
Journal of Applied Statistical Science
Volume 16, Number 1, pp. 115–126

ISSN 1067-5817
c© 2007 Nova Science Publishers, Inc.

APPLICATIONS OF L IKELIHOOD BASED-M ETHODS

FOR THE RELIABILITY PARAMETER

OF THE L OCATION AND SCALE EXPONENTIAL

DISTRIBUTION

Shaul K. Bar-Lev1 and Frank A. Van der Duyn Schouten2

1Department of Statistics, University of Haifa,
Haifa 31905, Israel

2Center for Economic Research, University of Tilburg,
5000 LE Tilburg, The Netherlands

Abstract

Based on a type-2 censored sample we consider a likelihood-based inference for
the reliability parameterR(t) of the location and scale exponential distribution. More
specifically, we derive the profile and marginal likelihoodsof R(t). A numerical exam-
ple is presented demonstrating the flavor of results that canbe obtained by likelihood-
based methods.
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1. Introduction

In this note we apply the likelihood approach to draw likelihood-based inference on the
reliability parameter associated with a scale and location exponential distribution. The
likelihood-based approach for inference has been thoroughly developed for about two
decades from mid-sixties to mid-eighties and has been widely applied to variousareas,
such as time series, linear models and psychological stochastic learning. The likelihood
approach was first suggested by Fisher (1934) and later developed by many authors and
applied in various contexts. A good survey of likelihood-based methods can be found in
Severini (2000), Pace and Salvan (1997, Chapter 4), Royall (1997) and Kalbfleisch (1985).
Applications of likelihood-based inference to some problems in life testing can be found
in the above cited references. A recent reference is Bar-Lev (2003) in which likelihood-
based methods were employed for inference on the shape parameter of thescale and shape
Weibull distribution.

Basically, this approach embraces the likelihood principle stating that the likelihood
function contains all available information on the unknown parameters that can be extracted
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from the sample. Those parameter values, for which there is a relatively large probability
of obtaining the observed sample, are considered as being supported bythe data and are
therefore regarded more plausible; and vice versa. The most plausible value of an unknown
parameter is obviously its related maximum likelihood estimate (MLE). IfL(ω) is the like-
lihood function ofω (possibly a vector), based on a given sample, andω̂ is the MLE ofω,
then the relative likelihood function ofω is the ratioR(ω)

.
= L(ω)/L(ω̂) which ranges be-

tween 0 to 1. Values ofω for whichR(ω) is ”small” can be regarded as implausible, whereas
values ofω makingR(ω) ”large” can be viewed as plausible. The set{ω : R(ω) ≥ α} is
called a 100α% likelihood interval forω. Accordingly, one might consider values ofω
within a 90% or a 95% likelihood intervals as highly plausible whereas values ofω ranging
outside a 5% or a 10% likelihood intervals as being highly implausible. Several comments
regarding the use of the likelihood principle for inference are presentedin the concluding
section.

Consider now a random sample x
¯

drawn from a two-parameterω = (ω1,ω2) distribu-
tion. Let f (x

¯
: ω) andL(ω) = L(ω : x

¯
) denote, respectively, the probability density function

(p.d.f.) of x
¯

and the likelihood function ofω based on the sample x
¯
. In various inferential

situations, as in the present note, it is required to draw inference on a sub-parameter ofω,
sayω1, only. In such situations the sub-parameter of interest is called the structural parame-
ter whereasω2 is regarded as the nuisance parameter. Inferences on the structural parameter
ω1 can be deduced by eliminating the nuisance parameterω2 from the model and construct-
ing a likelihood which depends onω1 only. Several likelihood-based methods have been
suggested in the literature for such an elimination, all resulting in likelihoods depending on
ω1 only. Resulting likelihoods are called profile, marginal, conditional and integrated like-
lihoods. The first two, which are utilized in this paper, are briefly outlined in Section 2. In
Section 3 we treat the location-scale exponential distribution. Based on a type-2 censored
sample we derive the profile and marginal likelihoods of the associated reliability param-
eter. Section 4 briefly outlines some frequency-based and fiduicial results obtained in the
literature concerning the reliability parameter. A numerical example is providedin Section
5. Some concluding remarks regarding the use of likelihood-based approach are presented
in Section 6.

2. Profile and Marginal Likelihoods

We first briefly outline the concept of a profile likelihood and then that of a marginal like-
lihood. Relevant references in this context are Sprott and Kalbfleisch (1969), Kalbfleisch
and Sprott (1973), Barndorff-Nielsen (1978), Kalbfleisch (1987), Pace and Salvan(1997),
Royall (1997) and Severini (2000).

The Profile likelihood ofω1 eliminatesω2 by simply replacing it withω̂2(ω1), the
MLE of ω2 whenω1 is held fixed. The profile and relative profile likelihoods ofω1 are then
defined, respectively, by

P(ω1) = sup
ω2

L(ω1,ω2) = L(ω1, ω̂2(ω1))

and
RP(ω1)

.
= P(ω1)/sup

ω1

P(ω1). (2.1)
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The main disadvantage of the use ofRP(ω1) for likelihood inference onω1 is that it assumes
that for any fixedω1 the nuisance parameterω2 attains its most likely value. This may lead
to a loss of accuracy concerning inferential statements onω1, especially when the sample
size is small.

The marginal likelihood ofω1 eliminatesω2 in a more ”sophisticated” way as follows.
Consider a minimal sufficient statisticy = y(x

¯
) for (ω1,ω2). Assume thaty can be parti-

tioned asy = (y1,y2) such thaty1 is an ancillary statistic forω1 in the presence ofω2; i.e.,
the p.d.f. of(y1,y2) can be decomposed as

f (y1,y2 : ω1,ω2) = g(y1 : ω1)h(y2 : ω1,ω2 | y1), (2.2)

whereg andh denote, respectively, the marginal p.d.f. ofy1 and the conditional p.d.f. ofy2

giveny1. In this case, inference onω1 can be based on the marginal submodelg(y1 : ω1).
The marginal and relative marginal likelihoods ofω1 are therefore defined, respectively, by

M(ω1)
.
= g(y1 : ω1), (2.3)

and

RM(ω1)
.
=

M(ω1)

supω1
M(ω1)

. (2.4)

One drawback of the marginal procedure is that there should exist an ancillary statistic
y1 allowing the decomposition of the form given in (2.2). In case that more than one ancil-
lary statistic exists, the problem arises which one to choose. However, a more substantial
drawback of this procedure is, that even in case that (2.2) holds, the information onω1 that
might be contained in the conditional submodelh(y2 : ω1,ω2 | y1) is ignored. This potential
loss of information has motivated numerous authors to define the notion of anonformative
conditional submodel with respect toω1 in the presence of a nuisance parameterω2, i.e.,
a submodel which contains no available information onω1 in the absence of knowledge of
ω2. Indeed, various definitions have been proposed for this notion implying that a marginal
likelihood is not unique. A good description of this problem, i.e., whether thereis a univer-
sal definition for a conditional submodel to be nonformative for a structural parameter in
the presence of a nuisance parameter, as well as additional relevant references can be found
in Jorgensen (1993).

3. An Application to the Reliablity Pararmeter of the Location-
Scale Exponential Distribution

The location-scale exponential distribution has, respectively, a p.d.f. and a cumulative dis-
tribution function (c.d.f.) of the form

f (x : θ,δ) = θ−1exp{−(x−δ)/θ} I(δ,∞)(x) (3.1)

and

F(t : θ,δ) = [1−exp{−(t −δ)/θ}] I(δ,∞)(t), (3.2)



118 Shaul K. Bar-Lev and Frank A. Van der Duyn Schouten

where both parametersθ ∈ R
+,δ ∈ R are unknown andIA(x) is the indicator function of a

setA. This distribution is designated henceforth by exp(θ,δ).
The reliability function at the pointt associated with (3.2) is

R(t) = R
.
= 1−F(t : θ,δ) =

{

exp{−(t −δ)/θ} , t > δ
1, t < δ.

(3.3)

An inference onR(t) is considered to be based on a type-2 censored sample stemming
from (3.2). More specifically,n items with survival density (3.1) are placed on a test. The
test is stopped once a predeterminedr − th failure time, 1≤ r ≤ n, occurs. Letx1 ≤ x2 ≤
... ≤ xr denote ther failure times, then their respective joint p.d.f. is

f (x1, ...,xr : θ,δ) = Cr,nθ−r exp{−T(xr −δ)/θ} I(δ,∞)(x1), (3.4)

whereCr,n
.
= n!/(n− r)! and

T(xr −δ)
.
=

r

∑
i=1

(xi −δ)+(n− r)(xr −δ). (3.5)

In the next two subsections we derive the profile and marginal likelihood ofR(t).

3.1. The Profile Likelihood of R(t)

The likelihood function of(θ,δ) is proportional to (3.4) up to a constant which does not
depend on(θ,δ). For deriving the profile likelihood ofR = R(t) we shall consider here
a reparameterization of the location-scale exponential distribution by(R,δ) rather than by
(θ,δ), i.e., in terms of the general setting of Section 2,(R,δ) = (ω1,ω2) with Randδ being
the structural and nuisance parameters, respectively. Indeed, by using (3.3), we obtain that
for t > δ, θ = (t −δ)/(lnR−1). Hence the joint likelihood function of(R,δ), denoted by
L(R,δ : x1, ...,xr) = L(R,δ), is given by

L(R,δ) =

[

lnR−1

t −δ

]r

exp

{

−(
lnR−1

t −δ
)T(xr −δ)

}

, δ < min(t,x1),0 < R< 1. (3.6)

Employing (2.1), the relative profile likelihood of the structural parameterR is defined
by

RP(R) =
L(R, δ̂(R))

supRL(R, δ̂(R))
=

L(R, δ̂(R))

L(R̂, δ̂)
, (3.7)

whereL(R, δ̂(R))
.
= supδ L(R,δ). To find the supremum in (3.7), one should distinguish

between two cases:(i) min(t,x1) = x1, and (ii) min(t,x1) = t. For case(i), L(R,δ)) is
increasing inδ < x1 < t for any givenR. HenceL(R, δ̂(R)) = L(R,x1) and supRL(R,x1) is
obtained at

R̂= exp[−r(t −x1)/T(xr −x1)] .

Substituting this in (3.7) we obtain

RP(R) =

[

lnR−1

(t −x1)

T(xr −x1)

r

]r

exp

{

−
lnR−1

t −x1
T(xr −x1)+ r

}

,x1 < t. (3.8)
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Table 1. 10%profile likelihood intervals for R(t) based on (3.9)

n 2 5 20 100
10% likelihood intervals forR(t) (.32,1) (.63,1) (.89,1) (.98,1)

10.750.50.250

1

0.75

0.5

0.25

0

R(t)R(t)

Figure 1.RP(R) in (3.9) for n=2,5,20.

For case(ii), the quantities in (3.7) are obtained by a straightforward differentiation,
yielding δ̂(R) = t + r−1T(xr − t) lnRand supRL(R, δ̂(R)) = L(1, δ̂(1)). Hence

RP(R) = Rn, t < x1. (3.9)

Remark 1. Note thatRP(R) in (3.9) depends onn but remains constant int regardless
of the value oft < x1. Such a result is, however, not too surprising. Indeed, sinceδ is
unknown, thenx1, a strongly consistent estimate forδ, solely provides the only information
on the ”location” ofδ < x1. For an arbitrary choice oft (< x1), it is not feasible to determine
whether or nott is still larger thanδ. Hence, the constancy ofRP(R) in t, for anyt < x1, is
reasonable as it serves as a measure of our ignorance regarding the location ofδ. Moreover,
the dependence ofRP(R) on n is reasonable too since the larger the sample sizen is the
closerx1 gets toδ, and, consequently, more information onR is gained. This can be seen in
both Table 1 and Figure 1. Table 1 displays, for increasingn, 10% relative profile likelihood
intervals forR, while Figure 1 plots the relative profile likelihood ofR(t) for n = 2,5, and
20.

Combining the two cases(i) and(ii) in (3.8) and (3.9), respectively, we obtain that the
relative profile likelihood interval forR(t) is

RP(R) =











[

lnR−1

(t−x1)
T(xr−x1)

r

]r
exp

{

− lnR−1

t−x1
T(xr −x1)+ r

}

,x1 < t

Rn, t < x1.

(3.10)
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3.2. A Marginal Likelihood of R(t)

We use (2.4) to obtain the marginal likelihood ofR(t). It can be readily seen that
the statistic(x1,T(xr − x1)) is minimal sufficient for(θ,δ). Consequently, the statistic
(n(x1− t)/T(xr − x1),T(xr − x1)) is minimal sufficient for(R,θ). Here, we shall use the
parameterization(ω1,ω2) = (R,θ), i.e., with R and θ being the structural and nuisance
parameters, respectively.

In order to derive the marginal likelihood ofR(t) we use the decomposition in (2.2) as
applied to joint p.d.f. of the minimal sufficient statistic. Indeed, letting

(y1,y2)
.
= (n(x1− t)/T(xr −x1),T(xr −x1)), (3.11)

we will show that the joint density of(y1,y2) can be decomposed as

f (y1,y2 : R,θ) = g(y1 : R)h(y2 : R,θ | y1), (3.12)

where the marginal densityg of y1 depends onRonly, meaning thaty1 is ancillary forθ for
any givenR; whereas the conditional density ofy2 given y1 depends on bothR andθ but
contains no information onR in the absence of knowledge ofθ (in the sense of Sprott and
Kalbfleisch, 1969, and Sprott, 1975). To observe this we use the following lemma.

Lemma 1. For r > 1, the joint density of(y1,y2) defined by (3.11) and the marginal
density of y1 in (3.12) are given, respectively, by

f (y1,y2 : R,θ) =
1

(r −2)!θr Rnexp

{

−y2(y1 +1)

θ

}

yr−1
2 I(0,∞)(y2) (3.13)

× I(nθ lnR,∞)(y1y2)

and

g(y1 : R) =











(r−1)Rn

(y1+1)r

[

1−
r−1
∑

i=0

1
i!

(

y1+1
y1

lnRn
)i

exp
(

− y1+1
y1

lnRn
)

]

, y1 < 0

(r−1)Rn

(y1+1)r , y1 > 0.
(3.14)

The expression (3.13) is simply obtained by transforming(u1,u2)
.
= (n(X1−δ),T(Xr −

X1)) → (y1,y2) and noting thatu1 ⊥ u2 with u1 ∼ exp(θ) andu2 ∼ gamma(r −1,θ). (3.14)
then follows by integrating (3.13) with respect toy2.

Note that the two conditionsy1 < 0 andy1 > 0 are equivalent to the conditionst > x1 and
t < x1, respectively. Hence, by using (3.14) we obtain that up to a constant notdepending
onR the marginal likelihood ofR is

M(R) =















Rn

[

1−
r−1
∑

i=0

1
i! (

T(xr−t)
n(x1−t) )

i (lnRn)i exp
(

−T(xr−t)
n(x1−t) lnRn

)

]

,

i f x1 < t
Rn, i f t < x1,

(3.15)

To show thatM(R) contains all available information onR in the absence of knowledge
of θ, we use the fact that the conditional distribution ofy2/θ giveny1 does not depend onθ.
Hence, the r.v.y2/θ conditional ony1 is a pivotal quantity forθ. This result satisfies one of
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the criteria given in Sprott and Kalbfleisch (1969) (see also Sprott, 1975) required for the
conditional modelh(y2 : R,θ | y1) to be nonformative with respect toR in the absence of
knowledge ofθ. Hence, by that criterion,M(R) contains all of the available information on
R that can be extracted from the sample.

Note also that fort < x1, the supremum of the second term in (3.15) is obtained atR̂= 1
and henceRM(R) = Rn. This term coincides with that ofRP(R) in (3.10). Fort > x1, the
supremum of the first term of (3.15) cannot be expressed explicitly and should be solved
numerically for specific sample observations. Accordingly, the resulting form of RM(R) is

RM(R) =































{

supRRn

[

1−
r−1
∑

i=0

1
i! (

T(xr−t)
n(x1−t) )

i (lnRn)i exp
(

−T(xr−t)
n(x1−t) lnRn

)

]}−1

×Rn

[

1−
r−1
∑

i=0

1
i! (

T(xr−t)
n(x1−t) )

i (lnRn)i exp
(

−T(xr−t)
n(x1−t) lnRn

)

]

,

i f t > x1,
Rn, i f t < x1.

(3.16)

4. Some Frequency-Based and Fiduicial Approach Results

The MLE of (θ,δ) is (T(xr −x1)/r,x1). Hence, using (3.3), the MLE forR= R(t) is

R̂= exp

{

−
(t −x1)

T(xr −x1)/r

}

, t > x1. (4.1)

Pugh (1963) derived an expression for the minimum variance unbiased estimate forR(t) for
the non-censored sample case andδ = 0. Balasubramanian and Balakrishnan (1992) dealt
with parameter estimation for the location and scale exponential distribution under multiple
type-2 censoring. Additional references can be found in Johnson, Kotz and Balakrishnan
(1994, pp. 507-509). Engelhardt and Bain (1978) derived the distribution (3.14) of the
ancillary statisticy1 = n(x1− t)/T(xr − x1) and used it to construct confidence limits for
R(t). The resulting limits can be calculated only numerically due to the rather cumbersome
expression of the p.d.f. ofy1. More specifically, iftp = δ+θ[− log (1− p)] denotes thep-th
quantile of (3.1), Engelhardt and Bain used the pivotal quantityZp = r(x1− tp)/T(xr −x1)
to base confidence intervals fortp by utilizing the relation

γ = P(Zp ≤ ζp,γ) = P(tp ≥ x1−ζp,γT(xr −x1)/r),

whereζp,γ designates theγ-th quantile ofZp. Such confidence intervals can be converted to
confidence intervals forR(t) by employing the relationP(tp ≥ t) = P(R(t) ≥ 1− p). Their
calculations require though an intensive simulation work

A fiducial approach was carried out by Pierce (1973) and Grubbs (1971). Pierce de-
rived a version of fiducial distribution ofR(t) from the joint fiducial distribution of(θ,δ).
For obtaining the latter joint distribution, he used a prior distribution for(θ,δ) being propor-
tional toθ−1 multiplied by the likelihood function of(θ,δ). Grubbs (1971) used a fiducial
procedure to obtain an approximate one-sided confidence interval forR(t). By holdingx1

andθ̃ .
= T(xr − x1)/(r −1) fixed and lettingw = (t − x1)/(r −1) θ̃, Grubbs presented the

quantity

Q
.
= ln

(

1
R(τ)

)

=
t −δ

θ
=

x1−δ
θ

+w
(r −1) θ̃

θ
.
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Table 2. R(t),R̂(t) and R̂M(t)

t R(t) R̂(t) R̂M(t)
4 .7408 .8940 .8580
8 .4966 .7129 .7065

He then used the fact that 2n(x1− δ)/θ ∼ χ2(2) and 2(r −1) θ̃/θ ∼ χ2(2r −2) as well as
some known approximations to representQ, properly normalized, as a standard normal
variate. These lead to

P

(

R(t) > exp

{

−m
[

1−
v

3m2 +
z1−α

3m
v1/2

]3
})

∼= 1−α, (4.2)

as an approximated(1−α) one-sided confidence interval forR(t), wherem= 1/n+(r −
1)w, v = 1/n2 +(r −1)w2 andzp designates thep-th quantile of standard normal variate.
Grubbs’ expression in (4.2) does not distinguish, however, between the two casest > x1 and
t < x1 that separate the two terms ofRP(R) andRM(R) in (3.10) and (3.16), respectively.
For some values oft < x1, such an oversight may lead to unacceptable values ofR(t) such
asP(R(t0) > 1) = .9, for somet0 < x1.

5. A Numerical Example

A type-2 censored sample with entriesn = 8 andr = 3 was generated from an exp(10,1)
distribution. The first three failure times werex1 = 2.02,x2 = 7.68 andx3 = 9.91. We shall
derive the relative profile and marginal likelihoods ofR(t) for t = 4 andt = 8 (i.e., for the
case wheret > x1), plot these likelihoods and present a table displaying various likelihood
intervals.

Note that the MLER̂= R̂(t) defined in (4.1) maximizes the relative profile likelihood
in (3.10). The value ofR which maximizes the marginal likelihood in (3.15) is called
maximum marginal likelihood estimate (MMLE) and is denoted byR̂M = R̂M(t). As already
indicated earlier, the MMLE, as opposed to the MLE, cannot be solved analytically but only
numerically. Based on the above data, the following table compares, fort = 4,8, the true
value ofR(t) and the numerical values of the MLE and the MMLE.

For this specific censored sample andt = 8 both MLE and MMLE deviate significantly
from the true value. This deviation seems to be mainly due to the relatively small censored
sample size. Note however that for both cases oft, the numerical values of the MMLE are
closer to the true values ofR(t) than those of the MLE.

Expressions of the relative profile and marginal likelihoods ofR= R(t) for t = 4,8, as
extracted from (3.10) and (3.16) are given, respectively, by

RP(R(4)) = −14268R26.768ln3R , (5.1)

RP(R(8)) = −517.9R8.8629ln3R, (5.2)
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Figure 2. Relative profile (dash) and marginal (solid) likelihoods ofR(4)

RM(R(4)) = 6.213R8−6.213R26.768+116.6R26.768lnR

−1094.2R26.768ln2R (5.3)

and

RM(R(8)) = 4471R8−4471R8.8629+3857.7R8.8629lnR

−1664.4R8.8629ln2R. (5.4)

Figures 2 and 3 plot, respectively,RP(R(4)) andRM(R(4)) versusR(4) andRP(R(8))
andRM(R(8)) versusR(8). It can be seen from Figure 3 thatRP(R(8)) andRM(R(8))
almost coincide and are rather symmetrical around their maximizing values (MLEand
MMLE, respectively). The plausibilities of the true valueR(8) =.4966 (Table 2) under
RP(R(8)) andRM(R(8)) are .359 and .389, respectively. The situation in Figure 2 is rather
different; whereasRP(R(4)) is almost symmetrical,RP(R(4)) has much slower tailing off
for smaller values ofR(4). Moreover, the plausibilities of the true valueR(4) =.7408 under
RP(R(4)) andRM(R(4)) are .125 and .518, respectively, implying that this true value of
R(4) is 4.1 times more likely underRM(R(4)) than underRP(R(4)). The latter result seems
to be related to the fact that the marginal likelihood was shown to contain, at least by one
criterion, all of the available information onR(t) that can be extracted from the sample.

Characteristics similar to those demonstrated in Figures 2 and 3 can also be seen from
Table 3 which displays 10% and 90% relative profile and marginal likelihood intervals.

For the sake of completeness, we also present 90% confidence intervalsfor R(t), t =
4,8, based on the above data and Grubbs’ fiduicial approach (c.f., ((4.2)). These 90%
fiduicial intervals are (.7451,1) forR(4) and (.5984,1) forR(8).
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Figure 3. Relative profile (dash) and marginal (solid) likelihoods ofR(8)

Table 3. 10% and 90% relative profile and marginal likelihood intervals

Interval type t = 4 t = 8
10% profile likelihood interval (.7310,.9766) (.3882,.9310)
10% marginal likelihood interval (.5971,.9698) (.3785,.9321)
90% profile likelihood interval (.8655,.9766) (.6465,.7738)
90% marginal likelihood interval (.8169,.8924) (.6391,.7699)

6. Some Concluding Remarks

In this note we have been trying to invigorate the use of the likelihood principle byapply-
ing it to derive likelihood intervals for the reliability parameter of the location andscale
exponential distributions. The resulting likelihood intervals provide at leasta rough idea
of reasonable and non-reasonable values of the parameter involved. However, a 10% like-
lihood interval is not comparable with a 90% level two-sided confidence interval. These
two intervals have different meanings and interpretations. Whereas confidence intervals are
based on hypothetically many repetitions of the same experiment, likelihood intervals are
based on a particular experiment and parameter values are ranked by how likely they make
an observed sample.

The question whether to use the likelihood-based approach for inference or the more
commonly used frequency-based approach has no simple answer. Manyof the commonly
used criteria for evaluating various statistical procedures, such as variance, biasedness and
coverage probabilities, may be justified only by repeated sampling. If repetitions are not
made or planned, then to this end at least, the likelihood approach seems to be more appro-
priate. In his monograph on Statistical Evidence, Royal (1997) strongly supports the law
of likelihood for likelihood inferential statements. While commenting on the strengthof
statistical evidence he states (p. 11): ”How strong is the evidence when thelikelihood ratio
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is 2?...Or 20? Many scientists (and journal editors) are comfortable interpreting a statistical
significance level of 0.05 to mean that the observations are ’pretty strong evidence’ against
the null hypothesis, and a level of 0.01 to mean ’very strong evidence’. Are there reference
values of likelihood ratios where corresponding interpretations are appropriate?” His mono-
graph is devoted to providing a definitively affirmative response to the latterquestion. He
states that (p.31): ”The law of likelihood is intuitively reasonable, consistent with the rules
of probability theory, and empirically meaningful. It is, however, incompatiblewith today’s
dominant statistical theory and methodology, which do not conform to the law’s general
implications, the irrelevance of the sample space and the likelihood principle, and which
are articulated in terms of probabilities, which measure uncertainty, rather than likelihood
ratios, which measure evidence”.

Classical practitioners have refrained though from using likelihood-based methods not
only because these methods stem from a different approach but possibly also because of
the computational complexity involved. However, such complexity seems to be resolved
with the present availability of computers and adequate mathematical software.Indeed, the
computations in this paper have been conducted easily with a MAPLE packageinstalled in
a personal computer. In conclusion, we believe that although the likelihoodprinciple-based
approach for inference, cannot serve as a replacement for the traditional classical approach,
it has its own merits and can be viewed as complementary to it.

It is however beyond the scope of this note to deeply discuss the various aspects of
the likelihood approach for inference and the reader is referred to the references cited in
this note. Additional references which advocate the use of likelihood-based methods are
Basu (1977), Ghosh (1988). The monograph by Royall (1997) contains a rich list of further
advocating references. Arguments against the use of the likelihood-based approach can be
found in Berger and Wolpert (1988).
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