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Abstract

Based on a type-2 censored sample we consider a likelihaséebinference for
the reliability parameteR(t) of the location and scale exponential distribution. More
specifically, we derive the profile and marginal likeliho@d$(t). A numerical exam-
ple is presented demonstrating the flavor of results thabeasbtained by likelihood-
based methods.
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1. Introduction

In this note we apply the likelihood approach to draw likelihood-based inéeren the
reliability parameter associated with a scale and location exponential distribufibe
likelihood-based approach for inference has been thoroughly gmeléor about two
decades from mid-sixties to mid-eighties and has been widely applied to vamieas,
such as time series, linear models and psychological stochastic learnieglik@lihood
approach was first suggested by Fisher (1934) and later develgpediy authors and
applied in various contexts. A good survey of likelihood-based methaudedound in
Severini (2000), Pace and Salvan (1997, Chapter 4), Royall jE98VKalbfleisch (1985).
Applications of likelihood-based inference to some problems in life testing ediound
in the above cited references. A recent reference is Bar-Lev §2808hich likelihood-
based methods were employed for inference on the shape parametesacdihand shape
Weibull distribution.
Basically, this approach embraces the likelihood principle stating that the likelihoo

function contains all available information on the unknown parameters thdtecaxtracted
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from the sample. Those parameter values, for which there is a relativgly paobability
of obtaining the observed sample, are considered as being supported bgta and are
therefore regarded more plausible; and vice versa. The most plauaibéeof an unknown
parameter is obviously its related maximum likelihood estimate (MLHE)(d§) is the like-
lihood function ofw (possibly a vector), based on a given sample, @rslthe MLE of w,
then the relative likelihood function @b is the ratioR(w) = L(w)/L(&) which ranges be-
tween 0 to 1. Values abfor whichR(w) is "small” can be regarded as implausible, whereas
values ofw makingR(w) "large” can be viewed as plausible. The $ei: R(w) > a} is
called a 106% likelihood interval forw. Accordingly, one might consider values af
within a 90% or a 95% likelihood intervals as highly plausible whereas valuesafging
outside a 5% or a 10% likelihood intervals as being highly implausible. Severahents
regarding the use of the likelihood principle for inference are presenttte concluding
section.

Consider now a random sampledrawn from a two-parametes = (w, wyp) distribu-
tion. Let f (x: w) andL(w) = L(w: X) denote, respectively, the probability density function
(p.d.f.) of xand the likelihood function o based on the sample i various inferential
situations, as in the present note, it is required to draw inference onpasatmeter otv,
saywy, only. In such situations the sub-parameter of interest is called the saljgtame-
ter whereasy, is regarded as the nuisance parameter. Inferences on the struatarabgper
w; can be deduced by eliminating the nuisance parangtéom the model and construct-
ing a likelihood which depends ai, only. Several likelihood-based methods have been
suggested in the literature for such an elimination, all resulting in likelihoodsraipg on
wz only. Resulting likelihoods are called profile, marginal, conditional and iategrlike-
lihoods. The first two, which are utilized in this paper, are briefly outlinedacti®n 2. In
Section 3 we treat the location-scale exponential distribution. Based or-&tgpnsored
sample we derive the profile and marginal likelihoods of the associatediligliglaram-
eter. Section 4 briefly outlines some frequency-based and fiduicidtgeduained in the
literature concerning the reliability parameter. A numerical example is prowd8dction
5. Some concluding remarks regarding the use of likelihood-based apaoapresented
in Section 6.

2. Profile and Marginal Likelihoods

We first briefly outline the concept of a profile likelihood and then that of eginal like-
lihood. Relevant references in this context are Sprott and Kalbflel$0], Kalbfleisch
and Sprott (1973), Barndorff-Nielsen (1978), Kalbfleisch (19®&ce and Salvan(1997),
Royall (1997) and Severini (2000).

The Profile likelihood ofw; eliminatesw, by simply replacing it withdy(w;), the
MLE of w, whencw; is held fixed. The profile and relative profile likelihoodsuef are then
defined, respectively, by

P(w1) = Sul)szL(un,uh) = L (o, Gp(wn))

and
RP(wy) = P(wl)/sotlpp(wl)- (2.1)
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The main disadvantage of the useR#¥(w; ) for likelihood inference omy; is that it assumes
that for any fixedw; the nuisance parametex attains its most likely value. This may lead
to a loss of accuracy concerning inferential statementegrespecially when the sample
size is small.

The marginal likelihood ofv; eliminatesw, in a more "sophisticated” way as follows.
Consider a minimal sufficient statistyc= y(x) for (w1, w,). Assume thay can be parti-
tioned asy = (yi1,Y2) such thaty; is an ancillary statistic foey in the presence afy; i.e.,
the p.d.f. of(y1,y2) can be decomposed as

fy1, Yo 1 w1, 0p) =g(yr: w)h(y2 : w00 | Y1), (2.2)

whereg andh denote, respectively, the marginal p.d.f.yafand the conditional p.d.f. ok
giveny;. In this case, inference o, can be based on the marginal submagigh : w;).
The marginal and relative marginal likelihoodswof are therefore defined, respectively, by

M(o) =g(y1: W), (2.3)
d
) RM(@y) = 1) (2.4)
1= sup, M(wy)” :

One drawback of the marginal procedure is that there should existcdlagnstatistic
y1 allowing the decomposition of the form given in (2.2). In case that more tharaocil-
lary statistic exists, the problem arises which one to choose. However,easubstantial
drawback of this procedure is, that even in case that (2.2) holds, treriafion onwy, that
might be contained in the conditional submokl@l, : w1, wy | y1) is ignored. This potential
loss of information has motivated numerous authors to define the notionaffarmative
conditional submodel with respect ta in the presence of a nuisance parameigri.e.,
a submodel which contains no available informatioruarin the absence of knowledge of
wy. Indeed, various definitions have been proposed for this notion implying tiarginal
likelihood is not unique. A good description of this problem, i.e., whether tisaaainiver-
sal definition for a conditional submodel to be nonformative for a stratparameter in
the presence of a nuisance parameter, as well as additional reldfemahoes can be found
in Jorgensen (1993).

3. An Application to the Reliablity Pararmeter of the Location-
Scale Exponential Distribution

The location-scale exponential distribution has, respectively, a p.difa@amulative dis-
tribution function (c.d.f.) of the form

f(x:0,8) =6 Texp{—(x—8)/6} (5w (X) (3.1)

and

F(t:8,0) = [1—exp{—(t—20)/6}]l5w 1), (3.2)
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where both parametefsc R™, 0 € R are unknown andl(X) is the indicator function of a
setA. This distribution is designated henceforth by €xd).
The reliability function at the poirttassociated with (3.2) is

exp{—(t—90)/6},t >d

1 t <. (33)

Rt)=R=1-F(t:6,0) = {
An inference orR(t) is considered to be based on a type-2 censored sample stemming
from (3.2). More specificallyn items with survival density (3.1) are placed on a test. The
test is stopped once a predetermimedth failure time, 1<r < n, occurs. Letx; < xo <
... < % denote the failure times, then their respective joint p.d.f. is

f(X17 s Xr 97 6) = Cr.,ne_r eXp{—T(Xr - 6)/9} |(5,°°) (Xl)7 (34)

whereC;n =n!/(n—r)!and

r

T06=8)= 3 (x~8)+(n-1)x 9 (35)

In the next two subsections we derive the profile and marginal likelihod{tof

3.1. The Profile Likelihood of R()

The likelihood function of(8,d) is proportional to (3.4) up to a constant which does not
depend on6,8). For deriving the profile likelihood oR = R(t) we shall consider here
a reparameterization of the location-scale exponential distributiaiRky) rather than by
(6,9), i.e., in terms of the general setting of SectioriRR,d) = (wy, ) with Randd being

the structural and nuisance parameters, respectively. Indeedingy(8s3), we obtain that
fort > 8, 8= (t—5)/(InR1). Hence the joint likelihood function ofR, 8), denoted by
L(R,®: X1,....,%) =L(R d), is given by

uRjy:F??;}em{—(Tf;ymm—a},5<mm¢m%0<R<1. (3.6)

Employing (2.1), the relative profile likelihood of the structural paramBtisr defined

by
reR) — _LROR) __ LRER) 57
sukL(RA(R))  L(R?J)

whereL(R, S(R)) = suL(R,8). To find the supremum in (3.7), one should distinguish
between two cases(i) min(t,x1) = X1, and (ii) min(t,x;) = t. For case(i), L(R,9)) is
increasing i < x; <t for any givenR. HenceL(R,8(R)) = L(R,x1) and sugL(R,x1) is
obtained at

R=exp[—r(t—x1)/T (X —X1)].
Substituting this in (3.7) we obtain

—1 - r —1
INR™ T(X% —X1) exp _InR
(t—x1) r t—xp

RP(R) =

T(x,—x1)+r},x1<t. (3.8)
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Table 1. 10%profile likelihood intervals for R(t) based on (3.9)

n 2 5 20 100
10% likelihood intervals foR(t) | (.32,1)| (.63,1)| (.89,1) | (.98,1)

057

R(t)

Figure 1.RP(R) in (3.9) for n=2,5,20.

For case(ii ), the quantities in (3.7) are obtained by a straightforward differentiation,
yieldingd(R) =t +r~1T(x —t)InRand supL(R 8(R)) = L(1,8(1)). Hence

RPR) =R, t < ;. (3.9)

Remark 1. Note thatRP(R) in (3.9) depends on but remains constant inregardless
of the value oft < x;. Such a result is, however, not too surprising. Indeed, sthise
unknown, therxs, a strongly consistent estimate ®@rsolely provides the only information
on the "location” ofd < x;. For an arbitrary choice df(< x3), it is not feasible to determine
whether or not is still larger thand. Hence, the constancy &P(R) in t, for anyt < Xy, is
reasonable as it serves as a measure of our ignorance regardincgiiien@fd. Moreover,
the dependence @&P(R) on n is reasonable too since the larger the sample sizethe
closerx; gets tod, and, consequently, more information Biis gained. This can be seen in
both Table 1 and Figure 1. Table 1 displays, for increaririd% relative profile likelihood
intervals forR, while Figure 1 plots the relative profile likelihood B{t) for n= 2,5, and
20.

Combining the two casg$) and(ii) in (3.8) and (3.9), respectively, we obtain that the
relative profile likelihood interval foR(t) is

_ r ~
[R5 T [Fexp{ BT (¢ —xq) 41} 3 <t

RP(R) = (3.10)
Rn, t <X
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3.2. A Marginal Likelihood of R(t)

We use (2.4) to obtain the marginal likelihood Bf(t). It can be readily seen that
the statistic(xs, T(X — x1)) is minimal sufficient for(6,5). Consequently, the statistic
(n(x1 —t)/T(% —x1), T(X —X1)) is minimal sufficient for(R,8). Here, we shall use the
parameterizatiorfoy, wp) = (R,0), i.e., with R and 8 being the structural and nuisance
parameters, respectively.

In order to derive the marginal likelihood &(t) we use the decomposition in (2.2) as
applied to joint p.d.f. of the minimal sufficient statistic. Indeed, letting

(Y1,¥2) = (N(x1 =) /T (X% —%1), T (X% — 1)), (3.11)
we will show that the joint density dfys,y2) can be decomposed as
f(yl,yZ : R’ e) = g(yl : R)h(yz : Rve | yl)v (312)

where the marginal densityof y; depends oir only, meaning thay; is ancillary for@ for
any givenR; whereas the conditional density wf giveny; depends on botR and8 but
contains no information oR in the absence of knowledge 6f(in the sense of Sprott and
Kalbfleisch, 1969, and Sprott, 1975). To observe this we use the folijplwimma.

Lemma 1 For r > 1, the joint density of(y1,y2) defined by (3.11) and the marginal
density of yin (3.12) are given, respectively, by

f(y,y2 : RO)= R”exp{_yz(yﬁl)}yrz‘ll(oﬁw)(yz) (3.13)

1
(r— 216 0

X | (neinR.w) (Y1Y2)

and
DR [ "M (vt mn) exn (it
oy R)=¢ [1 igoi!( it nR) exp(—%HnRY) | ya <0 (3.14)
.
yor1e Y12 0.

The expression (3.13) is simply obtained by transfornfingu,) = (n(Xy —9), T (X —
X1)) — (y1,¥2) and noting thati; L up with u; ~ exp(6) andu, ~ gammadr — 1,0). (3.14)
then follows by integrating (3.13) with respectyg

Note that the two conditiong < 0 andy; > 0 are equivalent to the conditiohs- x; and
t < x1, respectively. Hence, by using (3.14) we obtain that up to a constaaepending
on Rthe marginal likelihood oR is

r-1 s . B
R [1-T3 B (nR) exp( - He=g nRe)

i xg <t (3.15)

M(R) =
R, if t <Xy,

To show thaM (R) contains all available information dRin the absence of knowledge
of 8, we use the fact that the conditional distributiorygf6 giveny; does not depend dh
Hence, the r.vy,/0 conditional ony; is a pivotal quantity fo®. This result satisfies one of
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the criteria given in Sprott and Kalbfleisch (1969) (see also Sprott,)@gblired for the
conditional modeh(y, : R6 | y1) to be nonformative with respect ®in the absence of
knowledge o®. Hence, by that criteriorM (R) contains all of the available information on
Rthat can be extracted from the sample.

Note also that fot < x;, the supremum of the second term in (3.15) is obtainét-ail
and hencd&RM(R) = R". This term coincides with that ®®P(R) in (3.10). Fort > X3, the
supremum of the first term of (3.15) cannot be expressed explicitly lanald be solved
numerically for specific sample observations. Accordingly, the resultimg tdf RM(R) is

1 L ) B -1
" %)' (InR")' exp(—ﬁ(()ﬁ_ff In R”)] }

RM(R) = x R [1— z:.%(T(Xft>)i (|an)iexp(_T<Xf*t> In R”)}, (3.16)

n(xy—t) n(xy—t)

if t>x,

\ Rn, |f t<X1

4. Some Frequency-Based and Fiduicial Approach Results

The MLE of (6,0) is (T (X, —x1)/r,X1). Hence, using (3.3), the MLE f&® = R(t) is

~ (t — X]_)
R_exp{—_l_()(r_xl)/r},t>x1. (4.2)
Pugh (1963) derived an expression for the minimum variance unbiatethée forR(t) for

the non-censored sample case anrd0. Balasubramanian and Balakrishnan (1992) dealt
with parameter estimation for the location and scale exponential distributiom omuigple
type-2 censoring. Additional references can be found in Johnsotz, &d Balakrishnan
(1994, pp. 507-509). Engelhardt and Bain (1978) derived theilslision (3.14) of the
ancillary statisticy; = n(x; —t)/T (% — X1) and used it to construct confidence limits for
R(t). The resulting limits can be calculated only numerically due to the rather cunmberso
expression of the p.d.f. 9f. More specifically, it, = 8+ 6[—log (1— p)] denotes the-th
quantile of (3.1), Engelhardt and Bain used the pivotal quajty: r (x; —tp) /T (X — X1)

to base confidence intervals figrby utilizing the relation

y=P(Zp <) =Pltp > x1— L, T(% —x1)/T),

where(,,, designates theth quantile ofZ,. Such confidence intervals can be converted to
confidence intervals fdR(t) by employing the relatioR(t, > t) = P(R(t) > 1— p). Their
calculations require though an intensive simulation work

A fiducial approach was carried out by Pierce (1973) and Grub®81(1 Pierce de-
rived a version of fiducial distribution d®(t) from the joint fiducial distribution of8,d).
For obtaining the latter joint distribution, he used a prior distributior{®d) being propor-
tional to®~! multiplied by the likelihood function of6,3). Grubbs (1971) used a fiducial
procedure to obtain an approximate one-sided confidence internvR(tfprBy holding x;
and® = T(x —xy)/(r — 1) fixed and lettingw = (t —x;)/ (r —1) 8, Grubbs presented the
quantity

. 1) t-8 x-9 (r—1)6
Q_In(R(r)>_ e 8 Vg
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Table 2. R(t)R(t) and Ry (t)

t|RE | R Ru (t)
4] .7408 |.8940 | .8580
8|.4966 | .7129 | .7065

He then used the fact thah@; — 8)/6 ~ X2(2) and 2r —1)8/6 ~ x2(2r — 2) as well as
some known approximations to represé€htproperly normalized, as a standard normal
variate. These lead to

3
P(R(t) >exp{—m[1—3r\;2+2;;:vl/2] }) ~1—q, (4.2)
as an approximated. — a) one-sided confidence interval f&t), wherem=1/n+ (r —
1)w, v=1/n?+ (r — 1)w? andz, designates the-th quantile of standard normal variate.
Grubbs’ expression in (4.2) does not distinguish, however, betwedwthcases > x; and

t < x; that separate the two terms RP(R) andRM(R) in (3.10) and (3.16), respectively.
For some values df< xi, such an oversight may lead to unacceptable valug§tofsuch
asP(R(tg) > 1) = .9, for sometg < x1.

5. A Numerical Example

A type-2 censored sample with entries= 8 andr = 3 was generated from an €4, 1)
distribution. The first three failure times wexge= 2.02,x, = 7.68 andxz = 9.91. We shall
derive the relative profile and marginal likelihoodsRit) for t = 4 andt = 8 (i.e., for the
case wher¢ > x1), plot these likelihoods and present a table displaying various likelihood
intervals.

Note that the MLER = R(t) defined in (4.1) maximizes the relative profile likelihood
in (3.10). The value oR which maximizes the marginal likelihood in (3.15) is called
maximum marginal likelihood estimate (MMLE) and is denoted®y= Ry (t). As already
indicated earlier, the MMLE, as opposed to the MLE, cannot be solvdgtaxadly but only
numerically. Based on the above data, the following table compares=dak 8, the true
value ofR(t) and the numerical values of the MLE and the MMLE.

For this specific censored sample anrd8 both MLE and MMLE deviate significantly
from the true value. This deviation seems to be mainly due to the relatively smath ezl
sample size. Note however that for both casets tife numerical values of the MMLE are
closer to the true values &t) than those of the MLE.

Expressions of the relative profile and marginal likelihood®ef R(t) fort = 4,8, as
extracted from (3.10) and (3.16) are given, respectively, by

RP(R(4)) = —1426&R2% "®8|n°R, (5.1)

RP(R(8)) = —517.9R3 86293 R (5.2)
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Figure 2. Relative profile (dash) and marginal (solid) likelihoodB(@f)

RM(R(4)) = 6.213R8—6.213R%%7%8 1 116 6R?®"®8|nR

and

RM(R(®)) = 4471R®—4471R% %294 3857 7R%29InR
— 1664 4R38529n2R, (5.4)

Figures 2 and 3 plot, respectiveRP(R(4)) andRM(R(4)) versusR(4) andRP(R(8))
andRM(R(8)) versusR(8). It can be seen from Figure 3 thRP(R(8)) andRM(R(8))
almost coincide and are rather symmetrical around their maximizing values @hdE
MMLE, respectively). The plausibilities of the true val&8) =.4966 (Table 2) under
RP(R(8)) andRM(R(8)) are .359 and .389, respectively. The situation in Figure 2 is rather
different; wherea&®P(R(4)) is almost symmetricaRP(R(4)) has much slower tailing off
for smaller values oR(4). Moreover, the plausibilities of the true valR¢4) =.7408 under
RP(R(4)) andRM(R(4)) are .125 and .518, respectively, implying that this true value of
R(4) is 4.1 times more likely undd®M(R(4)) than undeRP(R(4)). The latter result seems
to be related to the fact that the marginal likelihood was shown to contain, ablease
criterion, all of the available information dR(t) that can be extracted from the sample.

Characteristics similar to those demonstrated in Figures 2 and 3 can alsatfeosee
Table 3 which displays 10% and 90% relative profile and marginal likelihotavals.

For the sake of completeness, we also present 90% confidence infenR($), t =
4,8, based on the above data and Grubbs’ fiduicial approach (c.f., (412)¢se 90%
fiduicial intervals are (.7451,1) fd®(4) and (.5984,1) foR(8).
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0.75 T
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Figure 3. Relative profile (dash) and marginal (solid) likelihoodB (&)

Table 3. 18 and 9% relative profile and marginal likelihood intervals

Interval type t=4 t=8

10% profile likelihood interval | (.7310,.9766) (.3882,.9310)
10% marginal likelihood interval (.5971,.9698) (.3785,.9321)
90% profile likelihood interval | (.8655,.9766) (.6465,.7738)
90% marginal likelihood interval (.8169,.8924) (.6391,.7699)

6. Some Concluding Remarks

In this note we have been trying to invigorate the use of the likelihood principbgpbly-
ing it to derive likelihood intervals for the reliability parameter of the location acale
exponential distributions. The resulting likelihood intervals provide at laasiugh idea
of reasonable and non-reasonable values of the parameter involoackvet, a 10% like-
lihood interval is not comparable with a 90% level two-sided confidence miteivhese
two intervals have different meanings and interpretations. Whereas enoéidntervals are
based on hypothetically many repetitions of the same experiment, likelihoodalstemne
based on a particular experiment and parameter values are ranked kikeip they make
an observed sample.

The question whether to use the likelihood-based approach for infe@mihie more
commonly used frequency-based approach has no simple answer.dfdagycommonly
used criteria for evaluating various statistical procedures, such anear biasedness and
coverage probabilities, may be justified only by repeated sampling. If repstitice not
made or planned, then to this end at least, the likelihood approach seems toebemim-
priate. In his monograph on Statistical Evidence, Royal (1997) stronuglgasts the law
of likelihood for likelihood inferential statements. While commenting on the streafjth
statistical evidence he states (p. 11): "How strong is the evidence whéketlieood ratio
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is 2?...0r 20? Many scientists (and journal editors) are comfortable intiaigpeestatistical
significance level of 0.05 to mean that the observations are ’pretty strashgnee’ against
the null hypothesis, and a level of 0.01 to mean 'very strong evidence’thfere reference
values of likelihood ratios where corresponding interpretations ar@ppgate?” His mono-
graph is devoted to providing a definitively affirmative response to the lgikestion. He
states that (p.31): "The law of likelihood is intuitively reasonable, condistéh the rules
of probability theory, and empirically meaningful. Itis, however, incompatita today’s
dominant statistical theory and methodology, which do not conform to thes lganeral
implications, the irrelevance of the sample space and the likelihood principdeyhich
are articulated in terms of probabilities, which measure uncertainty, rathetikietihood
ratios, which measure evidence”.

Classical practitioners have refrained though from using likelihoogdbasethods not
only because these methods stem from a different approach but Ipaasi because of
the computational complexity involved. However, such complexity seems tosob/eel
with the present availability of computers and adequate mathematical softndeed, the
computations in this paper have been conducted easily with a MAPLE parisigked in
a personal computer. In conclusion, we believe that although the likelipdociple-based
approach for inference, cannot serve as a replacement for thigoimaticlassical approach,
it has its own merits and can be viewed as complementary to it.

It is however beyond the scope of this note to deeply discuss the varspesta of
the likelihood approach for inference and the reader is referred toefeeences cited in
this note. Additional references which advocate the use of likelihoodebamethods are
Basu (1977), Ghosh (1988). The monograph by Royall (1997) owwerich list of further
advocating references. Arguments against the use of the likeliho@dtaaproach can be
found in Berger and Wolpert (1988).
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