Publishing Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main
Street, Malden, MA, 02148, USA.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6416417?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


40 Jan R. Magnus and Ashoke K. Sinha

variance matrix, and are also ‘best’ in a mean squared error sense. Thus they appear to be ideally
suited for the task for which they were invented. In the 5 to 10 years following Theil’s publication,
a number of refinements and improvements were published, by Theil himself, by his former
colleagues in Rotterdam (former, because Theil had by then moved to Chicago), and by others,
but after that BLUS residuals went out of fashion.

Why did this happen? The main reason is the emergence of a competing set of residuals,
namely the recursive residuals, in the early 1970s. These recursive residuals have a more intuitive
appeal than the BLUS residuals, and are widely believed to be well-suited when dealing with
the possibility of a structural break.1 Modern econometric software contains recursive residuals
routinely, but seldom BLUS residuals.

The BLUS and recursive residuals contain exactly the same information, because both are
in one-to-one correspondence with the full set of OLS residuals. Thus the only way to compare
them is through their power properties. We will employ two historical data sets (both of which
we extend): the original data used by Theil (1965) and the data used by Quandt (1958).

The two main contributions of this paper are as follows. Firstly, we show that recursive
residuals possess an optimality property. It is clear that the BLUS residuals have an optimality
property because they were defined that way. It is also clear that there must be some optimality in
the recursive residuals because they are in one-to-one correspondence with the BLUS residuals.
But it is less clear exactly what this optimality of the recursive residuals entails. This is made
precise in this paper. Secondly, and most importantly, we demonstrate that BLUS residuals are not
less powerful than recursive residuals; in fact—in the cases considered—they are more powerful.
In particular, and surprisingly, BLUS outperforms the recursive residuals (in our example) in
testing for structural breaks, a situation for which the recursive residuals seem especially suited.
Thus we make a case for reinstating BLUS residuals into the mainstream of econometrics.

In Section 2, we introduce Theil’s BLUS predictor and present its optimality and uniqueness
properties (Theorem 1). In Section 3, we pose the opposite question (Theorem 2), implying that
the recursive residuals (and many other sets of residuals) have a BLUS optimality property:
they are ‘best’ in the sense that they are as close as possible to a given linear combination of
the disturbances. Recursive residuals are formally defined in Section 4. In Section 5, we use
extensions of Theil’s original data in order to compare the power of BLUS and recursive residuals
against heteroskedasticity. BLUS appears to be superior, be it slightly. Then, in Section 6, we
use Quandt’s data and the cusum and cusum-of-squares techniques to try and detect a structural
break. Neither the BLUS nor the recursive residuals are successful, mostly because the number
of observations is small. In Section 7, we therefore extend our data and our analysis, leading to a
proper comparison of the power properties of the BLUS and recursive residuals against structural
breaks. We conclude that BLUS, again, is superior, in spite of the intuitive appeal of the recursive
residuals. We offer some conclusions in Section 8. The appendix contains the proofs of the two
theorems.

2. THEIL’S BLUS PREDICTOR

In 1965, Theil’s paper ‘The analysis of disturbances in regression analysis’ appeared. In this
seminal contribution, Theil considered the standard linear regression model

y = Xβ + ε, E(ε) = 0, E(εε′) = σ 2 In,

1Schweder’s (1976) paper on structural shifts does not even reference Theil’s work.
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where X is a nonrandom n × k matrix of full rank k.2 Normality is assumed only when
desired to compute confidence intervals. Theil’s principal concern was to test the assumptions
on the disturbance vector ε, in particular homoskedasticity and serial independence. Since ε is
unobservable, Theil first tried to find an observable random vector, say e, which approximates ε
as closely as possible in the sense that it minimizes

E(e − ε)′(e − ε)

subject to the constraints

(i) e = Ay for some square matrix A (linearity),
(ii) E(e − ε) = 0 for all β (unbiasedness).

This leads to the best linear unbiased predictor of ε,

e = My, M = In − X(X′ X)−1 X′,

which we recognize as the ordinary least-squares (OLS) residual vector.
Thus, the OLS residuals are best linear unbiased, but their variance matrix is nonscalar. In

fact, var(e) = σ 2 M, whereas the variance matrix of ε, which e hopes to resemble, is σ 2In.
For this reason Theil set out to find a predictor of ε (more precisely, of S′ε) which, in addition

to being linear and unbiased, has a scalar variance matrix. There is a whole class of such predictors.
The ‘best’ in this class is Theil’s BLUS predictor: best linear unbiased with scalar variance matrix.

Definition 1: Consider the linear regression model y = Xβ + ε. Let S be a given n × (n − k)
matrix. A random (n − k) × 1 vector w is called a BLUS predictor of S′ε if

E(w− S′ε)′(w− S′ε)

is minimized subject to the constraints

(i) w = A′y for some n × (n − k) matrix A (linearity),
(ii) E(w− S′ε) = 0 for all β (unbiasedness),
(iii) var(w) = σ 2 In−k (scalar variance matrix).

The next theorem provides the unique solution to this problem.

Theorem 1: Consider the linear regression model y = Xβ + ε. Let S be a given n × (n − k)
matrix such that rk (S′MS) = n − k. Then the BLUS predictor of S′ε is

w∗ = A′y, A = MS(S′MS)−1/2,

where (S′MS)−1/2 is the positive definite square root of (S′MS)−1.

Theil’s original proof is a little cumbersome. A much shorter proof, following Magnus and
Neudecker (1988), is presented in the Appendix.

In a follow-up paper, Theil (1968) showed that the BLUS predictor w∗ satisfies a stronger
optimality property, namely that

E(w∗ − S′ε)(w∗ − S′ε)′ ≤ E(w− S′ε)(w− S′ε)′

2We adopt the notation proposed in Abadir and Magnus (2002).
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for any linear unbiased predictor wwith scalar variance matrix. A whole chapter of the Principles
of Econometrics (Theil 1971), 43 pages in total, is devoted to BLUS residuals. Theil only
considered the possibility that S is a selection matrix, so that a subset of n − k of the disturbances
is predicted, but Theorem 1 does not require this property of S.

In using BLUS residuals in practice, one must choose a ‘base’ (in Theil’s terminology), that
is, one must choose which k observations to disregard. Ideally, ‘which disturbances should be
disregarded is largely a matter of power with respect to a specific alternative hypothesis’ (Theil
1965, p. 1070). Since maximizing power leads to considerable complications, Theil (1971, p. 217)
adopted a more practical approach. When testing against heteroskedasticity, choose the middle k
observations; when testing against first-order autocorrelation, choose the first k observations or
the last k or a mixture of the two.

Improvements and extensions of Theil’s work on BLUS residuals can be found in Koerts
(1967), Putter (1967), Koerts and Abrahamse (1968), Abrahamse and Koerts (1971) and others.

3. THE OPPOSITE QUESTION

In the previous section we asked whether, given S, we could find an optimal A. We now raise the
opposite question, that is, we ask if, given A such that col(A) ⊆ col(M), we can find S such that
A′y = A′e is a BLUS predictor of S′ε. Such an S will not be unique.

Thus, suppose we are given an n × (n − k) matrix A satisfying var(A′e) = σ 2 I n−k , that is,

A′M A = In−k .

Since col(A) ⊆ col(M), we have A = MB for some n × (n − k) matrix B. Then, A′ A = I n−k ,
M A = A and rk(M) = rk(A), and hence M = A A′ (see Magnus and Neudecker 1988, Theo-
rem 2.8).

There always exists a matrix S such that A = MS(S′MS)−1/2, for example, S = A. Theo-
rem 2 provides the full class of matrices with this property.

Theorem 2: Let A be a given n × (n − k) matrix such that A′M A = I n−k , and assume that col(A)
⊆ col(M). Then the class of matrices S satisfying A = MS(S′MS)−1/2 is given by

S = AQ + X R,

where Q is positive definite (and symmetric) and R is arbitrary.

The consequence of Theorem 2 is that any predictor w= A′y = A′e with var(w) = σ 2 I n−k

has an optimality property, namely that w is the BLUS predictor of S′ε, where S is given in
Theorem 2. More specifically, this implies that the recursive residuals have a BLUS interpretation
and thus possess an optimality property.

4. RECURSIVE RESIDUALS

The history of the recursive residuals is ambiguous. The idea of recursive residuals in econometrics
was first presented by Durbin at the European Meeting on statistics, econometrics, and
management science in Amsterdam, September 1968 (Brown and Durbin 1968). After Brown’s
death in 1972, Durbin invited Evans to complete the calculations started by Brown. This led to
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Brown et al. (1975), read before the Royal Statistical Society in December 1974. Apparently
unaware of Durbin’s work, Hedayat and Robson (1970) discussed recursive residuals (which
they call stepwise residuals), as did Phillips and Harvey (1974). Farebrother (1978) discovered
that recursive residuals (including the link with Helmert’s transformation used by Durbin) were
already discussed by Pizzetti (1891). In fact, one may even trace the original idea back to Gauss
(1821); see Plackett (1950), Dufour (1982) and Young (1984, Appendix 2).

The recursive residuals are defined as follows. Let x′
1, . . . , x′

n denote the rows of X, and
y1, . . . , yn the components of y. Now define X′

(r ) = (x1, . . . , xr ) and y′
(r ) = (y1, . . . , yr), and let b(r)

denote the OLS estimator of β based on the first r observations, that is, b(r) = (X′
(r) X (r))−1 X′

(r) y (r).
The recursive residuals are then defined as

wr = yr − x′
r b(r−1)√

1 + x′
r

(
X′

(r−1) X(r−1)
)−1

xr

, r = k + 1, . . . , n.

The unbiasedness and linearity of wr is obvious. The fact that yr and b(r−1) are uncorrelated
implies that var(wr ) = σ 2. The fact that wr and ws are uncorrelated for r < s follows from
cov(yr − x′

r b(r−1), ys − x′
sb(s−1)) = 0, which is easily seen by writing yr and b(r−1) as linear

functions of the disturbances. We thus obtain an (n − k) × 1 vector w = (wk+1, . . . , wn)′

satisfying w= A′ y such that w∼ (0, σ 2 I n−k).
We now have two sets of constructed residuals: the BLUS residuals, say w1 = A′

1 y, and the
recursive residuals, say w2 = A′

2 y. Let e = My denote the full set of residuals. Since A1 A′
1 = M

and A′
1 A1 = I n−k (and hence A′

1 M A1 = I n−k), we see that

A1w1 = e, w1 = A′
1e,

so that the BLUS residuals and the full set of OLS residuals are in one-to-one correspondence.
In exactly the same way, the recursive residuals (satisfying A′

2 M A2 = I n−k), and the OLS
residuals are in one-to-one correspondence. Hence, BLUS and recursive residuals are in one-
to-one correspondence, in fact

w1 = A′
1 A2w2, w2 = A′

2 A1w1.

Since both sets of residuals contain exactly the same information, this immediately raises the
question which residuals are ‘better’, that is, have higher power. We now turn to this question.

5. POWER COMPARISONS: THEIL’S DATA

In order to illustrate the use of BLUS residuals in practice, Theil (1965) (and also Theil (1971,
pp. 215–216)) considered the simple example,

yt = β1t + β2 sin(t/2) + εt , t = 1, . . . , n,

where β 1 = 1, β 2 = 10, and the ε t are i.i.d. N(0, 1). Taking n = 20 independent draws from the
N(0, 1) distribution, and choosing the middle k = 2 observations (10 and 11) as the base, Theil
calculated the n − k = 18 BLUS residuals w j and computed

F =
∑9

j=1 w2
j

/
9∑18

j=10 w2
j

/
9
,
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Figure 1. Power of two-sided F-test: Theil’s simulated data.

which follows an F(9, 9)-distribution under the null hypothesis, and takes the value F = 0.4042
in this example. The associated two-sided p-value is 0.1934, so that the null hypothesis is not
rejected at the 5% level.

The example is a little curious because it does not tell us anything about the usefulness of
the test. Since the data are generated under the null hypothesis of homoskedasticity, we know in
advance that the probability of rejection is 5%. Surely it is more interesting to generate the data
under the alternative hypothesis of heteroskedasticity. Thus, we assume that the disturbances ε t

are independently distributed as N(0, t/2), so that their variance increases over time. Choosing
the same model and parameter values as before, and letting the sample size n grow from 20 to
100, we repeat Theil’s heteroskedasticity test. With 10,000 replications for each of n = 20, 25,
30, . . . , 100, we obtain good estimates of the power of the test, ranging from 31% when n = 20
to 95% when n = 100.

We can also use the recursive residuals instead of the BLUS residuals in order to perform the
heteroskedasticity test. Using the same setup, we see in Figure 1 that the power of the test based
on recursive residuals is very similar but slightly lower than the test based on BLUS residuals.3

These results confirm the power comparisons in Harvey and Phillips (1974).

3One may argue that a two-sided F-test is inappropriate here, and that one should perform a one-sided test. The resulting
power curves are very similar to Figure 1 and lead to the same conclusions.
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Figure 2. Quandt’s likelihood ratio λr.

Thus, so far there is no reason to believe that recursive residuals are better than BLUS residuals.
In fact, if anything, the opposite is true. Of course, one could object that we have favoured
BLUS by choosing an example (heteroskedasticity) for which BLUS was developed. Hence,
we now consider an example (structural break) for which the recursive residuals seem a priori
preferable.

6. CUSUM AND CUSUM-OF-SQUARES: QUANDT’S DATA

To put the recursive residuals in the best possible light, we consider testing for a structural break.
Since the data underlying the examples in Brown et al. (1975) are not available, we use the data
studied by Quandt (1958). These data are generated by the process

yt =
{

2.5 + 0.7xt + εt , t = 1, . . . , 12,

5 + 0.5xt + εt , t = 13, . . . , 20,

where the ε t are i.i.d. N(0, 1) distributed. The {xt} are the numbers 1 to 20, but randomized.4 The
technique described in Quandt (1958, 1960) is appropriate if we know that there is one break, but

4The purpose of the randomization is not entirely clear. The resulting xt’s are ‘independent’, but there is nothing that
requires them to be.
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Figure 3. Cusum plots: Quandt’s data.

we do not know where the break occurred. For each r from r = k + 1 to r = n − k − 1 (i.e., from
3 to 17) Quandt calculates

λr = log

(
max likelihood given H0

max likelihood given H1

)
,

where H0 is the hypothesis of no structural break, and H1 the hypothesis that the observations in
the period t ≤ r come from a different regression than those in the period t ≥ r + 1. It is easy to
show that

λr = r

2
log σ̂ 2

1 + n − r

2
log σ̂ 2

2 − n

2
log σ̂ 2,

where σ̂ 2
1 , σ̂ 2

2 and σ̂ 2 represent the usual estimates of σ 2 based on the first r observations, the last
n − r observations, and all observations, respectively.5 The value of r where λr attains a minimum
is then an estimate of the switchpoint.

Figure 2 shows that r is correctly estimated at r = 12 in this case. There exists, however, no
formal test because the distribution of min(λr) under H0 is unknown.

5In this case, BLUS, recursive, and OLS residuals all produce an identical value of λr .
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Figure 4. Cusum-of-squares plots: Quandt’s data.

A formal test along different lines was developed in Brown et al. (1975) in the form of cusum
and cusum-of-squares plots. Suppose that wk+1, . . . , wn is a set of recursive residuals, distributed
i.i.d. N(0, σ 2) under the null hypothesis. Let σ̂ 2 be the usual estimate of σ 2. Then we define the
cusum Wr and the cusum-of-squares sr as

Wr = 1

σ̂

r∑
j=1

wk+ j , sr = 1

(n − k)σ̂ 2

r∑
j=1

w2
k+ j , r = 1, . . . , n − k.

Under the null hypothesis of no structural break, Wr and sr should not cross certain bounds, which
are provided in Durbin (1969) and Brown et al. (1975).

We see from Figures 3 and 4 that Wr and sr (the dash-dotted lines) do not cross the bounds,
indicating that neither cusum nor cusum-of-squares indicate that a structural break has occurred.
Hence, even though there is a structural break and the null hypothesis is false, the tests do not
reject the null hypothesis.6

6When the data do not contain a trend, the (local) asymptotic power of the cusum test, applied to the recursive residuals,
depends crucially on the angle between the mean regressor and the structural break; see Ploberger and Krämer (1990).
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Figure 5. Power of BLUS residuals: Quandt’s simulated data.

Instead of using the recursive residuals we can also use the BLUS residuals for this purpose.7

The resulting plots for the Quandt data are also provided in Figures 3 and 4 (solid lines). The
conclusions are the same, although the cusum-of-squares plot almost crosses the bound at r = 10.

The failure to identify a structural break is possibly due to the particular data set or to the
small sample size. A more complete treatment of the power properties of these tests is therefore
required. This discussion is provided in the next section.

7. POWER COMPARISONS: QUANDT’S SIMULATED DATA

To gain further insight in the possible power differences between BLUS and recursive residuals,
we extend Quandt’s setup as follows:

yt =
{

2.5 + 0.7t + εt , t = an, . . . , 12,

5 + 0.5t + εt , t = 13, . . . , bn,

7When using BLUS to test against structural breaks we always select the first and last observations as our base. Other
choices of base have been considered too, but do not alter the conclusions.
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Figure 6. Power of recursive residuals: Quandt’s simulated data.

where, as before, the ε t are i.i.d. N(0, 1) distributed, and

an = 1 − 3

(
n − 20

5

)
, bn = 20 + 2

(
n − 20

5

)
, n = 20, 25, . . . , 100.

In the new setup, the break continues to be at t = 12 and the ratio of observations before the break
and after the break continues to be 3:2. There are only two differences between Quandt’s data and
the current data. Firstly we have more data: 20 ≤ n ≤ 100. Secondly, we do not randomize the
xt, so that xt = t . For each draw, the test either (correctly) rejects the null hypothesis or not. With
10,000 draws the average number of rejections is an accurate estimate of the power of the test.

We first consider the BLUS residuals. We see from Figure 5 that the cusum test has uniformly
much better power than the cusum-of-squares test, which has rather poor power. The same is true
for the recursive residuals (Figure 6), although the power of the cusum-of-squares test is not quite
so poor as for the BLUS residuals. We conclude that—if we are testing against a shift in the mean
(the β’s)—then cusum should be used.8 The most relevant comparison are the cusum plots of the

8We sometimes find (with cusum, not with cusum-of-squares) boundary crossings at the very beginning or end of our
data. This is somewhat unsatisfactory, so we also plotted the power curves when boundary crossings at the 5% tails of the
data were ignored (one observation at each end for n ≤ 60, two for n > 60). This made very little difference when working
with BLUS residuals, but much more difference with the recursive residuals. This means that boundary crossings at the
extremes occur regularly with the recursive residuals, another property where BLUS has the advantage.
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Figure 7. BLUS and recursive residuals compared: Quandt’s simulated data.

BLUS and recursive residuals. These are plotted in Figure 7. The difference in power is small, but
the BLUS residuals (again) have slightly higher power. This is remarkable because we are now
comparing the BLUS and recursive residuals in a situation (structural breaks) where the recursive
residuals should have an advantage. Apparently, they do not.

So far we have only considered structural breaks in the mean. It is rather intuitive that the
cusum test (which is linear) should have higher power in this situation than the cusum-of-squares
test (which is quadratic), and this is confirmed by our simulations. It is quite possible, however,
that if we consider a structural break in the variance, the cusum-of-squares test will have higher
power than the cusum test.9 To investigate this possibility we extend the Quandt data in a different
direction, and consider

yt = 2.5 + 0.7t + εt , t = an, . . . , bn,

where ε t ∼ N(0, 1) when t ≤ 12 and ε t ∼ N(0, 2) when t > 12. In this case the power of the
cusum test is always lower than 20%, also for large n. But the power of the cusum-of-squares test
increases more or less linearly over the interval 20 ≤ n ≤ 100. The power of the BLUS procedure
is (again) somewhat higher than that of the recursive residuals procedure.

In a practical situation where one is uncertain whether to test against a structural break in the
mean or in the variance, one typically performs both the cusum and the cusum-of-squares tests.

9The same intuition was also formulated by Brown et al. (1975, p. 159).
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If there is a structural break in the variance, then cusum will in all probability not be significant,
but cusum-of-squares might be, and BLUS gives you a (slightly) better chance of detecting the
break than the recursive residuals. If there is a structural break in the mean, then cusum will in
all probability be significant (especially when using BLUS residuals). Another look at Figures 5
and 6 now shows that the cusum-of-squares test will probably not be significant for BLUS, but
may be significant for the recursive residuals. The low power of cusum-of-squares in Figure 5
can thus be used to advantage!

8. CONCLUSION

In this paper we have tried to show that the BLUS residuals, invented by Theil in 1965, are still
a mighty weapon and should be thought of as one of Theil’s main contributions to econometrics.
The fact that BLUS has gone out of fashion and has been replaced by recursive residuals
does not appear to be justified. Our simulation results—admittedly specific and incomplete—
point to the superiority of BLUS. We hope that our results will lead to a return of BLUS
residuals into the mainstream of econometrics and will become available in econometric software
packages.
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APPENDIX: PROOFS

Proof of Theorem 1. We seek a linear predictor w of S′ε, that is a predictor of the form w =
A′ y, where A is a constant n × (n − k) matrix. Unbiasedness of the prediction error requires

0 = E(A′ y − S′ε) = A′ Xβ for all β in R
k,

which yields

A′ X = O. (A.1)
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The variance matrix of w is E(ww′) = σ 2 A′ A. In order to satisfy condition (iii) of Definition 1, we thus
require

A′ A = In−k . (A.2)

Under the constraints (A.1) and (A.2), the prediction error variance is

var(A′ y − S′ε) = σ 2(I + S′S − A′S − S′ A). (A.3)

Hence the BLUS predictor of S′ε is obtained by minimizing the trace of (A.3) with respect to A subject to
the constraints (A.1) and (A.2). This amounts to solving the problem

maximize tr(A′S)
subject to A′ X = O and A′ A = In−k .

We define the Lagrangian function

ψ(A) = trA′S − trL′
1 A′ X − 1

2
trL2(A′ A − In−k),

where L1 and L2 are matrices of Lagrange multipliers and L2 is symmetric. Differentiating ψ with respect
to A yields

dψ = tr(dA)′S − trL′
1(dA)′ X − 1

2
trL2(dA)′ A − 1

2
trL2 A′dA

= trS′dA − trL1 X′dA − trL2 A′dA.

The first-order conditions are

S = XL′
1 + AL2 (A.4)

A′ X = O (A.5)

A′ A = In−k . (A.6)

Pre-multiplying (A.4) with X′ yields

L′
1 = (X′ X)−1 X′S (A.7)

because X′ A = O in view of (A.5). Inserting (A.7) in (A.4) gives

MS = AL2. (A.8)

Also, pre-multiplying (A.4) with A′ gives

A′S = S′ A = L2 (A.9)

in view of (A.5) and (A.6) and the symmetry of L2. Pre-multiplying (A.8) with S′ and using (A.9) we find
S′ MS = L2

2, and hence

L2 = (S′ MS)1/2. (A.10)

Since we wish to maximize tr(A′S), it follows from (A.9) that we need to maximize the trace of L2. Therefore
we must choose in (A.10) the positive definite square root of S′MS. Inserting (A.10) in (A.8) yields A =
MS(S′ MS)−1/2. �

Proof of Theorem 2. Since (A : X) is a nonsingular n × n matrix, we can always write S =
AQ + X R for some Q and R. Using M = AA′ and A′S = Q, we then obtain

A = MS(S′ MS)−1/2 = AQ(Q ′ Q)−1/2.
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Premultiplying by A′ gives I n−k = Q(Q ′ Q)−1/2, so that

Q = (Q ′ Q)1/2.

It follows that Q must be symmetric and positive definite.
Conversely, if S satisfies S = AQ + X R with Q positive definite, then MS = M AQ = AQ and hence

MS(S′ MS)−1/2 = AQ(Q ′ A′ AQ)−1/2 = AQ(Q ′ Q)−1/2 = A,

because Q is positive definite. This completes the proof. �
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