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Let F and G be multivariate probability distribution functions, each with equal
one dimensional marginals, such that there exists a sequence of constants a, >0,
neN, with

Hm FYa,%, . ;%) = G(X 14wy Xg)y

n— o0

for all continuity points (x, .., x,) of G. The distribution function G is charac-
terized by the extreme-value index (determining the marginals) and the so-called
angular measure (determining the dependence structure). In this paper, a non-
parametric estimator of G, based on a random sample from F, is proposed,
Consistency as well as asymptotic normality are proved under certain regularity
conditions.  © 1993 Academic Press, Inc,

1. INTRODUCTION

Let F and G be non-degenerate bivariate probability distribution
functions, each with equal marginals, such that there exists a sequence of
constants a,> 0, ne N, with

lim F"(a,x, a,y)=G(x, y), (1)

n— w0
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for all continuity points (x, y) of G. We suppose that G(x, y) <1 for all x,
veR.
The left hand side is the distribution function of

(an—l maX(Xla ey Xn)s an_] max( Y]s ey Yn))a

where (X, Y,), ... (X,, Y,) are iid. random vectors with distribution
function F. That is, G is a two-dimensional extreme-value distribution and
Fis in its (simple) domain of attraction.

It is known (see de Haan and Resnick, 1977), that G satisfying (1) must
be “max-stable.” That is to say, for all me N there exist constants 4,, >0,
such that for all x, y

G"(Apx, Ay y)=G(x, y). (2)

Consideration of the marginals (using the fact that G(x, y)<1 for all
x, y€ R) shows that

—log G(x, o0) = —log G(co, x)= (Bx) "', x>0, (3)
log G(tx, ty)=1t"""log G(x, y) t, x, y>0. 4)

Here f and y are positive constants. Note that {a,} and p are related: if
we replace {a,} in (1) by {ca,}, then G(x, y) is replaced by G(cx, cy),
hence (3) is replaced by

—~log G(cx, o0) = —log G(oo, cx)= (Bex)~Y", x>0

So we could choose {a,} in (1) in such a way that (3) holds with f=1.
However, we normalize {a,} in a different way, explained shortly.
Obviously we can rewrite (1) as

n—=c0

lim n{l_F(anxa any)}::_logG(xa y)s (5)

for all continuity points (x, y)e (0, ©0)* of G for which 0< G(x, y)<1.
Now (1) implies (de Haan and Resnick, 1977) that there is a measure p on
[0, c0)?, assigning finite values to Borel sets bounded away from the origin,
such that

—log G(x, y)=pu{(u,v) | u>xorv>y}. (6)
Moreover, if (X, Y) is a random vector with distribution function F, then

lim nP{(X, Y)ea,B}=u(B) (7

n— 0
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for all Borel sets in [0, c0)* with 4(6B) =0 and B bounded away from the
origin. :

The measure u can be further described as follows (de Haan and
Resnick, 1977). If (1) holds, there exists a finite measure, called angular
measure, on [0, n/2] with distribution function @ such that

/2 7/2
j cos' B d () = j sin' 8 dav(9), (8)
0

0

p{(x, y) : (x*+ p*)'? 2 1, arctg(y/x) <0} =r~1"B(0), %)

r>0,0€e[0, x/2]. »
In particular, combining (7) and (9), we get

lim nP{(X*+Y*)”>a,r}=r " @

H— 0

so that obviously the choice of {a,} determines ®(n/2).

We write S(r) = P{(X*+ Y*)"2>r} and choose a, to be S (1/n), where
S denotes the right continuous inverse of S; to facilitate proofs we
assume throughout S to be continuous. Then for the limiting function G in
(1) we have &(n/2)=1, ie., the angular measure is a probability measure.

Clearly the distribution function G is characterized by the positive
constant y (the extreme-value index) and the probability distribution
function @ (determining the angular probability measure). Our object is to
estimate the pair (y, @) using a random sample from a distribution Fin the
domain of attraction of G, ie., satisfying (1).

Denote with (p, @) the vector of polar coordinates of (X, ¥); let r>0
and 0<0<n/2 and set B={(x, y): x>+ y*=>r% y/x<tgh} in (7). Then
we get for all r>0 and 0eT,:={0e[0,n/2): P is continuous at

6} v {n/2}

lim nP(p?a,,vr, O<8)=r""®(h) | (10)
and hence
lim nS(a,r)=r="",  r>O0. (11)

By inverting (11) we obtain

STUm) o ., |
n—l_'n‘;om~nlinio;g (t/n))a, =17, >0, . (12)
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Write R:=S(p). For every 6eT,, the convergence in (10) is locally
uniform for r > 0, therefore we have for all ¥>0 and 8¢ T,

lim nP(R<r/n, @<0)

n— o0

= lim nP (p =a,

n— o

= lim nP(p=a,r ", 0<8)

= rd(6). (13)

It is not hard to see that in the left hand side of (13), » may be interpreted
as a continuous variable, ie., running through R.

Our main result is Theorem 2, stating joint asympiotic normality of
estimators y, for y and @, for @. In fact the two estimators are asymptoti-
cally independent. This makes sense since the estimator y, is based on the
p-component of the initial random vector and the estimator &, is based
mainly on the @&-component. The two components are asymptotically
independent in the following sense

bm Plpza,r,0<0}
n - co P{p?an} N

r=1%g(0)

weakly (from (10)).

Finally we compare the framework of our results with that of some other
papers. Most authors (e.g., Pickands, 1981; Deheuvels and Tiago de
Oliveira, 1989; Tiago de Oliveira, 1989; Smith et al. 1990; and Deheuvels,
1991) construct estimators for the extreme value distribution G using
observations from G itself rather than from a distribution function F in its
domain of attraction.

Another distinction between our work and the mentioned papers is that
previous authors assumed that the marginal distributions are known and
concentrated on the estimation of the dependence structure (ie., @). In
contrast we do estimate @ but also (jointly) y, the asymptotic shape
parameter of the marginal distributions.

A concrete problem where our approach seems to be relevant, is the two-
dimensional sea dike problem. High tide water levels have been monitored
in a continuous and reliable way at (at least) five stations on the Dutch
coast. One is interested in the approximate distribution function of very
high water levels—higher than the available observations—since these can
cause floods. In fact, one wants to estimate the probability of a flood at
either of the two sites, say Vlissingen (in the province of Zeeland) and
Hock van Holland (in the province of Zuid-Holland), To this end one has
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to estimate the limiting two-dimensional extreme value distribution G (i.e.,
y and @) based on observations from the domain of attraction of G (since
there is no reason to believe that the high tide water levels themselves
follow an extreme-value distribution).

A (very rough) outline of the present paper appeared in de Haan (1985).
The interested reader may also consult Geffroy (1958/1959), Tiago de
Oliveira (1958), Sibuya (1960), Deheuvels (1978, 1980), and Resnick
(1987) for more background.

2. STATISTICAL RESULTS

Let (X, ¥,), (X5, ¥,), .., be a sequence of independent random vectors
with common distribution function F and let F be as in Section 1; recall
that X;, ¥,;20, ie N. Denote the polar coordinates of (X, ¥;) by {p;, @,).
We consider the problem of using the first n of these observations to
estimate y and &.

Throughout for an integer 1 <k<n, p,., will denote the kth order
statistic from p,, g1, .., p, and k, will be a sequence of positive integers
satisfying

i<k, €sn/2, neN, and k, = o0, k,/n—0 (n— o0).
Given k,,, introduce the estimators for y and @ by

V=008 pr_iy+1:n— 108 Pr_2i,+1:)/108 2 (14)

and

1 n .
@ (8 =;;‘ z @,-SG, pr‘>p1x—k,,+l:n)a Osegn/Qw (15)

respectively. The estimator y, is a simplified form of an estimator of y
proposed by Pickands (1975). The purpose of this paper is to prove that
7, and @, are consistent estimators and that k!/*(y,—v, ®,— @) is jointly
asymptotically normal. The results are captured in the following two
theorems; the proofs are deferred to the next section.

THEOREM 1. We have as n—» <

’}’117‘) 7

and

D,(0)—7 @(0), for 0eT,.
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Moreover, if k,/loglogn~» o0 (n— ), then almost surely
Vn s (16)
and, if k,/logn— o0 (n— o0), then almost surely
@,0)>d(8), for 0eT,. (17)

Remark 1. Using more delicate arguments (cf. Theorem 4.6 in Einmahl,
1987), we can show that (17) holds under the weaker assumption that
kn/loglogn— co (n— o0). For the sake of brevity, Theorem 1 is proved as
it stands.

The proof of the asymptotic normality requires some regularity
conditions. These conditions are a natural strengthening of (1), more
precisely of (13) and (11). Write R,=S(p,), ie N. Assume there exists a
0<d<1 such that

k
f—P(@lsf), Rlé—’;’lr>——r¢(6)’=0. (C1)

lim K  sup =«
n—w 0g0<n/2 n
1-6<rgt+é

It readily follows from (11) that

lim S(ex)/S(t)=x"1", (18)

{— o0
for all x> 0. Inverting (18) we obtain

lim S« (tx)/S()=x"", x>0 (19)

110
Taking the logarithm on both sides yields

lim log S (1x) —log S (1) = —y log x. (20)

t}0

Moreover this convergence is uniform for x e [4, 247, which implies that
there exists a positive function b satisfying (as ¢} 0), b(¢t) — 0 and

log S(tx)~—log S (t)= —y log x + O(b(1)), (21)
uniformly on [3, 24]. We will need the following condition:

lim k!2b(k,/n)=0. (C2)

n—
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Tueorem 2. If (Cl) and (C2) hold, then as n— oo, k?(y,, —y, &, — &)
converges weakly to (Z, A) on Rx D[0, n/2] (the D-space is equipped with
the Skorohod J-topology), where Z is a mean zero Gaussian random
variable with variance y*/(210g*2) and A is a mean zero Gaussian process
with covariance structure

EA(0,) A(0;)=D(0, A 0,)—P(0,) D(6,), 0<0,,0,<m/2
Moreover, Z and A are stochastically independent.
Remark 2. Note that A =¢ Bo ®, where B is a Brownian bridge.

Remark 3. For convenience of writing we have chosen the bivariate
set-up in this paper. Note however, that Theorems | and 2 remain true,
mutatis mutandis, in the multivariate setting. To be more precise, when we
denote the dimension with 4 (= 3), then the major changes are that
[0, #/2] has to be replaced by [0, n/2]¢' (see de Haan and Resnick,
1977, p. 320) and that, when dealing with 0’s, “<,” and “A ™ have to be
understood componentwise in the definitions and Theorem 2.

3. Proors

Before we begin with the proof of Theorem 1 we state a useful inequality.
Let Z,, Z,, .. be independent R¢valued random vectors with common
distribution function C. For any Borel subset of R? set

C(B)=P(Z,eB),
1 n
C.(B)=7 3. 1(Zie B),
f=1
Let 4 denote any half-open rectangle in R? of the form [T (a;, ],
a;<b;, i=1,..,d For any 1>0, let
W(A) = 2A72((1 + 1) log(1 + ) — 1),

This function has the property /(1) 11 as 41,0.

Inequality 1 (Einmahl, 1987). Let de N, 0<C(4)<4 and 0<d <.
Then there exists a constant K> 0 depending only on d and § such that

P(sup |n'(C,(4)—C(A)| = 1)

AcA

<Kexp <_(21C_(:))'12l// (nl/zé(A)))" - 2>0, (22)

where 4 denotes any half-open rectangle (of the same form as A).
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We also need some more notation. Write

F,(, r)=k£P(@1<9, Rls%r>, 0<0<m/2,r=0, (23)

n

and denote the corresponding tail empirical distribution function by
1 & k,
F.(6,r)=—> 1{0,<6, R,<=r). (24)
k, 2\ n
Note that, with the obvious notation, almost surely,
®,(6)=F, (e, kiRkn ) 0<o<n2, 25)

Proof of Theorem 1. The proofs of the “in probability” statements are
omitted because they are similar to, but easier than, those of the “almost
sure” statements, which foliow now.

If &, /log log n — co, it readily follows from Wellner (1978) that almost
surely

RZk,.:n -0 and Rk,,:n/R2k,,:n—+l/2- (26)
Combining this with (20) yields almost surely

lim lOg S‘_(Rk,, : n) - IOg S‘_(RZk,, :n) -y log 2. (27)

n— o

Noting that S“(R;)=p,, almost surely, (16) follows.
Now assume k,/log n — co. We have, writing e, = (n/k,,) Ry, .,

sup “Fn (93 en) _Fn(ea 1)‘

0go<n/2
< sup |F,(8,e,)—F,.(8, 1)
0<0<n/2
+ Sup IIF,,(H, 1)_Fn(0, 1)l=:Anl+An2' (28)

00 /2

But almost surely

Anl = |[F,,(7r/2, en)_ IF,,(TC/Z, 1)'
= |lF,,(7r/2, 1)_ ll = ||F,,(TC/2, 1)-—*F"(TE/2, l)l <Anz- (29)



MULTIDIMENSIONAL EXTREME ESTIMATIONS h 43
Applying Inequality 1 with =1, we obtain for any >0 and » large
enough

P(d,, 2 e) < Kexp(—k,el(e)/4)<n™2 (30)

Combination of (28)-(30) and an application of the Borel-Cantelli lemma
now yields that the left hand side of (28) converges to zero almost surely.
Hence, using (13), we see that almost surely

D, (0)=F,(8, e,) > D(6) (n—> o0}, (31)
for all e Ty. |

The proof of Theorem 2 requires more notation. Write
H,(0)=F,(0,1);H,(0)=F,(6,1), 0<8<n/2, (32)
J,(r)=F,(n/2, r), 0<r<3, (33)

and introduce the corresponding tail empirical processes
Wi, (0)=Fk,(H,(0)— H,(0)), (34)
Wau(r)=k,(J,(r) 7). (35)

Let (W,, W,) be a mean zero Gaussian process on D[0, /2] x D[0, 3]
(we again tacitly assume that, as usual, the D-spaces are equipped with the
Skorohod J,-topology and the corresponding c-algebra) with covariance
structure

EW (0,) W, (0,)=®(8, A 6,),

EWy(ry) Wy(ra)=r, A ra, (36)
EW1 (61) Wz(r1)= (rl A 1) @(01), Ogel, 92<7‘C/2,0<r1, r2<3.
The following result and its corollary are crucial for the proof of

Theorem 2.
ProposiTioN 1. If (Cl) holds, then the process (W,,, Ws,) converges
weakly in D[0, n/2]x D[0, 3] to (W, W,).
Write
W=k () —r),  i<r<2d, (37)
where I is the left continuous inverse of J,,.

CoRrOLLARY 1. On a suitable probability space there exist a sequence of
probabilistically eguivalent versions (W, W¥,) of the processes (W ,,, W)
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and a mean zero Gaussian process (W, W,) with covariance structure as in
(36) such that, as n — oo,

d( Wlnv Wl) -0 as., ) (38)
1W5,+W,035-0  as. (39)

Here d denotes “the” Skorohod metric and ||-|° the supremum-norm on

[a,b].

Proaf of Proposition 1. We have to show tightness of the sequence of
processes (W,,, W,,) and the weak convergence of the finite dimensional
distributions :

(W1r1(01)7 ey Wll:(ek)9 W2,,()'1), e Wzn(rm))a
forall 8,,..,0,eTy, 0<ry, r, <3, k,meN, to
(Wl(el)n voes Wl(gk)s WZ("I ): ey W2(rm))'

The convergence of these finite dimensional distributions is standard and
follows from (13) in combination with a multivariate version of Lindeberg’s
theorem (see Araujo and Giné, 1980, p. 41, Exercise 4)).

For the tightness condition it is enough to establish tightness for the
marginal processes W,, and W,,. The proofl for W,, is similar to, but
easier than, the one for W,,. Therefore we only establish tightness for
the sequence of processes W,,. To do so we have to show (see
Billingsley, 1968, p. 125) that for each &> 0, there exists an M such that
for all neN '

PO, IIF?> M) <s, _(40)

and that for each ¢ >0 there exist 0 =0,< 8, < ... <8, =n/2 such that for
large n

P( max sup ,Wln(e)_ Wln(gi—-])’ >E)SE' (41)

t<ism 0e[,- .00

Assertion (40) follows from an easy application of Ineﬁuality 1, using
W(A) ~ (2log A)/A (A - o). Now consider (41). We can obviously bound
the left hand side by

Z P( sup |I/Vl.n(6)—~ Wlu(gifl)l 2‘6) (42) Co-

i=1 De[0i-y,8)

Let m>=1 be an integer which will be specified later on and choose
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0=0y<0,< .- <0,=mn/2such thatfor 1 <ig<m, & _(0,)— D0,_,) < /m.
From (C1), it easily follows that for large n

lim F, (6, 1)~ F, (81, 1) < 2/m. (43)

Now applying again Inequality 1 (the fact that not all rectangles involved
are half-open causes no problems) and using I\ is increasing, we find for
large n as an upper bound for the left hand side of (41)

Km exp(—&*mjr(em/(2k2))/8) < Km exp(—&*m/16). (44)

This last expression is bounded by ¢ for m large enough. Thus we have
shown that the sequence W,, is tight. |

Proof of Corollary 1. The existence of a probability space on which we
have (38) and (with the obvious notation)

IWa—Wall3—0  as. (n— ) (45)

is a consequence of the Skorohod representation theorem. Assertion (39)
follows from (45) and Lemma 1 in Vervaat (1972). |

The next step is relating y, and &, to the processes W,, and W¥,. This
is achieved in a couple of lemmas.

Lemma 1. If (C2) holds, then as n — «

B - (7E@-P0) 0 @)

P

Proof. Note that the left hand side of (46) is almost surely bounded
from above by

k,l,/z log ST(Ry,.,) —1log ST(Ry, : 1) _y)
log 2

ks 12 n
log 2 R2k,, n 10g 2) - log k" Izk,l tn
i)
log 2 RZk,, lOg 2 IOg kn Rk" H
= 1( )= eom1))

—{— -2 —{—Ry.,— 1)1}l 47
log2<2 k, Raey:n k, ke (47)




46 EINMAHL, DE HAAN, AND HUANG

It is easily seen that the first term tends to zero in probability from (21),
(C2), and the fact that, as n — co,

n

n
k) = Ry 5 2. (48)

Riyin— 1 and k. .

An application of the mean value theorem in conjunction with Corollary 1
yields that the second term is also op(1). |

LemMa 2. If (C1) holds, then as n—> co

kY@, — @)= (W, + W, (L) D) — 0. (49)

Proof. Let ¢> 0. First we show that for large »n

P( sup |k, (F,(0,e,)—F,(0,¢,) — Wi, (0) = &) <e. (50)

0<l0<n/2

Note that the left hand side of (50) is bounded from above by

Pk le, —1]21)
+P( sup  |K,/*(F,(6,r)=F,(0,r)— W, (0) z¢). (51)

0<6<n/2

e~ 1 <k, Y
It easily follows from Corollary 1 that k/*(e,—1)=0p(1), which implies
that the first term is less than & for large #n. From Inequality 1 we see that
the second term can be bounded by

K exp(— e’k i (e/(2Kk,*))/8), (52)

which is less than ¢ for large n.
Combining (50) with (C1) we readily obtain (49). |

Proof of Theorem 2. Combination of Proposition 1, Corollary 1,
and Lemmas 1 and 2 reduces the proof to straightforward covariance
calculations, which are omitted for the sake of brevity. |
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